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Nuclear receptor (NR) coregulators (coactivators and core-
pressors) are essential elements in regulating nuclear recep-
tor-mediated transcription. In a little more than a decade
since their discovery, these proteins have been studied mech-
anistically and reveal that the regulation of transcription is a
highly controlled and complex process. Because of their cen-
tral role in regulating NR-mediated transcription and in co-
ordinating intercompartmental metabolic processes, disrup-
tions in coregulator biology can lead to pathological states. To

date, the extent to which they are involved in human disease
has not been widely appreciated. In a complete literature sur-
vey, we have identified nearly 300 distinct coregulators, re-
vealing that a great variety of enzymatic and regulatory ca-
pabilities exist for NRs to regulate transcription and other
cellular events. Here, we substantiate that coregulators are
broadly implicated in human pathological states and will be
of growing future interest in clinical medicine. (Endocrine
Reviews 28: 575–587, 2007)
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I. Introduction

COREGULATOR BIOLOGY RESTS upon the shoul-
ders of a long history of research on nuclear recep-

tors (NRs) and their ligands. NRs are members of a large
superfamily of ligand-regulated (and orphan) transcrip-
tion factors that play a central role in the body’s ability to
transduce steroid, retinoid, thyroid, and lipophilic endo-
crine hormones. Seminal work in the 1960s and 1970s dealt
with determining how these hormones, characterized de-
cades before, elicited their physiological actions. This led
to the identification of NRs as their cognate ligand-acti-
vated DNA-binding transcription factors (1, 2). A broad
range of physiological processes are regulated through
these endocrine signals in conjunction with their 48 re-

ceptors in humans. For example, the androgen receptor
(AR), progesterone receptor (PR), and estrogen receptors
(ER� and ER�) play central roles in reproduction and
target tissue growth; the glucocorticoid receptor (GR) in
glucose metabolism, inflammation, and stress; thyroid
hormone receptors (TRs) in oxidative metabolism; and
peroxisome proliferator-activated receptors (PPARs) in
lipid and energy metabolism. A large variety of synthetic
ligands have been designed to pharmacologically target
these NRs, finding widespread clinical use.

As transcription factors, NRs have a nearly direct role in
regulating the expression of hormone-response genes.
This regulatory capacity of NRs occurs through their abil-
ity to recognize specific sequences in the promoters of their
target genes and their relationships with the RNA poly-
merase II (pol II) holocomplex and the chromatin envi-
ronment that surrounds these genes (3). Central to our
discussion here, coregulators (coactivators and corepres-
sors) more directly influence these critical regulatory as-
pects of global gene expression. We define coactivators as
molecules that are directly recruited by NRs to enhance
NR-mediated gene expression (4). Recruitment is usually,
but not always, ligand dependent. Coactivators can be
subdivided into two groups: primary coactivators and
secondary coactivators. Secondary co-coactivators repre-
sent a subgroup of molecules that are constituents of mul-
tisubunit coactivator complexes (see Section III) and that
also contribute to the enhancement of NR-mediated tran-
scription, but do not directly contact the NRs. Corepres-
sors act in an opposite manner to repress gene expression,
primarily through their interaction with unliganded NRs
(5). Depending upon cell and signaling context, coactiva-
tors and corepressors sometimes can switch roles. Pres-
ently, approximately 285 coregulators are reported in the
literature, frequently in connection with numerous phys-
iological functions and pathological states. Here, we will
emphasize that coregulators are broadly implicated in an
unexpectedly wide variety of human disease states and are
becoming of increasing interest in clinical medicine.
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II. History of Coregulators

The regulation of mRNA transcript production by RNA
pol II is a central biological theme that remains the subject of
strong ongoing interest because the expression of all mam-
malian proteins depends upon the interaction of pol II with
the genome. Pol II is a large multisubunit protein complex,
consisting of a constitutive set of approximately 30 general
transcription factors (GTFs) that provide for a large degree
of regulatory complexity (6–8). Experiments initially done in
yeast brought us the realization that, in addition to these core
GTFs, an additional set of helper proteins assist in commu-
nication between transcription factors and the pol II complex.
They were originally envisioned to function primarily as
“transcriptional adaptors,” bridging DNA binding transcrip-
tion factors to the general transcription machinery (9, 10).
Unlike GTFs, coactivators interact directly or in close asso-
ciation with the DNA-binding transcription factors and are
not constitutive members of the pol II holocomplex. Core-
pressors, on the other hand, were predicted to exist based
upon the ability of the unliganded TR to function as a tran-
scriptional repressor (10). Corepressors thus function as
counterparts to coactivators, revealing that NR-mediated
transcription is subject to both positive and negative regu-
lation. As we shall discuss below, our appreciation of the
wide array of mechanisms involved in regulating pol II-
mediated transcription has come mainly from the character-
ization of these coregulators.

One of the first fruits that emanated from the identification
of coregulators was that their primary amino acid sequence
revealed a diverse array of enzymatic and functional events
that control transcription, emphasizing that transcription is
subject to a very complex sequence of events (11). Beyond
being just “bridging” agents, coregulators possess numerous
enzymatic capabilities and can act in many substeps of tran-
scription, including transcriptional elongation, RNA splic-
ing, and mRNA transport (12). Initially, after the identifica-
tion of ERAP160, a protein that specifically interacts with
agonist-bound receptor (13), the cloning of the first NR co-
activator steroid receptor coactivator (SRC-1) (14), and the
corepressors nuclear receptor corepressor (N-CoR) and si-
lencing mediator of retinoid and TR (SMRT) (15, 16), we
predicted that there would be perhaps 10 coactivators and a
few corepressors in the cell. In contrast, nearly 300 coregu-
lators have now been reported in the literature. Understand-
ing the biological and clinical “footprint” of this ever-grow-
ing group of proteins represents a considerable challenge. In
this review, we shall see that when taken as a whole, co-
regulators can be recognized as important and pervasive
contributors to a wide array of human diseases.

The involvement of NRs in pathologies has long been
known (17). In large part, this is more straightforward be-
cause NRs are classified upon the biological activities of their
cognate ligands. For instance, the mineralocorticoid and glu-
cocorticoid receptors have roles in mineral balance and glu-
cose metabolism. In contrast, it is harder to understand how
any given coregulator might contribute to pathology. In most
cases, this is because coregulators do not possess strict spec-
ificity for a particular NR; instead their actions are pleiotro-
pic, influencing the transcriptional output of a large number

of transcription factors. Nevertheless, as we shall discuss in
Section IV, rapid progress has been made in identifying co-
regulator-related diseases.

III. Emerging Aspects of Coregulator Biology

Core coregulators, those that interact directly with NRs,
exist in large steady-state complexes with multiple second-
ary co-coregulator partners. Each component may possess
multiple enzymatic capabilities such as acetyltransferase,
methyltransferase, phosphokinase, ubiquitin ligase, and
ATPase activities, ultimately making these complexes ver-
satile enzymatic machines for regulating gene expression
(12). Coregulator activity is directly affected by its phos-
phorylation, methylation, acetylation, or other modification
status, forming a posttranslational modification code. This
code then controls the coregulator’s transcriptional activity
and transcription factor preferences (18). As such, coregu-
lators are “master genes” that become regulatory hubs for the
coordinated control of broad transcriptional programs such
as for cell growth, differentiation, and metabolic functions
(19). For instance, SRC-3 is phosphorylated at distinct serine/
threonine residues by a number of different kinases, gener-
ating a distinct phosphorylation code on the coactivator. This
code is able to control the ability of SRC-3 to coactivate
selectively NRs and non-NR transcription factors (20). Clin-
ically, this phenomenon is likely to be important because
overexpression of both SRC-3 and the human epidermal
growth factor receptor (her-2/neu) kinase in human breast
cancers correlates with decreased breast cancer survival,
early tamoxifen resistance, and possible alterations in SRC-3
phosphorylation status (21, 22). The coregulators SMRT and
N-CoR also are regulated by phosphorylation, controlling
their intracellular localization (23, 24). Phosphorylation of
either results in its redistribution to the cytoplasm, neutral-
izing their ability to corepress mRNA production in the nu-
cleus (23). Kinase signaling systems and coregulators thus
work hand-in-hand to regulate broad transcriptional pro-
grams in a concerted fashion.

High throughput genomic technologies such as mRNA
gene expression profiling have been of great use in under-
standing how coregulator expression relates to human pa-
thologies such as cancer (25–27). However, because most
coregulators function as proteins, emerging proteomic tech-
nologies that can efficiently assess cellular coregulator pro-
tein levels will likely be more informative. It is well known
through work in our laboratory and other groups that co-
regulators are subject to degradation by ubiquitin-dependent
and -independent proteasome systems (4, 28). In normal
tissues, most coactivators appear to be expressed in a con-
stitutive manner at the mRNA level, and their mRNAs are
not subject to dynamic regulation in response to acute ex-
ternal stimuli [PPAR� coactivator-1� (PGC-1) is a notable
exception] (29); the pathological cell does not hold to this
general role. Cellular coregulator content can be regulated at
the protein level by posttranslational modifications, NR li-
gands, and other stimuli that influence their protein stability
(30–32). Directly related to this, proteomic approaches to
address coregulator posttranslational modifications also will
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be crucial in accurately assessing the activity state of coregu-
lators in the cell, something that cannot be accounted for in
mRNA-based gene expression profiling studies.

Bioinformatics approaches promise to reveal a more com-
plete picture of the role of coregulators in human disease.
Because of their overarching and pleiotropic functions, rec-
ognizing coregulator involvement in pathological conditions
will be challenging, something that broad inspection of cell-
and genome-wide information may reveal more clearly.
Other high throughput technologies include chromatin im-
munoprecipitation “ChIP on CHIP” assays, protein-interac-
tion network maps, and gene polymorphism disease rela-
tionship studies (33). Although these types of approaches are
applicable to the study of other proteins as well as coregu-
lators, they should help us understand the role that coregu-
lators play in human disease in much greater detail.

IV. Coregulator Involvement in Human Disease

Through a broad and extensive review of published lit-
erature on coregulators, we have identified nearly 300 co-
regulators. Many within the list are primarily recognized as
coregulators, including SRC family proteins, PGC-1�, cAMP
response element-binding protein binding protein (CBP),
and others. On the other hand, a certain number of proteins
in this list are not commonly thought of as such, like BRCA1
(34), p53 (35) and �-catenin (36) but are included if they have
been reported to function as coregulators in addition to other
biological roles. Overall, this constitutes a large number of
coregulator proteins, enough to ask new questions about the
overall scope of coregulators in human biology.

We have cited 102 unique coregulators that are involved
in human diseases (Table 1). This includes all proteins re-
ported to function as coregulators that are mutated, over- or
underexpressed, or exist as pathological polymorphisms in
actual human conditions. When tabulated into some com-
mon disease groupings, it can be seen that coregulators have
primarily been reported in the literature as over- or under-
expressed in cancers, which is to be expected because of
clinical interest. Because coregulator levels in cells normally
are tightly regulated and small changes can greatly influence
function, we assume that over- or underexpression contrib-
utes to the associated pathology. For instance, one could
anticipate that endocrine-related cancers (such as breast,
uterine, and prostate cancers) might progress due to alter-
ations in coregulator expression. It is only a matter of time
until human investigations of coregulators are extended to
all disease states.

Coactivator expression defects in immortalized human
cell lines (such as MCF-7 or HeLa cells) are excluded here so
as to stress the cases where coactivators have a more direct
clinical relevance to human diseases. Due to the extent to
which many of these proteins (p53 for instance) are involved
in cancer and other factors regarding the nature of the co-
regulator disease studies, this list does not represent a com-
plete account of all cases. However, it is patently clear that
coregulators are involved in a broad range of pathologies as
enumerated in Section V and in Table 1. From our survey, we
are able to group coactivator-associated pathologies into a

number of categories: i.e., over- or underexpressed in cancer,
metabolic syndromes, heritable syndromes, coactivator fu-
sion proteins, and coactivator gene polymorphisms.

V. Coregulator Over- and Underexpressions
in Cancer

Instances where coregulators are over- and underex-
pressed in human cancers make up the largest group of
related diseases, where by our count, at least 102 different
coregulators have been reported to be over-/underexpressed
in the literature (Table 1). Coregulator overexpression may
invoke carcinogenesis, enhance its progression, or in some
cases, alter the biological activities of therapeutic NR ligands
(37). Because coregulator misexpression is one obvious pos-
sible cause for endocrine-related cancers, numerous studies
have sought and found such a relationship. In addition to
this, many other cancers that do not immediately bring NRs
or endocrine relationship to mind also are represented, in-
dicating that coregulators are broadly involved in a much
larger array of cancers than originally thought. This point is
reinforced by an examination of coregulators in the cancer
profiling Oncomine database (www.oncomine.org) (38).
This database is a common repository for transcriptome
meta-analysis of human cancers and tissues (see Ref. 39 for
discussion on the limits and robustness of gene expression
profiling). Overall, Oncomine data reveal that coregulators
are broadly over- or underexpressed in human cancers
(Table 2). For instance, in lung cancers, 60% of the coregu-
lators we have identified in the literature are overexpressed,
38% in breast cancers, and 43% in prostate cancers. The
Oncomine database also indicates that many coregulators are
underexpressed in human cancers as well. Again, this is
likely due to the pleiotropic capabilities of these proteins. For
instance, by failing to stimulate the transcription of tumor-
suppressing transcription factors such as p53 or the vitamin
D and other repressive receptors, uncontrolled cell growth
could ensue (40–42). Overall, given the bulk of cases in the
literature and gene expression profile data meta-analysis, it
is reasonable to think that coregulator misexpression is a
pervasive agent in the progression (or etiology) of human
cancers.

VI. Metabolic Syndromes

PGC-1� is a key coactivator in the regulation of metabolic
function (43). Early work on PGC-1� revealed that this co-
activator is expressed in muscle and brown adipose tissue in
mice and is highly inducible by exercise, fasting, and cold
exposure. It was revealed to be a coactivator for PPAR� (and
for other NRs) when knocked out or ectopically expressed in
mice, further reinforcing its role in metabolism (43–45). A
polymorphism in the PGC-1� gene (G482S) and another
polymorphism in the gene’s promoter have been linked with
an increased risk of type 2 diabetes (46–48), although these
findings have not yet been generally accepted (49). A defect
in the inducible expression of PGC-1� also has been linked
to cholesterol cholelithiasis (gallstones) (50); this group also
observed an increase in hypertension in carriers of a G482
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TABLE 1. Survey of coregulator involvement in human diseases

Disease state or coregulator defect No. of coregulators (out of 285)

Over- or underexpressed in cancer 101
Inflammation 5
Metabolic 2
Congenital syndrome 21
Fusion protein 6
Polymorphisms 12
Non-cancer 16

Coregulator Disease state
Akt Multiple cancers1,2

ARA55 Prostate cancer OE3

ARA70 Polycystic ovarian syndrome OE4

�-catenin Dupuytren’s disease and multiple cancers OE5,6

BRCA1 Breast, ovarian cancer7

BRCA2 Breast, ovarian, multiple cancers7

BRG1 Lung cancer OE, gastric, breast, and pancreatic cancer null/UE8–11

Calreticulin Inflammatory bowel syndrome—autoantigen, Weldenstrom’s macroglobulemia, multiple
other diseases12,13

CARM1 Prostate cancer, homocysteine plasma regulation14,15

CAV1 Heart disease,15 brachycardia, breast cancer OE, atherosclerosis16,17

CBP Rubenstein-Taybi syndrome18

CDC-25B Gliomas, esophageal squamous cell carcinomas19,20

CDK7 Alzheimer’s disease, aging of the hippocampus21

CFL1 Breast cancer OE22

CITED1 Thyroid carcinomas OE23

CoAA Lung, squamous cancer, and lymphomas gene amplification24

Cyclin A1 Acute myeloid leukemia, testicular cancer OE25,26

Cyclin A2 Gastric carcinoma, multiple cancers OE27

Cyclin D1 Breast cancer, multiple cancers OE28–30

Cyclin D3 Ta/T1 bladder cancer, colorectal, laryngeal squamous cell carcinomas, multiple myelomas OE31–34

Cyclin E1 Breast, bladder cancers OE35–37

DAP3 Thymoma OE, SNPs underlie asthma38,39

Daxx Prostate stromal cancers OE40

DJ-1 Parkinson’s disease41–43

DNAJB1 Role in hepatic B X protein turnover44

DRIP130 Nonmetastatic melanomas OE45

E6-AP Angelman syndrome, breast, cancer prostate OE46,47

ELL Leukemias OE48,49

FKHR Alveolar rhabdomyosarcomas fusion protein50

Fli-1 Ewing sarcoma fusion protein,51 fibrotic scleroderma51,52

FLNa Frontomethphyseal dysplasia, otopalatodistal type I syndrome, West syndrome, Danlos syndrome,
periventricular heterotopias53,54

Gelsolin N187Y and G654A polymorphisms lead to amyloidosis, cardiac pathology, amyloid angiopathy55–58

HDAC3 Astrocyclic glial tumors OE59

HDAC4 Nonsyndromic oral clefts—germline mutations60

HMG-1 Sjogren’s syndrome, proinflammatory cytokine pathology61,62

HMG-2 Systemic sclerosis63

JAB1 Oral squamous cell carcinoma64

Ku80 Autoantigen, Werner syndrome, melanomas, acute lymphoblastic leukemia, esophageal squamous
cell carcinoma and breast cancers OE65–67

LATS2/KPM Breast cancer and acute lymphoblastic leukemia68–72

MGMT Gliomas OE73,74

MLL2 Leukemias, solid tumors75,76

MN1 Meningioma,72 fusion protein MN1-TEL77–79

MTA1 Breast cancers possess splice variant, endometrial cancers OE80

MTA2 Ovarian cancers OE81

MUC1 Multiple cancers82

N-CoR Colorectal carcinomas and endometrial cancers OE83,84

NSD1 Soto syndrome, familial gigantism85,86

p-TEFb Multiple cancers48

p53 Multiple cancers, Li Fraumeni syndrome87,88

p54nrb Splice variants in breast cancer, fusion protein in papillary renal cell carcinoma89,90

p57 Follicular lymphoma, non-small cell lung cancer, laryngeal cancers, pancreatic cancers,
tetraploid hydropic placentas OE91–95

p68 Breast cancers OE96

p300 Rubenstein-Taybi syndrome, MOZ fusions, polymorphisms in intestinal and gastric tumors97–99

PAD4 Rheumatoid arthritis, adenocarcinomas OE100,101

PARP-1 Multiple cancers102

(Continued)
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allele and suggested that it may be responsible for early-
onset hypertension. The related protein PGC-1� has recently
been knocked out in mice, revealing that it also is involved
in metabolic functions. PGC-1��/� mice have reduced mi-
tochondrial function and other defects in fat metabolism (51,
52). PGC-1� can promote the formation of oxidative type IIX
muscle fiber, which is an important issue in athletic perfor-
mance (53).

Other coactivators also have been shown to be important
regulators of metabolism (54). SRC-1 and SRC-2 have been
found to play opposing roles in energy metabolism through
mouse knockout studies. SRC-1�/� mice are prone to obesity
due to decreased energy expenditure, whereas SRC-2�/�

mice are leaner due to the reduced transcriptional capacity
of PPAR�2, essential for adipoctye differentiation (55–57). In
SRC-2�/� mice, a subsequent increase in PGC-1�/SRC-1

TABLE 1. Continued

Disease state or coregulator defect No. of coregulators (out of 285)

PCAF Colorectal and breast cancer OE, solid cancers83,103,104

PDEF Prostate, breast, and ovarian cancer OE105,106

PDK1 Renal disease107

PGC-1� Polymorphisms in diabetes (disputed), cholesterol cholelithiasis, metabolic syndrome in
adolescents, Huntington’s disease108–114

PGC-1� Genetic variations correlate with obesity115

PELP1 Salivary gland duct adenocarcinomas, endometrial cancer OE116–118

PIAS1 Prostate cancer OE119

PIAS3 Alcoholic and HCV cirrhosis, multiple cancers OE120–122

PIAS4 Myelodysplasic syndrome123

PIN1 Alzheimer’s disease; gastric, salivary, colorectal, hepatic, esophageal, prostate, and other cancers
OE124–129

PPM1D Neuroblastomas, breast and ovarian cancer OE, gene amplifications in cancer130–133

PRAME Ovarian adenocarcinomas, acute myelogenous leukemias, childhood acute leukemias,
neuroblastomas, NSC lung and pineal cancers OE134,135

PUS1 Myopathy, lactic acidosis, and congenital sideroblasic anemias, mitochondrial myopathy, and
sideroblastic anemias136–139

RACK1 Alcohol addiction susceptibility due to polymorphism, bipolar disorder140,141

RAF1 Prostate and lung (disputed) cancer OE142,143

RANBP2 ALK fusions in inflammatory myofibroblastic tumors144

Rb Multiple cancers145

REA Breast cancer UE146

REG� Breast cancer UE, autoantigen, thyroid cancer OE147,148

SAF-A Breast cancer OE149

SAP30 Basal cell carcinoma OE150

SENP1 Prostate cancer OE151

Six3 Holoprosencephaly152–154

SNURF Testicular germ cell cancer OE, imprinting defect—linked to Angelman and Prader-Willi
syndromes155,156

SRA Ovarian tumors OE, breast cancer OE157–159

SRC-1 Prostate, breast, and gastric cancers OE160–164

SRC-2 MOZ-SRC-2 fusion proteins in acute myeloid leukemia, brain and breast cancer correlation with
ER/PR expression165–176

SRC-3 Breast, pancreatic, ovarian, endometrial carcinoma, esophageal squamous cell carcinomas,
colorectal carcinoma, oral squamous cell carcinomas OE, smaller isoform in breast cancer,
gastric cancer, polymorphisms can protect against breast cancer and influence calcaneal bone
density177–217

SRY Oral squamous cell carcinomas OE, teratozoospermia, 46XX AIS, anorchia, myocardial
infarction218–220

STAT3 Oral squamous cell carcinomas, ovarian and gastric cancers221–225

SUMO-1 Type II diabetes226

SYT SYT-SSXZ fusion protein in synovial sarcomas227,228

TBL1 X-linked late-onset sensorineural deafness, polymorphisms, splicing errors229

TBP Creutzfeldt Jakob syndrome susceptibility and other neurodegenerative diseases, diabetes, SCA17
syndrome due to poly Q tract variants230–233

TDG Lung cancer susceptibility from polymorphisms, pancreatic cancer OE234,235

TGIF Gastric cancer OE, sporadic holoprosencephaly236,237

TLS Fusion protein with p300238

TRAP100 Breast cancers OE239

TRAP220 Epilepsy UE240

TRRAP Pancreatic cancers OE241

TSG101 Genetic variants influence HIV-1 infection, acute myeloid leukemia, gastrointestinal stromal,
cervical, breast, and prostate cancers OE242–246

UBC9 Melanoma, ovarian and lung cancers OE247

VAV3 Prostate cancers OE248,249

WSTF Williams syndrome250

Superscript numbers indicate references listed in Supplemental References A (published as supplemental data on The Endocrine Society’s
Journals Online web site at http://edrv.endojournals.org). OE, Overexpressed; UE, underexpressed; HCV, hepatitis C virus; NSC, non-small
cell carcinoma; ALK, anaplastic lymphoma kinase.
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interaction occurs, enhancing the thermogenic actions of
PGC-1� in brown adipose tissue. SRC-3 has been shown to
be involved in metabolism by promoting the formation of
white adipose tissue; SRC-3�/� mice possess decreased ad-
ipose tissue mass (58). It was determined that SRC-3 is able
to enhance CAAT enhancer binding protein-� (C/EBP�)-
mediated transcription of PPAR�2, essential for progression
of adipoctye differentiation. Other studies have revealed that
PPAR�2-mediated transcription is subsequently dependent
upon the mediator subunit TRAP220, indicating that coac-
tivators play important roles in multiple steps throughout
adipoctye differentiation (59). Additionally, coactivation of
another key adipoctye differentiation-related transcription
factor, C/EBP�, also depends upon the SWI/SNF chromatin
remodeling coactivator (60), further reinforcing the fact that
coactivators are intermingled at multiple steps in the se-
quential process of adipoctye differentiation.

Corepressors are involved in the regulation of additional
select aspects of metabolic function. Clinically, it has been
known that the antipsychotic valproic acid can lead to weight
gain (61, 62), an effect that may be a consequence of its ability
to function as a histone deacetylase (HDAC) inhibitor. Here,
HDAC1 and HDAC3 repress the transcriptional program of
C/EBP� and PPAR�, respectively, whereas their suppres-

sion by HDAC inhibitors allows for adipoctye differentiation
to ensue unabated (63). Another important corepressor in-
volved in metabolic regulation is receptor-interacting protein
140 (RIP140), which can repress the transcription of a variety
of genes involved in fat and carbohydrate metabolism. Loss
of RIP140 in knockout mice results in a lean phenotype,
resistance to obesity, and increased insulin sensitivity (64).

The sirtuin HDACs (SIRT1–7) are involved in metabolic
syndromes (65). Here, age- and diet-related metabolic issues
are associated with loss of sirtuin HDAC activity and cor-
responding defects in glucose metabolism and mitochon-
drial function. Under conditions of restricted caloric intake,
SIRT1 activity is enhanced in various tissues along with
improvements in metabolic function and longevity (66).
SIRT4 functions as an HDAC that directly targets mitochon-
dria (67). SIRT6 is involved in the nuclear regulation of genes
involved in metabolic physiology; it also contributes to
genomic stability, and its loss leads to an aging-like pheno-
type (68). Given the significant structural differences in the
sirtuin class of HDACs and their distinctly different enzy-
matic mechanism from non-sirtuin HDACs, this class of pro-
teins represents promising targets for the design of new
drugs to treat metabolic syndromes (69, 70). Indeed, resvera-
trol, a compound naturally existing in grapes (and red wine),
can function as an SIRT1 activator and improves metabolic
function in animals (71, 72).

VII. Heritable Syndromes

Germ-line coregulator gene disruptions are responsible for
some inherited genetic syndromes. Mutations in E6-AP are
responsible for Angelman syndrome, an imprinted heritable
condition in which mutations on the maternal allele cause
severe mental retardation and ataxia (73, 74). The Rubenstein-
Taybi syndrome results from mutations in the CBP or p300
genes and leads to mental retardation and characteristic mor-
phological defects (75, 76). It should be noted that for both
the Angelman and Rubenstein-Taybi syndromes, carriers do
not manifest clear defects that can be attributed to any spe-
cific NR, likely due to the pleiotropic actions of both of these
coactivators. Other cases of heritable coactivator-related syn-
dromes include Huntington’s disease, where poly Q expan-
sions in the Huntington (htt) gene disrupt PGC-1� function,
resulting in deficient mitochondrial function in the striatum

TABLE 2. Summary of coregulators over- and underexpressed in
human cancers in the ONCOMINE expression profiling meta-
analysis database

Cancer type
No. of overexpressed

coregulators
(out of 285)

No. of underexpressed
coregulators
(out of 285)

Brain 104 93
Breast 104 32
Leukemia 170 84
Liver 43 14
Lung 153 79
Lymphoma 142 113
Melanoma 40 8
Prostate 117 86
Renal 58 20
Sarcoma 67 100
Ovarian 45 8
Other 344a 147

All 285 coregulators identified in our survey were queried in the
ONCOMINE database. Incidences of coregulators overexpressed or
underexpressed with better than P � 10�4 significance are shown.

a Number is greater than 285 because coregulators are tabulated
from cancers in aggregate.

TABLE 3. Selective pressure on coregulator alleles in three human population groups

Caucasian African Asian

Coregulator P value Coregulator P value Coregulator P value

GAC63 0.00145 SRC-1 0.000448 RANBP2 0.000741
SF3A1 0.00329 CAPER 0.00829 CAPER 0.00278
EDD 0.00742 Sin3A 0.00829 DAP3 0.00338
MIP224 0.0105 RTA 0.0218 MUC1 0.00408
ARIP3 0.0127 Rb 0.0219 JHDM2A 0.00686
CAPER 0.0127 NRIF3 0.0257 GAC63 0.00760
hZimp7 0.0127 p300 0.0258 PDK1 0.0141
MCRS1 0.0129 CBP 0.0258 ASC-2 0.0141
ASC-2 0.0228 CARM1 0.0313 PNRC 0.0207
Daxx 0.0415 GAC63 0.0314 TRIP12 0.0237

The 10 coregulator loci in three human population groups subject to the strongest positive selection pressure (having the most significant
P values) are listed �see Voight et al., 2006 (102)�.
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TABLE 4. Mouse coregulator knockouts

Coregulator Knockout phenotype

AIB3 Defective placentation and embryonic lethality1

ARIP3/PIASx Reduced testis weight2

�-catenin Embryonic lethality at gastrulation3

Bcl-3 Immunological defects4

BRCA1 Embryonic lethality5

BRCA2 Embryonic lethality5

Brg1 Embryonic lethality,6 zygotic genome activation,7 neural stem cell maintenance and gliogenesis,8 T cell
development9

Calreticulin Embryonic lethality, required for integrin-mediated calcium signaling and cell adhesion10

CARM1 Embryonic lethality11,12

Caveolin-1 Viable, but with lipid, muscle and pulmonary defects13

CBP Dosage sensitivity, T cell developmental defect14,15

Cdc25 Absence of apparent phenotype16,17

CITED1 Aberrant pubertal mammary ductal morphogenesis18

CRABP-II Postaxial polydactyly19

CtBP1 Small, viable and fertile20

CtBP2 Axial patterning defect, embryonic lethality20

CtIP Early embryonic lethality, G1 defect, haploid insufficiency leads to tumor susceptibility21,22

Cyclin A1 Required for meiosis in male mice23

Cyclin A2 Early embryonic lethality24

Cyclin D1 Viable, reduced mammary gland carcinoma susceptibility25

Cyclin D3 Megaloblastic anemia, neurological abnormalities in �D-x only knockout animals�26

Cyclin E1 Viable, resistance to oncogenic transformation27

Daxx Embryonic lethality, extensive embryonic apoptosis28

DJ-1 Hypersensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress29

DNAJA1 Defects in spermatogenesis30

DNAJB1 Defect in thermotolerance31

E6-AP Gait ataxia, Purkinje neuron defect,32 steroid hormone resistance, reproductive defects33

Edd Needed for yolk sac vascularization and chorioallantoic fusion34

ELL/MEN Embryonic lethality35

FHL2 Decreased bone mineral content, not needed for cardiac function/development36,37

FKHR Incomplete vascular development, embryonic lethality38

Fln-A/filamin A Cardiac malformations and midline skeletal defects39

FoxH1 Embryonic lethality, anterior-posterior patterning and node formation, specifies the anterior primitive streak40,41

GCN5 Embryonic lethality42

GCN5L2 Increased apoptosis and mesodermal defects in embryogenesis43

Gelsolin Blocks podosome assembly, increased bone mass and strength44

HDAC4 Controls condrocyte hypertrophy during skeletogenesis45

Hey1 Embryonic lethality, required for vascular development46

Hmg1 Lethal hypoglycemia in neonatal mice47

Hmgb2 Reduced fertility, spermatogenesis defects48

Itchy Immunological defect, skin inflammation49

Jab1 Early embryonic lethality50

Ku80 Hypersensitivity to DNA damage, growth retardation, V(D)J recombination defect51,52

LANP/pp32 No apparent phenotype53

Lats2/Kpm Embryonic lethality, control of proliferation and genomic integrity54

Mat1 Early embryonic lethality, conditional ablation in Schwann cells yields viable cells55

MGMT Increased tumorigenesis in the presence of methylnitrosourea56

Mll2 Embryonic lethality, multiple epigenetic-related defects57

Mn1 Defects in development of membranous bones of the cranial skeleton58

mSin3A Embryonic lethality, T cell developmental defect59

Muc1 Impaired cholesterol uptake and absorption, decreased susceptibility to cholesterol gallstone formation60,61

PDK1 Embryonic lethality, cell size control, targeted deletion in heart leads to heart failure and increased sensitivity to
hypoxia62,63

N-CoR Embryonic lethality, erythrocyte, CNS and thymocyte developmental defects, defective astrocyte differentiation64

NSD1 Required for early postimplantation65

p53 Cancer susceptibility66–68

p57/KIP2 Skeletal abnormalities and growth retardation69,70

p120-catenin Inflammatory responses in the skin, dendritic spine, and synapse development71,72

p300 Gene dosage-dependent embryonic development, proliferation defects, T cell development73

PARP-1 Hypersensitivity to ionizing radiation and DNA damaging chemicals, genomic instability74

PCAF Viable, normal mice42

PGC-1� Adaptive energy metabolism defect, CNS-linked hyperactivity, contractile function of cardiac muscle, regulation of
hepatic heme biosynthesis, porphyria, heart failure susceptibility after transverse aortic constriction75–83

PIAS1 Defects in innate immunity84

PIMT Fatal progressive epilepsy85

Pin1 Normal development, defect in entering cell cycle from G(0) arrest, resembles cyclin D1 null phenotype86,87

PRMT2 Required for early postimplantation in mouse development88

(Continued)
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and subsequent neurodegeneration (77, 78). Also, an exten-
sion in a GAC repeat within the TRAP230 coactivator gene
is associated with X-linked mental retardation and hypothy-
roidism (79). We predict that a larger number of less pene-
trant coregulator alleles waiting to be identified will affect a
greater number of people, likely adding to the number of
inherited coregulator disease syndromes.

Defects involving the ability of coregulators to properly
interact with NRs can be clinically significant. The incom-
plete manifestation of the male phenotype due to androgen
insensitivity syndrome (AIS) is another syndrome that can
involve coregulators. Despite having the male 46XY chro-
mosome arrangement, people with this syndrome possess an
incomplete male (female-like) phenotype. AIS is most often
due to mutations in the AR, impacting the ability of the
receptor to bind androgens (80). Nevertheless, recent evi-
dence points to the possibility that disruption in an AR co-
activator also can be responsible for the AIS phenotype (81).
In this case, a 46XY female AIS individual possessed a wild-
type AR, and it was determined that the AF-1 of AR in this
patient was unable to stimulate transcription of AR target
genes, suggesting that a defect in an AR-specific coactivator

may be responsible for this patient’s phenotype. Also, some
AR mutants found in AIS and prostate cancer patients lack
the ability to properly interact with their coregulators. For
instance, in one study, AIS (E2K) and prostate cancer AR
(P340L) mutants interacted poorly with the AR corepressor
ART-27, while still retaining the ability to interact with co-
activators (82). A similar mechanism is responsible for re-
sistance to thyroid hormone (RTH) syndrome, where muta-
tions in TR� that result in defects in corepressor dismissal
and coactivator binding in the presence of thyroid hormone
lead to RTH syndrome, despite normal hormone and DNA
binding by the receptor. These patients often possess high
circulating thyroid hormone levels, goiter, and other prob-
lems typically associated with hypothyroidism (83).

VIII. Coactivator Fusion Proteins

Fusions between the PML and retinoic acid receptor genes
have long been recognized in cancer pathology where the
ability of retinoids and HDAC inhibitors can effectively stop
certain acute promyelocytic leukemias (84). Genetic disrup-

TABLE 4. Continued

Coregulator Knockout phenotype

Prox1 Required for lymphatic system development89

PYK2 Macrophage morphology and migration90

RanBP2 Haploinsufficiency causes deficits in glucose metabolism91

Rb Retinal development, multiple other disease states92

REA Haploinsufficiency leads to increased uterine93 and mammary gland responsiveness to estradiol94

REG� Growth retardation, immune defects95,96

RelA Embryonic lethality, liver degeneration97

RNA Helicase A Essential for gastrulation, early lethality98

Rig-1/Robo3 Required for midline crossing by hindbrain precerebellar neurons and axons99

RIP140 Ovulation defect, essential for female fertility, lean phenotype, adipoctye differentiation defect100–102

Sirt1 Small mice, retina and heart defects, rarely survive beyond parturition, involved in response to chronic genotoxic
stress, gametogenesis, p53 hyperacetylation103–105

six3 Holoprosencephaly106

SMAD3 Impaired mucosal immunity, diminished T cell responsiveness to TGFb107

SRC-1 Moderate motor dysfunction, delayed development of Purkinje cells, control of energy balance, loss of skeletal
response to estrogen, altered hypothalamic-pituitary-adrenal axis function, hepatic function108–113

SRC-2 Control of energy balance in white and brown adipose tissue, essential for progesterone-dependent uterine and
mammary morphogenesis, testicular degeneration, spermatogenesis defect, placental hypoplasia110,111,114–116

SRC-3 Smaller animals, delayed puberty, reduced mammary gland development, reduced adipogenesis and inhibition of
neointima formation by estrogen, lower response to IGF-I117–120

Stat3 Early embryonic lethality121

SUMO1 Haploinsufficiency leads to cleft lip and palate122

SYT/SS18 Early embryonic lethality, affects PPARBP expression123

TBP-1/PSMC3 Early embryonic lethality124

TGIF Intragenic deletion of TGIF causes brain developmental defect,125 other report indicates lack of holoprosencephalic
defect in mice126

TIF1� Embryonic lethality, early postimplanation development, required for maintenance of spermatogenesis127–129

TLS Male sterility, radiation sensitivity130

TRAP100 Embryonic lethality, broad developmental role131

TRAP220 Embryonic lethality, needed for PPAR�2 stimulated adipogenesis, placental, cardiac, hepatic, and embryonic
developmental defect132

Tsc2 Renal carcinogenesis, hepatic hemangiomatosis in happloinsufficient animals, embryonic lethality in null animals
and unclosed neural tube133

TSG101 p53 accumulation, defective cell proliferation, early embryonic lethality134

UBA3 Cell cycle defects, embryonic lethality135,136

UbcH7 Placental defect and embryonic lethality (provirus disruption of gene in animal model)137

Vav3 Sympathetic hyperactivity, tachycardia and cardiovascular dysfunction138

Coregulator animal knockouts (whole animal disruption of coregulator genes) are shown. Coregulator knockout results in embryonic lethality
in 53 of 92 knockout models. Superscript numbers indicate references listed in Supplemental References B (published as supplemental data
on The Endocrine Society’s Journals Online web site at http://edrv.endojournals.org). CNS, Central nervous system; PPARBP, PPAR-� binding
protein.
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tions leading to coregulator fusions with other proteins exist
in certain cancers. For instance, fusions of MOZ proteins with
CBP, p300, and SRC-2 predispose to acute myeloid leukemia
(85). SYT-SSXZ fusion proteins are responsible for synovial
sarcomas (86), PAX3- and PAX7-FKHR fusion proteins lead
to the formation of acute alveolar rhabdomyosarcomas (87),
a TFE3-p54nrb fusion leads to papillary renal cell carcinomas
(88), and RANBP2-ALK fusions result in inflammatory myo-
fibroblastic tumors (89). The exact molecular mechanisms
that underlie the carcinogenic actions of these fusion proteins
likely stem either from their ability to interfere with the
transcriptional program of transcription factors such as p53
and NRs or their ability to contradict the coregulator func-
tions of their undisrupted coregulator counterparts (85).

IX. Coregulator Gene Polymorphisms

Coactivators function as “rheostats,” controlling the extent
of gene expression from NRs so that fluctuations in their
expression or small changes in their biological activity will
lead to significant differences in target tissue responses to
hormone ligands. In human populations, the concentration
of circulating steroid hormones falls within a fairly narrow
range. Thus, alterations in the protein primary amino acid
sequence and cellular concentration of coregulators may be
responsible for individual differences in the manifestation of
secondary sex traits, obesity, and susceptibility to cancer.
Indeed, recent information argues that considerable varia-
tions in gene expression levels are present in different human
populations and individuals, possibly in conjunction with
specific polymorphic alleles (90). As we shall discuss in this
section, coregulator gene polymorphisms exist in human
population groups and could account for a subset of these
phenotypic differences in NR ligands.

The majority of investigations have focused on the bio-
logical action of NR single nucleotide polymorphisms (SNPs)
such as for TR� (see Section VI) and more recently on ER�,
PPAR�, GR, and PR (91–94). Most coregulator SNPs are in
coregulator gene promoters or intronic or synonymous non-
coding variants (this is the case for other genes as well).
Nevertheless, many SNPs exist within coregulator genes and
affect coregulator amino acid sequence, such as for PGC-1�
gene as discussed above. For SRC-3, 10 SNPs exist that affect
the translated protein according to GenBank’s dbSNP re-
source (95). One of these, a Q586H variant allele, confers a
protective effect toward breast cancer (96). In this popula-
tion-based study of German and Polish women, a clear cor-
relation between this particular allele and the absence of
breast cancer was seen in healthy women compared with
cohorts with primary and recurrent breast cancer. In addi-
tion, other synonymous polymorphisms in the SRC-3 gene
were revealed to confer a protective effect. Polymorphisms
in PGC-1�, PGC-1�, and p300 were shown to be low-pen-
etrance familial breast cancer markers (97), whereas another
study indicates that p300 polymorphisms are linked to in-
testinal and gastric tumors (98).

The recent release of data from the international human
HapMap consortium has identified approximately 6.3 mil-
lion SNPs in four human population groups (99), and many

of these SNPs reside within coactivator genes. Considerable
effort is being directed toward understanding how SNPs
(and other genetic variations) influence human disease sus-
ceptibility (100, 101). In a bioinformatic approach used to
analyze positive selection pressures for particular alleles in
four different ethnic groups using data from the international
HapMap project, SRC-1 (NCOA1) is predicted to be under
very strong selective pressure (the greatest for any human
gene) in a Nigerian cohort (102). We also examined coregu-
lators in our Nuclear Receptor Signaling Atlas (NURSA)
coregulator list using a web resource developed by these
authors (http://hg-wen.uchicago.edu/selection/haplotter.
htm). This predicts that strong selective pressures exist for a
number of coregulator genes that are listed in Table 3.
Among coregulators, GAC63 (103) and RANBP2 (104) are
under the strongest apparent selective pressures in Cauca-
sians and Asians, respectively (Table 3). Thus many coregu-
lators are predicted to be strong conduits for human evolu-
tionary adaptation and may have arisen due to ethnic and
migratory differences in diet or other environmental factors.
However, in the context of our modern lifestyle and diet,
these coregulator adaptations are likely to affect us in dif-
ferent and perhaps adverse ways.

X. Coregulator Knockout Studies

Considering the entangling issues of coregulator pleiot-
ropy, knockout models provide a satisfying way to under-
stand their physiological impact at the organismal level. In
this regard, we are blessed with an abundance of such mod-
els; we have been able to identify whole-mouse knockout
models for 92 coregulators in the literature (Table 4). Of these
92 knockout models, 53 die during embryogenesis, whereas
a wide spectrum of phenotypes were observed for the others.
The fact that over half of the coregulator knockouts we listed
display embryonic lethality highlights the overall impor-
tance of coregulators in developmental biology. In humans,
complete loss of these coregulators would be very rare, given
the powerful selection pressure to drive out very deleterious
alleles. However, we predict that many hypomorphic alleles
for these same coregulators exist in human individuals that
have yet to be linked to human disease. Also, coregulator
knockout mice that are viable often display a spectrum of
phenotypes and provide an impetus to relate them to human
diseases that resemble the physiological defects observed in
these model animals.

Knockout models for SRC-1 (105), SRC-2 (106), and SRC-3
(107, 108) have revealed a great deal about coregulator bi-
ology in a whole animal context. These knockouts possess a
range of phenotypic defects, consistent with our assertions
that coregulator pleiotropy influences a wide range of bio-
logical systems. These include reproductive (uterine and
mammary gland) and metabolic (hepatic and adipoctye bi-
ology) defects (109) consistent with our understanding of
their biological actions in vitro. Disruption of the p300 and
CBP genes also affects mouse biology. Haploinsufficiency in
either gene results in observable phenotypes resembling
Rubenstein Taybi syndrome, whereas homozygosity or tran-
sheterozygosity (p300�/�; CBP�/�) results in embryonic le-
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thality (110). N-CoR�/� animals also die during embryo-
genesis with defects in erythrocyte and thymocyte
production and central nervous system defects including
loss of astrocyte differentiation (111). Knockout of the
PGC-1� gene reaffirms its role in metabolism (see Section VI).
In an unanticipated way, though, this knockout animal re-
vealed that PGC-1� can influence metabolic control through
its actions in the central nervous system (112). Because it is
impractical to discuss the whole litany of coactivator knock-
out studies listed in Table 4, we let this summary speak for
itself. Coactivator proteins are vitally important for normal
physiological function.

XI. Concluding Remarks

Herein, we have demonstrated that a preponderance of
evidence exists in the literature and other sources that
broadly link coregulators to a diverse array of human dis-
eases. From this review, the following points can be made:
1) coregulators are a large protein group (including some
RNA members; steroid receptor RNA activator); 2) coregu-
lator dysfunction is not restricted to rare genetic conditions
or a small subset of cancers, but is instead involved in nu-
merous human diseases; 3) numerous mouse knockout stud-
ies attest to the physiological and pathological importance of
coregulators; 4) coregulators are frequently over- or under-
expressed in a wide range of cancers; and 5) human genetic
variations are widely present in coregulator genes and are
likely responsible for select human phenotypic variations in
steroid biology, cancer, and metabolic disorders. As seen
here, existing basic and translational research efforts have
already shed some light on the relationship between coregu-
lators and human diseases, yet we predict much more is to
come. It is likely that the high association of coregulator
misexpression with certain pathologies simply represents
the results of the diseases where investigators have initially
looked, and that in time, numerous associations with other
diseases will be revealed. Developing genomic and pro-
teomic technologies will add greatly to our understanding of
the basic roles that these master regulators play at multiple
levels, from the control of gene expression up to that of the
whole organism. Overall, efforts that can integrate our basic
and translational understanding of coregulators should lead
to solutions for unmet medical needs of a wide range of
human diseases.
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