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Abstract

Background: The identification of prognostic tumor biomarkers that also would have potential as therapeutic targets,
particularly in patients with early stage disease, has been a long sought-after goal in the management and treatment of
lung cancer. The nuclear receptor (NR) superfamily, which is composed of 48 transcription factors that govern complex
physiologic and pathophysiologic processes, could represent a unique subset of these biomarkers. In fact, many members
of this family are the targets of already identified selective receptor modulators, providing a direct link between individual
tumor NR quantitation and selection of therapy. The goal of this study, which begins this overall strategy, was to investigate
the association between mRNA expression of the NR superfamily and the clinical outcome for patients with lung cancer, and
to test whether a tumor NR gene signature provided useful information (over available clinical data) for patients with lung
cancer.

Methods and Findings: Using quantitative real-time PCR to study NR expression in 30 microdissected non-small-cell lung
cancers (NSCLCs) and their pair-matched normal lung epithelium, we found great variability in NR expression among
patients’ tumor and non-involved lung epithelium, found a strong association between NR expression and clinical outcome,
and identified an NR gene signature from both normal and tumor tissues that predicted patient survival time and disease
recurrence. The NR signature derived from the initial 30 NSCLC samples was validated in two independent microarray
datasets derived from 442 and 117 resected lung adenocarcinomas. The NR gene signature was also validated in 130
squamous cell carcinomas. The prognostic signature in tumors could be distilled to expression of two NRs, short
heterodimer partner and progesterone receptor, as single gene predictors of NSCLC patient survival time, including for
patients with stage I disease. Of equal interest, the studies of microdissected histologically normal epithelium and matched
tumors identified expression in normal (but not tumor) epithelium of NGFIB3 and mineralocorticoid receptor as single gene
predictors of good prognosis.

Conclusions: NR expression is strongly associated with clinical outcomes for patients with lung cancer, and this expression
profile provides a unique prognostic signature for lung cancer patient survival time, particularly for those with early stage
disease. This study highlights the potential use of NRs as a rational set of therapeutically tractable genes as theragnostic
biomarkers, and specifically identifies short heterodimer partner and progesterone receptor in tumors, and NGFIB3 and MR
in non-neoplastic lung epithelium, for future detailed translational study in lung cancer.
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Introduction

The prevalence of lung cancer as the primary cause of cancer

death in the United States has led to renewed efforts to obtain

biomarker signatures that provide either prognostic or predictive

information to guide therapy for individual patients (i.e.,

‘‘personalized medicine’’) [1–3]. Multiple genome-wide expression

studies have demonstrated the usefulness of this approach for lung

cancer prognosis [4–6]. However, in general, each of these studies

has identified different sets of genes, even when the various studies

are used to cross-validate one another, and in the majority of these

studies the individual genes identified have had little impact for

understanding tumor pathogenesis or as therapeutic targets. Thus,

identification of prognostic biomarkers that also provide hypoth-

eses for mechanism-based studies of carcinogenesis and offer new

therapeutic targets (sometimes referred to as ‘‘theragnostics’’)

would be of significant benefit.

Nuclear receptors (NRs) are a large family of ligand-dependent

transcription factors that respond to a number of hormonal and diet-

derived lipids, including endocrine steroids, fat-soluble vitamins,

fatty acids, and cholesterol metabolites [7]. NRs are also among the

most successful targets of drugs approved to treat many diseases,

including cancer [8]. Previously, we have shown that NR expression

profiling can be used to reveal the mechanistic basis of the

hierarchical transcriptional networks that govern a number of

physiological processes, including development, differentiation,

reproduction, circadian rhythm, and metabolism [9–13]. In the

present study, we wished to investigate the potential role of the 48

members of the NR superfamily as ‘‘theragnostic’’ indicators in lung

cancer. The strategy of examining expression of NRs, which are

known therapeutic targets with defined mechanisms of action, differs

from previous, open-ended genome-wide microarray studies. Thus,

our goal was to determine whether one can use NR expression

signatures as clinical tools for prognosis for patients with lung cancer,

which also might lead to NR-selective therapies targeted at

hormonal manipulation of lung cancer. As an additional aspect of

this study, we wished to provide open access to our data by including

a Sweave document [14–16] that contains a literate programming

package to permit the full reproduction of our analysis.

Methods

Sample Collection
Samples from MD Anderson Cancer Center. All tissue

samples were obtained by surgical resection from patients who had

provided written informed consent under approval of the

institutional review boards at MD Anderson Cancer Center

(MDACC). Tissues were stored at 280uC after being snap frozen

in liquid nitrogen. Serial sectioning of each sample was used to

histologically evaluate tumor and normal tissue for subsequent

microdissection [17]. Thirty primary tumor and corresponding

normal tissues (including 22 adenocarcinomas and eight squamous

cell carcinomas) were selected randomly from 379 similar samples

in the MDACC lung tumor collection based on stringent,

predefined quality control procedures before any data analysis

(see Figure 1 for overall study design). Detailed sample selection

Figure 1. Schematic of the study design for development and validation of the NR prognostic gene signature. The flow chart details
the design and implementation of this study. ADC, adenocarcinoma; SCC, squamous cell carcinoma.
doi:10.1371/journal.pmed.1000378.g001
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procedures are described in Text S1. Among the 30 patient

samples, 17 were diagnosed with stage I (the earliest stage) disease,

four with stage II disease, five with stage III disease, and four with

stage IV disease. A comparative analysis of the 30 samples

demonstrated that they represent an objective sampling of the

MDACC lung cancer tumor collection (Figure S1; Table S1).

RNAs were isolated from each sample using the Qiagen RNeasy

Mini Kit (Qiagen Sciences).

Samples from the National Cancer Institute Director’s

Consortium and other datasets. Validation of the prediction

model from the MDACC samples was performed using an

independent dataset from a recently published National Cancer

Institute (NCI) Director’s Consortium study of lung cancer

involving 442 resected non-small-cell lung cancers (NSCLCs)

[6]. This Consortium dataset represents one of the largest

microarray datasets of NSCLC samples that has been collected

and studied using a common protocol. From this study, the

Affymetrix U133A microarray data for the 48 NR gene expression

signatures were excerpted and used as shown in Figure 1 to

validate the prognostic value of NR expression. In a similar

manner, the MDACC signature was validated in the NR

expression microarray data taken from a second set of 117

adenocarcinomas [18]. Finally, the NR signature from the

Consortium adenocarcinoma dataset was cross-validated using

the 48-gene NR expression profile excerpted from the microarray

of 130 squamous cell carcinomas [19].

Reverse Transcription and Quantitative PCR Assay
All cDNAs were prepared for quantitative PCR (QPCR)

(TaqMan method) as previously described [10]. Briefly, 2 mg of

total RNA was DNAse-treated with 2 U of DNAse I in final

volume of 20 ml containing 4.2 mM MgCl2. The reverse

transcription reaction was performed in 100 ml final volume,

followed by addition of 100 ml of DEPC-H2O. Human universal

cDNAs for broadly expressed NRs or tissue-specific cDNAs for

restricted-expression NRs was used to construct a standard curve

of the following concentrations: 0 (i.e., no template control), 0.008,

0.04, 0.2, 1, 5, and 25 ng of 18S RNA; and 0 (i.e., no template

control), 0.016, 0.08, 0.4, 2.0, 10, and 50 ng of each NR RNA.

These quantities were based on the RNA concentration used for

the reverse transcription reaction. A negative reverse transcription

sample and a control for genomic DNA contamination were

included for both 18S and NR. Per sample, 10 ng of cDNA was

assayed in triplicate wells of a 384-well plate. The final forward

and reverse primer concentrations used were 75 nM for 18S

rRNA and 300 nM for all NRs. For this study the 48 NRs plus the

two common splice variants for PPARc (i.e., PPARc2) and

PPARd (i.e., PPARd2) were included in the analysis of all samples

from the MDACC patient set. Primer sequences have been

reported elsewhere (http://www.nursa.org/datasets.cfm?doi = 10.

1621/datasets.05005).

QPCR Data Analysis
Data were imported into Microsoft Excel and evaluated for

PCR efficiency (e), e = 1021/slope, where the slope was obtained

from the standard curve calculated by the sequence detection

system software of the ABI7900 instrument (Applied Biosystems)

for the endogenous 18S reference and target NR. Relative mRNA

amounts were calculated by quantity = e–Ct, where Ct is cycle

time. The calculated quantities were averaged (avg), and the

standard deviations (stdev) and coefficients of variation (CV =

stdev/avg) were determined for the 18S and NR of each sample.

Data points that showed CV .17% were considered outliers and

removed. A 17% CV cutoff correlates with the maximum

allowable standard deviation that can distinguish a 2-fold change

with 99% confidence when samples are assayed in triplicate wells

for both the endogenous reference and the gene of interest. Note

that only one point per replicate may be removed. Normalized

values for expression of each NR were calculated using normalized

value = NR quantity avg/18S quantity avg. The standard

deviation of the normalized value was calculated as (normalized

value) 6 [(CV of reference)2 + (CV of gene of interest)2]K.

Normalized values are represented as a bar graph. QPCR data

analysis procedures have been described previously [10,12]. The

entire QPCR dataset of NR expression in normal and tumor

samples from the 30-patient cohort is available in Figure S2 and

online at http://www.nursa.org/datasets.cfm?doi = 10.1621/

datasets.05010.

Microarray Data Preprocessing
Consortium microarray raw data [3,6] were downloaded from

the NCI’s caArray database and preprocessed by robust multichip

average background correction and quantile–quantile normaliza-

tion [20]. All gene expression values were log-transformed (on a

base 2 scale). Average values were used for the different probe sets

corresponding to the same gene.

Unsupervised Clustering Analysis
The hierarchical clustering algorithm [21] was used to group

NR expression versus the 30-MDACC-patient cohort based on the

QPCR expression profile. Gene expression values were log-

transformed (on a base 2 scale) in a manner similar to the

transformation of the microarray data. Euclidian distance and

average link were used in the hierarchical clustering algorithm.

Supervised Classification Analysis
Supervised classification was performed using Recursive

Partitioning and Regression Trees (RPART) [22–25], and was

implemented using R software version 2.10.0. A detailed

description of the implementation is provided in Text S1.

Survival Analysis
Overall survival time was calculated from the date of surgery

until death or the last follow-up contact. Recurrence-free survival

time was defined as the time interval between the date of surgery

and the date of disease recurrence or death from any cause,

whichever came first, or date of last follow-up evaluation. Survival

curves were estimated using the product-limit method of Kaplan-

Meier [26] and were compared using the log-rank test. Cox

proportional-hazards analysis [27] was also performed, with

survival time as the dependent variable.

Sweave Report
A Sweave document is provided (Text S2) to permit others to

reproduce any or all parts of our statistical analyses. Sweave is a

literate programming R package that combines the source code (in

R) and documentation (in LaTeX) in one file and thereby permits

reproduction of published high-throughput data analysis [14–16].

Results

Association of NR Gene Expression with Survival Time
The overall schema for the design and data analysis of this study

is shown in Figure 1. The expression of all 48 members (plus two

splice isoforms) of the NR superfamily was investigated first in a

30-patient sample set to develop a prognostic signature. Detailed

clinical data on the 30-patient cohort are given in Tables S1–S3.

Nuclear Receptors and Lung Cancer
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The QPCR datasets of NR expression are shown and summarized

in Figure S2 and Table S4. Raw datasets are available at http://

www.nursa.org/datasets.cfm?doi = 10.1621/datasets.05010.

Univariate analysis. We first explored whether the mRNA

expression of NR genes was associated with survival outcomes for

patients with lung cancer. Table S5 shows hazard ratios (HRs) and

corresponding p-values for the association between each NR gene

and survival outcome from the univariate Cox regression models.

The mRNA expression of 37 NR genes was significantly associated

with survival outcomes (p,0.05). Figure S3 shows the cumulative

distribution function (CDF) of the p-values representing the

associations between individual NR gene expression and survival

time from univariate Cox models. These data show that the NR

gene superfamily as a whole has statistically significant association

with survival outcome (p,0.00001) based on a Kolmogorov-

Smirnov test of the difference between the p-value distributions of

NR sets and random gene sets.

Unsupervised clustering analysis. Unsupervised cluster

analysis (with euclidian distance and average link) of NR

expression in lung tumors revealed two distinct clusters of tissue

samples (Figure 2A). Note that one tissue sample (773-ADC) did

not fall into either cluster and was treated as an outlier for the

clustering analysis. The two major branches of the dendrogram

(cluster 1 and cluster 2) were associated with both overall survival

rates (p = 0.0079) and disease recurrence rates (p = 0.0927), but no

other clinical features (Table 1). Indeed, Kaplan-Meier plots for

survival time and disease recurrence showed that cluster 1 and

cluster 2 segregated patients into those with poor and good

prognostic outcomes, respectively (p = 0.00008 for survival time;

p = 0.0051 for disease recurrence) (Figure 2B and 2C). These

findings suggest that the gene expression of the NR family is

strongly associated with clinical outcomes for patients with lung

cancer.

Development and Validation of a Prognostic NR
Signature for Lung Cancer

Standard classification and regression tree analysis [22–25] was

used to build a prognostic model based on NR gene expression in

the MDACC NSCLC 30-patient cohort. We first evaluated the

performance of the prognosis model using the leave-one-out cross-

validation (LOOCV) method. The HR, i.e., risk of death, for the

predicted high-risk versus the predicted low-risk signatures using

tumor samples was 13.6; 95% confidence interval (CI), 3.07–

60.92; p = 0.000014 (Figure 3A). The relatively large CI for the

HR in the MDACC cohort is due to the small sample size in this

dataset. These results prompted us to validate the NR signature in

a larger dataset.

Because the majority of gene expression data now available

from lung cancer samples comes from microarray expression

studies, we investigated whether the NR expression profile could

be validated within a completely independent dataset taken from

the NCI Director’s Consortium study of lung cancer involving 442

resected NSCLCs [6]. We first validated the 30-sample QPCR

dataset on the 442-sample microarray dataset, and then we

developed an NR signature from the microarray dataset and

validated it on the QPCR data. Both directions of training and

testing provided statistically significant predictive power for patient

survival time (Figure 3B and 3C).

As a further validation test of the NR gene signature, we divided

the 442-sample microarray data into training and testing sets, and

analyzed the data using the predictive RPART model. We used

the same training and testing strategy as in the genome-wide

analyses of these data [6]. The training set (n = 256) included

samples from the University of Michigan Cancer Center (n = 177)

and the Moffitt Cancer Center (n = 79), and the testing set (n = 186)

included samples from the Memorial Sloan-Kettering Cancer

Center (n = 104) and the Dana-Farber Cancer Institute (n = 82).

Using the NR expression profile from training data to build a

predictive model yielded a HR of 2.04 (95% CI, 1.12–3.72;

p = 0.018) for the predicted high-risk versus the predicted low-risk

signature in testing data (Figure 3D). The higher HR value for the

QPCR dataset likely reflects the greater dynamic range and

quantitative nature of the QPCR assay, and the greater

homogeneity of the microdissected samples.

As yet further confirmation of the prognostic NR gene

signature, the NR prognosis signature developed using the

MDACC dataset was validated in another dataset containing

117 adenocarcinoma samples [18]. Again, the results show that

patients in the predicted low-risk group have significantly longer

survival times than those in the predicted high-risk group

(p = 0.0053; Figure S4). The results from this second independent

dataset further confirmed the robustness of the NR prognosis

signature.

Finally, we also examined whether the NR prognosis signature

might be applicable to squamous cell carcinomas. To that end, the

NR prognosis signature developed using the Consortium lung

adenocarcinoma dataset was validated in a previously published

dataset from Raponi et al. containing 130 lung squamous cell

carcinomas [19]. Patients in the predicted low-risk group had

significantly longer survival times than those in the predicted high-

risk group (p = 0.018; Figure S5A). We then used lung squamous

cell carcinomas (from the Raponi et al. dataset) to develop a NR

prognosis signature and validated it in the lung adenocarcinomas

(Consortium dataset). Again, the results showed that NR

expression has significant predictive power (Figure S5B). Based

on these results, we conclude that the NR prognosis signature may

not be limited only to adenocarcinomas.

To underscore the significance of the 48-NR gene signature, we

used 1,000 random gene sets, each comprising 48 transcripts, to

build prediction models in the Consortium training set and then

tested them in the Consortium testing set. The distribution of the

association between the predicted risk groups and the survival

outcomes (p-values) is shown in Figure S6; only 28 of the 1,000

random sets reached the significance level of the NR signature

(p = 0.018), thereby demonstrating that the NR signature is highly

selective and nonrandom. Taken together, these results strongly

support the utility of the NR gene signature as a prognostic

marker, even when applied and cross-validated independently by

two different gene expression platforms (i.e., QPCR and micro-

array) and in multiple independent lung cancer datasets.

NR Signature Prediction Is Independent of Clinical
Variables

We examined whether the association between the NR

signature and the survival outcome was independent of clinical

variables by using a multivariate Cox proportional-hazards

analysis that included NR risk score, gender, age at diagnosis,

use of adjuvant chemotherapy, use of adjuvant radiation therapy,

and stage as the co-variables. We analyzed the Consortium testing

dataset, which included samples from the Memorial Sloan-

Kettering Cancer Center and the Dana-Farber Cancer Institute.

The NR risk scores used in this analysis were derived from the

prediction model built from the Consortium training dataset (from

the University of Michigan Cancer Center and the Moffitt Cancer

Center). Surprisingly, this multivariate analysis revealed that the

association between NR risk scores and survival time was

independent of other clinical variables (HR = 1.98; 95% CI,

1.04–3.77; p = 0.037) (Table 2). These data reveal that a significant

Nuclear Receptors and Lung Cancer
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Figure 2. QPCR analysis of the NR gene expression signature in patients with lung cancer. (A) Unsupervised cluster analysis of the 30-patient
MDACC lung cancer cohort using the QPCR profile of the NR superfamily. Horizontal and vertical axes represent NR and lung cancer patient clusters,
respectively. (B and C) Kaplan-Meier plots showing the association of the NR gene signature with overall patient survival (B) and disease recurrence (C). p-
values were obtained using the log-rank test. Red represents sample Cluster I and blue represents Cluster II, defined by an unsupervised clustering
algorithm using the NR gene profiling data in (A). Circles indicate censored samples. ADC, adenocarcinoma; SCC, squamous cell carcinoma.
doi:10.1371/journal.pmed.1000378.g002
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association exists between a patient’s NR profile and survival time

when adjusted for other clinical variables. As expected, the

correlation between tumor stage and patient survival time was also

highly significant, confirming this clinical feature as a well-

recognized prognostic marker used in the clinic. It is interesting to

note that gender also was significantly correlated with patient

survival time in our analysis (males had a higher risk of death than

females).

Next, we investigated whether combining clinical variables and

NR gene expression could improve upon the prognosis based on

clinical variables alone. The Consortium microarray dataset was

divided into two groups, one for the training cohort and the other

for the testing cohort. From these samples, the two principal

components of NR gene expression and clinical variables

(including gender, age, stage, and adjuvant therapy) were used

to build a prediction model using the classification tree approach

(Figure S7). This analysis shows that the predicted risk groups from

the prognosis model based on the combination of clinical variables

and NR expression have a stronger association with survival time

(HR = 3.21, 95% CI, 2.01–5.12; p = 2.4361027) than models

using the NR signature alone (HR = 1.98, 95% CI, 1.71–4.30;

p = 0.037) or the clinical variables alone (HR = 2.71,

p = 1.0261025).

Refinement of the NR Signature into Single Gene
Predictors

We next explored the roles of specific NRs in the prediction

models. To address this question, we further re-interrogated the

classification tree model to see whether the prediction model

outcomes shown in Figures 3A and 3B were due to the dominant

effects of any specific NRs (see Text S1 for details). When using all

48 NR genes as input for the classification tree model, short

heterodimer partner (SHP) expression was identified as the only

co-variable left in the final RPART prediction model built from

the 30-patient MDACC dataset. In other words, the prognosis

performance of the 48-NR gene signature (shown in Figure 3A

and 3B) is the same as that using SHP expression alone to build the

models. Next, we removed SHP from the dataset, reanalyzed the

prediction model, and found the model still had remarkable

prognostic ability in the 30-patient LOOCV dataset (HR = 9.58;

95% CI, 3.00–30.6; p = 0.0000065) (Figure 4A). Furthermore, the

classification tree structure revealed that when the prediction

model excluded SHP, progesterone receptor (PR) was the single

gene signature used. The detailed classification tree structures are

shown in the Sweave document (Text S2) and plotted in Figure S8.

The single gene PR signature was further validated in the testing

cohort of the Consortium dataset (HR = 1.46; 95% CI, 1.12–1.90;

p = 0.0048) (Figure 4B). The protective effect based on SHP and

PR expression was further strengthened by univariate Cox

regression modeling, which consistently showed that expression

of both NRs correlated with significantly lower HRs in the

microarray dataset (Figure 4C and 4D). Thus, SHP and PR

represent single gene markers.

SHP Expression Predicts Survival Time in Patients with
Early Stage Lung Cancer

Since the prognosis for patients with early stage (i.e., stage I)

lung cancer has substantial clinical impact on guiding therapeutic

strategy, we tested whether expression of specific NRs also has

predictive power to refine the prognosis of patients with stage I

lung cancer. We found that the predicted risk groups using SHP as

a single gene classifier were significantly associated with survival

outcome for patients with stage I lung cancer in the Consortium

samples (Figure 5A; p = 0.033), whereas the PR signature was

marginally predictive (Figure 5B; p = 0.069).

NR Expression in Normal Tissue Predicts Survival and
Disease Recurrence

We also examined the potential prognostic value of NR

expression in histologically normal lung tissue obtained from

areas adjacent to the tumors of the MDACC cohort used in the

above studies. When the normal tissue expression data were

analyzed using the classification tree model and validated by

LOOCV, the NR signature provided statistically significant

Table 1. Patient demographics summarized by unsupervised cluster analysis of lung tumors.

Characteristic Subcategory Cluster 1 Cluster 2 p-valuea

Sample size 13 16

Age (mean ± standard error) 62.662.4 6362.1 0.902

Gender (% female) 38% 56% 0.4621

Race (% non-white) 0% 13% 0.488

Histology (ADC/SCC) 8/5 13/3 0.4058

Cancer stage Stage I 62% 56% 0.8324

Stage II 8% 19%

Stage III 15% 19%

Stage IV 15% 6%

Death rate 85% 31% 0.0079

Disease recurrence rate 92% 63% 0.0927

Smoking status Non-smoker 15% 13% 1.0000

Current/former smoker 11/3 8/3 1.00

Packs per year 70.7635.9 61.2626.2 0.45

Adjuvant therapy 15% 6% 0.5731

aIndicates p-values by t test for age and by Fisher’s exact test for the other variables comparing cluster 1 and 2.
ADC, adenocarcinoma; SCC, squamous cell carcinoma.
doi:10.1371/journal.pmed.1000378.t001
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predictors of both disease recurrence (HR = 4.61, 95% CI, 1.74–

12.30; p = 0.00099) and overall patient survival time (HR = 2.22,

95% CI, 0.85–5.81; p = 0.094) (Figure S9). In contrast to the

identification of SHP and PR in the tumor samples as key

predictors, the normal lung epithelium profile classification tree

structures revealed two other NRs, NGFIB3 (nerve growth factor

induced gene B3, also known as NR4A1) and mineralocorticoid

receptor (MR, also known as NR3C2) to be single gene predictors

for survival and disease recurrence. Although the prediction

models for normal tissue require further validation in an

independent dataset, this analysis suggests higher expression of

NGFIB3 and MR is associated with a good prognosis.

To further understand the relationship between NR expression

levels in the tumor versus adjacent normal tissue, we performed a

pair-wise correlation of NR gene expression in tumor and adjacent

normal lung from each patient’s paired tissue set. For this analysis

we used both the MDACC dataset and a recently published

microarray dataset from Landi et al. comparing gene expression in

135 NSCLC adenocarcinomas and adjacent normal tissue [28]. In

both datasets we found that the NR expression in tumor samples

correlated significantly with NR expression in adjacent normal

samples (Pearson correlations were 0.87, p,0.001, and 0.92,

Table 2. Death HRs from multivariate Cox regression analysis
from two independent datasets.

Variable MSK and CAN/DF Dataseta

HR (95% CI) p-value

Gender 1.88 (1.11, 3.17) 0.019

Age at diagnosis 1.02 (0.99, 1.05) 0.22

Adjuvant chemotherapy 2.02 (1.14, 3.59) 0.016

Adjuvant radiation therapy 1.48 (0.81, 2.71) 0.210

Stage 2.76 (1.56, 4.88) 0.00046

NR signatureb 1.98 (1.04, 3.77) 0.037

aMemorial Sloan-Kettering Cancer Center (MSK) and Dana-Farber Cancer
Institute (CAN/DF).

bThe NR signature for the Memorial Sloan-Kettering Cancer Center and Dana-
Farber Cancer Institute dataset (n = 186) was derived from the prediction
model built from the University of Michigan Cancer Center and Moffitt Cancer
Center training dataset.

doi:10.1371/journal.pmed.1000378.t002

Figure 3. Kaplan-Meier plots showing the predictive power of the NR gene signature in datasets from the NCI Director’s
Consortium. (A) LOOCV of the recursive partitioning tree model (RPART) for the 30-sample MDACC QPCR dataset using all 48 NRs. The HR for the
predicted high-risk versus the predicted low-risk signatures was 13.6; 95% CI, 3.07–60.92; p = 0.000014. (B and C) Independent validation of the 48-NR
gene expression signature between the MDACC cohort and the Consortium cohort. The MDACC cohort training set (n = 30) was tested in the
Consortium cohort (n = 442) (B), and vice versa (C). (D) Independent validation of the NR gene signature in the 442-sample multi-institute Consortium
using RPART analysis. The microarray datasets were divided into two groups, one for the training cohort (n = 256) and the other for the testing cohort
(n = 186). p-values were obtained by the log-rank test. Red and black lines represent predicted high- and low-risk groups, respectively. Circles indicate
censored samples. Note that SHP expression is the single co-variable (or predictor) in the classification model that describes the survival time
differences shown in (B), demonstrating that SHP is a single gene predictor that represents the entire 48-NR gene profile.
doi:10.1371/journal.pmed.1000378.g003
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Figure 4. Identification of single NR gene biomarkers for lung cancer prognosis. (A and B) Kaplan-Meier survival plots using PR in the
single gene prediction model. The MDACC cohort was tested using LOOCV (A), or it was used as a training set and independently tested in the multi-
site Consortium cohort (B). For this analysis mRNA expression values for SHP were removed from the dataset in order to test the effect of other NR
genes as biomarkers. In this case, PR expression is the single co-variable (or predictor) in the classification model that describes the survival time
differences shown in (B), demonstrating that PR is a single gene predictor that represents the NR gene profile when SHP expression is excluded. p-
values were obtained using the log-rank test. Red and black lines represent high- and low-risk groups, respectively. Circles indicate censored samples.
(C and D) HRs from univariate Cox regression models for SHP and PR expression, respectively, in the MDACC and multi-site Consortium datasets.
doi:10.1371/journal.pmed.1000378.g004

Figure 5. Kaplan-Meier survival plots showing single NR gene predictors in patients with stage I lung cancer. Predictive models for SHP
(A) and PR (B) were trained in the MDACC samples and tested in the patients with stage I lung cancer in the Consortium cohort. p-values were
obtained by the log-rank test. Red and black lines represent predicted high- and the low-risk groups, respectively. Circles indicate censored samples.
doi:10.1371/journal.pmed.1000378.g005
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p,0.001, respectively) (Figure S10). This analysis suggests that, in

general, there is a tight correlation between tumor and normal

tissue NR expression within the same patient. We next asked

which of the 48 NRs might be differentially expressed between

tumor and adjacent normal samples using paired t tests. Again, the

t tests derived from the two datasets were consistent (Pearson

correlation = 0.7, p,0.001). Furthermore, five of the top ten NR

genes that were shown to differ significantly between tumor and

normal tissue were common to both datasets (i.e., AR, MR,

NGFIB3, PPARc, and RXRc). Of note was the finding that MR

and NGFIB3 were among these receptors, further emphasizing

their prognostic potential.

Discussion

In this study, we investigated the expression of NRs in lung

cancer and found that specifically targeting this superfamily of

ligand-dependent transcription factors provided a novel prognostic

biomarker. Several recent studies using genome-wide microarray

experiments have proposed various sets of genetic signatures for

lung cancer prognosis [4–6,29–31]. Interestingly, the gene

signatures from these studies have shared little if any overlap with

one another [4,5,29]. In addition, because of the open-ended

nature of genome-wide analyses, the signatures have provided little

insight into the pathogenesis or pathophysiology of lung cancer.

Moreover, these studies have yet to identify new therapeutic

targets. In contrast, NRs represent a well-studied class of proteins

that (1) govern complex cellular programs such as differentiation,

inflammation, and metabolism [9–13], (2) are known transcrip-

tional drivers of oncogenesis, and (3) are themselves the targets of

validated drugs for many diseases including cancer [32–35]. This

superfamily also includes a number of orphan receptors, many of

which are currently being evaluated as potential new therapeutic

targets for a number of diseases [8]. Thus, our study suggests that

specifically targeting NRs may provide an alternative and clinically

relevant new strategy for profiling lung tumors.

The immediate findings from this work also may have a number

of important and practical implications for the use of the NR gene

signature in a clinical setting. First, we demonstrated that the NR

superfamily gene expression signature is an excellent predictor of

both patient survival and recurrence of lung cancer that is

comparable to predictors from other studies. As an example,

Shedden et al. [6] compared six previously published gene

signatures and showed that the HRs from these studies ranged

from 0.93 to 2.30 (p-values ranged from p,0.001 to p = 0.78). In

comparison, the HR for our NR signature obtained in the

Consortium dataset [6] was 2.04 (p = 0.018) (Figure 3D).

The prognostic potential of NRs was validated in independent

datasets, and further analysis identified tumor expression of SHP

(discussed below) and PR as robust single gene predictors. The

demonstration of PR as a predictive marker is in line with a previous

retrospective study where PR was shown to be associated with

survival time in patients with lung adenocarcinoma [36]. Expression

of PR, together with estrogen receptor a (ERa), is now well

established as a clinical guide to both prognostic anticipation and

therapeutic intervention for breast cancer. Indeed, in thinking about

the next step in our studies, the finding that certain lung cancers

express specific, known therapeutic NR targets (e.g., PR, ERa,

ERb, AR, RARs, and PPARs) brings up the possibility of treating

patients whose tumors express these receptors with drugs (agonists

or antagonists) that target the receptors. Although it remains to be

established whether NR mRNA levels will correlate with NR

protein expression, several recent studies support the concept that

selective receptor modulators may be effective therapeutically. For

example, a number of studies have suggested anti-estrogen therapy

as a lung cancer therapeutic [37–40], and in a mouse lung cancer

study, the use of a PPARc agonist had a synergistic effect in

reducing tumor burden when used with cis-platinum [41].

Interestingly, treatment with progesterone has been shown to

inhibit lung tumor xenograft growth in a preclinical study [36],

whereas, in contrast, the Women’s Health Initiative study reported

increased death from lung cancer in postmenopausal women

treated with both estrogen and progestins [42]. At present it is not

clear whether this latter finding was due to the presence of estrogen

or progestin, highlighting the need for further investigation.

Nevertheless, a reasonable assumption based on the present study

is that predicting responses to drugs like anti-estrogens might be

accomplished by screening patients for NR expression using the

methodology highlighted in this study. Evaluation of the QPCR

profiles from our study revealed a high degree of patient-to-patient

variability in NR expression (Figure S2), and this observation

provides a strong rationale for using this approach to guide

individualized treatment in the future. Similarly, our data suggest

that NR profiling of individual tumors provides a clinical paradigm

for identifying potential responders to NR drugs.

A second notable finding was that the NR signature could be

used to refine the prognosis for patients with early stage lung

cancer. Although the clinical characteristics from the MDACC

dataset and the Consortium dataset are not homogeneous and the

sample size is not big enough to validate the prognosis signatures

for stages IA, IB, and II separately, the positive prognosis results

across the two datasets indicate that the signatures may be applied

across heterogeneous populations of patients. In interrogating this

signature further, it was of considerable interest to find that the

orphan nuclear receptor SHP is a singe gene prognostic lung

cancer biomarker of early stage disease. SHP has been extensively

studied for its role in liver lipid metabolism [43,44] and as

transcriptional repressor of other NRs [45]. Intriguingly, a recent

report found that SHP expression was negatively associated with

liver tumorigenesis in a mouse model [46]. These findings prompt

further exploration into whether there is a connection between the

known physiological role of SHP and lung tumorigenesis, or

whether SHP has a unique pathophysiologic function in the

disease pathogenesis. To that end, we note that FXR agonists, a

PPARc agonist (rosiglitazone), agents that inhibit HNF-1a action,

and a number of orphan drugs are all inducers of SHP expression

[47]. These compounds might be tested in preclinical models to

see whether they can induce SHP expression and inhibit lung

tumorigenesis or malignant behavior. Also germline mutations in

SHP or polymorphisms in FXR that regulate the level of SHP

expression could play a role in SHP function in lung cancer

pathogenesis or behavior. Together, these findings suggest that

SHP expression may not only be a prognostic biomarker, but its

presence in tumors may influence the expression of other genes.

Indeed, in a preliminary experiment to address this idea we

analyzed genome-wide RNA expression data using the Consor-

tium samples to test the expression association between SHP (the

single gene predictor) and a number of its known target genes,

including Cyclin D1, Glut4, MTP, and PGC-1a. We found that

SHP expression was associated with expression of three out of the

four targets: Cyclin D1, Glut4, and MTP (p,0.0001).

A third noteworthy finding from our study was the ability to

predict overall survival based on NR expression in normal tissue of

patients with lung cancer. Whether this may be due to a ‘‘field

effect’’ through changes in the epithelium, to induction in a

paracrine fashion by the cancer, or to some other feature of normal

lung epithelium is unknown. However, this finding does suggest that

interrogating the histologically normal tissue may yield insight into
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lung cancer oncogenesis. To that end we note that the prognostic

NR signature in normal tissue is completely different than that of the

adjacent tumor. In contrast to that observed in tumors, the NR

signature, as distilled using RPART analysis, revealed that NGFIB3

(NR4A1) and MR are single gene biomarkers found in normal tissue

for predicting disease recurrence and overall survival time,

respectively. NR4A family members have been shown to be tumor

suppressors in a mouse model of myeloid leukemogenesis [48].

Similarly, low expression of MR has been shown to correlate with

colorectal carcinoma recurrence [49]. These studies support the

notion that higher expression of NR4A1 and MR might play a

protective role against lung tumor pathogenesis.

A fourth finding of our study was the independent demonstra-

tion that the NR gene signature could be tested and cross-

validated using two different gene expression platforms, QPCR

and microarray. Given that microarray data do not have the

dynamic or quantitative properties of data generated by QPCR,

the cross-validation of the NR gene signature between different

platforms strongly supports the idea that the NR superfamily may

be a powerful prognostic predictor that also is functionally

involved in lung cancer pathophysiology. Our results also suggest

that a combination of a more robust collection process

(microdissection instead of tissue mass) together with more

quantitative measurements (QPCR instead of microarray) may

reduce variability and strengthen the data. Indeed, the 95% CIs of

HRs for both SHP and PR genes from the 30-patient dataset were

smaller than those from Consortium data (with a sample size of

442) (Figure 4C and 4D). HRs of the high-risk versus low-risk

group, defined using unsupervised cluster results, were also higher

for the 30-patient dataset (Figure 2B) than for the Consortium data

(Figure S11). Thus, while labor intensive, improving sample

homogeneity and the quality of the expression data is likely to

provide more reliable prognostic information.

Finally, the NR expression profile provides specific, testable

hypotheses on the role of the NRs in lung cancer pathogenesis. For

example, blocking the function of a highly expressed tumor cell

NR could inhibit tumor growth or development, while over-

expressing a low-abundance tumor cell NR could test its tumor

suppressive capability. The finding that non-neoplastic tissue

within the vicinity of the tumor also provided an NR gene

signature that was predictive for survival time may provide the

basis for testing NR function in the normal lung epithelium airway

field where lung tumors develop. Perhaps one of the most

surprising observations from this study is that an NR signature has

not appeared in the prognostic signatures obtained in any of the

previous global gene expression studies. This is true in spite of the

fact that, at least in the multi-site Consortium database we

analyzed, excerpting just the NR expression information yielded a

predictive NR gene signature that was not discovered using global

gene analysis [3,6]. Thus, our study provides a strategic rationale

for using an informed candidate gene profiling approach to

identify prognostic markers and to interrogate specific gene

families that may play roles in the cancer biology.

Supporting Information

Figure S1 Patient survival time comparison between the selected

30 patients and the 379 patients from MDACC tissue bank. There

was no significant difference in survival time between the two

cohorts. Black line: large dataset, 310 patients, of which 127 died.

Red line: small dataset, 30 patients, of which 16 died. Open circles

indicate censored samples.

Found at: doi:10.1371/journal.pmed.1000378.s001 (0.09 MB

PDF)

Figure S2 Expression profiles of the NR superfamily in lung

tissues. Quantitative real-time PCR analysis was performed for 48

NRs (including two common splice variants each for PPARc and

PPARd) in 30 pair-matched tissues (normal and tumor) from

patients with lung cancer. Relative expression values were

obtained as described in Methods. Ct.34 was scored as below

detection. Open and filled bars represent normal and pair-

matched tumor tissues from each patient, respectively. The

patients are numbered from 1 to 30 (see Table S3) and grouped

according to gender and survival status, with each patient being in

the same position for each NR dataset.

Found at: doi:10.1371/journal.pmed.1000378.s002 (0.92 MB

PDF)

Figure S3 CDF of the p-values of 48 NRs. The CDF represents

associations between individual NR gene expression and survival

from univariate Cox models from MDACC lung cancer cohort.

Each dot represents a p-value for one NR gene, and the solid red

line represents the expected CDF for randomly picked genes. The

dashed green line corresponds to p = 0.05. Thirty-seven NR genes

have p-values smaller than 0.05. SHP and PR genes are indicated

in the plot.

Found at: doi:10.1371/journal.pmed.1000378.s003 (0.09 MB

PDF)

Figure S4 Kaplan-Meier plot showing the predictive power of

the NR gene signature in an additional set of adenocarcinomas.

The NR gene expression signature developed from the QPCR

dataset (MDACC cohort, n = 30) was validated in the microarray

data from a cohort of 117 independent adenocarcinomas from

Tomida et al. [18]. p-Values were obtained by the log-rank test.

Red and black lines represent predicted high- and low-risk groups,

respectively. Open circles indicate censored samples.

Found at: doi:10.1371/journal.pmed.1000378.s004 (0.13 MB

PDF)

Figure S5 Kaplan-Meier plots showing the predictive power of

the NR gene signature between lung adenocarcinomas and

squamous cell carcinomas. Independent validation of the 48-NR

gene expression signature was performed using the Consortium

cohort (n = 442) as a training set and testing it in the microarray

data from a cohort of 130 squamous cell carcinomas taken from

Raponi et al. [19] (A), and vice versa (B). p-Values were obtained

by the log-rank test. Red and black lines represent predicted high-

and low-risk groups, respectively. Open circles indicate censored

samples.

Found at: doi:10.1371/journal.pmed.1000378.s005 (0.25 MB

PDF)

Figure S6 The histograms for p-values of 1,000 randomly

selected lists of 48 genes. The histogram represents the association

between the predicted risk groups and survival outcomes. The p-

values were derived from prediction models built from 1,000

random lists, each comprising 48 genes in the Consortium training

set and validated in the Consortium testing set. Only 28 random

lists reach the significance level of 0.018 attained by the NR

signature. Thus, the empirical p-value of 0.028 for the permutation

test confirms the specificity of the NR signature.

Found at: doi:10.1371/journal.pmed.1000378.s006 (0.06 MB

PDF)

Figure S7 Kaplan-Meier estimates of survival time based on NR

expression when clinical variables are included in the analysis. The

analysis for survival time was performed for clinical variables in

the absence (A) or presence (B) of NR expression. The microarray

dataset from the four-institute Consortium was divided into two

groups, one for the training cohort and the other for the testing
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cohort. The analysis included the two principal component sets of

48 NR expression variables and clinical variables. The clinical

variables included gender, age, stage, and treatments (i.e., those

receiving adjuvant chemotherapy or not, and those receiving

adjuvant radiation therapy or not) as co-variables in classification

tree model. The final predictive tree structure can be seen in the

Sweave report (Text S2). The predictive model was built in the

training cohort and then validated in the testing cohort. In the

testing cohort, patients in the predicted high-risk group live for a

significantly shorter time than patients in the predicted low-risk

group, (HR = 2.71, p = 1.0261025 for using clinical variables only;

HR = 3.21, p = 2.4361027 for using clinical and NR signature). p-

values were obtained by log-rank test. Red and black lines

represent predicted high- and low-risk groups, respectively. Open

circles indicate censored samples.

Found at: doi:10.1371/journal.pmed.1000378.s007 (0.14 MB

PDF)

Figure S8 Classification tree structures built from MDACC and

Consortium datasets. (A) Decision tree model built from MDACC

samples using the NR gene expression signature. The gene

expression of each patient was measured by QPCR. Seventeen

patients within the high-risk group (SHP expression ,28.456) and

13 patients within the low-risk group (SHP expression $28.456)

are predicted by the decision tree. Sixteen out of 17 patients in the

high-risk group have events, with an estimated rate of 2.27, while

only one out of 13 patients in the low-risk group have events, with

an estimated rate of 1.74. (B) Decision tree model built from

MDACC samples using NR gene expression signature after

removal of the SHP gene. Seventeen patients within the high-risk

group (PR expression ,24.9) and 13 patients within the low-risk

group (PR expression $4.9) are predicted by the decision tree.

Thirteen out of 13 patients in the high-risk group have events, with

an estimated rate of 2.90, while only four out of 17 patients in the

low-risk group have events, with an estimated rate of 0.353.

Found at: doi:10.1371/journal.pmed.1000378.s008 (0.05 MB

PDF)

Figure S9 Identification of NRs as prognostic biomarkers in

normal lung tissue from patients with lung cancer. Kaplan-Meier

plots of time to recurrence and survival are shown for NGFIB3

and MR, respectively. Note that these two plots are identical to

those obtained when using the entire 48-NR gene set. (A) LOOCV

of recursive partitioning tree model of the MDACC QPCR data in

normal tissues shows that NGFIB3 is the single gene left in the

predictive model for disease progression (HR = 4.61, 95% CI,

1.74–12.3; p = 0.00099). (B) Similar LOOCV analysis shows MR

is a single gene predictor of the entire 48-NR gene set as associated

with patient survival (HR = 2.22, 95% CI, 0.85–5.81; p = 0.094).

Red and black lines represent high- and low-risk groups,

respectively. Open circles indicate censored samples.

Found at: doi:10.1371/journal.pmed.1000378.s009 (0.13 MB

PDF)

Figure S10 Scatter plots showing the correlations of NR gene

expression between tumor and adjacent normal samples taken

from either the MDACC (A) or Landi et al. (B) datasets. The x-

and y-axes represent the log2 transformed expression values for

normal and tumor samples, respectively. The figures show that

NR expression in tumor samples is significantly correlated with

that in the adjacent normal tissue. Pearson correlations were 0.87

(p,0.001) for the MDACC dataset and 0.92 (p,0.001) for the

Landi et al. [28] dataset.

Found at: doi:10.1371/journal.pmed.1000378.s010 (1.36 MB

PDF)

Figure S11 Kaplan-Meier plots of survival time of the

Consortium cohort based on the 48 NR expression signatures.

Unsupervised hierarchical cluster analysis of the microarray

signature of the 48 NRs divides the 442 Consortium samples into

two clusters. p-values were obtained using the log-rank test. Red

and black lines represent high- and low-risk groups, respectively,

and were derived from the unsupervised clustering algorithm using

the NR gene signature. Open circles indicate censored samples.

Found at: doi:10.1371/journal.pmed.1000378.s011 (0.17 MB

PDF)

Table S1 Comparison of patient characteristics between the

selected 30 samples and the whole 379 samples of the MDACC

lung tumor collection.

Found at: doi:10.1371/journal.pmed.1000378.s012 (0.04 MB

PDF)

Table S2 Summary of patient clinical information.

Found at: doi:10.1371/journal.pmed.1000378.s013 (0.04 MB

PDF)

Table S3 Clinical information on individual patients.

Found at: doi:10.1371/journal.pmed.1000378.s014 (0.06 MB

PDF)

Table S4 Summary of NR expression data in normal and tumor

lung tissue taken from lung cancer patients.

Found at: doi:10.1371/journal.pmed.1000378.s015 (0.05 MB

PDF)

Table S5 Univariate Cox regression results for MDACC data.

Found at: doi:10.1371/journal.pmed.1000378.s016 (0.05 MB

PDF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pmed.1000378.s017 (0.02 MB

PDF)

Text S2 Sweave document. Nuclear receptor expression profil-

ing defines a set of prognostic biomarkers for lung cancer.

Found at: doi:10.1371/journal.pmed.1000378.s018 (0.59 MB

PDF)
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Editors’ Summary

Background Lung cancer, the most common cause of
cancer-related death, kills 1.3 million people annually. Most
lung cancers are ‘‘non-small-cell lung cancers’’ (NSCLCs), and
most are caused by smoking. Exposure to chemicals in
smoke causes changes in the genes of the cells lining the
lungs that allow the cells to grow uncontrollably and to
move around the body. How NSCLC is treated and responds
to treatment depends on its ‘‘stage.’’ Stage I tumors, which
are small and confined to the lung, are removed surgically,
although chemotherapy is also sometimes given. Stage II
tumors have spread to nearby lymph nodes and are treated
with surgery and chemotherapy, as are some stage III
tumors. However, because cancer cells in stage III tumors can
be present throughout the chest, surgery is not always
possible. For such cases, and for stage IV NSCLC, where the
tumor has spread around the body, patients are treated with
chemotherapy alone. About 70% of patients with stage I and
II NSCLC but only 2% of patients with stage IV NSCLC survive
for five years after diagnosis; more than 50% of patients have
stage IV NSCLC at diagnosis.

Why Was This Study Done? Patient responses to
treatment vary considerably. Oncologists (doctors who
treat cancer) would like to know which patients have a
good prognosis (are likely to do well) to help them
individualize their treatment. Consequently, the search is
on for ‘‘prognostic tumor biomarkers,’’ molecules made by
cancer cells that can be used to predict likely clinical
outcomes. Such biomarkers, which may also be potential
therapeutic targets, can be identified by analyzing the
overall pattern of gene expression in a panel of tumors using
a technique called microarray analysis and looking for
associations between the expression of sets of genes and
clinical outcomes. In this study, the researchers take a more
directed approach to identifying prognostic biomarkers by
investigating the association between the expression of the
genes encoding nuclear receptors (NRs) and clinical outcome
in patients with lung cancer. The NR superfamily contains 48
transcription factors (proteins that control the expression of
other genes) that respond to several hormones and to diet-
derived fats. NRs control many biological processes and are
targets for several successful drugs, including some used to
treat cancer.

What Did the Researchers Do and Find? The researchers
analyzed the expression of NR mRNAs using ‘‘quantitative
real-time PCR’’ in 30 microdissected NSCLCs and in matched
normal lung tissue samples (mRNA is the blueprint for
protein production). They then used an approach called
standard classification and regression tree analysis to build a
prognostic model for NSCLC based on the expression data.
This model predicted both survival time and disease
recurrence among the patients from whom the tumors had
been taken. The researchers validated their prognostic
model in two large independent lung adenocarcinoma
microarray datasets and in a squamous cell carcinoma
dataset (adenocarcinomas and squamous cell carcinomas
are two major NSCLC subtypes). Finally, they explored the

roles of specific NRs in the prediction model. This analysis
revealed that the ability of the NR signature in tumors to
predict outcomes was mainly due to the expression of two
NRs—the short heterodimer partner (SHP) and the
progesterone receptor (PR). Expression of either gene
could be used as a single gene predictor of the survival
time of patients, including those with stage I disease.
Similarly, the expression of either nerve growth factor
induced gene B3 (NGFIB3) or mineralocorticoid receptor
(MR) in normal tissue was a single gene predictor of a good
prognosis.

What Do These Findings Mean? These findings indicate
that the expression of NR mRNA is strongly associated with
clinical outcomes in patients with NSCLC. Furthermore, they
identify a prognostic NR expression signature that provides
information on the survival time of patients, including those
with early stage disease. The signature needs to be
confirmed in more patients before it can be used clinically,
and researchers would like to establish whether changes in
mRNA expression are reflected in changes in protein
expression if NRs are to be targeted therapeutically.
Nevertheless, these findings highlight the potential use of
NRs as prognostic tumor biomarkers. Furthermore, they
identify SHP and PR in tumors and two NRs in normal lung
tissue as molecules that might provide new targets for the
treatment of lung cancer and new insights into the early
diagnosis, pathogenesis, and chemoprevention of lung
cancer.

Additional Information Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000378.

N The Nuclear Receptor Signaling Atlas (NURSA) is consor-
tium of scientists sponsored by the US National Institutes
of Health that provides scientific reagents, datasets, and
educational material on nuclear receptors and their co-
regulators to the scientific community through a Web-
based portal

N The Cancer Prevention and Research Institute of Texas
(CPRIT) provides information and resources to anyone
interested in the prevention and treatment of lung and
other cancers

N The US National Cancer Institute provides detailed
information for patients and professionals about all
aspects of lung cancer, including information on non-
small-cell carcinoma and on tumor markers (in English and
Spanish)

N Cancer Research UK also provides information about lung
cancer and information on how cancer starts

N MedlinePlus has links to other resources about lung cancer
(in English and Spanish)

N Wikipedia has a page on nuclear receptors (note that
Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)
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