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Abstract We present a first determination of the nuclear

parton distribution functions (nPDF) based on the NNPDF

methodology: nNNPDF1.0. This analysis is based on neutral-

current deep-inelastic structure function data and is per-

formed up to NNLO in QCD calculations with heavy quark

mass effects. For the first time in the NNPDF fits, the χ2

minimization is achieved using stochastic gradient descent

with reverse-mode automatic differentiation (backpropaga-

tion). We validate the robustness of the fitting methodology

through closure tests, assess the perturbative stability of the

resulting nPDFs, and compare them with other recent analy-

ses. The nNNPDF1.0 distributions satisfy the boundary con-

dition whereby the NNPDF3.1 proton PDF central values

and uncertainties are reproduced at A = 1, which intro-

duces important constraints particularly for low-A nuclei.

We also investigate the information that would be provided

by an Electron-Ion Collider (EIC), finding that EIC mea-

surements would significantly constrain the nPDFs down to

x ≃ 5 × 10−4. Our results represent the first-ever nPDF

determination obtained using a Monte Carlo methodology

consistent with that of state-of-the-art proton PDF fits, and

provide the foundation for a subsequent global nPDF analy-

ses including also proton-nucleus data.
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1 Introduction

It has been known for more than three decades [1] that

the parton distribution functions (PDFs) of nucleons bound

within nuclei, more simply referred to as nuclear PDFs

(nPDFs) [2,3], can be modified with respect to their free-

nucleon counterparts [4]. Since MeV-scale nuclear binding

effects were expected to be negligible compared to the typical

momentum transfers (Q ∼> 1 GeV) in hard-scattering reac-

tions such as deep-inelastic lepton-nucleus scattering, such a

phenomena came as a surprise to many in the physics com-

munity. Despite active experimental and theoretical investi-

gations, the underlying mechanisms that drive in-medium

modifications of nucleon substructure are yet to be fully

understood. The determination of nPDFs is therefore rele-

vant to improve our fundamental understanding of the strong

interactions in the nuclear environment.

In addition to pinning down the dynamics of QCD in heavy

nuclei, nPDFs are an essential ingredient for the interpreta-
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tion of heavy ion collisions at RHIC and the LHC, in par-

ticular for the characterization of the Quark-Gluon Plasma

(QGP) [5,6] via hard probes. Moreover, a reliable determi-

nation of the nuclear PDFs is required to separate the hot

nuclear matter (QGP) from the cold nuclear matter effects

that will in general already be present in the initial stages of

the heavy ion collision.

The importance of nPDF fits is further highlighted by their

contribution to the quark flavor separation in global PDF

analyses of the proton [7–10]. Even with constraints from

related processes such as gauge boson production at the Teva-

tron and the LHC, information provided by neutrino-induced

charged current deep-inelastic scattering on heavy nuclear

targets play a critical role in disentangling the proton’s quark

and antiquark distributions. However, given the current pre-

cision of proton PDF fits, neglecting the nuclear uncertainties

associated with neutrino-nucleus scattering may not be well

justified anymore [11], as opposed to the situation some years

ago [12].

Lastly, nPDF extractions can sharpen the physics case

of future high-energy lepton-nucleus colliders such as the

Electron-Ion Collider (EIC) [13] and the Large Hadron elec-

tron Collider (LHeC) [14,15], which will probe nuclear struc-

ture deep in the region of small parton momentum fractions,

x , and aim to unravel novel QCD dynamics such as non-

linear (saturation) effects. The latter will only be possible

provided that a faithful estimate of the nPDF uncertainties at

small x can be attained, similar to what was required for the

recent discovery of BFKL dynamics from the HERA struc-

ture function data [16].

Unfortunately, the determination of the nuclear PDFs is

hampered by the rather limited experimental dataset avail-

able. In fact, until a few years ago, most nPDF analyses [17–

22] were largely based on fixed-target DIS structure func-

tions in lepton-nucleus scattering (with kinematic coverage

restricted to x ∼> 0.01) supplemented by some Drell–Yan

cross-sections. A major improvement in this respect has

been the recent availability of data on hard-scattering cross-

sections from proton-lead collisions at the LHC, with pro-

cesses ranging from jet [23–27] and electroweak boson pro-

duction [28–32], to heavy quark production [33–40] among

several others. Indeed, measurements of hard probes in p+Pb

collisions provide useful information to constrain the nPDFs,

as was demonstrated by a few recent studies [41,42].

On the other hand, a survey of various nPDF determi-

nations reveals limitations that are of methodological ori-

gin as well. First of all, current nuclear PDF fits rely on

model-dependent assumptions for the parameterization of the

non-perturbative x and atomic mass number A dependence,

resulting in a theoretical bias whose magnitude is difficult to

assess. Moreover, several nPDF sets are extracted in terms

of a proton baseline (to which the former must reduce in

the A → 1 limit) that have been determined by other groups

based on fitting methodologies and theoretical settings which

might not fully equivalent, for instance, in the prescriptions

used to estimate the nPDF uncertainties. Finally, PDF uncer-

tainties are often estimated using the Hessian method, which

is restricted to a Gaussian approximation with ad hoc toler-

ances, introducing a level of arbitrariness in their statistical

interpretation.

Motivated by this need for a reliable and consistent

determination of nuclear PDFs and their uncertainties, we

present in this work a first nPDF analysis based on the

NNPDF methodology [43–52]: nNNPDF1.0. In this initial

study, we restrict our analysis to neutral-current nuclear

deep-inelastic structure function measurements, and com-

pute the corresponding predictions in QCD up to NNLO

in the αs expansion. Moreover, heavy quark mass effects

are included using the FONLL general-mass variable-flavor

number scheme [53]. Since the nPDFs are determined using

the same theoretical and methodological framework as the

NNPDF3.1 proton PDFs, we are able to impose the bound-

ary condition in a consistent manner so that the nNNPDF1.0

results reproduce both the NNPDF3.1 central values and

uncertainties when evaluated at A = 1.

The nNNPDF1.0 sets are constructed following the gen-

eral fitting methodology outlined in previous NNPDF stud-

ies, which utilizes robust Monte Carlo techniques to obtain

a faithful estimate of nPDF uncertainties. In addition, in

this study we implement for the first time stochastic gra-

dient descent to optimize the model parameters. This is per-

formed using TensorFlow [54], an open source machine

learning library in which the gradients of the χ2 function

can be computed via automatic differentiation. Together with

several other improvements, we present a validation of the

nNNPDF1.0 methodology through closure tests.

As a first phenomenological application of the nNNPDF-

1.0 sets, we quantify the impact of future lepton-nucleus

scattering measurements provided by an Electron-Ion Col-

lider. Using pseudo-data generated with different electron

and nucleus beam energy configurations, we perform fits

to quantify the effect on the nNNPDF1.0 uncertainties and

discuss the extent to which novel QCD dynamics can be

revealed. More specifically, we demonstrate how the EIC

would lead to a significant reduction of the nPDF uncertain-

ties at small x , paving the way for a detailed study of nuclear

matter in a presently unexplored kinematic region.

The outline of this paper is the following. In Sect. 2

we present the input experimental data used in this analy-

sis, namely ratios of neutral-current deep-inelastic structure

functions, followed by a discussion of the corresponding the-

oretical calculations. The description of the fitting strategy,

including the updated minimization procedure and choice of

parameterization, is presented in Sect. 3. We discuss the val-

idation of our fitting methodology via closure tests in Sect. 4.

The main results of this work, the nNNPDF1.0 nuclear par-
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ton distributions, are then presented in Sect. 5. In Sect. 6 we

quantify the impact on the nPDFs from future EIC measure-

ments of nuclear structure functions. Lastly, in Sect. 7 we

summarize and discuss the outlook for future studies.

2 Experimental data and theory calculations

In this section we review the formalism that describes deep-

inelastic scattering (DIS) of charged leptons off of nuclear

targets. We then present the data sets that have been used

in the present determination of the nuclear PDFs, discussing

also the kinematical cuts and the treatment of experimental

uncertainties. Lastly, we discuss the theoretical framework

for the evaluation of the DIS structure functions, including

the quark and anti-quark flavor decomposition, the heavy

quark mass effects, and the software tools used for the numer-

ical calculations.

2.1 Deep-inelastic lepton-nucleus scattering

The description of hard-scattering collisions involving nucl-

ear targets begins with collinear factorization theorems in

QCD that are identical to those in free-nucleon scattering.

For instance, in deep inelastic lepton-nucleus scattering,

the leading power contribution to the cross section can be

expressed in terms of a hard partonic cross section that is

unchanged with respect to the corresponding lepton-nucleon

reaction, and the nonperturbative PDFs of the nucleus. Since

these nPDFs are defined by the same leading twist operators

as the free nucleon PDFs but acting instead on nuclear states,

the modifications from internal nuclear effects are naturally

contained within the nPDF definition and the factorization

theorems remain valid assuming power suppressed correc-

tions are negligible in the perturbative regime, Q2
∼> 1 GeV2.

We note, however, that this assumption may not hold for some

nuclear processes, and therefore must be studied and verified

through the analysis of relevant physical observables.

We start now by briefly reviewing the definition of the DIS

structure functions and of the associated kinematic variables

which are relevant for the description of lepton-nucleus scat-

tering. The double differential cross-section for scattering of

a charged lepton off a nucleus with atomic mass number A

is given by

d2σNC,l±

dxd Q2
(x, Q2, A)

=
2πα2

x Q4

[

Y+ FNC
2 (x, Q2, A) ∓ Y− x FNC

3 (x, Q2, A)

−y2 FNC
L (x, Q2, A)

]

(2.1)
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Fig. 1 Kinematical coverage in the (x, Q2) plane of the DIS neutral-

current nuclear structure function data included in nNNPDF1.0, as sum-

marized in Table 1. The horizontal dashed and curved dashed lines cor-

respond to Q2 = 3.5 GeV2 and W 2 = 12.5 GeV2, respectively, which

are the kinematic cuts imposed in this analysis

where Y± = 1 ± (1 − y)2 and the usual DIS kinematic

variables can be expressed in Lorentz-invariant form as

x =
Q2

2P · q
, Q2 = −q2, y =

q · P

k · P
. (2.2)

Here the four-momenta of the target nucleon, the incom-

ing charged lepton, and the exchanged virtual boson (γ ∗ or

Z ) are denoted by P , k, and q, respectively. The variable x

is defined here to be the standard Bjorken scaling variable,

which at leading order can be interpreted as the fraction of

the nucleon’s momentum carried by the struck parton, and

y is known as the inelasticity. Lastly, the virtuality of the

exchanged boson is Q2, which represents the hardness of the

scattering reaction.

As will be discussed below, the maximum value of the

momentum transfer Q2 in the nNNPDF1.0 input dataset is

Q2
max ≃ 200 GeV2 (see Fig. 1). Given that Q2

max ≪ M2
Z ,

the contribution from the parity-violating x F3 structure func-

tions and the contributions to F2 and FL arising from Z boson

exchange can be safely neglected. Therefore, for the kine-

matic range relevant to the description of available nuclear

DIS data, Eq. (2.1) simplifies to

d2σNC,l±

dxd Q2
(x, Q2, A) =

2πα2

x Q4
Y+FNC

2 (x, Q2, A)

×

[

1 −
y2

1 + (1 − y)2

FNC
L (x, Q2, A)

FNC
2 (x, Q2, A)

]

, (2.3)

where only the photon-exchange contributions are retained

for the F2 and FL structure functions. In Eq. (2.3) we have

isolated the dominant F2 dependence, since the second term

is typically rather small. Note that since the center of mass

energy of the lepton-nucleon collision
√

s is determined by
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s = (k + P)2 ≃ 2k · P =
Q2

xy
, (2.4)

where hadron and lepton masses have been neglected, mea-

surements with the same values for x and Q2 but different

center of mass energies
√

s will lead to a different value of

the prefactor in front of the FL/F2 ratio in Eq. (2.3), allowing

in principle the separation of the two structure functions as

in the free proton case.

2.2 Experimental data

In this analysis, we include all available inclusive DIS mea-

surements of neutral-current structure functions on nuclear

targets. In particular, we use data from the EMC [55–58],

NMC [59–62], and BCDMS experiments at CERN, E139

measurements from SLAC [63], and E665 data from Fer-

milab. The measurements of nuclear structure functions are

typically presented as ratios of the form

RF2

(

x, Q2, A1, A2

)

≡
F2(x, Q2, A2)

F2(x, Q2, A1)
, (2.5)

where A1 and A2 are the atomic mass numbers of the two

different nuclei. Some of the experimental measurements

included in this analysis are presented instead as ratios of DIS

cross-sections. As discussed earlier, the double-differential

DIS cross-sections are related to the F2 and FL structure

functions by

d2σNC

dxd Q2
(x, Q2, A) ∝ F2

[

1 −
y2

1 + (1 − y)2

FL

F2

]

. (2.6)

Therefore, one should in principle account for the contribu-

tions from the longitudinal structure function FL to cross-

section ratios measured by experiment. However, it is well

known that the ratio FL/F2 exhibits a very weak dependence

with A [64,65], and therefore the second term in Eq. (2.6)

cancels out to a good approximation when taking ratios

between different nuclei. In other words, we can exploit the

fact that

d2σNC(x, Q2, A2)/dxd Q2

d2σNC(x, Q2, A1)/dxd Q2
≃

F2(x, Q2, A2)

F2(x, Q2, A1)

= RF2

(

x, Q2, A1, A2

)

, (2.7)

in which then the ratios of DIS cross-sections for Q ≪ MZ

in the form of Eq. (2.6) are equivalent to ratios of the F2 struc-

ture functions. Lastly, it is important to note that whenever

the nuclei involved in the measurements are not isoscalar,

the data is corrected to give isoscalar ratios and an additional

source of systematic error is added as a result of this conver-

sion.

Summarized in Table 1 are the different types of nuclei

measured by the experiments included in the nNNPDF1.0

analysis. For each dataset, we indicate the nuclei A1 and

Table 1 The input datasets included in the present analysis. For each

dataset, we give the nuclei A1 and A2 which have been used in the

measurement with their atomic mass number. We also list the number

of data points that survive the baseline kinematical cuts, and provide

the corresponding publication reference

Experiment A1/A2 Ndat References

SLAC E-139 4He/2D 3 [66]

NMC 95, re. 4He/2D 13 [59]

NMC 95 6Li/2D 12 [60]

SLAC E-139 9Be/2D 3 [66]

NMC 96 9Be/12C 14 [61]

EMC 88, EMC 90 12C/2D 12 [56,57]

SLAC E-139 12C/2D 2 [66]

NMC 95, NMC 95, re. 12C/2D 26 [59,60]

FNAL E665 12C/2D 3 [67]

NMC 95, re. 12C/6Li 9 [59]

BCDMS 85 14N/2D 9 [68]

SLAC E-139 27Al/2D 3 [66]

NMC 96 27Al/12C 14 [61]

SLAC E-139 40Ca/2D 2 [66]

NMC 95, re. 40Ca/2D 12 [59]

EMC 90 40Ca/2D 3 [57]

FNAL E665 40Ca/2D 3 [67]

NMC 95, re. 40Ca/6Li 9 [59]

NMC 96 40Ca/12C 23 [61]

EMC 87 56Fe/2D 58 [55]

SLAC E-139 56Fe/2D 8 [66]

NMC 96 56Fe/12C 14 [61]

BCDMS 85, BCDMS 87 56Fe/2D 16 [68,69]

EMC 88, EMC 93 64Cu/2D 27 [56,58]

SLAC E-139 108Ag/2D 2 [66]

EMC 88 119Sn/2D 8 [56]

NMC 96, Q2 dependence 119Sn/12C 119 [62]

FNAL E665 131Xe/2D 4 [70]

SLAC E-139 197Au/2D 3 [66]

FNAL E665 208Pb/2D 3 [67]

NMC 96 208Pb/12C 14 [61]

Total 451

A2 that are used to construct the structure function ratios in

Eq. (2.5), quoting explicitly the corresponding atomic mass

numbers. We also display the number of data points that sur-

vive the baseline kinematical cuts, and give the corresponding

publication references.

In Fig. 1 we show the kinematical coverage in the (x, Q2)

plane of the DIS nuclear data included in nNNPDF1.0. To

minimize the contamination from low-scale non-perturbative

corrections and higher-twist effects, and also to remain con-

sistent with the baseline proton PDF analysis (to be discussed
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Table 2 The kinematics cuts in W 2 and Q2 imposed in the nNNPDF1.0

analysis compared to those used in the nCTEQ15 and EPPS16 fits

nNNPDF1.0 nCTEQ15 EPPS16

W 2
min 12.5 GeV2 12.25 GeV2 n/a

Q2
min 3.5 GeV2 4 GeV2 1.69 GeV2

in Sect. 3), we impose the same kinematical cuts on Q2 and

the invariant final state mass squared W 2 = (P + q)2 as in

the NNPDF3.1 global fit [71], namely

Q2 ≥ Q2
min = 3.5 GeV2, W 2 ≥ W 2

min = 12.5 GeV2,

(2.8)

which are represented by the dashed lines in Fig. 1. In Table 2,

we compare our kinematics cuts in W 2 and Q2 to those imple-

mented in the nCTEQ15 and EPPS16 fits. We find that our

cuts are very similar to those of the nCTEQ15 analysis [20],

and as a result our neutral-current DIS nuclear structure func-

tion dataset is similar to that used in their analysis. On the

other hand, our choice of both the Q2
min and W 2

min cut is more

stringent than that made in the EPPS16 analysis [41], where

they set Q2
min = 1.69 GeV2 and do not impose any cut in

W 2.

After imposing the kinematical cuts in Eq. (2.8), we end up

with Ndat = 451 data points. As indicated in Table 1, around

half of these points correspond to ratios of heavy nuclei with

respect to to deuterium, namely RF2(A1, A2 = 2) in the

notation of Eq. (2.5). For the rest of the data points, the val-

ues of A1 and A2 both correspond to heavier nuclei, with

A2 ≥ 6. It is worth noting that the measurements from the

NMC collaboration contain a significant amount of points

for which the carbon structure function is in the denomina-

tor, RF2(A1, A2 = 12). In particular, we have Ndat = 119

data points for the Q2 dependence of the tin to carbon ratio,

RF2(119, 12). These measurements provide valuable con-

straints on the A dependence of the nuclear PDFs, since

nuclear effects enter both the numerator and denominator

of Eq. (2.5).

Concerning the treatment of the experimental uncertain-

ties, we account for all correlations among data points when-

ever this information is provided by the corresponding exper-

iments. This information is then encoded into the experi-

mental covariance matrix, constructed using the t0 prescrip-

tion [48]:

(covt0)
(exp)

i j ≡
(

σ
(stat)
i R

(exp)

i

)2
δi j

+
( Nadd

∑

α=1

σ
(sys,a)
i,α σ

(sys,a)
j,α R

(exp)

i R
(exp)

j

+
Nmult
∑

β=1

σ
(sys,m)

i,β σ
(sys,m)

j,β R
(th,0)
i R

(th,0)
j

)

, (2.9)

where one treats the Nadd additive (‘sys,a’) relative exper-

imental systematic errors separately from the Nmult mul-

tiplicative (‘sys,m’) ones. In the additive case, the central

value of the experimental measurement is used for the struc-

ture function ratio, R
(exp)

i . In the multiplicative case, e.g. for

overall normalization uncertainties, a fixed set of theoretical

predictions for the ratios, {R
(th,0)
i }, is constructed. These pre-

dictions are typically obtained from a previous fit which is

then iterated until convergence is reached. The use of the t0
covariance matrix defined in Eq. (2.9) for the χ2 minimiza-

tion (to be discussed in Sect. 3) avoids the bias associated

with multiplicative uncertainties, which lead to a systematic

underestimation of the best-fit values compared to their true

values [72].

For the case in which correlated systematic uncertainties

are not available, we simply add statistical and systematic

errors in quadrature and Eq. (2.9) reduces to

(covt0)
(exp)

i j =

⎛

⎝σ
(stat)2
i +

Nsys
∑

α=1

σ
(sys)2
i,α

⎞

⎠ R
(exp)2
i δi j , (2.10)

where Nsys = Nadd + Nmult. It turns out that for all of the

measurements listed in Table 1, the detailed break-up of the

experimental systematic errors is not available (in most cases

these partially or totally cancel out when taking ratios of

observables), and the only systematic error that enters the t0
covariance matrix Eq. (2.9) is the multiplicative normaliza-

tion error.

2.3 Numerical implementation

We turn now to discuss the numerical implementation of the

calculations of the DIS structure functions and their ratios

RF2 relevant for the nPDF interpretation of the nuclear DIS

data. In the framework of collinear QCD factorization, the

F2 structure function can be decomposed in terms of hard-

scattering coefficient functions and nuclear PDFs as,

F2(x, Q2, A) =
n f
∑

i

Ci (x, Q2) ⊗ fi (x, Q2, A)

=
n f
∑

i, j

Ci (x, Q2)

⊗ Ŵi j (Q2, Q2
0) ⊗ f j (x, Q2

0, A), (2.11)

where Ci (x, Q2) are the process-dependent coefficient func-

tions which can be computed perturbatively as an expansion

in the QCD and QED couplings; Ŵi j (Q2, Q2
0) is an evolution

operator, determined by the solutions of the DGLAP equa-

tions, which evolves the nPDF from the initial parameteriza-

tion scale Q2
0 into the hard-scattering scale Q2, fi (x, Q2

0, A)

are the nPDFs at the parameterization scale, and ⊗ denotes
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the Mellin convolution. The sum over flavors i, j runs over

the n f active quarks and antiquarks flavors at a given scale

Q, as well as over the gluon.

The direct calculation of Eq. (2.11) during the nPDF fit is

not practical since it requires first solving the DGLAP evo-

lution equation for each new boundary condition at Q0 and

then convoluting with the coefficient functions. To evaluate

Eq. (2.11) in a more computationally efficient way, it is better

to precompute all the perturbative information, i.e. the coef-

ficient functions Ci and the evolution operators Ŵi j , with a

suitable interpolation basis. Several of these approaches have

been made available in the context of PDF fits [73–76]. Here

we use the APFELgrid tool [77] to precompute the pertur-

bative information of the nDIS structure functions provided

by the APFEL program [78].

Within this approach, we can factorize the dependence on

the nPDFs at the input scale Q0 from the rest of Eq. (2.11)

as follows. First, we introduce an expansion over a set of

interpolating functions {Iβ} spanning both Q2 and x such

that

fi (x, Q2, A) =
∑

β

∑

τ

fi,βτ Iβ(x)Iτ (Q2), (2.12)

where the nPDFs are now tabulated in a grid in the (x, Q2)

plane, fi,βτ ≡ fi (xβ , Q2
τ , A). We can express this result

in terms of the PDFs at the input evolution scale using the

(interpolated) DGLAP evolution operators,

fi,βτ =
∑

j

∑

α

Ŵτ
i j,αβ f j (xα, Q2

0, A), (2.13)

so that the nuclear DIS structure function can be evaluated

as

F2(x, Q2, A) =
n f
∑

i

Ci (x, Q2)

⊗

⎡

⎣

∑

α,β,τ

∑

j

Ŵτ
i j,αβ f j (xα, Q2

0)Iβ(x)Iτ (Q2)

⎤

⎦ . (2.14)

This can be rearranged to give

F2(x, Q2) =
n f
∑

i

nx
∑

α

FKi,α(x, xα, Q2, Q2
0) fi (xα, Q2

0)

(2.15)

where all of the information about the partonic cross-sections

and the DGLAP evolution operators is now encoded into the

so-called FK table, FKi,α . Therefore, with the APFELgrid

method we are able to express the series of convolutions in

Eq. (2.11) by a matrix multiplication in Eq. (2.15), increasing

the numerical calculation speed of the DIS structure functions

by up to several orders of magnitude.

In this work, the FK tables (and thus the nDIS structure

functions) are computed up to NNLO in the QCD coupling

expansion, with heavy quark effects evaluated by the FONLL

general-mass variable flavor number scheme [53]. Specifi-

cally, we use the FONLL-B scheme for the NLO fits and

the FONLL-C for the NNLO fits. The value of the strong

coupling constant is set to be αs(m Z ) = 0.118, consistent

with the PDG average [79] and with recent high-precision

determinations [80–83] (see [84] for an overview). Our vari-

able flavor number scheme has a maximum of n f = 5 active

quarks, where the heavy quark pole masses are taken to be

mc = 1.51 GeV and mb = 4.92 GeV following the Higgs

Cross-Sections Working Group recommendations [85]. The

charm and bottom PDFs are generated dynamically from the

gluon and the light quark PDFs starting from the thresholds

μc = mc and μb = mb. Finally, since all of these the-

oretical settings are the same as in the NNPDF3.1 global

proton PDF analysis, we choose this set to represent our

nPDFs at A = 1, which we explain in more detail in

Sect. 3.

In Table 3 we show a comparison between the deep-

inelastic structure function F2(x, Q2, A) computed with the

APFEL program and with the FK interpolation method,

Eq. (2.15), using the theoretical settings given above. The

predictions have been evaluated using the EPPS16 sets for

two different perturbative orders, FONLL-B and FONLL-C,

at sample values of x and Q2 given by carbon (A = 12)

and lead (A = 208) data. We also indicate the relative dif-

ference between the two calculations, �rel ≡ |APFEL −
FK|/APFEL. Here we see that the agreement is excellent with

residual differences much smaller than the typical uncertain-

ties of the experimental data, and thus suitable for our pur-

poses.

2.4 Quark flavor decomposition

With the APFELgrid formalism, we can express any DIS

structure function in terms of the nPDFs at the initial evo-

lution scale Q2
0 using Eq. (2.15). In principle, one would

need to parameterize 7 independent PDFs: the up, down, and

strange quark and antiquark PDFs and the gluon. Another

two input PDFs would be required if in addition the charm

and anti-charm PDFs are also parameterized, as discussed

in [86]. However, given that our input dataset in this analysis

is restricted to DIS neutral current structure functions, a full

quark flavor separation of the fitted nPDFs is not possible. In

this section we discuss the specific quark flavor decomposi-

tion that is adopted in the nNNPDF1.0 fit.

We start by expressing the neutral-current DIS structure

function F2(x, Q2, A) at leading order in terms of the nPDFs.

This decomposition is carried out for Q2 < m2
c and therefore
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Table 3 Comparison between the deep-inelastic structure function

F2(x, Q2, A) computed with the APFEL program and with the cor-

responding FK interpolation tables. The predictions are given for two

different perturbative orders, FONLL-B and FONLL-C, and are com-

puted using the EPPS16 nPDF set with theoretical settings described

in the text. The values of x and Q2 correspond to representative

measurements for carbon (A = 12) and lead (A = 208) nuclei.

Also given are the relative differences between the two calculations,

�rel ≡ |APFEL− FK|/APFEL

A x Q2 (GeV2) FONLL-B (NLO) FONLL-C (NNLO)

APFEL FK �rel (%) APFEL FK �rel (%)

12 0.009 1.7 0.2895 0.2893 0.0694 0.2534 0.2534 0.027

0.013 2.3 0.3057 0.3052 0.1521 0.2837 0.283 0.228

0.13 14 0.27 0.2715 0.5642 0.2655 0.2647 0.277

0.35 26 0.1292 0.1274 1.3683 0.1217 0.1213 0.308

0.65 42 0.0165 0.0168 1.8437 0.016 0.0163 2.347

208 0.012 2.42 0.2795 0.279 0.1553 0.2581 0.2573 0.293

0.02 4.45 0.309 0.3103 0.3885 0.3041 0.3043 0.084

0.04 7.91 0.32 0.3214 0.3253 0.3181 0.3177 0.104

0.31 22.5 0.1467 0.1445 1.4583 0.1388 0.1382 0.401

the charm PDF is absent. In this case, one finds for the F2

structure function,

F
(LO)
2 (x, Q2, A) = x

n f
∑

i=1

e2
i f +

i (x, Q2, A)

= x

[

4

9
u+(x, Q2, A) +

1

9

(

d+ + s+)

(x, Q2, A)

]

,

(2.16)

where for consistency the DGLAP evolution has been per-

formed at LO, and the quark and antiquark PDF combinations

are given by

f ±
i (x, Q2, A)

≡
[

fi (x, Q2, A) ± f̄i (x, Q2, A)
]

. i = u, d, s.

(2.17)

In this analysis, we will work in the PDF evolution basis,

which is defined as the basis composed by the eigenstates of

the DGLAP evolution equations. If we restrict ourselves to

the Q < mc (n f = 3) region, the quark combinations are

defined in this basis as

�(x, Q2, A) ≡
n f =3
∑

i=1

f +
i

(x, Q2, A) (quark singlet), (2.18)

T3(x, Q2, A) ≡
(

u+ − d+)

(x, Q2, A) (quark triplet) , (2.19)

T8(x, Q2, A) ≡
(

u+ + d+ − 2s+)

(x, Q2, A) (quark octet) . (2.20)

It can be shown that the neutral current DIS structure func-

tions depend only on these three quark combinations: �,

T3, and T8. Other quark combinations in the evolution basis,

such as the valence distributions V = u− + d− + s− and

V3 = u− − d−, appear only at the level of charged-current

structure functions, as well as in hadronic observables such

as W and Z boson production.

In the evolution basis, the F2 structure function for a pro-

ton and a neutron target at LO in the QCD expansion can be

written as

F
(LO),p
2 (x, Q2) = x

[

2

9
� +

1

6
T3 +

1

18
T8

]

,

F
(LO),n
2 (x, Q2) = x

[

2

9
� −

1

6
T3 +

1

18
T8

]

. (2.21)

Therefore, since the nuclear effects are encoded in the nPDFs,

the structure function for a nucleus with atomic number Z

and mass number A will be given by a simple sum of the

proton and neutron structure functions,

F
(LO)
2 (x, Q2, A)

=
1

A

(

Z F
(LO),p
2 (x, Q2) + (A − Z)F

(LO),n
2 (x, Q2)

)

.

(2.22)

Inserting the decomposition of Eq. (2.21) into Eq. (2.22), we

find

F
(LO)
2 (x, Q2, A)

= x

[

2

9
� −

(

Z

3A
−

1

6

)

T3 +
1

18
T8

]

(x, Q2, A) .

(2.23)

Note that nuclear effects, driven by QCD, are electric-charge

blind and therefore depend only on the total number of nucle-

ons A within a given nuclei, in addition to x and Q2. The

explicit dependence on Z in Eq. (2.23) arises from QED

effects, since the virtual photon γ ∗ in the deep-inelastic scat-

tering couples more strongly to up-type quarks (|eq | = 2/3)

than to down-type quarks (|eq | = 1/3).

From Eq. (2.23) we see that at LO the F
p

2 structure func-

tion in the nuclear case depends on three independent quark
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Fig. 2 The correlation coefficient ρ = 〈( fi − 〈 fi 〉)
(

f j − 〈 f j 〉
)

〉
/
(

σi σ j

)

between the the quark singlet � and gluon g (solid red line),

the quark octet T8 and g (dashed blue line), and between � and T8 (dot-

ted green line). The coefficients are computed with Nrep = 200 replicas

of the copper (A = 64) nNNPDF1.0 NNLO set at Q = 1 GeV (left)

and Q = 100 GeV (right)

combinations: the total quark singlet �, the quark triplet T3,

and the quark octet T8. However, the dependence on the non-

singlet triplet combination is very weak, since its coefficient

is given by
(

Z

3A
−

1

6

)

=
(

Z

3(2Z + �A)
−

1

6

)

≃ −
�A

12Z
, (2.24)

where �A ≡ A − 2Z quantifies the deviations from nuclear

isoscalarity (A = 2Z ). This coefficient is quite small for

nuclei in which data is available, and in most cases nuclear

structure functions are corrected for non-isoscalarity effects.

In this work, we will assume �A = 0 such that we have only

isoscalar nuclear targets. The dependence on T3 then drops

out and the nuclear structure function F2 at LO is given by

F
(LO)
2 (x, Q2, A) = x

[

2

9
� +

1

18
T8

]

(x, Q2, A), (2.25)

where now the only relevant quark combinations are the

quark singlet � and the quark octet T8. Therefore, at LO,

neutral-current structure function measurements on isoscalar

targets below the Z pole can only constrain a single quark

combination, namely

F
(LO)
2 (x, Q2, A) ∝

(

� +
1

4
T8

)

(x, Q2, A). (2.26)

At NLO and beyond, the dependence on the gluon PDF

enters and the structure function Eq. (2.25) becomes

F
(NLO)
2 (x, Q2, A) = C� ⊗ �(x, Q2, A)

+CT8 ⊗ T8(x, Q2, A) + Cg ⊗ g(x, Q2, A), (2.27)

where C� , CT8 , and Cg are the coefficient functions associ-

ated with the singlet, octet, and gluon respectively. In princi-

ple one could aim to disentangle � from T8 due to their dif-

ferent Q2 behavior, but in practice this is not possible given

the limited kinematical coverage of the available experimen-

tal data. Therefore, only the � + T8/4 quark combination is

effectively constrained by the experimental data used in this

analysis, as indicated by Eq. (2.26).

Putting together all of this information, we will consider

the following three independent PDFs at the initial parame-

terization scale Q0:

• the total quark singlet �(x, Q2
0, A) =

∑3
i=1 f +

i (x, Q2
0,

A),

• the quark octet T8(x, Q2, A) =
(

u+ + d+ − 2s+)

(x,

Q2, A),

• and the gluon nPDF g(x, Q0, A).

In Sect. 3 we discuss the parameterization of these three

nPDFs using neural networks. In Fig. 2 we show the results

for the correlation coefficient between the nPDFs that are

parameterized in the nNNPDF1.0 fit (presented in Sect. 5),

specifically the NNLO set for copper (A = 64) nuclei. The

nPDF correlations are computed at both Q = 1 GeV and

Q = 100 GeV, the former of which contains experimental

data in the region 0.01 ∼< x ∼< 0.4 (illustrated in Fig. 1). In

the data region, there is a strong anticorrelation between �

and T8, consistent with Eq. (2.26) which implies that only

their weighted sum can be constrained. As a result, we will

show in the following sections only results of the combination

� + T8/4 which can be meaningfully determined given our

input experimental data. From Fig. 2, one can also observe

the strong correlation between � and g for x ∼< 0.01 and

Q = 100 GeV, arising from the fact that these two PDFs are

coupled via the DGLAP evolution equations as opposed to

T8 and g where the correlation is very weak.

3 Fitting methodology

In this section we describe the fitting methodology that has

been adopted in the nNNPDF1.0 determination of nuclear

parton distributions. While much of this methodology fol-

lows from previous NNPDF analyses, a number of significant

improvements have been implemented in this work. Here we

discuss these developments, together with relevant aspects of
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Fig. 3 Schematic

representation of the tool-chain

implemented in the nNNPDF1.0

analysis. The items in blue

correspond to aspects that were

inherited from the NNPDF

code, those in green represent

new programs, and those in

yellow represent external tools

APFEL & APFELgrid

Buildmaster Validation

LHAPDF

common format for experimental 

data, uncertainties & correlations

NNLO DGLAP evolution

DIS structure functions

Fast interpolation: FK Tables

Optimisation of NN architectures, 

minimisers, preprocessing, stopping 

Theory constraints: proton boundary 

In-house plotting toolbox 

standard interface for 

public PDF delivery

statistical estimators, 

closure tests, 

performance benchmarking

TensorFlow
Library of optimisers

Neural network functionalities

Tuning of hyper-parameters

Plotting

nNNPDF1.0

external toolsfrom NNPDF code new in nNNPDF1.0

the NNPDF framework that need to be modified or improved

in order to deal with the determination of the nuclear PDFs,

such as the parameterization of the A dependence or impos-

ing the A = 1 proton boundary condition.

Following the NNPDF methodology, the uncertainties

associated with the nPDFs are estimated using the Monte

Carlo replica method, where a large number of Nrep replicas

of the experimental measurements are generated in a way that

they represent a sampling of the probability distribution in the

space of data. An independent fit is then performed for each

of these replicas, and the resulting ensemble of nPDF samples

correspond to a representation of the probability distribution

in the space of nPDFs for which any statistical estimator

such as central values, variances, correlations, and higher

moments can be computed [4].

In order to illustrate the novel ingredients of the present

study as compared to the standard NNPDF framework, we

display in Fig. 3 a schematic representation of the tool-chain

adopted to construct the nNNPDF1.0 sets. The items in blue

correspond to components of the fitting methodology inher-

ited from the NNPDF code, those in green represent new code

modules developed specifically for this project, and those in

yellow indicate external tools. As highlighted in Fig. 3, the

main development is the application of TensorFlow [54],

an external machine learning library that allows us access to

an extensive number of tools for the efficient determination

of the best-fit weights and thresholds of the neural network.

The ingredients of Fig. 3 will be discussed in more detail in

the following and subsequent sections.

The outline of this section is the following. We start first

with a discussion of our strategy for the parameterization of

the nPDFs in terms of artificial neural networks. Then we

present the algorithm used for the minimization of the cost

function, defined to be the χ2, which is based on stochastic

gradient descent. We also briefly comment on the perfor-

mance improvement obtained in this work as compared to

previous NNPDF fits.

3.1 Nuclear PDF parameterization

As mentioned in Sect. 2, the non-perturbative distributions

that enter the collinear factorization framework in lepton-

nucleus scattering are the PDFs of a nucleon within an

isoscalar nucleus with atomic mass number A, fi (x, Q2, A).

While the dependence of the nPDFs on the scale Q2 is deter-

mined by the perturbative DGLAP evolution equations, the

dependence on both Bjorken-x and the atomic mass num-

ber A is non-perturbative and needs to be extracted from

experimental data through a global analysis.1 Taking into

account the flavor decomposition presented in Sect. 2.4, we

are required to parameterize the x and A dependence of the

quark singlet �, the quark octet T8, and the gluon g, as indi-

cated by Eq. (2.25) at LO and by Eq. (2.27) for NLO and

beyond.

The three distributions listed above are parameterized at

the input scale Q0 by the output of a neural network NN f

multiplied by an x-dependent polynomial functional form.

In previous NNPDF analyses, a different multi-layer feed-

forward neural network was used for each of the parame-

terized PDFs so that in this case, three independent neural

networks would be required:

x�(x, Q0, A) = x−α� (1 − x)β� NN�(x, A),

xT8(x, Q0, A) = x−αT8 (1 − x)βT8 NNT8(x, A),

xg(x, Q0, A) = Bgx−αg (1 − x)βg NNg(x, A) . (3.1)

However, in this work we use instead a single artificial neural

network consisting of an input layer, one hidden layer, and an

output layer. In Fig. 4 we display a schematic representation

1 See [87] for an overview of recent efforts in the first-principle calcu-

lations of PDFs by means of lattice QCD.
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g(x, Q0, A) =
x

ln 1/x

ξ(3)

1
ξ(1)

1

ξ(1)

2

ξ(2)

1

ξ(2)

2

ξ(2)

25

A ξ(1)

3

Bgx−αg(1 − x)βg ξ(3)

1

nNNPDF1.0

ξ(3)

2

ξ(3)

3

Σ(x, Q0, A) =

x−αΣ(1 − x)βΣ ξ(3)

2

T8(x, Q0, A) =

x
−αT8(1 − x)

βT8 ξ(3)

3

Fig. 4 Schematic representation of the architecture of the feed-forward

neural network used in the nNNPDF1.0 analysis to parameterize the x

and A dependence of�, T8, and g at the initial scale Q0. The architecture

is 3–25–3, where the values of the three input neurons are x , ln 1/x , and

A, and the values of the output layer neurons correspond to the input

nPDFs: g(x, Qa, A), �(x, Q0, A), and T8(x, Q0, A). For the input and

hidden layer, a sigmoid function is used for neuron activation, and a

linear activation is used for the final output layer

of the architecture of the feed-forward neural network used in

the present analysis. The input layer contains three neurons

which take as input the values of the momentum fraction

x , ln(1/x), and atomic mass number A, respectively. The

subsequent hidden layer contains 25 neurons, which feed into

the final output layer of three neurons, corresponding to the

three fitted distributions �, T8 and g. A sigmoid activation

function is used for the neuron activation in the first two

layers, while a linear activation is used for the output layer.

This latter choice ensures that the network output will not

be bounded and can take any value required to reproduce

experimental data. The output from the final layer of neurons

is then used to construct the full parameterization:

x�(x, Q0, A) = x−α� (1 − x)βσ ξ
(3)
1 (x, A),

xT8(x, Q0, A) = x−αT8 (1 − x)βT8 ξ
(3)
2 (x, A),

xg(x, Q0, A) = Bgx−αg (1 − x)βg ξ
(3)
3 (x, A), (3.2)

where ξ
(3)
i represent the values of the i-th neuron’s activation

state in the third and final layer of the neural network.

Overall, there are a total of Npar = 178 free parameters

(weights and thresholds) in the neural network represented

in Fig. 4. These are supplemented by the normalization coef-

ficient Bg for the gluon nPDF and by the six preprocessing

exponents α f and β f . The latter are fitted simultaneously

with the network parameters, while the former is fixed by the

momentum sum rule, described in more detail below. Lastly,

the input scale Q0 is set to 1 GeV to maintain consistency

with the settings of the baseline proton fit, chosen to be the

NNPDF3.1 set with perturbative charm.

Sum rules. Since the nucleon energy must be distributed

among its constituents in a way that ensures energy conser-

vation, the PDFs are required to obey the momentum sum

rule given by

∫ 1

0

dxx (�(x, Q0, A) + g(x, Q0, A)) = 1, ∀ A. (3.3)

Note that this expression needs only to be implemented at

the input scale Q0, since the properties of DGLAP evolution

guarantees that it will also be satisfied for any Q > Q0.

In this analysis, Eq. (3.3) is applied by setting the overall

normalization of the gluon nPDF to

Bg(A) =
1 −

∫ 1
0 dx x�(x, Q0, A)

∫ 1
0 dx xg(x, Q0, A)

. (3.4)

where the denominator of Eq. (3.4) is computed using

Eq. (3.2) and setting Bg = 1. Since the momentum sum

rule requirement must be satisfied for any value of A, the

normalization factor for the gluon distribution Bg needs to

be computed separately for each value of A given by the

experimental data (see Table 1).

In addition to the momentum sum rule, nPDFs must satisfy

other sum rules such as those for the valence distributions,

∫ 1

0

dx (u(x, Q0, A) − ū(x, Q0, A))

=
∫ 1

0

dx
(

d(x, Q0, A) − d̄(x, Q0, A)
)

=
3

2
, ∀ A,

(3.5)

as well as
∫ 1

0

dx (s(x, Q0, A) − s̄(x, Q0, A)) = 0, ∀ A, (3.6)

given the quark flavor quantum numbers of isoscalar nucle-

ons. These valence sum rules involve quark combinations

which are not relevant for the description of neutral-current

DIS structure functions, and therefore do not need to be used

in the present analysis. However, they will become necessary

in future updates of the nNNPDF fits in which, for instance,

charged-current DIS measurements are also included.

Preprocessing. The polynomial preprocessing functions

x−α f (1− x)β f in Eq. (3.2) have long been known to approx-

imate well the general asymptotic behavior of the PDFs at

small and large x [88]. Therefore, they help to increase the

efficiency of parameter optimization since the neural net-

works have to learn smoother functions. Note that the prepro-

cessing exponents α f and β f are independent of A, implying

that the entire A dependence of the input nPDFs will arise

from the output of the neural networks.

In previous NNPDF analyses, the preprocessing expo-

nents α f and β f were fixed to a randomly chosen value from

a range that was determined iteratively. Here instead we will
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Fig. 5 The probability distribution of the fitted preprocessing exponents computed with the Nrep = 1000 replicas of the nNNPDF1.0 NLO set.

The vertical red line indicates the mean value and the transparent red band the 1 − σ range corresponding to each exponent

fit their values for each Monte Carlo replica, so that they are

treated simultaneously with the weights and thresholds of

the neural network. The main advantage of this approach is

that one does not need to iterate the fit to find the optimal

range for the exponents, since now their best-fit values are

automatically determined for each replica.

Based on basic physical requirements, as well as on empir-

ical studies, we impose some additional constraints on the

range of allowed values that the exponents α f and β f can

take. More specifically, we restrict the parameter values to

α f ∈ [−5, 1], β f ∈ [0, 10], f = �, T8, g . (3.7)

Concerning the large-x exponent β f , the lower limit in

Eq. (3.7) guarantees that the nPDFs vanish in the elastic limit

x → 1; the upper limit follows from the observation that it

is unlikely for the nPDFs to be more strongly suppressed

at large x [88]. With respect to the small-x exponent α f ,

the upper limit follows from the nPDF integrability condi-

tion, given that for α f > 1 the momentum integral Eq. (3.3)

becomes divergent.

In addition to the conditions encoded in Eq. (3.7), we

also set β� = βT8 , namely we assume that the two quark

distributions � and T8 share a similar large-x asymptotic

behavior. The reason for this choice is two-fold. First, we

know that these two distributions are highly (anti-) cor-

related for neutral-current nuclear DIS observables (see

Eq. (2.26)). Secondly, the large-x behavior of these distri-

butions is expected to be approximately the same, given that

the strange distribution s+ is known to be suppressed at large

x compared to the corresponding u+ and d+ distributions. In

any case, it is important to emphasize that the neural network

has the ability to compensate for any deviations in the shape

of the preprocessing function, and therefore can in principle

distinguish any differences between � and T8 in the large-x

region.

To illustrate the results of fitting the small and large-x pre-

processing exponents, we display in Fig. 5 the probability

distributions associated with the α f and β f exponents com-

puted using the Nrep = 1000 replicas of the nNNPDF1.0

NLO set, to be discussed in Sect. 5. Here the mean value of

each exponent is marked by the solid red line, and the trans-

parent red band describes the 1−σ deviation. Note that these

exponents are restricted to vary only in the interval given by

Eq. (3.7). Interestingly, the resulting distributions for each of

the α f and β f exponents turn out to be quite different, for

instance β� is Gaussian-like while a� is asymmetric.

The A = 1 limit of the nPDFs. An important physical

requirement that must be satisfied by the nPDFs is that they

should reproduce the x dependence of the PDFs correspond-

ing to isoscalar free nucleons when evaluated at A = 1.

Therefore, the following boundary conditions needs to be

satisfied for all values of x and Q2:

f (x, Q, A = 1)

=
1

2

[

f p(x, Q2) + fn(x, Q2)
]

, f = �, T8, g, (3.8)

where f p and fn indicate the parton distributions of the free

proton and neutron, respectively, and are related by isospin

symmetry (which is assumed to be exact). As opposed to

other approaches adopted in the literature, we do not imple-

ment Eq. (3.8) at the nPDF parameterization level, but rather

we impose it as a restriction in the allowed parameter space

at the level of χ2 minimization, as will be discussed below.

Our strategy has the crucial advantage that it assures that both

central values and uncertainties of the free-nucleon PDFs will

be reproduced by the nNNPDF1.0 nuclear set in the A → 1

limit.
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3.2 Minimization strategy

Having described the strategy for the nPDF parameterization

in terms of neural networks, we turn now to discuss how

the best-fit values of these parameters, namely the weights

and thresholds of the neural network and the preprocessing

exponents α f and β f , are determined. We also explain how

we impose the A = 1 boundary condition, Eq. (3.8).

In this analysis, the best-fit parameters are determined

from the minimization of a χ2 function defined as

χ2 ≡
Ndat
∑

i, j=1

(

R
(exp)

i − R
(th)
i ({ fm})

)

(

covt0

)−1

i j

(

R
(exp)

j − R
(th)
j ({ fm})

)

+λ
∑

m=g,�,T8

Nx
∑

l=1

(

fm(xl , Q0, A = 1) − f
(p+n)/2
m (xl , Q0)

)2
.

(3.9)

Here, R
(exp)

i and R
(th)
i ({ fm}) stand for the experimental

data and the corresponding theoretical predictions for the

nuclear ratios, respectively, the latter of which depend on the

nPDF fit parameters. The t0 covariance matrix covt0 has been

defined in Eq. (2.9), and Ndat stands for the total number of

data points included in the fit. Therefore, the first term above

is the same as in previous NNPDF fits. Note that the first row

in Eq. (3.9) could also be expressed in terms of shifts to the

data or theory allowed by the correlated systematic errors [4].

Reproducing the proton PDF baseline. The second term in

Eq. (3.9) is a new feature in nNNPDF1.0. It corresponds to

a quadratic penalty that forces the fit to satisfy the boundary

condition in Eq. (3.8), namely that the fitted nPDFs for A = 1

reproduce the PDFs of an isoscalar free nucleon constructed

as the average of the proton and neutron PDFs. In order to

impose this constraint in a fully consistent way, it is neces-

sary for the proton PDF baseline to have been determined

using theoretical settings and a fitting methodology that best

match those of the current nPDF analysis. This requirement

is satisfied by the NNPDF3.1 global analysis [71], a state-

of-the-art determination of the proton PDFs based on a wide

range of hard-scattering processes together with higher-order

QCD calculations. Crucially, NNPDF3.1 shares most of the

methodological choices of nNNPDF1.0 such as the use of

neural networks for the PDF parameterization and of the

Monte Carlo replica method for error propagation and esti-

mation.

As can be seen from Eq. (3.9), this constraint is only

imposed at the initial scale Q0. This is all that is required,

since the properties of DGLAP evolution will result in distri-

butions at Q > Q0 that automatically satisfy the constraint.

The A = 1 boundary condition is then constructed with a grid

of Nx = 60 values of x , where 10 points are distributed log-

arithmically from xmin = 10−3 to xmid = 0.1 and 50 points

are linearly distributed from xmid = 0.1 to xmax = 0.7.

Note that in the low-x region the coverage of this con-

straint is wider than that of the available nuclear data (see

Fig. 1). Since proton PDF uncertainties, as a result of includ-

ing HERA structure function data, are more reduced at small

x than in the corresponding nuclear case, the constraint in

Eq. (3.9) introduces highly non-trivial information regarding

the shape of the nPDFs within and beyond the experimental

data region. Moreover, we have also verified that the con-

straint can also be applied down to much smaller values of x ,

such as xmin = 10−5, by taking as a proton baseline one of

the NNPDF3.0 sets which include LHCb charm production

data [89–91], as will be demonstrated in Sect. 5.3.

It is important to emphasize that the boundary condition,

Eq. (3.8), must be satisfied both for the PDF central values

and for the corresponding uncertainties. Since proton PDFs

are known to much higher precision than nPDFs, impos-

ing this condition introduces a significant amount of new

information that is ignored in most other nPDF analyses. In

order to ensure that PDF uncertainties are also reproduced

in Eq. (3.8), for each nNNPDF1.0 fit we randomly choose

a replica from the NNPDF3.1 proton global fit in Eq. (3.9).

Since we are performing a large Nrep number of fits to esti-

mate the uncertainties in nNNPDF1.0, the act of randomly

choosing a different proton PDF baseline each time guaran-

tees that the necessary information contained in NNPDF3.1

will propagate into the nPDFs. Finally, we fix the hyper-

parameter to λ = 100, which is found to be the optimal set-

ting together with the choice of architecture to yield A = 1

distributions that best describe the central values and uncer-

tainties of NNPDF3.1.

Optimization procedure. Having defined our χ2 function

in Eq. (3.9), we now move to present our procedure to deter-

mine the best-fit values of the parameters associated with

each Monte Carlo replica. This procedure begins by sam-

pling the initial values of the fit parameters. Concerning the

preprocessing exponents α f and β f , they are sampled from

a uniform prior in the range α f ∈ [−1, 1] and β f ∈ [1, 10]
for all fitted distributions. Note that these initial ranges are

contained within the ranges from Eq. (3.7) in which the

exponents are allowed to vary. Since the neural network can

accommodate changes in the PDF shapes from the prepro-

cessing exponents, we find the choice of the prior range from

which α f and β f are initially sampled does not affect the

resulting distributions. In the end, the distributions of α f and

β f do not exhibit flat behavior, as is shown in Fig. (5).

Concerning the initial sampling of the neural network

parameters, we use Xavier initialization [92], which samples

from a normal distribution with a mean of zero and stan-

dard deviation that is dependent on the specific architecture

of the network. Furthermore, the initial values of the neuron

activation are dropped and re-chosen if they are outside two

standard deviations. Since a sigmoid activation function is
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used for the first and second layers, this truncation of the

sampling distribution ensures the neuron input to be around

the origin where the derivative is largest, allowing for more

efficient network training.

As highlighted by Fig. 3, the most significant differ-

ence between the fitting methodology used in nNNPDF1.0

as compared to previous NNPDF studies is the choice of

the optimization algorithm for the χ2 minimization. In the

most recent unpolarized [71] and polarized [93] proton PDF

analysis based on the NNPDF methodology, an in-house

Genetic Algorithm (GA) was employed for the χ2 mini-

mization, while for the NNFF fits of hadron fragmentation

functions [94] the related Covariance Matrix Adaptation-

Evolutionary Strategy (CMA-ES) algorithm was used (see

also [95]). In both cases, the optimizers require as input only

the local values of the χ2 function for different points in

the parameter space, but never use the valuable information

contained in its gradients.

In the nNNPDF1.0 analysis, we utilize for the first time

gradient descent with backpropagation, the most widely used

training technique for neural networks (see also [43]). The

main requirement to perform gradient descent is to be able to

efficiently compute the gradients of the cost function Eq. (3.9)

with respect to the fit parameters. Such gradients can in prin-

ciple be computed analytically, by exploiting the fact that the

relation between the structure functions and the input nPDFs

at Q0 can be compactly expressed in terms of a matrix mul-

tiplication within the APFELgrid formalism as indicated

by Eq. (2.15). One drawback of such approach is that the

calculation of the gradients needs to be repeated whenever

the structure of the χ2 is modified. For instance, different

analytical expressions for the gradients are required if uncer-

tainties are treated as uncorrelated and added in quadrature

as opposed to the case in which systematic correlations are

taken into account.

Rather than following this path, in nNNPDF1.0 we have

implemented backpropagation neural network training using

reverse-mode automatic differentiation in TensorFlow, a

highly efficient and accurate method to automatically com-

pute the gradients of any user-defined cost function. As a

result, the use of automatic differentiation makes it signif-

icantly easier to explore optimal settings in the model and

extend the analysis to include other types of observables in

a global analysis.

One of the drawbacks of the gradient descent approach,

which is partially avoided by using GA-types of optimiz-

ers, is the risk of ending up trapped in local minima. To

ensure that such situations are avoided as much as possi-

ble, in nNNPDF1.0 we use the Adaptive Moment Estima-

tion (ADAM) algorithm [96] to perform stochastic gradient

descent (SGD). The basic idea here is to perform the training

on randomly chosen subsets of the input experimental data,

which leads to more frequent parameter updates. Moreover,

the ADAM algorithm significantly improves SGD by adjust-

ing the learning rate of the parameters using averaged gra-

dient information from previous iterations. As a result, local

minima are more easily bypassed in the training procedure,

which not only increases the likelihood of ending in a global

minima but also significantly reduces the training time.

In this analysis, most of the ADAM hyper-parameters are

set to be the default values given by the algorithm, which

have been tested on various machine learning problems. This

includes the initial learning rate of the parameters,η = 0.001,

the exponential decay rate of the averaged squared gradients

from past iterations, β2 = 0.999, and a smoothing parameter

ǫ = 10−8. However, we increase the exponential decay rate

of the mean of previous gradients, β1 = 0.9 → 0.99, which

can be interpreted more simply as the descent momentum.

This choice was observed to improve the performance of the

minimization overall, as it exhibited quicker exits from local

minima and increased the rate of descent.

Given that our neural-network-based parameterization of

the nPDFs, Eq. (3.2), can be shown to be highly redundant

for the current input dataset (see also Sect. 5.3), we run the

risk of fitting the statistical fluctuations in the data rather

than the underlying physical law. To prevent such overfit-

ting, we have implemented the look-back cross-validation

stopping criterion presented for the first time in NNPDF fits

in Ref. [7]. The basic idea of this algorithm is to separate

the input dataset into disjoint training and validation datasets

(randomly chosen replica by replica), minimize the training

set χ2 function, χ2
tr, and stop the training when the valida-

tion χ2, χ2
val, reveals a global minimum. In this analysis, the

data is partitioned 50%/50% to construct each of the two sets,

except for experiments with 5 points or less which are always

included in the training set.

The final fits are chosen to satisfy simultaneously,

χ2
tr/Ntr < 5,

χ2
val/Nval < 5,

χ2
penalty/(3Nx ) < 5, (3.10)

where Ntr and Nval are the number of data points in the

training and validation sets, respectively, and χ2
penalty cor-

responds to the second term in Eq. (3.9). Upon reaching the

above conditions during χ2 minimization, checkpoints are

saved for every 100 iterations. A fit is then terminated when

a smaller value for the validation χ2 is not obtained after

5×104 iterations, or when the fit has proceeded 5×105 iter-

ations (early stopping). The former is set to allow sufficient

time to escape local minima, and the latter is set due to the

SGD algorithm, which can fluctuate the parameters around

the minimum indefinitely. In either case the fit is considered

successful, and the parameters that minimize χ2
val are selected

as the best-fit parameters (look-back).
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While automatic differentiation withTensorFlow is the

baseline approach used to construct the nNNPDF1.0 sets,

during this work we have also developed an alternative C++

fitting framework that uses the ceres-solver optimizer

interfaced with analytical calculations of the gradients of

the χ2 function. The comparison between the analytical and

automated differentiation strategies to compute the χ2 gradi-

ents and to carry out the minimization of Eq. (3.9) will be pre-

sented elsewhere [97], together with a comparison of the per-

formance and benchmarking between these two approaches.

Performance benchmarking. While a detailed and system-

atic comparison between the performances of the Tensor

Flow-based stochastic gradient descent optimization used

in nNNPDF1.0 and that of the GA and CMA-ES minimizers

used in previous NNPDF analyses is beyond the scope of this

work, here we provide a qualitative estimate for improvement

in performance that has been achieved as a result of using the

former strategy.

In order to assess the performance of these two strategies,

we have conducted two Level-0 closure tests (see Sect. 4

for more details) on the same computing machine. For the

first test, a variant of the nNNPDF1.0 fit was run without

the A = 1 constraint and with the preprocessing exponents

fixed to randomly selected values within a specific range. For

the second, a variant of the NNPDF3.1 DIS-only fit was run

with kinematic cuts adjusted so that they match the value of

Ndat used in the first fit. Moreover, the preprocessing expo-

nents are fixed in the same manner. To further ensure similar

conditions as much as possible with the nNNPDF1.0-like

fits, the fitting basis of NNPDF3.1 has been reduced to that

composed by only �, T8 and g, while the architecture of the

networks has been modified so that the number of fitted free

parameters is the same in both cases. While these common

settings are suitable for a qualitative comparison between the

two optimizers, we want to emphasize that the results should

not be taken too literally, as other aspects of the two fits are

slightly different.

In Fig. 6 we show the results of this benchmark compari-

son for the performance of theTensorFlow-based stochas-

tic gradient descent optimization with that of the Genetic

Algorithm (labelled NGA) used in NNPDF3.1. Within a

Level-0 closure test, we monitor the average time it takes

each optimizer to reach a given χ2
target/Ndat target. We then

plot the ratio of the average SGD time with the correspond-

ing GA result. For a conservative target, χ2
target/Ndat = 0.1,

the NGA appears to perform better than SGD. This is a well-

known property of evolutionary algorithms: they manage to

rather quickly bring the parameter space to the vicinity of a

minimum of the cost function.

The real power of SGD becomes apparent once a more

stringent χ2
target/Ndat target is set. As will be described in

more detail in the following section, the figure of merit in
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Fig. 6 Benchmark comparison of the performance of the

TensorFlow-based stochastic gradient descent optimization with

that of the Genetic Algorithm used in most of the previous NNPDF

fits. The ratio of the average SGD time over the average NGA time is

plotted as a function of the χ2
target/Ndat for a Level 0 closure test

Level 0 closure tests can be arbitrarily reduced until asymp-

totically the χ2 → 0 limit is reached. We find that in this

case, the average time for SGD can be significantly smaller

than the corresponding NGA time. For χ2
target/Ndat = 10−3,

the speed improvement is around an order of magnitude, and

from the trend it is apparent that this improvement would

continue for new χ2 targets. The benchmark comparison of

Fig. 6 highlights how, with the use of SGD, it becomes possi-

ble to explore the vicinity of minima in a more efficient way

than NGA, thus bringing in a considerable speed improve-

ment that can reach a factor of 10 or more.

4 Closure tests

Since a significant amount of the fitting methodology used

to construct nNNPDF1.0 has been implemented for the first

time in this analysis, it is important to test its performance

and demonstrate its reliability using closure tests. The general

idea of closure tests is to carry out fits based on pseudo-data

generated with a known underlying theory. In this case, an

existing nPDF set is used and the fit results are compared

with this “true” result using a variety of statistical estima-

tors. In addition, the exercise is performed within a clean

environment which is not affected by other possible effects

that often complicate global fits, such as limitations of the

theory calculations or the presence of internal or external

data inconsistencies.

In this section, we briefly outline the different types clo-

sure tests that we have performed to validate the nNNPDF1.0

fitting methodology. The nomenclature and settings for the

different levels of closure tests follows Ref. [7] (see also [98]

for a related discussion in the context of SMEFT analyses).
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For all of the closure tests presented in this section, the

fitting methodology is identical to that used for the actual

nNNPDF1.0 analysis and was described in the previous sec-

tion. The differences between the different closure fits are

then related to the generation of the pseudo-data. The under-

lying distributions have been chosen to be those from the

nCTEQ15 analysis, from which the pseudo-data is construct-

ing by evaluating predictions for the nuclear structure func-

tions using the theoretical formalism in Sect. 2. Furthermore,

the deuteron structure functions are constructed from the

NNPDF3.1 proton PDF set so that only the numerator is fit-

ted in the F A
2 /F D

2 ratios. The nPDFs to be determined by the

fit are then parameterized at the input scale Q0 = 1.3 GeV

(rather than 1 GeV) to maintain the consistency with the set-

tings of nCTEQ15. Lastly, we do not impose our boundary

condition at A = 1, since our aim is not to achieve the small-

est possible uncertainties but instead to show that we are able

to reproduce the input distributions from nCTEQ15.

4.1 Level 0

We start by presenting the results of the simplest type of

closure test, Level 0 (L0), and then discuss how these are

modified for the more sophisticated Level 1 (L1) and Level

2 (L2) fits. At Level 0, the pseudo-data is generated from the

nCTEQ distributions without any additional statistical fluc-

tuations, and the uncertainties are taken to be the same as the

experimental data. The χ2 is then defined to be the same as in

the fits to real data, taking into account all sources of exper-

imental uncertainties in the t0 covariance matrix Eq. (2.9).

Moreover, there are no Monte Carlo replicas, and closure

tests are carried out Nrep times for different random values

of the initial fit parameters. The variance of the Nrep fits then

defines the PDF uncertainties at this level. By defining the

closure test Level 0 in this way, there is guaranteed to exist at

least one possible solution for the fit parameters which result

in χ2 = 0, where the fitted nPDFs coincide with nCTEQ15.

Therefore a key advantage of this test is its ability to assess

the flexibility of the chosen input functional form and deter-

mine whether the shapes of the underlying distributions are

able to be reproduced.

Due to the absence of statistical fluctuations in the pseudo-

data, overlearning is not possible. Consequently, the fits are

performed without cross-validation and early stopping, and

the maximum number of iterations a given fit can progress

is a free parameter that can be chosen to be arbitrarily large.

Although the value of the total χ2 with respect to the number

of iterations may flatten as the maximum number of iterations

is increased and one is close to the absolute minimum, the

χ2 should continue to vanish asymptotically provided the

optimizer is adequately efficient.

To demonstrate that these expectations are indeed satis-

fied in our case, we display in Fig. 7 the value of the total
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Fig. 7 The value of the total χ2 as a function of the number of iterations

in a Level 0 minimization procedure. Only a single replica is shown,

which represents a specific choice of the initial conditions of the fit

parameters

χ2 as a function of the number of iterations proceeded in

the minimization process for a specific choice of the initial

conditions of the fit parameters. We find the results for other

initial conditions are qualitatively similar. For this case, the

χ2 decreases monotonically with the number of iterations

without ever saturating. Note also how the rate of decrease

of the χ2 is high for low number of iterations, but becomes

slower as the number of iterations is increased. This behav-

ior is expected since it is more difficult to find directions

in the parameter space close to the minimum that further

reduce the cost function. The final results are chosen to sat-

isfy χ2/Ndat < 0.1 after a maximum number of iterations

of 2 × 105.

In Fig. 8, we show the resulting nPDFs from a Level 0

closure test. Here the � + T8/4 quark combination and the

gluon are plotted as a function of x at the initial evolution

scale Q0 = 1.3 GeV for A = 12 and A = 208. We also

display the 1-σ uncertainties computed over the Nrep repli-

cas, while for the input nCTEQ distributions only the cen-

tral values are shown. Since the aim of closure tests is not

to reproduce the uncertainties of the prior distributions but

rather the central values used to generate the pseudo-data,

the nCTEQ uncertainties are not relevant here and therefore

we do not show them in any of the results presented in this

section.

As we can see from the comparison in Fig. 8, there is a very

good agreement between the central values of both the quark

combination � + T8/4 and the gluon with the nCTEQ15

prior in the data region. This is especially marked for the

quark distribution, given that it is directly constrained by

the structure function measurements. Concerning the gluon

nPDF, which is only constrained indirectly from data, the

agreement is somewhat better for A = 12 than for A = 208

for which there are very limited experimental constraints.
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Fig. 8 Resulting nPDFs from a

Level 0 closure test. The

� + T8/4 quark combination

(left plots) and the gluon (right

plots) at the initial evolution

scale Q0 = 1.3 GeV for A = 12

(upper plots) and A = 208

(lower plots) nuclei. We

compare the results of the

nNNPDF1.0 L0 closure test

(solid red line) and the

corresponding 1-σ uncertainties

(shaded red band) with the

central values of the nCTEQ15

prior (dotted black line)
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This behavior can be understood by the fact that the gluon

for A = 208 is much less constrained by the available

data than for A = 12, and thus even in a perfect L0 clo-

sure test, with χ2 → 0, one can expect small deviations

with respect to the underlying physical distributions. Nev-

ertheless, our results agree overall with the nCTEQ15 cen-

tral values and the L0 closure test is considered success-

ful.

4.2 Level 1

We continue now to discuss the results of the Level 1 closure

tests. In this case, the pseudo-data is generated by adding one

layer of statistical fluctuations to the nCTEQ15 predictions.

These fluctuations are dictated by the corresponding exper-

imental statistical and systematic uncertainties, and are the

same that enter in the t0 covariance matrix Eq. (2.9). In other

words, we take the L0 pseudo-data and add random noise

by Gaussian smearing each point about the corresponding

experimental uncertainties. As in the L0 closure tests, the

same pseudo-data set is used to perform an Nrep number of

fits, each with a different initialization of the fit parameters,

and the resulting variance defines the nPDF uncertainties.

Due to the Gaussian smearing, however, over-learning is now

possible at Level 1 and therefore cross-validation with early

stopping is required. As a result, the optimal fit parameters

are expected to give instead χ2
tot/Ndat ≃ 1.

In Fig. 9 we show a similar comparison as that of Fig. 8

but now for the L1 closure tests. While the level of agree-

ment with the nCTEQ15 prior is similar as in the case of

L0 fits, the PDF uncertainties have now increased, especially

for the gluon nPDF. This increase at L1 reflects the range

of possible solutions for the initial nPDFs at Q0 that lead

to a similar value of χ2/Ndat ≃ 1. Therefore, the L1 test

not only allows us to verify that the input distributions are

reproduced, but also that the added statistical fluctuations at

the level of the generated pseudo-data are reflected in the

resulting uncertainties.

In Table 4 we list the averaged values for χ2/Ndat in the L1

closure test compared with the corresponding values obtained

with the prior theory. As expected, we find the χ2 values at L1

being close to those of the prior both at the level of the total

dataset as well as that of individual experiments. The agree-

ment is particularly good for datasets with a large number of

points that carry more weight in the fit. In summary, the com-

parison in Fig. 9 combined with that in Table 4 demonstrate

the closure tests are also successful at L1.

4.3 Level 2

In L2 closure tests, the pseudo-data generated in the L1

case is now used to produce a large Nrep number of Monte

Carlo replicas. A nuclear PDF fit is then performed for each

replica, and look-back cross-validation is again activated to

prevent over-fitting. The procedure at L2 therefore matches

the one applied to real data to determine the nNNPDF1.0 set

of nPDFs, so that the statistical and systematic uncertainties

provided by the experimental measurements are propagated

into the resulting nPDF uncertainties. By comparing the PDF

uncertainties at L2 with those at L1 and L0, one can disen-

tangle the various contributions to the total nPDF error, as

we discuss in more detail below.

Given the extra layer of statistical fluctuations introduced

by the Monte Carlo replica generation, at L2 the figure of
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Fig. 9 Same as in Fig. 8 but

now for the Level 1 closure tests
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merit for each replica is χ2
tr (val)/Ntr (val) ≃ 2, where Ntr (val)

indicates the number of data points in the training (validation)

set. In Fig. 10, we show a similar plot as in Fig. 7 but now

for a representative replica from the Level 2 closure test.

Here the χ2 values from the training and validation sam-

ples are plotted separately, and the vertical dashed line indi-

cates the stopping point, defined to be the absolute minimum

of χ2
val, at which the optimal parameters are taken. Since we

have Ntr = 239 and Nval = 212, we find χ2
tr (val)/Ntr (val) ≃ 2

as expected.

Figure 10 clearly illustrates the importance of cross-

validation stopping. For a low number of iterations, both χ2
tr

and χ2
val are similar in size and decrease monotonically: this

corresponds to the learning phase. However, beyond a certain

point the χ2
tr keeps decreasing while the χ2

val instead begins

to increase, indicating that the statistical fluctuations rather

than the underlying distributions are being fitted. As a result

of using cross-validation, we are able to avoid over-fitting

and ensure that for each replica the minimization is stopped

at the optimal number of iterations.

In Fig. 11, a similar comparison as that of Fig. 8 is shown,

where now the nPDFs at the initial parameterization scale

Q0 = 1.3 GeV obtained from the L0, L1, and L2 closure

tests are displayed together. Here the nCTEQ15 prior agrees

well with the central values of all the closure tests. Moreover,

it is important to note that the nPDF uncertainties are smallest

at Level 0 and then increase subsequently with each level. The

comparison of the results for the different levels of closure

tests can be interpreted following the discussions of [7].

First of all, at L0 the PDF uncertainty within the data

region should go to zero as the number of iterations is

increased due to the fact that χ2 → 0, as illustrated in

Fig. 7. While the PDF uncertainties will generally decrease

with the number of iterations, this may not necessarily be

true between data points (interpolation) and outside the data

region (extrapolation). The latter is known as the extrapola-

tion uncertainty, and is present even for a perfect fit for which

the χ2 vanishes. In our fits, the extrapolation region can be

assessed from Fig. 1, where x ∼< 0.01 and x ∼> 0.7 are not

directly constrained from any measurement in nNNPDF1.0.

In a L1 fit, the central values of the data have been fluctu-

ated around the theoretical predictions from nCTEQ15. This

means that now there can exist many functional forms for

the nPDFs at Q0 that have equally good χ2 values. The dif-

ference between the PDF uncertainties at L0 and L1 is thus

known as the functional uncertainty. Finally, at L2 one is

adding on top of the L1 pseudo-data the Monte Carlo replica

generation reflecting the statistical and systematic errors pro-

vided by the experimental measurements. This implies that

the difference between L1 and L2 uncertainties can be gen-

uinely attributed to the experimental data errors, and is there-

fore known as the data uncertainty. Comparing the resulting

nPDFs for various levels of closure tests, as in Fig. 11, allows

us to discriminate the relative importance of the extrapola-

tion, function, and data components to the total nNNPDF1.0

uncertainty band.

From the comparison of Fig. 11, we see that the extrap-

olation uncertainty is very small for the quarks except for

x ∼< 0.01 where indeed experimental data stops. The same

applies for the gluon for A = 12, while for A = 208

the extrapolation (L0) uncertainty becomes large already at

x ∼< 0.1. Interestingly, there is a big increase in uncertainties

when going from L0 to L1 for the gluon distribution: this

highlights how functional uncertainties represent by far the
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Table 4 The averaged values for χ2/Ndat for each experiment in a

Level 1 closure test compared with values obtained using the nCTEQ15

distributions

Experiment A1/A2 Ndat χ2/ndat

(L1CT)

χ2/ndat

(prior)

SLAC E-139 4He/2D 3 0.94 2.61

NMC 95, re. 4He/2D 13 1.83 1.17

NMC 95 6Li/2D 12 0.97 0.87

SLAC E-139 9Be/2D 3 0.66 0.09

NMC 96 9Be/12C 14 1.04 0.99

EMC 88, EMC 90 12C/2D 12 0.45 0.47

SLAC E-139 12C/2D 2 0.52 0.80

NMC 95, NMC 95,

re.

12C/2D 26 1.79 1.79

FNAL E665 12C/2D 3 1.07 0.84

NMC 95, re. 12C/6Li 9 0.71 0.54

BCDMS 85 14N/2D 9 0.81 0.77

SLAC E-139 27Al/2D 3 2.42 3.14

NMC 96 27Al/12C 14 1.18 1.26

SLAC E-139 40Ca/2D 2 1.24 1.36

NMC 95, re. 40Ca/2D 12 2.07 1.87

EMC 90 40Ca/2D 3 3.18 3.23

FNAL E665 40Ca/2D 3 0.23 0.23

NMC 95, re. 40Ca/6Li 9 0.46 0.41

NMC 96 40Ca/12C 23 1.22 1.20

EMC 87 56Fe/2D 58 0.60 0.59

SLAC E-139 56Fe/2D 8 0.66 0.57

NMC 96 56Fe/12C 14 1.35 1.05

BCDMS 85,

BCDMS 87

56Fe/2D 16 0.82 0.70

EMC 88, EMC 93 64Cu/2D 27 1.32 1.38

SLAC E-139 108Ag/2D 2 0.33 0.28

EMC 88 119Sn/2D 8 0.12 0.13

NMC 96, Q2

dependence

119Sn/12C 119 0.95 0.98

FNAL E665 131Xe/2D 4 0.99 0.84

SLAC E-139 197Au/2D 3 0.21 0.31

FNAL E665 208Pb/2D 3 1.29 1.31

NMC 96 208Pb/12C 14 0.98 0.90

Total 451 1.03 1.00

dominant component in the PDF uncertainty for most of the

relevant kinematic range. Lastly, differences between L1 and

L2 are quite small, and therefore the experimental data errors

propagated by the MC replicas contributes little to the over-

all uncertainties. Nevertheless, it is an important component

and must be included for a robust estimation of the nPDF

uncertainties.

5 Results

In this section we present the main results of our analysis,

namely the nNNPDF1.0 sets of nuclear parton distributions.

We first assess the quality of our fit by comparing the resulting

structure function ratios with experimental data. This is fol-

lowed by a discussion of the main features of the nNNPDF1.0

sets, as well as a comparison with the recent EPPS16 and

nCTEQ15 nPDF analyses. We also assess the stability of our

results with respect to the perturbative order, which are gen-

erated using NLO and NNLO QCD theories. Finally, the sec-

tion is concluded by presenting a few methodological valida-

tion tests, complementing the closure test studies discussed in

Sect. 4. Here we show that our results are stable with respect

to variations of the network architecture and quantify the

impact of the A = 1 boundary condition.

Before moving forward, it is useful to illustrate quali-

tatively the expected outcome for a nuclear PDF analysis.

In Fig. 12 we show a schematic representation of different

types of nuclear modifications that are assumed to arise in

the nPDFs, f (N/A), when presented as ratios to their free-

nucleon counterparts f (N ),

R f (x, Q2, A) ≡
f (N/A)(x, Q2, A)

f (N )(x, Q2)
, f = � + T8/4, g .

(5.1)

The ratio R f defined here corresponds to the nPDF equiva-

lent of the structure function ratios, Eq. (2.5), where R f ≃
1 signifies the absence of nuclear modifications. Moving

from small to large x , a depletion known as shadowing is

expected, followed by an enhancement effect known as anti-

shadowing. For the region x ≃ 0.4, there is expected to be

a suppression related to the original EMC effect, while at

larger x there should be a sharp enhancement as a result of

Fermi motion. In presenting the results of the nNNPDF1.0

PDF sets, the discussion will focus primarily on whether

the different nuclear effects shown in Fig. 12 are supported

by experimental data and how the various effects compare

between the quark and gluon distributions.

5.1 Comparison with experimental data

To begin, we list in Table 5 the absolute and normalized

values of the χ2 for each of the input datasets (see Table 1)

and for the total dataset. The values are given for both the

NLO and NNLO fits. In total, there are Ndat = 451 data

points that survive the kinematic cuts and result in the overall

value χ2/Ndat = 0.68, indicating an excellent agreement

between the experimental data and the theory predictions.

Moreover, we find that the fit quality is quite similar between

the NLO and NNLO results. The fact that we obtain an overall

χ2/Ndat less than one can be attributed to the absence of
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Fig. 10 Same as Fig. 7, but now for the Level 2 closure test. We show

the separate χ2 values of the training (solid red line) and the valida-

tion (solid blue line) samples, and indicate with a vertical dashed line

the stopping point for this specific replica, determined as the absolute

minimum of χ2
val

correlations between experimental systematics, leading to an

overestimation of the total error.

At the level of individual datasets, we find in most

cases a good agreement between the experimental measure-

ments and the corresponding theory calculations, with many

χ2/Ndat ∼< 1 both at NLO and at NNLO. The agreement

is slightly worse for the ratios Ca/D and Pb/D from FNAL

E665, as well as the Sn/D ratio from EMC, all of which have

χ2/Ndat ≥ 1.5. The apparent disagreement of these datasets

can be more clearly understood with the visual comparison

between data and theory.

Shadowing

Anti-Shadowing

EMC 
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Fermi 
Motion

Rf = 1

Rf(x, A) = f (N/A)(x, A) / f (N)(x)

x
x ≃ 0.1
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Fig. 12 Schematic representation of different types of nuclear modifi-

cations that are expected to arise in the nPDFs, f (N/A), when presented

as ratios to their free-nucleon counterparts, R f = f (N/A) / f (N )

In Fig. 13 we display the structure function ratios F A
2 /F A′

2

measured by the EMC and NMC experiments and the corre-

sponding theoretical predictions from the nNNPDF1.0 NLO

fit. Furthermore, in Figs. 14 and 15 we show the correspond-

ing comparisons for the Q2-dependent structure function

ratio FSn
2 /FC

2 provided by the NMC experiment, and the

data provided by the BCDMS, FNAL E665, and SLAC-E139

experiments, respectively.

In the comparisons shown in Figs. 13, 14 and 15, the cen-

tral values of the experimental data points have been shifted

by an amount determined by the multiplicative systematic

uncertainties and their nuisance parameters, while uncorre-

lated uncertainties are added in quadrature to define the total

error bar. We also indicate in each panel the value of χ2/Ndat,

Fig. 11 Same as Fig. 8, but

now showing together the

results of the L0 (red), L1 (blue),

and L2 (green) closure tests
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Table 5 Same as Table 1, now indicating the absolute and normalized values of the χ2 for each of the input datasets as well as for the total dataset.

Listed are the results for both the NLO and NNLO nNNPDF1.0 sets

Experiment A1/A2 Ndat NLO NNLO

χ2 χ2/Ndat χ2 χ2/Ndat

SLAC E-139 4He/2D 3 1.49 0.50 1.50 0.50

NMC 95, re. 4He/2D 13 12.81 1.0 12.79 0.98

NMC 95 6Li/2D 12 10.96 0.91 10.50 0.88

SLAC E-139 9Be/2D 3 2.91 0.97 2.91 0.97

NMC 96 9Be/12C 14 4.03 0.29 4.06 0.29

EMC 88, EMC 90 12C/2D 12 12.98 1.08 13.04 1.09

SLAC E-139 12C/2D 2 0.65 0.33 0.74 0.37

NMC 95, NMC 95, re. 12C/2D 26 25.12 0.97 24.81 0.95

FNAL E665 12C/2D 3 3.13 1.04 3.13 1.04

NMC 95, re. 12C/6Li 9 6.62 0.74 6.25 0.69

BCDMS 85 14N/2D 9 11.10 1.23 11.16 1.24

SLAC E-139 27Al/2D 3 0.52 0.17 0.65 0.22

NMC 96 27Al/12C 14 4.34 0.31 4.31 0.31

SLAC E-139 40Ca/2D 2 2.79 1.40 2.95 1.48

NMC 95, re. 40Ca/2D 12 11.75 0.98 11.86 0.99

EMC 90 40Ca/2D 3 4.11 1.37 4.09 1.36

FNAL E665 40Ca/2D 3 5.07 1.69 4.77 1.59

NMC 95, re. 40Ca/6Li 9 2.18 0.24 2.05 0.23

NMC 96 40Ca/12C 23 13.20 0.57 13.26 0.58

EMC 87 56Fe/2D 58 36.89 0.63 37.12 0.64

SLAC E-139 56Fe/2D 8 11.01 1.38 11.20 1.4

NMC 96 56Fe/12C 14 9.21 0.66 9.00 0.64

BCDMS 85, BCDMS 87 56Fe/2D 16 9.48 0.6 9.53 0.6

EMC 88, EMC 93 64Cu/2D 27 12.56 0.47 12.63 0.47

SLAC E-139 108Ag/2D 2 1.04 0.52 1.04 0.52

EMC 88 119Sn/2D 8 17.77 2.22 17.71 2.21

NMC 96, Q2 dependence 119Sn/12C 119 59.24 0.50 58.28 0.49

FNAL E665 131Xe/2D 4 1.47 0.37 1.45 0.36

SLAC E-139 197Au/2D 3 2.46 0.82 2.33 0.78

FNAL E665 208Pb/2D 3 4.97 1.66 5.10 1.7

NMC 96 208Pb/12C 14 5.23 0.37 5.61 0.4

Total 451 307.1 0.68 305.82 0.68

which include the quadratic penalty as a result of shifting the

data to its corresponding value displayed in the figures. The

quoted χ2 values therefore coincide with those of Eq. (3.9)

without the A = 1 penalty term. Lastly, the theory predic-

tions are computed at each x and Q2 bin given by the data, and

its width corresponds to the 1-σ deviation of the observable

using the nNNPDF1.0 NLO set with Nrep = 200 replicas.

Note that in some panels, the theory curves (and the corre-

sponding data points) are shifted by an arbitrary factor to

improve visibility.

As expected by the χ2 values listed in Table 5, the experi-

mental measurements agree well with the structure function

ratios computed using the nNNPDF1.0 sets, apart from the

three observables mentioned previously. For the FNAL data,

the disagreement comes from datasets that contain a total of 3

data points with larger uncertainties than other experimental

measurements, and therefore do not significantly impact the

fit results.

A similar argument can be made for the Sn/D ratio from

the EMC experiment, which has χ2/Ndat = 2.22. Here the

lack of agreement between theory and data can be traced
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Fig. 13 Comparison between the experimental data on the struc-

ture function ratios F A
2 /F A′

2 and the corresponding theoretical pre-

dictions from the nNNPDF1.0 NLO fit (solid red line and shaded

band) for the measurements provided by the EMC and NMC exper-

iments. The central values of the experimental data points have

been shifted by an amount determined by the multiplicative sys-

tematic uncertainties and their nuisance parameters, and the data

errors are defined by adding in quadrature the uncorrelated uncer-

tainties. Also indicated are the χ2/Ndat values for each of the

datasets

to the low-x region of the structure function ratio. Such a

deviation can also be seen in the recent nCTEQ and EPPS

analyses, and can be attributed to a possible tension with

the Q2 dependent ratio Sn/C presented in Fig. 14. While the

comparison here is with carbon and not deuterium, the nuclei

are relatively close in mass number and therefore the effects

in the ratio are expected to be similar. On the other hand, the

data show a roughly ∼ 15−20% difference between EMC’s

Sn/D and NMC’s Sn/C at x ∼ 0.03. Since the NMC data

have smaller uncertainties than EMC, its influence on the fit

is much stronger, driving the disagreement with EMC Sn/D

at low x . Overall, the agreement with NMC data is excellent,

including the Q2 dependent Sn/C data presented in Fig. 14.

From the data versus theory comparisons, the various

nuclear effects encoded in the structure function ratios can

clearly be observed. At small x the structure functions

exhibit shadowing, namely the depletion of F2(x, Q, A)

compared to its free-nucleon counterpart (or compared to

lighter nuclei). At larger x the well known EMC effect is

visible, resulting in ratios below unity. Between these two

regimes, one finds an enhancement of the nuclear structure

functions. However, we do not observe the Fermi motion

effect, which gives RF2 > 1 for large x and increases rapidly

in the x → 1 limit. This is due simply to the kinematic W 2

cut illustrated in Fig. 1, which removes much of the large-x

data. Note that although the three nuclear regimes are vis-

ible at the structure function level, such effects may not be

reflected at the level of PDF ratios, as we will highlight in

the following section.

5.2 The nNNPDF1.0 sets of nuclear PDFs

With the agreement between data and theory established, we

present now the results for the NLO nPDF sets. Later, we will

assess the perturbative stability of the results by comparing to

the corresponding NNLO fit. Unless otherwise indicated, the

results presented in this section are generated with Nrep =
1000 Monte Carlo replicas.

To begin, we show in Fig. 16 the nNNPDF1.0 NLO set

as a function of x at the input scale Q0 = 1 GeV for differ-

ent values of A. In this figure, the nPDF uncertainty bands

are computed as the 90% confidence level intervals, with the

central value being taken as the midpoint of the correspond-

ing range. The confidence levels presented here follow that
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Fig. 14 Same as Fig. 13 but for the Q2-dependent structure function ratio FSn
2 /FC

2 provided by the NMC experiment
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Fig. 15 Same as Fig. 13 but for the data provided by the BCDMS, FNAL E665, and SLAC-E139 experiments
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Fig. 16 The nNNPDF1.0 NLO

set as a function of x at the input

scale Q0 = 1 GeV for different

values of A. We show the

central value for the gluon g

(solid blue line) and the quark

combination � + T8/4 (solid

red line) for A = 1 (isoscalar

nucleon), A = 4 (He), A = 12

(C), A = 64 (C), A = 119 (Sn),

and A = 208 Pb. The

corresponding uncertainties

(shaded bands) correspond to

the 90% confidence level

intervals. In the case of A = 1

we also show the central value

of the baseline free-nucleon

PDF set, NNPDF3.1 (black

dotted line), and its uncertainties

(black dashed lines)
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of previous NNPDF studies [49] and are computed in the

following way. For a given x , Q, and A, we have Nrep values

of a particular nPDF flavor f (k)(x, Q, A). The replicas are

then ordered such that

f1 ≤ f2 ≤ · · · ≤ fNrep−1 ≤ fNrep . (5.2)

Finally, we remove symmetrically (100−X)% of the replicas

with the highest and lowest values. The resulting interval

defines the X% confidence level for the nPDF f (x, Q, A)

for a given value of x , Q, and A. In other words, a 90%

CL interval (corresponding to a 2-σ interval for a Gaussian

distribution) is obtained by keeping the central 90% replicas,

leading to

[

f0.05 Nrep , f0.95 Nrep

]

. (5.3)

The rationale for estimating the nPDF uncertainties as

90% CL intervals, as opposed to the standard deviation, is

that it turns out that the nNNPDF1.0 probability distribution

is not well described by a Gaussian, in particular when ratios

between different nuclei A are taken. Therefore, the variance

σ 2 may not be the best estimator for the level of fluctuations in

the distribution. While deviations from the Gaussian approx-

imation in the proton case are moderate, there are several

reasons why the nPDFs may behave differently. First of all,

there is a limited amount of experimental information, espe-

cially for the gluon. Secondly, imposing the A = 1 boundary

condition skews the A dependence of the distribution. Lastly,

even if the resulting nPDFs do follow a Gaussian distribu-

tion, in general their ratio between different values of A will

not. Therefore, in Fig. 16, and in the remaining figures of this

analysis, the uncertainties will be presented as the 90% CL

defined above.

We also show in Fig. 16 the results of the baseline free-

nucleon PDF set, NNPDF3.1, compared to the nuclear par-

ton distributions evaluated at A = 1. As can be observed,

there is an excellent match between both the central val-

ues and the PDF uncertainties of nNNPDF1.0 and those of

NNPDF3.1 in the region of x where the boundary condition is

imposed, 10−3 ≤ x ≤ 0.7. This agreement demonstrates that

the quadratic penalty in Eq. (3.9) is sufficient to achieve its

intended goals. In Sect. 5.3 we will discuss the importance of

implementing such a constraint, particularly for light nuclei.

From Fig. 16, we can also see that the PDF uncertainties

increase as we move towards larger values of A, in particular
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Fig. 17 Ratios of the

nNNDPDF1.0 NLO

distributions normalized to the

A = 1 result. The central values

(solid lines) and uncertainties

(shaded bands) for the quark

combination � + 1
4

T8 (top

panels) and gluon (bottom

pannels) are shown at Q2 = 10

GeV2 for 4He (red), 64Cu

(blue), and 208Pb (green) nuclei
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for the gluon nPDF. Recall that the latter is only constrained

indirectly from inclusive DIS data via DGLAP evolution

effects. On the other hand, the quark combination � + T8/4

turns out to be reasonably well constrained for x ∼> 10−2,

since this is the combination directly related to the nuclear

structure function F2(x, Q2, A). For both the gluon and the

quark nuclear distributions, the PDF uncertainties diverge

in the small-x extrapolation region, the beginning of which

varies with A. For example, the extrapolation region for the

quarks in Sn (A = 119) is found to be x ∼< 5 × 10−3, while

for the gluon PDF uncertainties become very large already

for x ∼< 5 × 10−2.

Next, we illustrate in Fig. 17 the nNNPDF1.0 PDFs nor-

malized by the A = 1 distributions. Here the results for He

(A = 4), Cu (A = 64), and Pb (A = 208) nuclei are shown

for Q2 = 10 GeV2. With this comparison, we can assess

whether the different nuclear effects introduced previously

are visible at the nPDF level, since Eq. (3.2) is analagous to

the structure function ratios displayed in Figs. 13, 14 and 15.

When evaluating ratios of nPDFs between different val-

ues of A, it is important to account for the correlations

between the numerator and denominator. These correlations

stem from the fact that nPDFs at two values of A are related

by the common underlying parameterization, Eq. (3.2), and

therefore are not independent. This can be achieved by com-

puting the ratio R f for each of the Nrep Monte Carlo replicas

of the fit

R
(k)
f =

f (N/A)(k)(x, Q2, A)

f (N )(k)(x, Q2)
(5.4)

and then evaluating the 90% CL interval following the pro-

cedure that leads to Eq. (5.3). Note that a rather different

result from that of Eq. (5.4) would be obtained if either the

correlations between different A values were ignored (and

thus the PDF uncertainties in numerator and denominator of

Eq. (5.1) are added in quadrature) or if the uncertainties asso-

ciated to the A = 1 denominator were not considered. Also,

as discussed above, the 90% CL interval for Eq. (5.4) will in

general be quite different compared to the range defined by

the 2-σ deviation.

From Fig. 17, we can see that for the relevant quark com-

bination � + T8/4 in A = 64 and A = 208 nuclei, it pos-

sible to identify the same three types of nuclear effects that

were present at the structure function level. In particular, the

anti-shadowing and EMC effects are most evident, where the

deviation from unity is outside the 90% CL range. Moreover,

shadowing behavior appears briefly in the region x ≃ 0.01,

particularly for copper nuclei, before the uncertainties grow

quickly in the extrapolation region. On the other hand, the

nuclear effects appear to be negligible for all x in helium

nuclei within the present uncertainties.

The situation is much worse for the nuclear gluons, where

the ratio R f = f (N/A)/ f N is consistent with one within

the uncertainties for all values of x . This indicates that using

only neutral-current DIS nuclear structure functions, there

is limited information that one can extract about the nuclear

modifications of the gluon PDF. Here we find no evidence

for gluon shadowing, and the ratio R f is consistent with

one for x ∼< 0.1. The only glimpse of a non-trivial nuclear

modification of the gluon nPDF is found for Cu (A = 64),

where between x ≃ 0.1 and x ≃ 0.3 there appears to be an

enhancement reminiscent of the anti-shadowing effect.

The comparisons of Fig. 17 demonstrate that, without

additional experimental input, we are rather far from being
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Fig. 18 Same as Fig. 17, but

now for the dependence of the

nuclear modifications of 64Cu

on the momentum transfer Q2.

The ratios are given for Q2 = 1

GeV2 (red), 10 GeV2 (blue),

and 100 GeV2 (green)
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able to probe in detail the nuclear modifications of the quark

and gluon PDFs, particularly for the latter case. We will high-

light in Sect. 6 how the present situation would be dramati-

cally improved with an Electron Ion Collider, allowing us to

pin down nuclear PDFs in a wider kinematic range and with

much better precision.

The scale dependence of the nuclear modifications. In

Fig. 18, we show a similar comparison as that of Fig. 17,

but now for the Q2 dependence of the nuclear modifica-

tions in 64Cu. More specifically, we compare the results of

nNNPDF1.0, normalized as before to the A = 1 distribution,

for Q2 = 2 GeV2, 10 GeV2, and 100 GeV2. We can observe

in this case how nPDF uncertainties are reduced when the

value of Q2 is increased. This effect is particularly dramatic

for the gluon in the small-x region, but is also visible for

the quark distributions. This feature is a direct consequence

of the structure of DGLAP evolution, where at small x and

large Q2 the results tend to become insensitive of the spe-

cific boundary condition at low scales as a result of double

asymptotic scaling [99].

It is important to point out that, by the same token, the sen-

sitivity to nuclear modifications is also reduced when going

from low to high Q2 in the small-x region. Indeed, we can

see from Fig. 18 that the ratios R f move closer to one at

small x as Q is increased. However, this is not the case for

medium and large x , where DGLAP evolution effects are

milder. Therefore, nuclear effects in this region can be acces-

sible using probes both at low and high momentum transfers.

The comparisons in Fig. 18 highlight that the best sensitivity

for nuclear modifications present in the small-x region arises

from low-scale observables, while for medium and large-x

modifications there is also good sensitivity at high scales.

Comparison with EPPS16 and nCTEQ15. We now turn

to compare the nNNPDF1.0 nuclear PDFs with other recent

analyses. Here we restrict our comparison to the EPPS16 and

nCTEQ15 fits, given that they are the only recent nPDF sets

available in LHAPDF. In Fig. 19, we display the nNNPDF1.0

NLO distributions together with EPPS16 and nCTEQ15 at

Q2 = 10 GeV2 for three different nuclei: 12C, 64Cu, and
208Pb. The three nPDF sets have all been normalized to the

central value of their respective proton PDF baseline to facil-

itate the comparison. For the nNNPDF1.0 results, the uncer-

tainties are computed as before but without including the

correlations with the A = 1 distribution. Lastly, the PDF

uncertainties for EPPS16 and nCTEQ15 correspond to the

90% CL ranges computed using the standard Hessian pre-

scription.

From this comparison, there are a number of interesting

similarities and differences between the three nPDF fits. First

of all, the three nuclear regimes sketched in Fig. 12, namely

shadowing, anti-shadowing, and the EMC effect, are visible

between the three sets for the quark combination � + T8/4.

Interestingly, in the data region the PDF uncertainties for this

quark combination are similar between the different analyses.

Much larger differences are found in the small-x and large-x

extrapolation regions, particularly for nCTEQ15, where the

uncertainties are smaller. Note that the different approaches

for uncertainty estimation have noticeable physical conse-

quences. For instance, it would appear that there is rather

strong evidence for quark shadowing down to x ≃ 10−4

for the nCTEQ15 result, while for nNNPDF1.0, the nuclear

modifications are consistent with zero within uncertainties

for x ∼< 10−2.
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Fig. 19 Comparison between

the nNNPDF1.0, EPPS16 and

nCTEQ15 fits at NLO for

Q2 = 10 GeV2. The quark

combination � + 1
4

T8 (left

panels) and gluon (right panels)

are normalized to the central

value of each group’s proton

PDF baseline, and are shown for
12C (top panels), 64Cu (middle

panels), and 208Pb (bottom

panels) nuclei. The uncertainties

(shaded bands) correspond to

the 90% CL ranges computed

with the corresponding

prescription for each fit
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Concerning the nuclear modifications of the gluon PDF,

here we can percieve large differences at the level of PDF

errors, with nCTEQ15 exhibiting the smallest uncertainties

and nNNPDF1.0 the largest. While nCTEQ15 indicates some

evidence of small-x gluon shadowing, this evidence is absent

from both nNNPDF1.0 and EPPS16. Moreover, the three sets

find some preference for a mild enhancement of the gluon

at large x , but the PDF uncertainties prevent making any

definite statement. Overall, the various analyses agree well

within the large uncertainties for x ∼> 0.3.

While it is beyond the scope of this paper to pin down

the origin of the differences between the three nPDF anal-

yses, one known reason is the choice of nPDF parameter-

ization together with the method of imposing the A → 1

boundary condition. Recall that in nNNPDF1.0 we adopt

a model-independent parameterization based on neural net-

works, Eq. (3.2), with the boundary condition imposed at the

optimization level in Eq. (3.9). In the EPPS16 analysis, the

bound nucleus PDFs are instead defined relative to a free

nucleon baseline (CT14) as

f
(N/A)

i (x, Q2, A) = R A
i (x, Q2) f

(N )
i (x, Q2), (5.5)

where the nuclear modification factors are parameterized at

the input evolution scale R A
i (x, Q2

0) with piece-wise poly-

nomials that hard-wire some of the theoretical expectations

shown in Fig. 12. In this approach, the information con-

tained in PDF uncertainties of the free nucleon baseline is

not exploited to constrain the nPDFs.

In the nCTEQ15 analysis, the nuclear PDFs are parame-

terized by a polynomial functional form given by

f
p/A

i (x, Q2, A) = c0 xc1 (1 − x)c2 ec3 x (1 + ec4 x)c5 , (5.6)

where the coefficients ck(A) encode all the A dependence.

During the fit, these coefficients are constrained in a way

that for A = 1 they reproduce the central value of the

the CTEQ6.1-like fit of Ref. [100]. Note here that in the

nCTEQ15 fit the baseline proton set does not include the

experimental measurements that have become available in

the last decade, in particular the information provided by the

high-precision LHC data and the HERA combined structure

functions. Moreover, as in the case of EPPS16, the informa-

tion about the PDF uncertainties in the free-nucleon case is

not exploited to constrain the nPDF errors.
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Fig. 20 Same as Fig. 17, but

now comparing the results of the

nNNPDF1.0 fits between NLO

and NNLO
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While these methodological choices are likely to explain

the bulk of the differences between the three analyses, a more

detailed assessment could only be obtained following a care-

ful benchmarking exercise along the lines of those performed

for the proton PDFs [101–104].

Perturbative stability. To conclude the discussion of the

main properties of the nNNPDF1.0 fits, in Fig. 20 we com-

pare the NLO and NNLO nuclear ratios R f for the same

three nuclei as in Fig. 19. The ratios are constructed using

the A = 1 distributions from their respective perturbative

order PDF set using Nrep = 200 replicas. In terms of central

values, we can see that the NLO and NNLO fit results are

consistent within the 90% CL uncertainty band. The regions

where the differences between the two perturbative orders are

the largest turn out to be the small- and large-x extrapolation

regions, in particular as A is increased.

Another difference between the NLO and NNLO

nNNPDF1.0 fits concerns the size of the PDF uncertainty

band. We find that for the gluon nPDF, the NNLO fit leads to

a slight decrease in uncertainties, perhaps due to the improved

overall fit consistency when higher-order theoretical calcula-

tions are used. This effect is more distinct for the gluon dis-

tribution of A = 64 and A = 208 nuclei, while it is mostly

absent for A = 12. The apparent reduction of uncertainties,

together with marginally better χ2 values (see Table 5), sug-

gests that the NNLO fit is only slightly preferred over the

NLO one. That said, the difference is unlikely to have signif-

icant phenomenological implications given the current level

of uncertainties.

5.3 Methodological studies

We conclude the discussion of the nNNPDF1.0 results by

presenting some further studies that demonstrate the robust-

ness of our fitting methodology, complementing those based

on the closure tests discussed in Sect. 4. In particular, in the

following we discuss the stability of our results with respect

to variations of the neural network architecture and the role

of the A = 1 boundary condition in constraining the nPDF

uncertainties. For all results presented in this section, we use

Nrep = 200 Monte Carlo replicas.

Stability with respect to the network architecture. As

explained in Sect. 3.1, the nNNPDF1.0 fits are based on a sin-

gle neural network with the 3–25–3 architecture represented
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Fig. 21 Dependence of the

nNNPDF1.0 results at the input

scale Q0 = 1 GeV with respect

to the choice of neural network

architecture. We compare the

baseline results obtained with a

3–25–3 architecture (solid red

line and shaded band), with the

corresponding ones using a

3-50-3 architecture (solid blue

line and shaded band) for 12C

(top panels) and 208Pb (bottom

panels) nuclei
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in Fig. 4. This architecture is characterized by Npar = 178

free parameters, without counting the preprocessing expo-

nents. We have verified that this choice of network archi-

tecture is redundant given our input dataset, namely that the

nNNPDF1.0 results are stable if neurons are either added

or removed from the hidden layer of the network. To illus-

trate this redundancy, here we compare fit results using the

standard 3–25–3 architecture with that using twice as many

neurons in the hidden layer, 3-50-3. The latter configuration

is characterized by Npar = 353 free parameters, which is

enlarged by a factor two compared to the baseline fits.

In Fig. 21 the nNNPDF1.0 results at the input scale

Q0 = 1 GeV for 12C and 208Pb nuclei are shown with the two

different architectures, 3–25–3 (baseline) and 3–50–3. We

find that differences are very small and consistent with statis-

tical fluctuations. Given that now there are twice as many free

parameters as in the baseline settings, this stability demon-

strates that our results are driven by the input experimental

data and not by methodological choices such as the specific

network architecture. Furthermore, we have also verified that

the outcome of the fits is similarly unchanged if a network

architecture with a comparable number of parameters but two

hidden layers is used.

The role of the A = 1 boundary condition. Imposing the

A = 1 boundary condition Eq. (3.8) leads to important con-

straints on both the central values and the uncertainties of

nNNPDF1.0 fit, particularly for low values of the atomic

mass number A. Here we want to quantify this impact by

comparing the baseline nNNPDF1.0 results with those of

the corresponding fit where this boundary condition has not

been imposed. This can be achieved by performing the fits

with the hyper-parameter λ = 0 in Eq. (3.9). Note that in

this case the behavior of the fitted at nPDFs for A = 1 is

unconstrained, since only experimental data with A ≥ 2 is

included in the fit.

In Fig. 22, we show a comparison between the nNNPDF1.0

baseline, which imposes NNPDF3.1 as the A = 1 boundary

condition between x = 10−3 and x = 0.7, in addition to

a resulting fit where this boundary condition is not imple-

mented. Moreover, we display the gluon and the � + T8/4

quark combination at Q2 = 2 GeV2 for A = 4, 12, and

64. This comparison demonstrates a significant impact on

nNNPDF1.0 resulting from the A = 1 constraint, especially

for helium and carbon nuclei where the PDF uncertainties

are increased dramatically if no boundary condition is used.

The impact is more distinct for the gluon, where even for

relatively heavy nuclei such as 64Cu the boundary condition

leads to a reduction of the nPDF uncertainties by up to a fac-

tor two. We can thus conclude that imposing consistently the

A = 1 limit using a state-of-the-art proton fit is an essential

ingredient of any nPDF analysis.

While the baseline nNNPDF1.0 fits only constrain the

A = 1 distribution between x = 10−3 and x = 0.7, one

in principle could extend the coverage of the boundary con-

dition down to smaller values of x provided a reliable proton

PDF baseline is used. Indeed, it is possible to demonstrate that

we can impose the constraint down to much smaller values

of x , e.g. x = 10−5. For this purpose, we perform a fit using

instead for the boundary condition the NNPDF3.0+LHCb

NLO sets constructed in Refs. [89,90]. More specifically we

use the set based on the N5, N7, and N13 normalized distri-

butions of D meson production in the forward region at 5,
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Fig. 22 Comparison of the

nNNPDF1.0 fits for different

choices of the A = 1 boundary

condition (BC). The baseline

result, which imposes

NNPDF3.1 as boundary

condition between x = 10−3

and x = 0.7 (blue), are shown

together with two fit variants,

one produced using the

NNPDF3.0+LHCb set as

boundary condition down to

x = 10−5 (green), and another

without the boundary condition

by setting λ = 0 in Eq. (3.9)

(red). The central values (solid

lines) and uncertainties (shaded

bands) are given for the quark

combination � + 1
4

T8 (left

panels) and gluon (right panels)

at Q2 = 2 GeV2 for A = 4 (top

panels), A = 12 (middle panels)

and A = 64 (bottom panels)
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7, and 13 TeV. The reason is that these sets exhibit reduced

quark and gluon PDF uncertainties down to x ≃ 10−6, and

therefore are suitable to constrain the small-x nPDF uncer-

tainties.

The comparison between the baseline nNNPDF1.0 fit and

its LHCb variant is shown in Fig. 22. We now find a fur-

ther reduction of the nPDF uncertainties at small-x , again

more notably for light nuclei. In this case, the reduction of

uncertainties is more distinct for the quarks, which benefit

from the very accurate determination of the proton’s quark

sea at small-x in NNPDF3.0+LHCb. Note that, in turn, the

improved nPDF errors at small-x might lead to increased sen-

sitivity to effects such as shadowing and evidence for non-

linear evolution corrections.

6 Nuclear PDFs at the electron-ion collider

As illustrated by Fig. 1, the kinematic reach in x is rather lim-

ited for the available lepton-nucleus deep-inelastic scattering

data. As a consequence, nPDF analyses based on these mea-

surements will exhibit large uncertainties for x ∼< 0.01, as

was shown in Sect. 5. However, the coverage at small x and

large Q2 can be improved with measurements in proton-ion

scattering, in particular from the p+Pb collisions provided

by the LHC. There, small-x gluon shadowing can be studied

with D meson production [105] and direct photon produc-

tion [106,107] in the forward region. Furthermore, quark-

flavor separation at Q ≃ MW can be disentangled using the

rapidity distributions in W and Z production [31]. On the

other hand, access to these extended kinematic regions is

desirable also with lepton-nucleus scattering, since leptons

represent significantly cleaner probes in scattering processes,

as was extensively demonstrated by the HERA collider [108].

Such a machine would be realized by an Electron-Ion Col-

lider (EIC) [109,110], currently under active discussion in

the U.S. The EIC would collide electrons with protons and

nuclei using a range of different beam energy configurations

and nucleon species, pinning down nuclear modifications

of the free-nucleon PDFs down to x ≃ 5 × 10−4. Such a

machine would therefore significantly improve our under-

standing of the strong interaction in the nuclear medium, in

a similar way as it would with the spin structure of the nucle-

ons [111–113]. Another option in discussion is the Large
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Table 6 The different scenarios for the EIC pseudo-data considered

here. For each scenario, we indicate the atomic mass number A, the

electron energy Ee, the nucleus (per nucleon) energy E A/A, the maxi-

mum value of Q2 and the minimum value of x reached, and the number

of pseudo-data points Ndat . The upper part of the table corresponds to

the “low energy” scenario (with Ee = 5 GeV) while the lower one to

the “high energy” scenario (with Ee = 20 GeV)

Scenario A Ee E A/A Q2
max xmin Ndat

eRHIC_5x50C 12 5 GeV 50 GeV 440 GeV2 0.003 50

eRHIC_5x75C 12 5 GeV 75 GeV 440 GeV2 0.002 57

eRHIC_5x100C 12 5 GeV 100 GeV 780 GeV2 0.001 64

eRHIC_5x50Au 197 5 GeV 50 GeV 440 GeV2 0.003 50

eRHIC_5x75Au 197 5 GeV 75 GeV 440 GeV2 0.002 57

eRHIC_5x100Au 197 5 GeV 100 GeV 780 GeV2 0.001 64

eRHIC_20x50C 12 20 GeV 50 GeV 780 GeV2 0.0008 75

eRHIC_20x75C 12 20 GeV 75 GeV 780 GeV2 0.0005 79

eRHIC_20x100C 12 20 GeV 100 GeV 780 GeV2 0.0003 82

eRHIC_20x50Au 197 20 GeV 50 GeV 780 GeV2 0.0008 75

eRHIC_20x75Au 197 20 GeV 75 GeV 780 GeV2 0.0005 79

eRHIC_20x100Au 197 20 GeV 100 GeV 780 GeV2 0.0003 82

Hadron electron Collider (LHeC) [114], which would oper-

ate concurrently with the High-Luminosity LHC and would

further extend the low-x coverage of lepton-nucleus reac-

tions down to x ≃ 10−6. Both options for future high-energy

lepton-nucleus colliders have demonstrated their potential to

constrain the nuclear PDFs [13,115,116].

In this section, we quantify the constraints that future EIC

measurements of inclusive nuclear structure functions would

impose on the nNNPDF1.0 nuclear PDFs. To achieve this, we

generate EIC pseudo-data following Ref. [13], where it was

subsequently interpreted in the framework of the EPPS16

analysis of nPDFs. The projections used here are constructed

instead with the central value of the nNNPDF1.0 NLO set for

different scenarios of the lepton and nucleon beam energies,

which are then added to the input data of this analysis listed

in Table 1.

The simulated EIC pseudo-data from Ref. [13] is available

for both carbon (A = 12 and Z = 6) and gold (A = 197

and Z = 79) nuclei. We assume that the latter would be cor-

rected for non-isoscalarity effects, and therefore treat gold as

an isoscalar nucleus with A = 197 (see also Sect. 2). The

nuclear structure functions for carbon and gold nuclei are

then normalized by the deuteron structure functions follow-

ing Eq. (2.5).

The different scenarios for the lepton and nucleon beam

energies of the EIC pseudo-data that are considered here are

listed in Table 6. As in Ref. [13], we denote the “low energy”

EIC scenario the one that consists of measurements taken

with electron beams with energy Ee = 5 GeV, whereas the

“high energy” EIC scenario corresponds to measurements

taken with Ee = 20 GeV electrons. We also indicate in

Table 6 the atomic mass number A, the nucleus (per nucleon)
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Fig. 23 Same as Fig. 1, but now including also the kinematic cover-

age of the EIC pseudo-data used in this study and listed in Table 6.

We indicate the coverage of the “high-energy” and “low-energy” EIC

scenarios, corresponding to electron energies Ee = 20 GeV and 5 GeV,

respectively

E A/A energy, the maximum and minimum values of Q2 and

x of the pseudo-data, respectively, and the number of pseudo-

data points Ndat. Here we restrict ourselves again to the inclu-

sive structure functions and do not include EIC pseudo-data

on charm structure functions.

In Fig. 23, we display the kinematic coverage of the EIC

pseudo-data compared to the existing lepton-nucleus scatter-

ing measurements. Here we can see that the EIC would signif-

icantly extend the sensitivity to nPDFs both in the small-x and

in the large-Q2 regions. This is particularly marked for the

higher energy scenario with Ee = 20 GeV and E A/A = 100

GeV, where the kinematic coverage at small x in the pertur-
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Fig. 24 Comparison between

the nNNPDF1.0 NLO fit (solid

red line and shaded band) and

the fits where “low energy”

(solid blue line and shaded

band) and “high energy” (solid

green line and shaded band) EIC

pseudo-data have been added.

The the quark combination

� + 1
4

T8 (left panels) and gluon

(right panels) ratios with respect

to the corresponding A = 1

distribution are shown at

Q2 = 10 GeV2 for 12C (top

panels) and 197Au (bottom

panels) nuclei
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bative region Q ∼> 1 GeV would be increased by a factor

20.

In this exercise, we assume that the “true” central value of

the EIC pseudo-data is the central value of the nNNPDF1.0

NLO fit, which is then fluctuated according to the correspond-

ing experimental uncertainties. Given that we also use NLO

QCD theory for the fits including EIC data, by construction

the resulting fits are expected to have χ2
EIC/Ndat ≃ 1. Con-

cerning the projected experimental uncertainties for the EIC

pseudo-data, we assume the same total relative uncertainty

as in Ref. [115], which is taken to be uncorrelated among dif-

ferent bins. Moreover, each of the scenarios listed in Table 6

are assumed to have a δL = 1.98% normalization uncer-

tainty, not included in the total uncertainty mentioned above.

This normalization error is taken to be fully correlated among

each scenario but uncorrelated among the different scenarios.

Note that the different nucleus energies in Table 6 are statis-

tically independent, so they can be added simultaneously to

the same nPDF fit without any double counting.

The results of the fits are given in Fig. 24, where a compar-

ison between the nNNPDF1.0 NLO fit and the correspond-

ing fit including the different EIC pseudo-dataset scenarios

is shown. We show results at Q2 = 10 GeV2 for 12C and
197Au, the two nuclei for which pseudo-data is available.

Since by construction the central values of the nNNPDF1.0

and nNNPDF1.0+EIC fits will coincide, the most pertinent

information is the relative reduction of the nPDF uncertain-

ties. In all cases, we have verified that χ2
EIC/Ndat ≃ 1 is

obtained.

From the comparisons in Fig. 24, one finds that the EIC

measurements would lead to a significant reduction in the

PDF uncertainties both for the gluon and for the � + T8/4

quark combination. The effect is especially visible for gold

(A = 197), given that the constraint from the proton bound-

ary condition is much smaller there than for a lighter nuclei

such as carbon (A = 12). Here, the improvement can be up

to an order of magnitude for x ≃ 10−3 as compared to the

current situation. Therefore it is clear that such improvement

will allow the EIC to carefully study important dynamics

such as the quark and gluon shadowing in addition to the

possible onset of saturation effects down to x ≃ 5 × 10−4.

From Fig. 24 we can also observe that the “high energy”

scenario would constrain the nPDFs down to smaller values

of x better than the “low energy” one, again more notably

for heavier nuclei such as gold. For instance, the uncertainty

for the gluon distribution in the region x ≃ 5 × 10−4 would

be around three times larger in the lower energy case com-

pared to the higher scenario. Given that saturation effects are

expected to scale by ∼ A1/3, these results demonstrate that

the “high energy” scenario would provide a rather sharper

probe of small-x QCD dynamics that the lower energy option.

7 Summary and outlook

In this work, we have presented a first determination of the

parton distribution functions of nucleons bound within nuclei

using the NNPDF methodology. Using as experimental input

all available measurements on neutral-current deep-inelastic

nuclear structure functions, we have determined the nuclear

gluon g, the quark singlet �, and the quark octet T8 for a

range of atomic mass numbers from A = 2 to A = 208. We
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find an excellent overall agreement with the fitted experimen-

tal data, with stable results with respect to the order of the

perturbative QCD calculations. While the quark distributions

are reasonably well constrained for x ∼> 10−2, the nuclear

gluon PDFs are affected by large uncertainties, in particular

for heavy nuclei.

From the methodological point of view, the main improve-

ment with respect to previous NNPDF fits has been the

implementation of TensorFlow to perform stochastic gra-

dient descent with reverse-mode automatic differentiation.

The application of SGD for the χ2 minimization has lead

to a marked performance improvement as compared to the

evolutionary-type algorithms used so far in NNPDF. Two

other related developments in this study have been the use

of a single neutral network to parameterize the nPDFs rather

than multiple networks, and the fitting of the preprocessing

exponents rather than their determination from an iterative

procedure.

As opposed to other nPDF analyses, the nNNPDF1.0 set is

determined with the boundary condition imposed at the mini-

mization level so that the baseline proton PDFs (NNPDF3.1)

are reproduced both in terms of their central values and, more

importantly, their uncertainties. Moreover, we have applied

this constraint in a fully consistent way, since the proton

PDF baseline has been determined using the same fitting

methodology and theoretical settings. We have shown that

this A = 1 constraint results in a significant reduction of the

nPDF uncertainties, especially for low-A nuclei, and there-

fore represents a vital ingredient for any nPDF analysis.

By using nNNPDF1.0 as a baseline, we have also quan-

tified the impact of future e+A measurements from an

Electron-Ion Collider by exploiting the projections gener-

ated in Ref. [13]. We have demonstrated that the EIC mea-

surements of inclusive nuclear structure functions would

constrain the quark and gluon nuclear PDFs down to x ≃
5 × 10−4, opening a new window to study the nuclear modi-

fication of the proton substructure in the small-x region. With

future EIC measurements, it will therefore be possible to con-

struct a reliable nPDF set based on collinear factorization that

can identify and isolate the onset of novel QCD regimes such

as non-linear evolution effects or small-x resummation.

The main limitations of the present work are the lack of

a reliable separation between the quark flavors, which is not

possible from neutral-current DIS measurements alone, as

well as the large uncertainties that affect the nuclear gluon

PDFs. This implies that the possible phenomenological appli-

cations of nNNPDF1.0 are restricted to processes that do

not require a complete quark flavor separation, such as the

analysis of EIC structure functions in Sect. 6, or D meson

production in p+Pb collisions [105]. To bypass these lim-

itations, we plan to extend the present nPDF analysis to a

global dataset including neutrino-induced charged-current

deep-inelastic structure functions as well as inclusive jets

and dijets, photons, electroweak boson production, and heavy

quark production from proton-ion collisions from RHIC and

the LHC.

The results of this work, namely the nNNPDF1.0 NLO and

NNLO sets for different values of A, are available via the

LHAPDF library [117], and have also been linked to the

NNPDF website:

http://nnpdf.mi.infn.it/for-users/nuclear-pdf-sets/

These LHAPDF grid files contains Nrep = 250 replicas each,

which are fully correlated between different values of A as

discussed in Sect. 5.

Moreover, due to the lack of a complete quark flavour

separation, additional assumptions might be required when

the nNNPDF1.0 sets are used, in particular for phenomeno-

logical applications in heavy-ion collisions. To comply with

the LHAPDF format, we have assumed that u = d and that

ū = d̄ = s̄ = s, namely a symmetric quark sea. With this

convention, the only meaningfully constrained quark combi-

nations can be reconstructed using the flavour basis PDFs by

means of � = 2 u + 4 ū and T8 = 2(u − ū).
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