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The cross secion fer r:uclccr:-r:uclrcn ccllistens in tbe nuclear matter is calculated in an aralytical 

way on the basts cf the Fermi gas mcdel ar:d the inverse ocergy nuckcn smttcnrg cross sectton. The 

mean free path thus denved 1s found to l:e m <jUaiitut:ve agreement with t~.ose deduced from the 

phenomenologtcal analyses of scattering expenments at low as well as at moderate energies. The angular 

and energy distributions of knock-cut nucleons are calculated ard al!cw us to predict the contribution 

of such direct collisions to nuclear reactions. For the bombardment cf 18 Mev protons on iron this 

ccntributton to the energy spectrum cf emitted protons is found far sn:.&llcr t~ an that from the evapo

ratton process. Nevertheless, this mfluence is not negligible in deducing the nuclear temperature. For 

the bombardment of 31 Mev protons the knock-out pmccss can account for the gross behaviour of 

high energy nucleons observed in expenments. 

§ 1. Introduction and summary 

Recent experiments 1-2) on the inelastic scattering of protons at an intermediate energy 

range have suggested that the compound nucleus theory might be insufficient to account 

for their experimental results. In fact, it has been pointed out by several authors~- 5 ) that 

the discrepancies berween the theory and the experiments might be due to the neglect of 

the contribution from the directly knocked-out nucleons in the theoretical calculation. It 

is, however, difficult to carry out an accurate estimate of this effect since our knowledge 

about the nuclear structure is at present very scanty. Therefore, we are obliged to adopt 

a specific model to perform the theoretical analysis for inveftigating the real features of 

nuclear reactions. It is well known that no particular nuclear moc'el can sufficiently account 

for the great variety of nuclear phenomena, but a specific model should be chosen according 

to the phenomenon concerned. Among various models thus far proposed, experiences tell 

us that the Fermi gas model is unexpectedly valid in a wide range of phenomena. The 

merit of this model is furthec amplified by its simplicity and easy applicability to practical 

problems. A number of works bafed on t' e Fermi gas model have thus been carried out 

and found to be successful in explaining the qualitative properties of nuclear phenomena. 

Encouraged by such successes r,nd motivated by the recent experiments, we shall extend the 

kinematical works on the Fermi gas model, so as to be applicz.ble to a wider range of 

phenomena. 

In § 2 and § 3 are derived the rr.ean free parh of a nucleon tn the nuclear matter 
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416 S. Hayakawa, M. Kawai and K. Kikuchi 

and the energy distribution of nucleons knocked out by an impinging nucleon. The 

analytical treatment of these problems has first been given by Goldberger6l in order to 

interpret the nuclear reactions induced by 90 Mev neutrons. In his analytical calculation 

was assumed for the nucleon-nucleon scattering the energy-independent and isotropic cross 

section that did not correspond to the experimental evidences. The real form of the cross 

section has been regarded to be very complicared as to forbid the analytical calculation and 

has been handled only with the Monte Carlo method. 7) The latter method is accurate so 

long as a great number of paths are traced, but is not always practicable to get the results 

covering a wide energy range. Accordingly, we shall here attempt to perform an analytical 

calculation, dropping the assumption of the energy-independent cross section but still keep

ing that of the isotropic one, since the latter holds at low energies and even at high 

energies for the proton-proton scattering. 

At low energies where the energy of a nucleon inside a nucleus is below twice the 

Fermi energy, the analytical calculation of the mean free path of a nucleon was carried 

out by Yamaguchi8l on the basis of the above two simplifying assumptions. However, his 

result is found to be inerror. Weshallgivethecorrectexpressionsin (2·8) and (2·10) 

with (2 ·11) for such a quantity together with the computational device in this energy 

region. 

The mean free path thus obtained is in approximate agreement with the one obtained 

by the Monte Carlo calculation (Fig. 1). Our result is compared with the absorption 

coefficient deduced by Taylor9l from high energy transmission experiments in one hand, 

and with the complex potential proposed by Feshbach, Porter and Weisskopf' 0l at low 

energies on the other hand (Fig. 2). The agreement is not very good, but seems to be 

satisfactory on account of the oversimplification in our model. Further, our result is applied 

to such a discussion for the validity:of the independent particle model as has been pointed 

out by Weisskopf.11 l 

One might, however, wonder the applicability of the Fermi gas model at zero tempera

ture to such low energy phenomena, since the momentum distribution of nucleons is known 

to be different from that in the Fermi gas at zero temperature on the theoretical as well 

as experimental grounds. Indeed, this has led Kind and Perganini12) to considering the 

mean free path in the Fermi gas at finite temperature. This, however, should not be 

attributed to the finiteness of temperature, but to the deviation of nucleon waves from 

plane waves due to the rather strong interactions. It is, therefore, not correct to work with 

the classical particle picture, as Kind and Perganini did, when the momentum distribution 

is different from that of the free gas at zero temperature, but one has to do with the 

distorted wave function of nucleons within the nucleus. Since a great complexity is intro

duced in the calculation by such a modification, we think it a consistent way to work with 

the classical particle picture together with the Fermi gas at zero temperature. In fact, our 

roughness in the model is partially compensated by the internal consistency of our method 

of treatment and provides a useful basis for the future development of theoretical investi

gations of the concerned phenomena. 

We have also dealt with the energy distribution of nucleons knocked out by nucleons 
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Nuclear Reactions at Moderate Energies and Fermi Gas Model 417 

of moderate energies ( ( 3 · 14) and Fig. 3-6). The energy distribution under consideration 

is usually considered to be governed mainly by the evaporation of nuclear particles and 

partly by the reaction taking place at the nuclear surface, which has been analysed by 

Austern et af.'~l The importance of the knock-out process has first been recognized by 

Bernardini et aP through their Monte Carlo calculation. This effect is shown to be dimi

nished due to the surface transmission but not to be negligible yet.12l Moreover, in the 

actual nuclear reaction the attenuation of both impinging and scattered beams is not 

negligible for the reason that the mean free path is much smaller than the nuclear radius 

in the energy range concerned here. In § 4 we examine in detail these effects in the 

application of our model to the energy spcpra of nucleons from Fe bombarded by 18 Mev 

protons (Fig. 8-10). Our semi-classical method is essentially the same as in the Monte 

Carlo works, except that we take into account the refraction of nucleon beam at the nuclear 

boundary. 

The small difference in proton yields between the forward and the backward directions 

in the 18 Mev proton inelastic scattering predicts that the proton yield due to the evapo

ration process is actually predominant over that due to the knock-out process. The energy 

spectra of nucleons observed in the experiment are attributed to many possible types of 

decay processes, in which, therefore, it is necessary to calculate the cross section of various 

processes of nucleon emission to make a careful comparison between the theoretical and the 

experimental results. In view of the above situations, our calculation is performed in § 5, 

using the compound nucleus formalism, with the semi-empirical formula for the nuclear 

level densities (Fig. 11-19). The parameters in the nuclear level density formula have 

usually been determined, disregarding the knock-out process, with the aid of the experimental 

energy spectrum and the evaporation model. Accordingly, one of the parameters which 

we have adopted is not always accurate, but we shall proceed our investigation for the two 

available values of the level density parameter to examine the ambiguity which might be 

caused by its inaccuracy. The calculated energy spectra are actually found to become 

different from the Maxwellian type in their shapes, because of the secondary emission of 

particles from intermediate residual nuclei. The residual nuclei after the first evaporation 

as well as the knock-out processes are often so highly excited that they can emit particles 

on returning to the ground state. These cross sections are also estimated in § 5 (Table 1). 

Further our results facilitate to discuss the energy dependence of the nuclear tempera

ture on the basis of the energy spectrum obtained. From the theoretical analysis Lang 

and Le Couteur14l have called attention to the difference between the true temperature and 

the apparent one. This discrepancy, however, seems to be insufficient to explain the queer 

tendency of the nuclear temperature pointed out by Cohen15l (Fig. 20). On the other 

hand, Tomasini16l has shown that the second neutron in (n; 2n) reactions can not be 

negligible in the determination of the nuclear temperature. A similar situation happens 

such that the second particles after the direct nucleon emission play a role to describe the 

behavior of the nuclear temperature. In spite of the small magnitude of the cross section 

for the knock-out process, the nucleons directly knocked out turn to be a cause of the 

strange energy dependence of the temperature, which is explainable in this term only in 
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418 S. Hayakawa, M. Kawai and K. Kikuchi 

the forward direction (at 6J = 60 °). Though the difficulty remains concerning the back· 

ward direction, this success suspects that some similar processes are likely to give a small 

yield to the backward scattering. 

The remarkable anisotropy in the angular distribution of protons from several elements 

when bombarded by 31 Mev protons2l suggests us that the knock-out process might give 

the main contribution to the nuclear reaction in such a high energy range. Although the 

pr-oton emission is less probable than the neutron emission according to the compound 

nucleus formalism, the large magnitude of (p; p') cross section also seems to assure us 

that the direct process plays an important role in the actual nuclear reaction. In view of 

such situations we shall apply our model to the. inelastic scattering of 31 Mev protons by 

Sn in § 6, in which our estimate, though a very crude one, shows a fair agreement with 

the experimemal .:;aia (Fig. 22). 

§ 2. Mean free path of nucle('ns in the nuc~ear matter 

According to the Fermi gas model of nucleus, each nucleon is considered to be a 

classical part:clc moving in a constant potential. The momentum and the kinetic energy 

(non-relativistic) of a nucleon is measured in nuclei, i.e., from the bottom of the potential, 

if not specially mentioned, taking the m·cleon mass to be unity. Let the mcmrr;ta of 

incident and target nuclc:ms be P 1 and P 2 and those of an outgoing and residual nucle:>n> 

be P/ and P/, re>pectively. The Fermi gas at zero temperature gives rise to a unibrm 

distribution of P 2 restricted by the Fermi momentum P ,. The Pauli principle requires 

[P/[ > PF and [P/[ > PF. 

The scattering cross section for these nucleons is a function of half the relative momenta 

of the initial and final states, P and P', respectively. Since these are the same in the 

laboratory system as in the center of mass one, the difference in the differential cross section 

o-(P, P')df2' in the two coordinate systems is entirely due to the difference in the solid 

angle elements, JQ', for P'. On account of the collision frequency obtained with the 

multiplication by the relative velocity 2P= 2[ P[, the total nucleon-nucleon cross section in 

nuclear matter is given by 

cr= 1 JdP2 JdQ'2Pcr(P, P'). 
P1 ( 4rr /3)P,S 

(2·1) 

cr(P, P') in the center of mass system depends on fP[ approximately as p-2 over a 

considerably wide range of energies and also on the angle between P and P' for neutron· 

proton scattering. The latter dependence may, however, be neglected with a small error, 

because the Pauli principle will make the small angle scattering relatively unimportant. 

Thus we may be allowed to assume 

cr(P, P') =cr,(P) j4rr, (2·2) 

where cr, (P) is the total cross section for a nucleon of relative momentum P. 

From now on we can work out in the laboratory system, taking the invariant cross 

scctiJn o-t(P) outsiJe of the integral over fl' which is now reduced simply to a factor, 
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Nuclear Reactions at Moderate Energies and Fermi Gas Model 419 

i.e., the solid angle !2' covered by possible final directions of P'. Taking into account 

the Pauli principle for P/ and P/, we have 

fl'= 47r P/+P2
2 -2P/ 

2PIP1 +P2I 
!2' < 0 restricts the integration region over P 2 as 

P/>2P/-P/. 

( 2 · 4) gives us the ranges of integration, according to the magnitude of P1
2, as 

o<P2
2 <P/ for P/>2PF2, (I) 

for P/<2P/. (II) 

With the use of ( 2 · 3) and these integral limits, ( 2 · 1) is reduced to 

~= 1 J p12+p22-2P/ a-t(P)dP2. 

P1 (4rrj3)PF3 IP1 +P2 1 

(2. 3) 

(2·4) 

(2·5) 

(2·6) 

In accordance with Goldberger/) we shall, for the time being, assume the energy 

independence of the cross section o-1 (P), in which case the angular integration in (2·6) 

is readily carried out as 

Introducing this into ( 2 · 6) and taking into account ( 2 · 5) , we obtain 

_ 5 E1 lo-t( 1-_2_ . _b_) 

a-= 

a-t {1-_2_. _b_+_3_. EF (2-__S_ Y'2} 
5 £ 1 5 E1 E~' 

Here the cross section is expressed in terms of energies, 

E1=P//2, E1 =P//2. 

(2·7) 

(I) 

(2·8) 

(II) 

(2 ·8, I) is nothing but the one obtained by Goldberger,6l but our way of derivation is 

much simpler. The cross section for energy range (II) was given by Yamaguchi/1 whose 

result, however, is not in agreement with (2 · 8, II). 

Now we shall drop the assumption on the energy independence of o-1 (P) in the 

evaluation of ( 2 · 6). The total cross section is known to be inversely proportional to the 

incident energy ( oo p-2) over a considerable range of energies. Hence we assume 

a-,(P)=o-0/P2• (2·9) 

Substituting this into ( 2 · 6), we get 

o-=6o-0 P1 IjP/· 

I is given by a complicated integral 

b 

I J x(1+K-2a2
) tanh-1 2xV2(1+K) d 

= V2(1+x2) 1+3;t'l x, 
a 

(2 ·10) 

(2·11) 
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420 S. Hayakawa, M. Kawai and K. Kikuchi 

where 

and the integration limits are 

a=O, b=a for E1 > 2E:r, 

a= .V 2a-1 , b=a for E1 < 2E1 , 

(I) 

(II) 
(2 ·12) 

respectively. 

In an actual nucleus which consists of N neutrons and Z protons, the average cross 

section should be given by 

(2 ·13) 

where i stands for p or n, according as the incident nucleon is proton or neutron. fJ" nt and 

-;;.pt are obtained from (2 ·1) by putting fJ"(P, P') equal to the cross sections for free 

n- i and p-i collisions respectively. For the numerical works we have taken N= Z = A/2 

and E1 =21.5 Mev and expressed the results in terms of the mean free path A.. 

A=1/p;;., (2·14) 

where p is the density of nuclear matter. 

The calculated mean free paths are shown, in Fig. 1, for both cases of the energy 

independent and the inverse energy proportional cross sections. For the former case fJ"' is 

taken as the value at the incident 

energy. These are qualitatively simi

lar to one another in energy de

pendences but different in magnitudes 

approximately by 20%, which is 

ascribed to the fact that the scatter-

ing is more suppressed due to the 

Pauli principle at lower energies 

where the cross section for free 

nucleons is larger. In comparing 

these with the Monte Carlo result by 

Morrison et al.,I7) the case of the 

inverse energy law is nearer to the 

Monte Carlo one than the energy 

independent one, although there is 

still a small difference in the former 

case. The reason is that the larger 

cross section at small angles is relative

ly ineffective, so that our total cross 

section is larger than the average over 

the angular distribution in the nuclear 

matter. We shall, therefore, have 

to take the effective total cross section 

a 
u 
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""" ...c: 
~ 
c. 
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II. 
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\\ Monre Carlo merhod 
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\'\. 
',,~ The mverse energy cross section 

., 

4 

' .J. ·r----
T~: ~~;gy 1;de;e:dent cross secuon 

-~ 

20 30 40 50 60 70 80 

Energy in Mev 

Fig. 1. Mean free path A vs. nucleon energy in the 

nucleus. Solid curve and dashed curve refer to results 

calculated on the assumption of the inverse energy and the 

energy independent cross sections respectively. I : calculated 

by the Monte Carlo method~ 
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Nuclear Reactions at Moderate Energies and Fermi Gas Model 421 

as smaller by about 20% than the observed 

total cross section. 

Above E1 =50 Mev, the mean free 

path turns to increase, as the free cross 

section decreases and, above 80 Mev, our 

result can be compared with the absorption 

mean free path analyzed by Taylor. 9l (Fig. 2) 

At low energies, near E1 = 30 Mev, 

the phenomenological theory based upon the 

complex nuclear potential model proposed 

by Freshbach et al.10l gives the absorption 

mean free path of 2.4 X 10-12 em, whereas 

our calculation with the inverse energy law 

predicts 0.5--1 X 1 o-12 em at about this 

energy. On account of the over-simplifica

cation in our calculation, the comparison of 

these two figures suggests us that the be

I IO'a 
e 
u 

.!3 6 

r:.:: 

i:i 
·0 

4 I:E .. 
d 
tl 
0 
.[ 

.... 
0 

~ 
30 40 50 GO 70 80 90 100 llO 

Energy in Mev 

Fig. 2. Absorption coefficient K ( = ,l-1) vs. nucleon 

energy in the nucleus. Solid curve indicates the 

calculated result with the inverse energy cross section 

and dashed one is tl-.at obtaircd by Talor9l through 

the analysis of the neutron-nucleus scattering. 

haviour of the nuclear potential can be understood in terms of the Fermi gas model even 

at such low energies. This might be rather surprising in view of d-.e strong interaction 

of nucleons with nuclear matter, but the Pauli principle is taken to play an essential role 

in weakening the effective nuclear interactions. This fact may be supposed to lead to the 

validity of the optical model at low energies. 

The mentioned success in accounting for the optical model allows us to infer the 

possibility of describing some of lower energy levels in terms of the Fermi gas model. For 

this purpose we derive the collision width for a single nucleon fram ( 2 · 8, II) as 

(2 ·15) 

assuming the energy independent cross section and E1 - E F ~ E F· Here (i = 1. 4 X 1 038 em-s 

is the nucleon density in nuclei and v1 .:::.cj4 the velocity of the incident nucleon. Taking 

O"t.:::.0.2 barn and (El-EF)/EF.:::.1j5, rc is estimated as about 4 Mev. This may be 

compared with the level distance D which represents the reciprocal period of such motion 

that constitutes the levels concerned. If the single particle motion in a nucleus persists 

long enough to constitute an energy level, Fe should be smaller than D. This barely 

holds merely for the lowest levels of Ieight nuclei. Neverthless, the single particle model 

may still be justified, if one notices that D should be the level distance of single particle 

levels only. Then D is larger than the average level distance of all observed levels and 

may satisfy D > Fe, provided that excitation energies are low enough. Our over-simplified 

theory prevents us to go farther, but the strong energy dependence shown in ( 2 · 15) will 

make one understand the increasing validity of the single particle description with decreas

ing excitation energies. 
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422 S. Hayakawa, M. Kawai and K. Kikuchi 

§ 3. Energy distribution of the scattered partic!e due to 

the single collision 

In this section we shall investigate the energy spectrum and angular distribution of 

scattered nucleons, after a single collision in the nucleus, on the basis of the same model 

and the similar assumption of ( 2 · 2) as in the preceding section. The result will allow 

us to examine the effect, on this process, of the energy dependence of the free nucleon· 

nucleon collision cross section, comparing our result with that of Goldberger's. 

We shall employ the notation P1 to indicate the final momentum of the particle under 

consideration in order to facilitate the calculations in the collisions between like particles 

in which case we have no means to discriminate which of the collision partners we are 

observing. Accordingly, we denote by P/ the final momentum of the rest of the collision 

partners. 

The differential cross section u ( P1 ) d P1 for the scattered particle having the final 

momentum between P1 and P1 +dP1 in the laboratory system is given by the formula 

u(P1 )dP1 = 1 \ Vrelu(P, P') lJ(P;/') dP2 dPJ. 
v1 (4r.j3)P/ J 

(3 ·1) 

On account of the relations 

Vrel =2P' 

( 3 · 1) can be rewritten as 

u(P1)dP1= 4 
3 dP1 Ju(P, P') r3(P2-P2) dP2 • 

V1 (4r.j3)PF 
(3·2) 

In contrast to the calculation of the effective total cross section in the preceding section, it 

is, in the present ca£e, convenient to proceed just as Goldberger has done. Thus we 

introduce the cylindrical coordinate system whose polar ax1s lies along the direction of the 

momentum transfer vector, 

(3·3) 

and whose ongm is situated at the centre of the Fermi sphere. In terms of the coordinate 

(z, p, rp) instead of (P""' P2y, P2z), we can rewrite the argument P12-P2 of the 6-function 

as 

where 

zo=·~1~(P/+q2_pr2). 
2q 

Assuming, u(P, P') =u1(P) j4r. as in § 2, we obtain 

u(P1)dP1 = ---4-----3 · - 1- · --1--Ju,(P) IJ(z-z0)pd,odzdrpdP1 . 
V1 ( 4r. /3) PF· 2q 4r. 

(3·4) 

(3·5) 

(3·6) 

When we further assume that the energy dc'Pendence of u, ( P) is unimportant <1nd 
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Nuclear Reactions at Moderate Energies and Fermi Gas Model 423 

put it equal to a constant, then the integration over (!, z, fP of ( 3 · 6) yields the formula 

obtained by Goldberger.* 

Here, however, we shall drop the assumption of the constant cross section mentioned 

above, putting, 

<T 2<Tz, 
<T,(P)=-0- (3·7) 

Ere! P1
2+P2

2 -2P1 P2 cosa 

where a is the angle between P 1 and P 2. <T L is the total cross section corresponding to 

the incident energy. Taking ff=O in the plane specified by the vectors P 1 and q, we get 

cosa=sin( cosff, (3. 8) 

where ( is the angle between P 1 and q. Inserting (3 · 7) and (3 · 8) into (3 · 6) and 

carrying out the integration with respect to fP and z, we have 

(3·9) 

where 

b=Pl+z0
2 -2P/ sin2(, 

c= (P/+z0
2) 2 -4P1

2z0
2 sin2(. 

(3 ·10) 

The restrictions on P1 and P2 are determined by the following condition. 

(3 ·11) 

the former being the condition that the target nucleon 2 is below the Fermi surface before 

the collision and the latter expressing the Pauli principle. ( 3 · 11) leads to 

P/+ P/- ptz_Zoz< p2 < P/-zo2· 

Thus, the limits of integration over p are given by 

P22=P}-zo2, 

• {P/+Pt2_p12_Zo2, 

Pt-= (P2 p2 p2 2<) 
O, s + 1- 1 -zo _0 · 

Carrying out the integration with respect to p, we finally obtain the formula for 

<T(P )dP _ <T,(E)P1 I ,; p/+2bp/+c+p2
2 +b 

f f- (4,.,.j3)PF3q og ./ 4 b • • b . 
" v Pt +2 Pt"+c+pt-+ 

(3·12) 

(3 ·13a) 

(3·13b) 

(3 ·13c) 

(3·14) 

Final momentum P1 is restricted by the condition p22 > 0, otherwise <T(P1) dP1 being 

zero. 

The conditions: P/-z0
2 > 0 and Ps2+P/-P/-z0

2 >0 can also be written down 

in terms of the momentum transfer as follows. PF2 -z0
2 ::;o holds in the case 

PF+ vP/-P/+PF2 >q> vP1
2 -P/+P./-P,, (3·15) 

* His results contain a small mistake in the expression of cr (P f) dP f in the cases (2) and (3) of his 

paper, i.e., the correct expression is as follows. 

- 3 {P 2 +Poo_2PP 0 c~!±_ (Po~ P~_llin~ li) /(1- F)}/(1-P2) 
cr(Po, P) =-no • rr 

r. (P 2+Po2 -2PP0 cosliP/2 
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18 Mev 

150 

100 

50 

5 

Energy in Mev 

Fig. 3. Energy distribution of protons due to the 

single colliswn in the case of the energy independent 

cross section. The energy of the incident proton is 

18 Mev and the target is 5HFe nucleus. Figures 

attached to respective curves indicate scattered angles. 

90 

31 Me· 
80 

Energy in Mev 

Fig. 5. Energy distribution of protons due to the 

single collision In the case of the energy independent 

cross section. The energy of the incident proton is 

31 Mev and the target is 56Fe nucleus. Figures 

attached to respective curves indicate scattered angles. 

18 Mev 

Energy in Mev 

Fig. 4. Energy distribution of protons due to the 

single collision in the case of the inverse energy cross 

section. The energy of the incident proton is 18 

Mev and the target is 56Fe nucleus. Figures attached 

to respective curves indicate scattered angles. 

90 

.:;;- 80 31 Mev ,, 
J~ ·7o 
> 
" "" I'~~ 

:a-
s 
~so 

.s 
Cj40 

"" "' ~30 
): 
b e 20 

Energy in Mev 

Fig. 6. Energy distribution of protons due to the 

single collision in the case of the inverse energy cross 

section. The energy of the incident proton is 31 

Mev and the target is 56Fe nucleus. Figures attached 

to respective curves indicate scattered angles. 
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and 

(3 ·16) 

The numerical calculations have been performed for the cases of 18 Mev and 31 Mev 
protons. These results are shown in Fig. 3-6, both for the energy independent and inverse 
energy cross sections, ( 2 · 2). 

It should be nDticed that the results calculated with the above method fails to give 
the energy spectrum observed in the experiments for the reason that the effects of transmis
sion and attenuation are not taken into account in the above calculation. These effects 
shall be treated actually in the next section. 

Next we shall examine the mean energy transfer of an i!lcident particle, as is necessary 
for investigating the effect of the multiple collision on the actual nuclear reactions. Denot
ing the me:1n value of the final energy E 1 of scattered particles by ( E 1 ), the mean energy 
transfer ( E,) is given by 

(3·17) 

(£1) can be obtained by averaging E1 over the possible directions of the final relative 

momentum P' and then over the initial momentum P 2 of the target nucleon : 

(EJ) =-1- (P/) =-1- . 
2 2 

1 j.J. P ~ <J, (P) 2Pd!d' dP , 
<J1 (4rrj3)P/ 1 4rr 1 

(3·18) 

where <J1 is the effective total cross section calculated in § 2, which normalizes the probability 

density. The calculation is quite analogous to that of the effective total cross section and 

leads to the following results. 

( 1) Energy independent cross section : 

b 

(£ 1 )=~ · ~ · - 1 -J(1+~-2a 2 )(l+~)~dx·Eu 
<Je a 2 

a 

where <J1 is the total cross section of free nucleon-nucleon scattering and a, b and a are 

in (2 ·12) 

In the case of £ 1 > 2E F (I), the above equation gives 

1 _ _±__ . EF _ _32_( EF r 
( E 1) = E1 • ___ 5 __ E_o_1 __ 3_5 __ £~ 1 -

2 1--7-. EF 
(3 ·19) 

5 £ 1 

(3·20) 
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426 S. Hayakawa, M. Kawai and K. Kikuchi 

(2) Inverse energy law: 

1 J 
(E/) =p;-. TEl> (3. 21) 

where I is the integral which already appeared in ( 2 · 11) and J is defined by 

]=J0 
(1 +x2 - 2a2 ) -V 2 (1 +x2) tanh zx-VZ(T~T dx (3 · 22) 

a 1+3x" 

§ 4. Application of the model to the inelastic scattering of 18 Mev 

protons by 56Fe 

-The knock-out process-

In this section we shall make a crude estimate of the contribution due to the knock

out process in the inelastic scattering of protons by Fe. For simplicity, we shall proceed 

our discussion along the line of a semi-classical approximation, allowing us for the con

sistency of the model adopted throughout the calculation. In principle, our calculation 

developed here is the same as Monte Carlo calculation except for taking into account the 

effects of diffraction and reflection of nucleons over the nuclear surface. In fact, it is easy 

to see that these effects play important roles particularly in the scattering in the backward 

direction. 

In order to illustrate the mam features of the calculations, let us take an example of 

incident neutrons. Following the semi-classical picture, a neutron or a proton is assumed 

to have a definite trajectory. Outside the nucleus a neutron travels along a straight line 

and the flux density through a plane perpendicular to the beam is constant over the whole 

plane. A beam of neutrons, which strike the nuclear surface at an incident angle, a;, 

suffers reflexion and refraction on entering the nuclear medium, because of the difference 

in the potentials between the outside and the inside of the nucleus. The transmission 

coefficient T ~") (a,) of the incident neutrons at the nuclear boundary will be calculated in 

the appendix. It is conveniently expressed in terms of the index of refraction of the 

nuclear medium. 

(4·1) 

and the incident angle a 1, where k;1,; and k0 , 11; are the wave numbers of the incident neutron 

inside and outside the nucleus respectively, the suffix i referring to the initial state. The 

angle of refraction is determined by the well-known Snellius' law 

kout sin a = k; 11 sin j3 

or 

sinf3=n sin a. (4·2) 

The transmitted particle, after running over a distance L1, the order of mean free path 

A, in the nuclear medium, collides with a nucleon in the nucleus. The mean free paph 

A;, apprvpriate to the incident energy and the cross section for this elementary collision 

have been calculated in the previous section. After the collision it will propagate with the 

wave number k;,1 until it reaches the nuclear boundary again. In the course of the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

3
/4

/4
1
5
/1

9
4
0
4
6
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Nuclear Reactions at Moderate Energies and Fermi Gas Model 427 

propagation the beam intensity is diminished by a factor exp( -L1jJ.1), where ).1 1s the 

mean free path appropriate to the final energy ('h~ k;?"f /2) and L1 is the distance over which 

the particle has to run before it reaches the nuclear surface. At the boundary it again 

suffers reflexion and refraction for the same reason as in the case of its entrance into the 

nuclear matter. These effects are of great importance in the actual reaction. In the extreme 

-Incident Neutron 

Beam -----+----------~--~--~~~----

Fig. 7. Schematic representation for the direct process. Both 

of incident and scattered particles suffer the diJfraction and 

the reflection at the nuclear surface. L1 and 4 sr. ould be 

case, for instance, in which it reaches 

the nuclear surface with the incident 

angel r1 larger than the critical angle 

Tt,1, defined by the equation 

(4·3) 

using k""'f' i.e., the final momentum 

of the nucleon outside the nucleus, 

it can never escape from the nucleus, 

even if it is energetically possible 

on account of the perfect reflexion 

at the surface. Thus the beam 

intensity is further diminished by 

a factor T j" > ( iJ.t) , i. e., the transmis

sion coefficient at the nuclear bound-

read as Lt and LJ in correspondence to the text. ary, defined in the same way as 

T; · > (a.). The situation mentioned above is actually shown in Fig. 7. Summarizing the 

above considerations, we see that the cross section for this process to occur is given by 

a~o-d(n; n) 

3Jd3E 
0 l d(IJ J" da, P, (a,) T ~"> ( aJ !2_ exp (- _l-_) 

aJJ J ;., ;.i 

a~u, ( L1 ) T <n> ( -~ ) X--.--- exp _ ---;-- · ! u1 , 

awac"' "J 

(4·4) 

where Q denotes the solid angle into which the p~rticle is scattered in the final state and 

c is its energy outside the nucleus. w is the solid angle into which the incident nucleon 

is scattered through a single collision <:nd clll its energy inside the nucleus. P;( a,) is the 

prob;:bility that an incident particle collides with an angle a, on the nuclear surface. The 

differential cross section (d~<Yt/dwOc 11 ,) and the mean free paths A, and J.1 have been 

calculated in the preceding sections. 

The case of proton incidence can be treated in the same way except for the fact that 

the path of a proton is distorted from the straight line and the corresponding wave number 

is not a constant in the outside region of t:1e nucleus, because of the Coulomb potential. 

Accordingly, Snellius' law is modified as 

(4·5) 

where k,, 1 (a) is the wave number of the proton at the nuclear boundary and 7) the incident 

angle. We shall show, in the appendix, that in our crude approximation, that k,., 1(a) in 

( 4 · 5) can be replaced by the wave number kuutoo of a proton ~.t an infinite distance away 
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428 S. Hayakawa, M. Kawai and K. Kikuchi 

from the nucleus and 1J by 7}co which measures the angle between kontoo and the normal of 

the nuclear surface at the incident point of the proton. Namely, we have approximately, 

koutco sin l?co = kont (a) sin lJ' 

which leads to the modified Snellius' law of 

(4·6) 

(4·7) 

From this equation it can be seen that the path of a proton in the nucleus is the 

same as that of a neutron with the wave number kuntco and the incident angle l?ro· Since 

J?, and k,,.,1"' are known, the calculation can be proceeded in the same way as in the case 

of the neutron incidence. The transmission coefficient for protons is given in the appendix. 

The method mentioned above is applied to work out the inelastic scattering of 18 

Mev protons by 5RFe. In our calculation it is assumed, for the sake of simplicity, that 

collisions always take place when the incident proton has run over a mean free path after 

entering into the nucleus. Beside this assumption, we have traced a number of proton 

paths, as they are restricted to a two dimensional plane for computational convenience, just 

as in the Monte Carlo method. Integrating these together with the weighting factor of 

( 4 · 4) on t'ach, we obtain finally the effective cross section and the energy spectrum of 

protons due to the direct process. In this connection, a special attention should be paid 

to the fact that if the target nucleon is a proton and gets an energy high enough to escape 

the nucleus after the collision, such a proton is also observed in experiments. In order to 

take this into account, the proton-proton scattering cross section appearing in the (}1 is 

multiplied by a factor of 2, as in the usual case of the proton-proton cross section. The 

calculated result is shown in Fig. 8-9. The energy spectra obtained by integrating over 

solid angle are shown in Fig. 10. 

The total cross sections of the direct processes (Ja(P; p) and (Jd(p; n) are estimated 

q 0.6 
66Fe(p ;p') 

IS 
t; !50 

~ 
0.5 

~ 
..0 0.4 
5 
.e 
"" 

0 ~ 
C! 

"" "' ~ 0.2 

<>. 
5o 0.1 

" ~ 

Proton Energy in Mev 

Fig. 8. Energy spectra of protons due to the direct process when 18 Mev protons bombard 

56Fe nuclei. Figures attached to respective curves indicate scattered angles. 
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"Fe(p; n) 

~ 

~ 0.8 

~ 0.7 

~ 

! 0.6 

.9 0.5 

Cl 

"" -0.4 

"' ~ ,...... 
0.3 

" 
,s. 

0.2 
" b 

~ 0.1 

10 

Neutron Energy in Mev 

Fig. 9. Energy spectra of neutrons scattered from 56Fe when bombarded by 18 Mev 

incident protons. Figures attached to respective curves indicate scattered angles. 

as 12 mb and 17mb respectively, which 

are found to become much smaller than 

the cross section of the evaporation 

process as calculated later. 

The effect of multiple refl.exion 

at the nuclear boundary before a collision 

is of little importance, because the mean 

free path of incident protons in the 

energy range concerned is of the order 

of 3 X 10-13 em, which is smaller than 

the nuclear radius. 

The effect of multiple collision in 

the nucleus can also be neglected, for 

the mean energy transfer per collision 

is approximately 17 Mev according to 

( 3 · 19) , so that after two successive 

collisions the nucleon loses too large an 

energy to escape the nucleus. 

"Fe(p , n) and "Fe(p , p') 

.9 

Energy in Mev 

Fig. 10. Energy spectra (integrated over angle) of nu

cleons scattered from 56Fe when bombarded by 18 Mev 

protons. Curves give also the distribution of excitation 

energies in residual nuclei after the direct process. 

In connection with the problem of nuclear temperature the proton yield at 150° has 

been examined, since the available experimental data are concerned with backward scattering, 

and the differential cross section has been shown to become of the order of 10-:l mbj 

(sterad Mev) for 6 Mev outgoing protons. Protons with higher energies can not be 

scattered into such a backward direction because of the energy-momentum conservation. The 

small yield fails to affect appreciably the energy spectrum, so that the behavior of the 

nuclear temperature may not be altered. 
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430 S. Hayakawa, M. Kawai and K. Kikuchi 

§ 5. The spectra of nucleons emitted through the evaporation 

and discussions on the nuclear temperature 

The purpose in this section is to calculate the energy spectra of nucleons from Fe 

bombarded by 18 Mev protons on the basis of the evaporation theory. Our method of 

treatment is essentially the same as that in the previous works, 18 •19l which are cited as I 

and II in the following. We shall, therefore, present only briefly the procedure of our 

calculations. 

According to the compound nucleus formalism, the cross sections for various competing 

processes are given in terms of the nuclear level density. We shall here employ the follow

ing semi-empirical formula of the level density of a nucleus, which is based on the Fermi 

gas model. 

w(E) =c exp 2 VaE (5 ·1) 

with 

where, unfortunately, two parameters of a and c have not been well established in magni

tude due to the rather scanty experimental data. A number of values of a obtained by 

several authors20 - 2" are at variance with each other, since the determination of a involves 

many difficulties. As the cross sections for different emission processes are sensitively 

dependent upon the magnitude of a, in addition to the above situati Jn, we have investigated 

the yield of nucleons for two cases of a values, i.e., those adopted by Blatt and W cisskopf '7' 

and by Gugelot,Z'l each of which is derived fr-:>m two different experimental evidences. The 

interpolation of Blatt and W eisskopf' s a values gives us, for the nucleus concerned here, 

(i) 

whereas Gugelot obtained 

a=4.75 Mev-1 (ii) 

by observing the neutron spectrum from iron excited by 16 Mev protcms. 

Since we have to do with the detailed distribution of excitation energies in each inter

mediate residual nucleus, it is convenient to introduce the branching probability P,j (E), 

as in II, which means the probability of emitting particle j from the intermediate residual 

nucleus left after the evaporation of particle i. If a compound nucleus can evaporate two 

particles in succession, the probability for emission of i and then j is 

(5 ·2) 

where ];j is defined in II. Thus, the cr:;ss section <Tc(l; i, j) of the (/; i, j) reaction ts 

written as 

(J c (l ; i, j) = (J Y) ( EJ (];jj2_;jkm) • (5. 3) 
k,1Jl. 

<T~l) (E1) is the cross section for the formation of a compound nucleus due to the particle 

l with incident energy E1• Since _:8P;j is equal to unity, the sum of ], 3 over j is re
i 

written as 
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Nuclear Reactions at Moderate Energies and Fermt Gas Model 431 

(5 ·4) 

where F, is, as defined in I, a guantity proportional to the parlial width for disintegration 

with emission of i. The formula ( 5 · 4) is useful in the practical calculations. 

The energy spectrum of particle 1 emitted through the evaporation process i.e., EPa-. 

(l; i) JC!c/iJ!J, is given by the following formula, 

82a-c(l; i) a-?> (Et) 2M, c;a-~'> (c;)w5P (Eez-S;-c;) 

C!c;C!fJ 4rr o hFk(E,,-Sk) 
(5 ·5) 

k 

where M; is the mass of i, and w~> the level density of the residual nucleus left after the 

evaporation of i. 

When the first particle i is emitted with a small kinetic energy, the intermediate 

residual nucleus is often so highly excited that it can evaporate further a second particle 

to be left in the ground state or in the lower states. To obtain the experimentally observed 

energy spectrum, we must take into account all particles emitted from such excited nuclei. 

The energy spectrum of particle j emitted from the intermediate residual nucleus left after 

the evaporation of i will be given by 

in which E,. is the excitation energy of the compound nucleus, equal to E1 + S1• 

In a similar way as above, we can obtain the energy spectrum of particles evaporated 

from the excited residual nucleus left after a particle i is directly knocked out, as follows : 

E,x-S; -S;;-EJ 

(fer de (l ; i, j) _ 1 "'>: 2M3 f a a-,/ l ; i) 
~-ac,a.fJ--~.~n~ ac1 

0 

x Eja-~ 1 l(c;)w;;.;>(E.,-s,-S<;-c 1 ) dE,. 

~F m (E,x-Si -S,m -83 ) 

(5·7) 

Since our calculation will be concerned with the case of snpe nuclei (the most abundant 

isotope of iron) bombarded by 18 Mev protons the compound nucleus will become 57Co 

with its excitation energy equal to 18 Mev+SP. In order to carry out the numerical 

calculations we have to know the separation energies and the cross section for the formation 

of the compound nucleus. The emission probability of a, d and t etc. may be taken to 

be negligible in magnitude, so that the emission of p, n and r should be taken into con

sider~tion. For these cases we can employ the same cross sections as those shown in II, 

which have been calculated by the Feshbach-Weisskopf's formula"R) for neutrons, while, for 

protons, have been interporated on the table given by Blatt-Weisskopf.27l The required 

separation energies are estimated by the aid of experimental resources. In fact, the threshold 
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432 S. Hayakawa, M. Kawai and K. Kikuchi 

Calculated cross sections are shown in Table 1 of 56Fe (p ; n) reactions, P-decay data, and 

the threshold of 56Fe (r ; n) reaction give us 

the following values for separation energies 

concerned: 
Reaction 

p; n, r 

p; n, n 

p; n, P 

P; p, r 

p; p, n 

p; p, p 

p; nd, r 

; nd, n 

; nd, p 

p; Pd• r 

p; pd, n 

p; pd, p 

~ 
e 
~ 
~ 

~ 
5 
.s 
CJ 

"" <o 

~ _..... 

" 
~ 

Q 

~ 

Table 1. Cross Sections for 
Competing Processes 

(Cross Section in mb) 

(i) a=l.7 (ii) a=4.75 

630 510 

<1o-6 <1o-6 

3.8 4.2 

140 240 

38 60 

1.1 x w-3 7.8x1o- 4 

17 17 

<1o-6 <1o-6 

0.28 0.051 

12 12 

0.15 0.057 

2.1 x w-4 2.5x1o-6 

12 

10 

8 

6 

4 

2 

S,.=ll.5 Mev, S,.p=6.0 Mev, S,.,.=?, 

Sp=6.0 Mev, Spp=10.8 Mev, SP,.=11.2 Mev. 

Since the value of S,.,. can not be obtained 

from the experimental data, we are obliged to 

use the semi-empirical mass formula, which 

gives us 12 Mev for S,,.. 

In the above table the suffix d stands for 

the particle directly knocked out. The (p ; 

2n) reaction is found to occur with negligible 

probability, because the separation energy of 

the first proton is much smaller than that of 

the first neutron. The difference between 

"'Co ~'"Co+" 

Neutron Energy in Mev 

Fig. 11. Energy spectra of neutrons evaporated from the compound nucleus 57Co. 
Curves correspond to two different a's, 
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Nuclear Reactions at Moderate Energies ana Fermi Gas Model 433 

these separation energies is closely related to the magnitude of the proton emission probability. 

If both are of the same magnitude, as is the case in most nuclei, the emission of a neutron 

is much more probable than that of a proton. Then the cross section for (p ; p) reactions 

fails to swell its magnitude to the one observed in most cases. Energy spectra for neutrons 

and protons in the respective processes are given in Fig. 11-18. 

The energy spectra of particles summed over all evaporation processes are given in 

Fig. 19. These include the contributions from excited nuclei left after the direct interac-

q 

i 4 

~ 

E. 
..0 

5 
.5 
01 

"" ~ 2 ,..... 
.: ..... 

"" ..s-
Q 

b 

~ 

2 3 

Neutron Energy in Mev 

Fig. 12. Energy spectra of neutrons evaporated 

from intermediate residual nuclei 56Fe left after 

the first proton evaporation. Curves correspond 

to two different a's. 

q 
f! 
~ ' 
~ 6 

..0 

5 
.a 4 

01 

"" 3 
~ 
C' 2 
~ 

..s-. 
b 

~ 

"'Fe --> "Fe+ n 

Neutron Energy in Mev 

Fig. 13. Energy spectra of neutrons evapo

rated from excited nuclei "6Fe left after the 

emissiOn of protons direct! y knocked out. 

Curves correspond to two different a's. 

15 

Proton Energy in Mev 

Fig. 14. Energy spectra of protons evaporated from the compound nucleus 51Co. Curves 

correspond to two different a's. 
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)J;Co _, ~"Fe- + p 

6 

Proton lncrgv , 

Fig. 15. Energy spectra of protons evaporated from 

intermediate restdual nuder ' 6Co left after the first 

neutron evaporation. Curves correspcnd to two 

diiferent a's 

.;;-
!!: 
~ 
> 
" 

" b 

"" 

'<Co -• "Fe + p 

0.!5 

0.1 

0.1)) 

4 

Proton Energy in Mev 

Fig. 16. Energy spectra of protons evaporated from 

exerted nuclet -'6Co left after the emrsswn of neutrons 

direct! y knocked out. Curves correspond to two 

different a's. 

--~ to- 4 10-" 
"'Fe-> ~Mn+p 

~ 6 
"Fe-> "Mn+p 

4 

2ro:on Energy in Mev 

Fig. 17. Energy spectra of protons evaporated from inter

mediate residual nuclei MFe left after the first proton 

evaporation. Curves correspond to two different a's. 

1 5 

1.0 

0. 5 

Proton Energy m Mev 

Fig. 18. Energy spectra of protons evaporated 

from excited nuclei S"Fe lef< after the emission 

of protons directly knocked out. Curves 

correspond to two diiferent a's. 

tions, but do not contain those of particles directly knocked out. 

The shapes of spectra obtained above are shifted from the Maxwellian type in the 

low energy portion, because the second nucleons in ( p ; n, p) and ( p ; p, n) reactions give 

significant contributions to the total yields. This improves considerably the agreement with 

the experiment at low energies, as can be seen in Fig. 19. The choice of the parameter 

a (ii) gives a better agreement with the experimental spectrum than that of (i). 

To obtain the energy spectra corresponding to the CJbserved one, the spectra due to 

the direct interaction should be added to those obtained above. As this contributic.n is too 

small, the existing discrepancy between the theoretical and the experimental results in the 
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Fig. 19. Energy spectra of nucleons due to the evaporation process. Solid curve and dashed curve 

indicate the spectra of neutrons and protons respectively. Curves correspond to two diJ(erent a's. These 

curves correspond to the experimental ones if being added to the contribution due to the direct process. 

For the comparison here are shown spectra of particles emitted at the direction of e = 60°. 

high energy portion can hardly be improved. 

Now, the behaviour of the nuclear temperature, which depends upon the detailed 

property of the spectrum, shall be discussed in detail. The apparent nuclear temperature 

can be derived usually by neglecting the knock-out process and taking the whole energy 

spectrum as that due to the evaporation from the compound nucleus. The question is to 

examine whether the strange tendency of the nuclear temperature pointed cut by Cohen15> 

comes from the disregard of the direct process or not. For this purpose we have calculated 

the apparent nuclear temperature on the basis of the spectrum obtained in Fig. 19 and 

Fig. 8. Our calculation is based upon the spectrum at 8=60°, while the analysis by 

Cohen has been performed in the backward direction (@ = 15 0 °). In the backward direc

tion the yield due to the direct process is not so large that it may not alter the energy 

dependence of the nuclear temperature. The apparent temperature at 8=60° is shown in 

Fig. 20. 
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( a=l.7 Mev-1 

............... 
a=I.7Mev-l 

... 
... 

---:-L!..__ .· --- ..... . ·. --- ........ . . . . . . ...._ ....... _/ __ _ ... 
. . ;· .. . . . . ...... Lang & LeCouteur 

a=4.75 Mev-1 

10 

Excttation Energy in Mev 

. . . 

Fig. 20. Nuclear temperature (at 19=60°) derived from the spectra obtained in Fig. 19 taking into 

account the direct process. Curves correspond to two different a's. Dashed curve indicates the tempera· 

ture corrected from the experimental spectrum by the formula given by Lang and Le Couteur.14l 

Dotted curves are those derived from the spectra due to the evaporation only. 

The calculated temperature approaches zero near the zero excitation energy, as it should 

be expected. Since the absolute value of the nuclear temperature in the Fermi gas model 

directly depends upon the magnitude of parameter a, the known behaviour of the tempera

ture suggests us that a thorough analysis is required to determine the value of a from the 

experimental energy spectrum. Indeed, Tomasinr 6l has attemped to explain the energy 

spectrum of neutrons by taking account of two steps of evaporation, in which two different 

temperatures are ascribed to respective steps and the second step is interpreted to be due 

possibly to the nuclear excitation left after the first neutron emission. Although this is 

not entirely the case in our example because of the large separation energy for neutrons, 

the protons evaporated from the intermediate residual nucleus after the direct neutron 

emission change the aspect of the proton spectrum observed in the low energy portion. 

From these facts it seems possible that the secondary nucleons emitted from excited nuclei 

left after the first nucleon evaporation or the direct nucleon emission may give an influence 

on the shape of the energy spectrum observed in the experiment. This effect can only 

take place in the low energy part of the spectrum, because the kinetic energies of secondary 

particles are smaller than those of the nucleons emitted from the compound nucleus. Then 

the nuclear temperature determined from such a range of the experimental spectrum may 

be lower than the actual one. Such diminishing of the temperature affected by the 

secondary nucleons occurs at an energy range corresponding to high excitation energies of 

the residual nucleus, as seen from the calculated temperature in Fig. 20. 

On the other hand, Beard29J has assumed an energy dependence of a and derived the 

apparent temperature that has a minimum at an excitation energy around 12 Mev. A 

similar behaviour of the apparent temperature can be obrained here without making such 

a special assumption, if a is chosen as (ii). Moreover, the choice (ii) of a gives rise to 
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a peak at 3 Mev due chiefly to the direct knock-out protons. This contribution alters the 

energy dependence of the apparent temperature, so as to decrease with increasing excitation 

energy. This might be thought to clarify the strange energy dependence pointed out by 

Cohen.15l However, this success holds only for such protons that are scattered at 60°, but 

not at 150°. Nevertheless, one may suspect a possibility that some other processes could 

make a contribution to the backward scattering. 

§ 6, Interpretation of the inelastic scattering of 

31 Mev protons by Sn 

The method of treatment in § 4 is so tedious that it can not always be applied to 

the analysis of other experimental data without much labour. In this section, therefore, 

we shall treat the inelastic scattering of high energy nucleons by the use of a rather simple 

model. We may disregard the effect of the diffraction on the nuclear surface if the energies 

of both incident and scattered particles are high enough. 

In the above case of high energy scattering, the main feature of the process is shown 

schematically in Fig. 23, in which z-axis is along the direction of the incident beam and 

r-axis perpendicular to it. L1 and 4 are the lengths of paths within the nucleus before 

and after the collision respectively. The observed differential cross section at a direction of 
12(0, rp) is given by 

(6 ·1) 

where a-P P' is the cross section for the proton-nucleon scattering in nuclear matter, and Ai 
and J.1 are the mean free paths for the incident and the final nucleons respectixely, T, and 
T1 being the corresponding ttansmission coefficients. If the nucleon density p ( r) is assumed 
to be constant in the nucleus, ( 6 · 1) is reduced to 

~=- 3 -( a26
Pr' A\Jr.r rL, ex (-.!2_-!:!__)drd J, (6·2) asaf2 2J(l asaf2 J • 1 ls P A, A1 z 'f ' 

where R is the nuclear radius and A the mass number. 

Further we assume T's are not dependent upon the angle of incidence on the nuclear 

surface but only upon the energy of particles concerned and, in the actual calculation, we 

take the average values for T's with the use of those given by Blatt-Weisskopf.27l 

Most of the scattered particles observed are considered to take the shortest path to 

emerge from the nucleus after the collision. Hence the integration with respect to 'f will 

be performed by approximating the exponential by a Gaussian form. Since the integrals 

over r and z can not be done analytically, we are obliged to employ the Simpson's formula 

for the integration. With these approximations we have 

a26 1 j rr j AL(sin0)-1' 2 (A a26
PP' )T(E,)T(E) 

asat2 2 3 R asaf2 1 

1 

2 

R R -----e4 
4e At 2AJ J + . e 3 

(6·3) 
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where 8's are complicated functions 
dependent only on angle fJ. The 
values of 8's are given in Fig. 21. 

(AiPcrpp,;asa!J) for Sn can be 
calculated in a similar way to that 
for Fe, and the mew free path is 

given in Fig. 1. 

3' 

30. . 60° 90° 

~Angle 6 

120°_ 150° 180° 

The calculated cross sections 
are shown in Fig. 22. In spite of 
our rough approximation, the agree
ment with the experiment is fair, 
except for the failure to explain the 
proton yield in the backward direc
tion. These particles emitted into Fig. 21. Numerical values of function 8's YS. angle 0. 

Sn(p; p') 

1 - + 

10 
Proton Energy in Mev 

Fig. 22. Energy spectra of protons inelastically scattered by Sn. The energy 
of incident protons is 31 Mev. Figures attached to respective curves indicate 
scattered angles. Plotted experimental values are : 

+ IJ=30° 

+ 6=60° 

I-I 6=90° 
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the backward direction may be due 

to the evaporation from the com

pound nucleus. This consideration 

is, however, rather doubtful since 

the proton emission is less probable 

than the neutron emission especially 

in heavy nuclei. 30 •31) 

The authors wish to express 

their hearty thanks to Prof. T. Muto 

for his valuable comments on this 

work and for the careful reading of 

the manuscript before publication. 

-lzcddenr Beam 

439 

Appendix 
Fig. 23. Schematic representation of the inelastic scattering 

of high energy nucleons. 

Since our calculations developped 

in the text are essentially semi-classical, we adopt a semi-classical method of approximation 

also for the calculation of the transmission coefficients. 

Let us consider first the case of neutron incidence. The component of momentum 

of the incident neutron along the direction of the normal to the nuclear surface at the 

incident point is given by 

Poutn =Pout cos a , (A·l) 

where a is the incident angle. By the classical analogy, we may infer that the usual 

transmission coefficient for the S-wave can be taken over in our case with the modification 

that the momenta inside and outside the nucleus are replaced by their normal components : 

T,.(a) = 4Poutnpinn , 

(Poutn+Pmn) 2 

where the suffix n signifies the normal components and P1nn is defined by 

Plnn =Pin COS {3 , 

(A·2) 

(A·3) 

f3 being the angle of refraction. Now, in deriving (A· 2) we have replaced approximately 

the spherical nuclear surface in the vicinity of the incident point by its tangent plane, 

which is assumed to specify a boundary of two media with different indeces of refraxion 

due to the nuclear potential. Further, the incident neutron beam can be supposed to be 
described by a plane wave with wave number vector Kont = P,mJh. Solving the Schrodinger 

equation with the boundary condition that there should be only a transmitted wave within 

the nuclear side, we can easily get the transmission coefficient as described in (A· 2). Thus 

one can see that (A· 2) is the semi-classical generalization of the transmission coefficient. 

In the same way as above we can calculate the transmission coefficient for incident 

protons. We substitute, in the expression for the S-wave transmission coefficient, the normal 

component of the wave number vectors in place of the wave number itself. As we are 

dealing with a semi-classical model, the calculation of the transmission coefficient by means 
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440 S. Hayakawa, M. Kawai and K. Kikuchi 

of W. K. B. approximation will be regarded reasonably to give a sufficient approximation in 

view of the consistency of the calculations. Then, we obtain 

for ko7,tnro < ~ , 

where a= 2MZt? /~ 2 , Z being the atomic number of the target nucleus. 

koutn(R) = Vko~tnro- (ajR) , 

ICoutn(R) = V (ajR) -ko~ho<», 
b 

G=exp[2 J ICoutn(z)dz], 

R 

where b is the classical turning point defined by the equation 

k 2 a 
outn=b 

and R the nuclear radius. 

(A·3) 

(A·4) 

(A·5) 

(A·6) 

(A·7) 

(A·S) 

T P (a) given above can be dc:rived by a method which is essentially similar to that 

employed in the case of neutron transmission. Namely, the nuclear boundary is replaced 

by its tangent plane Er at the incident point of the proton and consequently the actual 

Coulomb potential by the one which varies like 1/ z outside the nucleus, z being the 

distance from the plane passing through the centre of the nucleus and parallel to Er. 

Furthermore the spherical well of nuclear potential is substituted by a constant potential 

which is bounded by the plane Er and of depth equal to that of the spherical potential. 

Solving the Schrodinger's equation with a proper boundary condition by means of the W. 

K. K. approximation, we can easily derive the above transmission coefficient. In spite of 

our semi-classical procedure, the transmission coefficients given above have been found to 

contain the wave mechanical features, although the particle with the impact parameter 

greater than the nuclear radius will give no contribution to the transmitted wave. This is 

the necessary consequence of a semi-classical model. 

On the other hand the magnitude of TP in our case is larger than the exact wave 

mechanical transmission coefficients for a proton with the same angular momentum. It seems 

to be that many partial waves with small transmission coefficients contribute to the transmitted 

wave by about the same amount as such partial waves allowed by classical argument. 

Equation (A· 3) may also be regarded as a semi-classical refinement of the results obtained 

qy Kind and Perganini.12> 
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Nuclear Reactions at Moaerate Energies and Fermi Gas Model 441 

Finally, we shall briefly discuss the path of a proton beam in the Coulomb field. In 

our crude approximation described above the component of a proton momentum parallel to 

the tangent plane ET does not change on approaching the nuclear surface. Writing the 

wave number vector of the proton at an infinite distance from the nucleus by K 0111,, we 

see that the following equation holds 

koutrot = k.,utt ( R)' (A·9) 

where the suffix t signifies the component parallel to ET. Let the angle between the vector 

K""'"' and the normal of ET be r;ro, and the incident angle be 7J· Then, from the above 

equation, we have 

k .. utro sinr;"'=kout(R) sin7J. (A·10) 

On the other hand the matching of wave functions in both regions at the nuclear 

boundary requires, as in the case of the incident neutron, the Snellius' law of refraction 

k.,111 (R)sin7J=k; 11 Sinj9 (A·ll) 

to hold. On account of (A· 10) and (A· 11) follows 

k.,utro sin '1)"' =k;u sin/9. (A ·12) 

This 1s the relation which we have used in ( 4 · 7) in the text. 
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