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ABSTRACT

The mammalian nucleus has considerable control
over nascent transcripts. The basic mechanisms of
post-transcriptional processing are well understood
and recently some of the principles underlying the
regulation of nuclear processing events have been
elucidated. Here we review the recent progress in
identification of signalling pathways that modulate

the action of key RNA-binding proteins which
regulate splicing, and the mechanisms of action of
the C-terminal domain of RNA polymerase II that
co-ordinate transcription with nuclear mRNA
processing events.
Journal of Molecular Endocrinology (2001) 27, 123–131

INTRODUCTION

The human genome contains about 40 000 genes
(International Human Genome Sequencing
Consortium 2001, Venter et al. 2001). This is a
relatively small number of genes considering the
complexity of humans: for example, Saccharomyces
cerevisiae and Caenorhabditis elegans genomes have
6000 (Goffeau et al. 1996) and 19 000 (C. elegans
Sequencing Consortium 1998) genes respectively.
The substantially increased human biological
repertoire is provided by interactions between genes
(epistasis), regulation of transcriptional programmes
and control of post-transcriptional processing. This
review will consider post-transcriptional events in
the nucleus. Once a pre-messenger RNA (pre-
mRNA) has been produced by transcription,
substantial changes must occur before the mRNA is
ready for export from the nucleus to the translation
machinery. In addition, the kinetics of post-
transcriptional processing must be co-ordinated
with transcription in order to ensure efficient gene
expression. Furthermore, variation in post-
transcriptional processing provides substantial
mRNA and protein diversity, with multiple iso-
forms generated from single genes. For example,
the single human insulin-like growth factor-I
(IGF-I) gene has three alternatively spliced iso-
forms (Jansen et al. 1983, Rotwein 1986, Chew et al.
1995), and since there are two promoters each

expressing alternative signal peptides (Tobin et al.
1990), six peptide variants are made. Of the post-
transcriptional events, splicing and polyadenylation
are the major processes generating diversity, with
alternative splicing being quantitatively more im-
portant than alternative polyadenylation (Claverie
2001). Regulation of mRNA stability and export
contributes to the expression levels of a gene (Staton
et al. 2000), but these processes have less influence
on mRNA and protein heterogeneity. RNA editing
is another nuclear process that generates protein
diversity and this has been comprehensively
reviewed elsewhere (Smith et al. 1997a, Holland
et al. 1999). This review focuses on the regulation of
pre-mRNA splicing and polyadenylation.

SPLICING

As organisms become more complex, the proportion
of genes containing introns rises. Although fewer
than 5% of S. cerevisiae genes contain introns, about
26% of expressed transcripts are derived from these
genes (Ares et al. 1999). Thus, the presence of
splicing confers an expression advantage. In
humans, most genes contain introns. Furthermore,
up to 60% of genes are alternatively spliced
(International Human Genome Sequencing Con-
sortium 2001, Kan et al. 2001). This generates
substantial protein diversity (Black 2000).
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The basic mechanisms of intron removal are well
understood (Staley & Guthrie 1998, Reed &
Oalandjian 2000). The intron is cleaved from the
exons at the 5� and 3� ends, called the splice sites.
The 5� splice site consists of a short intronic
sequence that loosely fits a consensus of GURAGU
(G, guanine; U, uracil; A, adenine; and R, purine).
The 3� splice site consists of three elements: a
branchsite (consensus YNYURAY, where Y is a
pyrimidine); a stretch of pyrimidines (the poly-
pyrimidine tract); and, finally the sequence CAG or
UAG. These sequence elements must be recognised
by the spliceosome, a multi-unit complex of
proteins and RNA. The RNA components are small
nuclear RNAs, U1, U2, U4, U5 and U6, assembled
into ribonucleoprotein particles (snRNPs). Initially,
the 5� splice site of major introns is bound by U1
snRNP via Watson–Crick base-pairing (Fig. 1). A
stepwise assembly of the spliceosome then occurs
around the splice sites. The polypyrimidine tract of

the 3� splice site is bound by U2 snRNP and the
U4/U6.U5 snRNPs are recruited. Correct selection
of the splice sites is vital for gene expression, and
regulating the use of different possible splice sites
is fundamental to alternative splicing. Although
necessary for splicing, the interaction between the
U1 snRNP and the 5� splice site is insufficient to
account for the fidelity and flexibility of splicing
because many sequences that match the 5� splice site
consensus are present in introns and exons and are
bound by U1 snRNP, but are never used (Eperon
et al. 1993, Sun & Chasin 2000). The main method
of selecting the correct splice sites involves the
co-ordinate recognition of nearby 3� and 5� splice
sites, usually across an exon (called exon definition).
The problem arises in explaining why other splice
site-like sequences are not used for splicing even
if they bind U1 and lie close to the sites that are
used. This problem is usually explained by the
surrounding sequence context (i.e. regulatory
elements), which modulates the recruitment of the
spliceosome.

Major advances in understanding regulated
alternative splicing have come with the identifi-
cation of some sequence elements involved in
promoting exon selection (enhancers) or repressing
splicing (silencers). The factors functioning through
several regulatory sequences have been isolated.
Many important non-snRNP proteins are involved
in spliceosome assembly and function. A number of
these also regulate splice site selection, in particular,
a family of splicing factors characterised by
RNA-recognition motifs and domains containing
serine and arginine (SR) repeats, the SR proteins
(Graveley 2000). SR proteins are required for
general or constitutive splicing and are crucial
mediators of regulated alternative splicing. Thus,
members of the SR protein family bind and
function at vertebrate exonic enhancers (Lavigueur
et al. 1993, Sun et al. 1993, Ramchatesingh et al.
1995, Gontarek & Derse 1996, Du et al. 1997,
Selvakumar & Helfman 1999). Consensus exonic
sequence motifs for several SR proteins have been
derived experimentally (Liu et al. 1998, 2000,
Schaal & Maniatis 1999) and are useful in
predicting function (Liu et al. 2001).

Hormonal activation of signalling pathways can
lead to modulation of the action of splicing factors
and subsequent alteration in splice site choice.
Several endocrine genes are subject to hormonally
regulated alternative splicing (Chew 1997, Webster
& Huang 1999) (Table 1), although these have only
been partially characterised. A well-studied model
is the splicing of three alternative exons of the
fibronectin pre-mRNA (Magnuson et al. 1991,
Inoue et al. 1999), where regulation reflects a

 1. Basic mechanisms of splice site selection and
spliceosome assembly. The 5� and 3� splice sites and the
branchsite are indicted by arrows and the exons are
shown as boxes. The intron is shown as a line. The bold
line in the intron, between the branchsite and the 3�
splice site, represents the polypyrimidine tract. The
stepwise assembly of the spliceosome complexes, early
(E), and subsequent (A and B), is shown. Note that only
the U1, U2 and U4/U6.U5 snRNPs are depicted and
the many non-snRNP proteins are omitted for clarity.
g, guanine; u, uracil; a, adenine.
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balance of splicing factors binding to several
enhancers and silencers (Lavigueur et al. 1993,
Caputi et al. 1994, Huh & Hynes 1994, Staffa et al.
1997). A hormonal stimulus, insulin, changes
splicing in rat fibronectin exon EIIIB and is
associated with increased levels of the rat SR
protein, SRp40 (Du et al. 1997). This is not an
isolated example, and there are several alternative
splicing systems where SR proteins regulate exon
selection. Alternative splicing in the mouse SRp20
pre-mRNA changes in response to serum stimu-
lation or withdrawal. This change in splicing
involves the SR proteins SF2/ASF (splicing
factor-2/alternative splicing factor) and SRp20
(Jumaa & Nielsen 1997, Jumaa et al. 1997). In a
different system, alternative splicing of CD44 and
CD45 pre-mRNAs occurs in response to cytokine-
induced T-cell differentiation (Screaton et al. 1995),
via protein kinase C (PKC) and Ras pathways
(Konig et al. 1998, Lynch & Weiss 2000). SF2/ASF
and other SR proteins alter CD44 and CD45
splicing (Lemaire et al. 1999, ten Dam et al. 2000,

Wang et al. 2001). Our recent data indicate the
presence of an exonic splicing enhancer in a
regulated exon of the human IGF-I gene and
efficient splicing to this exon requires both the
enhancer and the SR protein SF2/ASF (P J Smith
& S L Chew, unpublished observations). These
data are consistent with the well-documented
splicing of growth hormone pre-mRNA. The
removal of the last intron in this transcript is
dependent on an exonic enhancer element and the
SR protein, SF2/ASF (Sun et al. 1993). More
recently, several SF2/ASF functional sites have
been mapped in the downstream exon (Dirksen
et al. 2000) and the actions of SF2/ASF at the
enhancer is synergistic with another SR protein
family member, 9G8, when the concentrations of
SF2/ASF are low (Li et al. 2000). Thus, local
concentrations and ratios of SR proteins are
important in determining enhancement of splicing
in alternative splicing systems.

Although more enhancers have been studied and
characterised experimentally, recent evidence shows

 1. Catalogue of hormonally regulated alternative splicing events

Stimulus Reference

Alternatively spliced mRNA
Insulin receptor Dexamethasone Kosaki & Webster (1993), Norgren et al. (1993, 1994a)

Glucose Norgren et al. (1994a), Huang et al. (1996)
Insulin Huang et al. (1994, 1996), Norgren et al. (1994b), Sell et al. (1994),

Wiersma et al. (1997)
Cal/CGRP Dexamethasone Cote & Gagel (1986)
PKC beta Insulin Chalfant et al. (1995)
IGF-I Growth hormone Chew et al. (1995), Lin et al. (1998), Lowe et al. (1988)
FGF-R Cytokines Zhao et al. (1994)
TNF� 2-Aminopurine Jarrous et al. (1996)
PTP1B PDGF, EGF, bFGF Shifrin & Neel (1993)
TNF�, �-globin src Neel et al. (1995)
Hac1 UPR Cox & Walter (1996)
hPMCA2 Calcium Zacharias & Strehler (1996)
CD44 Phytohaemagglutinin Screaton et al. (1995)

TPA, PDGF, IGF-I Fichter et al. (1997)
Via hnRNP A1 Matter et al. (2000)

CD45 Phytohaemagglutinin Screaton et al. (1995)
Concanavalin A Konig et al. (1998)
PKC and ras Lynch & Weiss (2000)

Fibronectin EIIIB (rat) Insulin, via HRS Du et al. (1997)
Fibronectin ED (human) TGF�1, vitD, RA Magnuson et al. (1991), Inoue et al. (1999)
Kv3.1 channel bFGF/depolarisation Liu & Kaczmarek (1998)
Agrin NGF Smith et al. (1997b)
MHC-B NGF Itoh & Adelstein (1995)
SRp20 Serum/cell cycle Jumaa et al. (1997)
BK channel Hypophysectomy/ACTH Xie & McCobb (1998)
NR1 Alcohol Hardy et al. (1999), Winkler et al. (1999)
TRbeta T3 Williams (2000)

bFGF, basic fibroblast growth factor; Cal/CGRP, calcitonin/calcitonin gene-related peptide; EGF, epidermal growth factor; FGF-R, fibroblast growth
factor receptor; hPMCA2, human plasma membrane Ca-ATPase; Kv3.1, potassium voltage-gated channel; MHC-B, myosin heavy chain II-B; NGF,
nerve growth factor; NR1, N-methyl-D-aspartate receptor subunit 1; PDGF, platelet-derived growth factor; PTP1B, phosphotyrosine-1B; TGF,
tumour growth factor; TNF, tumour necrosis factor; TPA, 12-tetradecanoate 13-acetate; TRbeta, thyroid hormone receptor-�; UPR, unfolded protein
response.
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that the predominant mechanism of splicing may
involve silencers (Fairbrother & Chasin 2001). This
may be to ensure that multiple illegitimate splice
sites and false exons contained within large introns
are repressed and do not disrupt the reading frame.
However, predicting silencer function is not
possible at present, and the few silencers character-
ised have a diverse set of sequences (see references
in Chew et al. 2000). Several protein factors have
been identified that function at silencers, and these
include members of the hnRNP (heterogeneous
nuclear RNA particle) family. Recently, hnRNP A1
has been shown to regulate exon silencing in CD44
pre-mRNA and to be a target of oncogenic
signalling pathways (Matter et al. 2000). Alternative
splicing of the STREX exon in the BK channel
pre-mRNA in the adrenal medulla or neuronal
tissue is regulated by hypophysectomy, adreno-
corticotrophin therapy or neuronal depolarisation
(Xie & McCobb 1998). The calmodulin kinase IV
pathway has recently been shown to repress splicing
of the STREX exon through an element within a
54-nucleotide intronic region of the STREX 3�
splice site (Xie & Black 2001). A splicing factor
called polypyrimidine tract binding protein (PTB)
regulates alternative splicing of several genes by
blocking the binding of factors such as U2AF65 to
the polypyrimidine tract. However, calmodulin
kinase IV activation does not alter the phosphoryl-
ation of PTB, so the splicing factors through which
this pathway influences the silencer element are
presently unknown.

The ratio of the SR protein SF2/ASF to hnRNP
A1 determines splice site selection in several genes
(Graveley 2000) (Fig. 2) and this is a mode by which
external signals may alter splicing patterns. For
example, a stress-induced p38 MAP-kinase signal-
ling pathway induces hnRNP A1 phosphorylation,
changes its localisation, and this switches alternative
splicing (van der Houven van Oordt et al. 2000).
The activity of SR proteins may be regulated by
several mechanisms (Manley & Tacke 1996,
Graveley 2000), including phosphorylation by
kinases (Misteli 1999, Murray 1999), cellular
localisation (Misteli et al. 1998) and varying tissue
concentrations (Hanamura et al. 1998).

There are therefore two potential mechanisms for
regulating alternative splicing by signalling path-
ways in differentiated tissues: (i) via a change in the
ratio of ubiquitous splicing factors such as SF2/ASF,
hnRNP A1; or (ii) through the use of splicing factors
that are specific to a particular tissue or signalling
pathway. These mechanisms are not mutually exclu-
sive. Tissue-specific splicing factors are described,
particularly in the context of neural and testes alter-
native splicing, and are closely related to general

splicing factors (Venables et al. 1999, Markovtsov
et al. 2000). To date, there is no evidence of a splicing
factor specific to a signalling pathway.

POLYADENYLATION/CLEAVAGE

The components of the polyadenylation machinery
have been isolated and characterised (Barabino &
Keller 1999). Two multi-protein complexes are
involved: cleavage and polyadenylation specificity
factor (CPSF) binds the AAUAAA motif, while
cleavage stimulation factor (CstF) binds the down-
stream GU-rich region. CstF consists of three
subunits of 77, 64 and 50 kDa (CstF-77, CstF-64
and CstF-50). CPSF, CstF, two cleavage factors
(CF Im and CF IIm) and poly(A) polymerase cleave
the pre-mRNA, and then CPSF and poly(A)
polymerase add the poly(A) tail of between 20–200
(A) nucleotides. The efficiency of polyadenylation
and length of the tail may be regulated by the

 2. Action of SF2/ASF and hnRNP A1 in the
selection of alternative splice sites. Splicing assays were
performed in S100 cytosolic Hela cell extracts using a
�-globin pre-mRNA, 5�D16 (Reed & Maniatis 1986).
This pre-mRNA has duplicated 5� splice sites (Krainer
et al. 1990): P, a proximal 5� splice site and D, a distal 5�
splice site, giving alternative splicing patterns indicated
by the sloping lines. Recombinant SF2/ASF (S L
Chew) and hnRNP A1 (kindly made by L Manche,
Cold Spring Harbour Laboratory) were added in
amounts indicated above the lanes. No mRNA products
were seen in the absence of SF2/ASF (lane 1). An
appropriate increase in the proportion of D to P splice
site usage occurred with an increase in hnRNP A1 to
SF2/ASF ratio (lanes 2–4).
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action of poly(A) binding factor II. Several patterns
of regulation are possible. Firstly, alternative
polyadenylation/cleavage signals may be used. This
changes the length of the 3� untranslated region
included in the mRNA. Second, the length of the
poly(A) tail can vary. Third, the same polyadenyl-
ation signal is used, but the site of cleavage changes,
as in the thyroglobulin pre-mRNA (Pauws et al.
2001).

Hormonal stimuli regulate polyadenylation and
cleavage site selection and the length of the
polyadenylation tail (Santra & Carter 1999). A good
example of regulation of polyadenylation site usage
is the action of follicle-stimulating hormone (FSH)
during spermatogenesis. FSH stimulation promotes
usage of an upstream polyadenylation/cleavage site
in the cAMP-responsive element modulator-tau
(CREM-�) pre-mRNA, resulting in the exclusion of
an instability element and an increase in CREM-�
levels (Foulkes et al. 1993). A comprehensive review
of alternative poly(A) site selection has been
published (Edwalds-Gilbert et al. 1997). An
example of the regulation of poly(A) tail length is
the effect of bromocriptine on the rat prolactin
pre-mRNA (Carter et al. 1993).

The mechanisms by which external signals
regulate polyadenylation or cleavage are not clear.
More is understood about how cellular differen-
tiation, growth control and DNA repair processes
interact with the polyadenylation/cleavage machin-
ery. Progress has been made in the context of
B-lymphocyte differentiation, where the level
of CstF-64 regulates polyadenylation site selec-
tion. The binding of CstF-64 and alternative
polyadenylation/cleavage site selection can be
blocked by hnRNP F (Veraldi et al. 2001). A link
between cellular growth control and polyadenyl-
ation and cleavage is indicated by the modulation of
the phosphorylation status and function of poly(A)
polymerase by cyclin-dependent kinases (Colgan
et al. 1998). Cyclin B(1) binds poly(A) polymerase
directly (Bond et al. 2000). The polyadenylation/
cleavage machinery is also regulated by DNA
repair and tumour suppression mechanisms. Thus,
the breast cancer gene product BRCA1 interacts
with a BRCA1-associated RING domain protein
(BARD1). DNA damage inhibits polyadenylation
via the formation of a complex between BARD1/
BRCA1 and CstF-50 (Kleiman & Manley 2001).

CO-ORDINATION

There is now substantial detail about the coupling
of transcription to splicing and polyadenylation.
The C-terminal domain (CTD) of RNA polymerase

II (pol II) directs splicing and polyadenylation
factors to the pre-mRNA (McCracken et al. 1997,
Hirose & Manley 1998, 2000, Misteli & Spector
1999). This co-ordination between transcription
and splicing also influences alternative splicing.
Thus, the nature of the transcriptional promoter
and complex influences splice site selection in the
fibronectin pre-mRNA, via recruitment of SR
proteins SF2/ASF and 9G8 (Cramer et al. 1999). A
change in the conformation of the CTD of pol II
may be the mode by which nuclear hormones
and their receptors influence alternative splicing
(Fig. 3). SR proteins and exonic splicing enhancers
also function in both steps of the splicing
reaction (Chew et al. 1999), perhaps to ensure
co-ordination of the different steps of splicing
during up-regulation of gene expression. The
co-ordination between splicing and polyadenyl-
ation is well illustrated in the calcitonin/CGRP

 3. Schematic showing possible pathways
involved in the regulation of splicing. The primary
signals include insulin, serum stimulation, stress
responses or nuclear hormones (vit D, vitamin D;
RA, retinoic acid; T3, thyroid hormones; dex,
dexamethasone). The areas of uncertainty are shown by
question marks. For example, it is not clear if PKC and
ras pathways function via SR protein kinases (SRPK) or
through an unknown set of intermediates. Other
abbreviations: PP2Cg, protein phosphatase 2 gamma;
clk/sty, clk/sty kinase; CamKIV, calmodulin kinase IV.
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pre-mRNA, where polyadenylation and splicing
factors interact to regulate the use of alternative
terminal exons (Lou & Gagel 1999).

DISRUPTION

Disruption of existing splice sites or introduction of
new splice sites via DNA sequence mutations may
result in incorrect pre-mRNA splicing leading to
genetic disease. One of the earliest understandings of
a mechanism of genetic disease was in the splicing
defect of a thalassaemic globin gene (Treisman et al.
1982). It is now clear that DNA mutations resulting
in abnormal splicing cause a substantial proportion
of genetic disease (Krawczak et al. 1992). The com-
monest functional consequence of genetic mutations
in many familial endocrine diseases is aberrant splic-
ing; e.g. in CYP21B (Speiser et al. 1992, Kapelari
et al. 1999), NF1 (Ars et al. 2000) and MENIN genes
(Mutch et al. 1999). DNA mutations affecting splic-
ing may be classified into those that disrupt the splice
sites themselves (Krawczak et al. 1992), or those that
change non-splice site sequences (Valentine 1998).
In the former class, mutations at 5� splice sites may
cause activation of nearby cryptic 5� splice sites,
or skipping of the entire adjacent upstream exon
(Robberson et al. 1990). In the latter class, mutations
of non-splice site sequences may disrupt regulatory
elements for nearby splice sites (Liu et al. 2001).
Another mode of disrupting normal splicing is
through mutations that activate the splicing of a false
exon which is normally never expressed, and several
examples occur in cystic fibrosis (Friedman et al.
1999). In an endocrine example, we showed a point
mutation in a false exon was necessary and sufficient
for splicing of the false exon, thus disrupting
the growth hormone receptor mRNA and causing
Laron syndrome (Metherell et al. 2001).

SUMMARY

Recent insights have added greatly to our
understanding of the mechanisms governing the
regulation of post-transcriptional mRNA nuclear
processing. SR proteins and hnRNPs are important
regulators of pre-mRNA splicing and bind pre-
mRNA at key regulatory elements. Signalling
pathways alter splicing and the properties of such
RNA-binding proteins. The details of the inter-
mediates between the signalling pathways and
splicing protein factors are still unclear (Fig. 3).
There may be a specific set of proteins that directly
couple signalling cascades and RNA-binding pro-
teins. Alternatively, the action of signalling on

RNA-binding protein function may be indirect,
perhaps via effects on the cell cycle, as several
kinases and phosphatases associated with modulat-
ing phosphorylation status of splicing proteins are
also cell cycle-regulated factors (Burns & Gould
1999). The action of some of the steroid hormones
on alternative splicing may be indirect, through
changes in the structure of the transcriptional
complex and the configuration of the CTD of pol
II. Thus, there is still much work required to fully
elucidate the molecular mechanisms and importance
of pre-mRNA splicing in regulating gene expres-
sion. Insight into these mechanisms will have an
impact on our understanding of certain genetic
endocrine diseases and perhaps in development of
novel therapies for the future.
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