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Abstract.  Nuclear steroid/thyroid vitamin A/D receptor genes form a gene superfamily and encode DNA-binding

transcription factors that control the transcription of target genes in a ligand-dependent manner.  It has become clear that

chromatin remodeling and the modification of histones, the main components of chromatin, play crucial roles in gene

transcription, and many distinct classes of NR-interacting co-regulators have been identified that perform significant roles in

gene transcription.  Since NR dysfunction can lead to the onset or progression of endocrine disease, elucidation of the

mechanisms of gene regulation mediated by NRs, as well as the identification and characterization of co-regulator complexes

(especially chromatin remodeling and histone-modifying complexes), is essential not only for better understanding of NR

ligand function, but also for pathophysiological studies and the development of therapeutic interventions in humans.

(Endocrine Journal 53: 157–172, 2006)
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I. The Nuclear Receptor Gene Superfamily

A. Biological functions of nuclear receptors (NRs)

Fat-soluble ligands, such as steroid/thyroid and vi-

tamin A/D, exert a wide variety of biological effects

through the transcriptional regulation of target genes

via cognate NRs that exhibit specific ligand binding

(see Fig. 1).  Therefore, NRs are associated with cellu-

lar proliferation/differentiation events and are involved

in a variety of functions in different cell types.  Indeed,

NRs are thought to be central to homeostasis as well as

the development of clinical pathology in human be-

ings.  The physiological importance of the 48 NR

family members currently recognized in human beings

has been verified in mouse genetic models (Table 1)

[1–37].  For instance, peroxisome proliferator-activated

receptor (PPAR�), a principal factor in the regulation

of adipocyte differentiation and fat storage, has been

shown to control glucose tolerance via the general

regulation of insulin sensitivity [38, 39].  Indeed, the

PPAR� agonist thiazolidinedione has been used suc-

cessfully in the clinical treatment of Type II diabetes

mellitus.  Likewise, fibrate, an agonist of the PPAR�-
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related protein PPAR�, has been used to treat hyper-

lipidemia, as PPAR� regulates the expression of genes

associated with lipid metabolism, including the lipo-

protein lipase (LPL) gene that promotes the catabolism

of chylomicron, very low density lipoprotein (VLDL),

and intermediate density lipoprotein (IDL), with sup-

pression of fatty acid synthesis in the liver and sup-

pression of triglyceride (TG) production [40–42].  Sex

hormone antagonists are also effective against sex

hormone-dependent tumors of reproductive organs,

breast, and prostate [43–45].

Reflecting the significance of NR functions in the

biological effects of NR ligands, NR gene mutations

underlie a range of genetic diseases.  For example, mu-

tations in coding regions of the androgen receptor

(AR) can lead to complete loss of the androgen re-

sponse, resulting in testicular feminization (Tfm) [46],

and unusually expanded polyglutamine repeats within

the AR A/B domain lead to spinal and bulbar muscular

atrophy (SBMA) [47].  Genetic mutations in the vita-

min D receptor (VDR) that result in the loss of vitamin

D responsiveness cause hereditary vitamin D-resistant

rickets type II (HVDRR) [48], while thyroid hormone

resistance syndrome (RTH) is due to mutation of the

thyroid hormone receptor (TR)-� gene [49].  Genetic

disease also results from the malfunction of nuclear

orphan receptors (i.e. those with unknown ligands).

For example, several hepatocyte nuclear factor (HNF)-

4� gene mutations are known to cause maturity onset

diabetes mellitus of the young (MODY)-1 [50], while

photoreceptor-cell specific NR (PNR) mutations lead

to enhanced S-cone syndrome [51].

B. NR structure

All NR genes are thought to have evolutionarily de-

veloped from a single ancestor gene, such that in

metazoans, the NR gene superfamily is found in all

genomes from C. elegans to human.  As all NR super-

family members share structural and functional char-

acteristics that reflect this evolutionary relationship,

NR proteins contain five functional domains designat-

ed A to E [52, 53] (Fig. 2).  The A/B domain contains

the activation function (AF)-1 region that is constitu-

tively active even without ligand binding.  The highly-

conserved DNA binding domain (DBD) is located

within the C domain, while the D domain contains the

nuclear localization signal (NLS) [54].  The moderately-

conserved ligand binding domain (LBD) is mapped to

the E domain, and consists of approximately 250 most-

ly hydrophobic amino acids that form a ligand-binding

pocket made up of 12 �-helixes present in most of

NRs.  This domain plays a critical role in activation

function (AF)-2 activity, which is induced by ligand

binding, and results in clear shifting of the C terminal-

most �-helix 12 [55].  As the ratio between AF-1 and

AF-2 is dependent on the tissue and cell type, AF-1

and AF-2 activities are probably controlled through a

diverse range of molecular mechanisms.  Of the 12�-

helixes encoded by the LBD E domain, specific ligands

bind to a hydrophobic cave formed by �-helices 3, 4

and 5.  Ligand binding induces a structural alteration in

the E domain, mainly in terms of movement of the �-

helix 12.  For ER� the angle of this �-helix 12 shift

has been reported to vary according to ligand type [56,

57], and appears to define the transactivation function.

In contrast, NR AF-1 domains appear to mediate spe-

cific intracellular functions as the conservation of A/B

domain amino acid sequences between NRs is low.

While intramolecular interaction between AF-1 and

AF-2 functions in gene regulation has been well de-

scribed [58, 59], its molecular basis with respect to

Fig. 1. Nuclear receptor controls expression of target genes in a

ligand-dependent manner.

Lipophilic ligands, such as fat-soluble vitamins A and D,

as well as thyroid/steroid hormones, are thought to exert

their physiological effects through transcriptional con-

trol by the cognate nuclear receptors (NRs).  NRs recog-

nize and bind with the specific recognition sites, termed

hormone responsive elements (HREs).  Ligand binding

to NRs induces association with general transcription

factors (GTFs) and the target genes are transcribed by

RNA polymerase II (RNApol II).
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Table 1.

glucocorticoid receptor (GR)

impaired lung development (most of the mutant mice died during the perinatal period), [increase of corticosterone and ACTH in heterozygous 
mice] (33)

mineralocorticoid receptor (MR)

hyperkalemia, hyponatremia (pseudohypoaldosteronism) (4)

androgen receptor (AR)

testicular feminization (Tfm) and osteopenia in the male mutant mice, abnormal brain masculinization (16, 32)

progesterone receptor (PR)

pleiotropic reproductive abnormalities (25)

estrogen receptor (ER) �

infertility (22)

ER �

reduction in fertility (12, 19)

retinoic acid receptor (RAR) �

high postnatal lethality, testis degeneration (23)

retinoic acid receptor (RAR) �

no abnormality (14)

retinoic acid receptor (RAR) �

growth deficiency, early lethality, male infertility (21)

thyroid hormone receptor (TR) �

reduced linear growth, bone maturation delay, moderate hypothermia, reduced thickness of the intestinal mucosa (9)

thyroid hormone receptor (TR) �

resistance to thyroid hormone (8), deficit in auditory function (7)

Vitamin D receptor (VDR)

growth retardation, alopoecia, hypocalcemia, impaired bone formation (36)

peroxisome proliferator-activated receptor (PPAR) �

lipid accumulation in the livers of fasted or high fat diet mutant mice (17, 20)

peroxisome proliferator-activated receptor (PPAR) �/�

embryonic lethal, growth retardation in surviving mice (30)

peroxisome proliferator-activated receptor (PPAR) �

embryonic lethal, [protection from high fat diet induced adipocyte hypertrophy and insulin resistance in heterozygous mice] (38, 39)

liver X receptor (LXR) �

loss of normal response to dietary cholesterol (28)

liver X receptor (LXR) �

no apparent abnormal phenotype (2)

farnesoid X receptor (FXR)

elevation of serum bile acid, cholesterol, and triglycerides levels (34)

pregnenolone X receptor (PXR)/steroid and xenobiotic receptor (SXR)

loss of normal response to xenobiotic treatment (18)

retinoid X receptor (RXR) �

embryonic lethal, [growth deficiency in heterozygous mice] (13)

retinoid X receptor (RXR) �

embryonic lethal, male infertility in surviving mice (15)

retinoid X receptor (RXR) �

central resistance to thyroid hormone (5), less weight gain when fed a high fat diet (11)

photoreceptor-specific nuclear receptor (PNR)

retinal degeneration (1)

TLX

reduction in the size of rhinencephalic and limbic structures, including the olfactory, infrarhinal and entorhinal cortex (26, 37)

hepatocyte nuclear factor (HNF) 4�

embryonic lethal (6)

retinoid-related orphan receptor (ROR) �

cerebellar defects (10)

retinoid-related orphan receptor (ROR) �

retinal degeneration (3)

retinoid-related orphan receptor (ROR) �

absence of lymph node (35)

adrenal-4 binding protein (Ad4BP)/steroidogenic factor (SF)-1

lack of adrenal glands and gonads, structural and functional abnormalities in spleen (24, 27)

chicken ovalbumin upstream promoter-transcription factor (COUP-TF) I

defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization (31)

COUP-TF II

embryonic lethal (29)
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structure alterations of the entire NR molecule follow-

ing ligand binding remains largely unknown.

Nevertheless, it is hoped that an understanding of

the molecular mechanisms that regulate AF-1 and AF-

2 activities will facilitate the development of new ther-

apies targeted to NRs, especially as it may be possible

to minimize the risk of side effects of endogenous

ligands through the development of synthetic ligands.

For example, estrogen replacement therapy for post-

menopausal women can cause adverse effects such as

uterine bleeding, mastodynia, and weight gain, as well

as increased risk of endometrial cancer, breast cancer,

and coronary heart disease [60].  Thus, the develop-

ment of a selective estrogen modulator (SERM) with

beneficial effects on bone and the cardiovascular sys-

tem, but without adverse effects on the uterine tract or

mammary glands, would be highly desirable.  For ex-

ample, tamoxifen is a SERM originally designated as a

pure estrogen antagonist in the treatment of estrogen-

dependent breast cancer.  However, it became obvious

from clinical applications over 30 years that tamoxifen

in fact served not only as an AF-1 agonist in bone, lip-

id metabolism, and the cardiovascular system, but also

as an AF-2 antagonist in mammary glands and female

reproductive organs [61].  Raloxifen, a SERM now

marketed in Japan, has been reported to be very effec-

tive in improving osteoporosis in post-menopausal

women [62, 63], but cannot prevent hot flashes.  Thus,

based on detailed knowledge of the mechanisms of

hER� AF-1 and AF-2 functions, it is anticipated that

the desirable effects of SERMs can be further im-

proved.

Fig. 2. Structure and function of nuclear receptors.

A. Classes of ligand-dependent NRs.  NRs are subdivided into subfamilies in terms of their partnership, e.g. homodimer

(Type-I NRs), and RXR heterodimer (Type-II NRs).  B. Functional domains of the NR superfamily.  Total number of amino

acids (a. a.) and the ligand for each receptor are shown on the right.  The receptors are specific for estrogens (ER), androgens

(AR), glucocorticoids (GR), thyroid hormone (TR), vitamin D (VDR), fatty acid metabolite (PPAR), and retinoic acid

derivatives (RAR, RXR).
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II. Decoding of Histone Signals and 

the Regulation of Gene Expression

A. Chromatin structure and histone modifications

Each human cell contains approximately 2 meters of

DNA.  As DNA is acidic (i.e. negatively charged),

chromatin structures are maintained in an electrically

neutral state through association with histone proteins

that are basic (i.e. positively charged).  Two molecules

of each of the four histone types (H2A, H2B, H3, and

H4) interact to form a histone octamer.  DNA is coiled

around this octamer, which forms a nucleosome, con-

sidered to be the minimum and basic structure of

chromatin.  One nucleosome subunit contains approxi-

mately 146 base pairs of DNA.  However, not all DNA

is coiled around histone octamers, as stretches of

protein-free DNA serve as linker DNA between regions

of coiled nucleosomal DNA.  Repeated nucleosome

units then form chromatin structures.

With regard to gene regulation, DNA regions con-

tained within histone octamers are thought to be

transcriptionally repressed.  In contrast, linker DNA

regions may play a leading role in gene activation, as

these areas are easily accessible to transcription fac-

tors.  To decode genetic information within the chromo-

some via transcription, it is now thought that histone

octamers have to slide along the chromosomal DNA.

However, the signals encoded on the chromosome

that guide this process have long remained a mystery.

Recently, a revolutionary hypothesis was proposed

that these chromatin signals are in fact related to post-

translational modifications on the histones.  This break-

through was based on observations from the crystal

structure of the nucleosome, that the N-terminal tails

of histones extended out from the regions of coiled

DNA (see Fig. 3) [64, 65].  It has since become clear

that these histone N-terminal tails can be post-trans-

lationally modified by processes such as acetylation,

deacetylation, methylation, phosphorylation, ubiquiti-

nation, and sumoylation, that are targeted to specific

amino acid residues [66, 67].  Furthermore, it has been

shown biochemically that enzymes associated with

these post-translational histone modifications exist as

large protein complexes in the nucleus [68, 69].  It ap-

pears that each histone octamer is uniquely modified

according to different combinations of post-transla-

tional modifications.  In other words, the nucleosome,

long thought to have a relatively simple repetitive

structure, may actually contain arrangements of modi-

fications that reflect specific signals.  Thus, the nucleo-

somal array may contain information on chromosomal

position, such that the decoding of specific DNA se-

quences can only occur when certain chromosomal

nucleosome arrays are reorganized.

Fig. 3. Representative post-translational modifications of N-terminal tails of histones.

Chromatin is constituted with linker DNA and a nucleosome structure, which forms a complex between histone octamers

surrounded by about 150 base pairs of DNA.  N-terminal histone tails are protruded from the nucleosome core and are

modified by several histone-modifying enzymes.  Numerous combinations of post-translational histone modifications generates

“histone code” to define the chromatin state and mark the addresses upon chromatin.
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B. Chromatin remodeling

ATP-dependent chromatin remodeling complexes

are primarily responsible for the rearrangement of

nucleosomal arrays, according to signals defined by

histone modifications [70, 71].  The sliding of histone

octamers, around which contacting DNA is coiled, is

facilitated by ATP-dependent chromatin remodeling

complexes, thereby exposing new naked DNA regions.

Chromatin structures are also formed by ATP-depend-

ing chromatin remodeling complexes during DNA

replication.  Histone octamers are transferred to newly

synthesized DNA by these complexes, and nucleosomal

arrangements adjusted.  Thus, chromatin remodeling

factors and/or complexes play a major role in tertiary

chromatin structure.

III. Chromatin Regulation by NRs

A. Ligand-induced co-regulator switching by NRs

Unliganded NRs are transcriptionally silent even

when bound to specific DNA elements.  Upon ligand

binding, NR transactivation functions through AF-1

and AF-2 are induced together along with co-regulator

switching (Fig. 4).  Co-regulators that associate with

unliganded or liganded NRs are classified into two

Fig. 4. Co-regulators support ligand-dependent transcriptional controls by NRs through chromatin remodeling and histone

modifications.

Ligand binding positively and negatively controls gene expressions of target genes by NRs through switching of co-regulators;

most of them form histone modifying enzyme complexes, together with histone remodeling by ATP-dependent chromatin

remodeling complexes.
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functionally-opposite groups according to their impact

on transactivation function.  While co-repressors re-

press the transactivation function of unliganded NRs

by physically associating with the LBD, particularly

through �-helix 12, liganded NRs are co-activated by a

number of co-activators through physical association

with both the AF-1 and AF-2 domains.  The switching

between co-regulator classes is induced by ligand bind-

ing.  Most co-regulators appear to form complexes, and

their roles in gene regulation are most likely linked to

histone modification and chromatin remodeling.

B. Chromatin modifications by NRs

Gene regulation is controlled by epigenetic modi-

fications that define the chromatin state, mainly via

histone modification.  The best characterized of the

histone modifications mediated by NRs is histone acet-

ylation and deacetylation.  Co-regulator complexes

with histone acetyltransferase (HAT) activity activate

the transcription of target genes through the acetyla-

tion of histones, while histone deacetyltransferase

(HDAC) complexes deacetylate histones and serve as

co-repressors for unliganded NRs.  Histone methylation

is also induced by co-regulator complexes that asso-

ciate with NRs.  The methylation of lysine at amino

acid position 4 (K4) in histone H3 appears to induce an

active state in chromatin that leads to transcriptional

activation.  In contrast, methylation of K9 in histone

H3 is thought to lead to transcriptional suppression by

inducing the adjacent chromosomal region to adopt an

inactive state [72–75].

C. Chromatin remodeling by ATP-dependent chromatin

remodeling complexes and NRs

ATP-dependent chromatin remodeling complexes

use ATP hydrolysis to rearrange nucleosomal arrays in

a non-covalent manner, thereby rendering chromo-

somal DNA accessible to DNA-binding transcription

factors, including NRs (see Fig. 4).  ATP-dependent

chromatin remodeling complexes with distinct subunit

combinations are classified into three major complex

types (SWI/SNF, ISWI, and Mi-2) according to the

ATPase that forms the main component of the com-

plex [70].  Some of these complexes are known to

physically associate with NRs [76–79].  For example,

WINAC, a human multi-protein complex that directly

interacts with VDR through the Williams syndrome

transcription factor (WSTF), exhibits ATP-dependent

chromatin remodeling activity, and contains both SWI/

SNF components and DNA replication-related factors.

WSTF is highly homologous to hACF1, which to-

gether with hSNF2h are involved in the formation of

well-characterized ISWI-based chromatin remodeling

complexes.  While WINAC mediates the recruitment

of VDR to target gene promoters in the absence of

ligand, the subsequent binding of co-activators to

VDR requires ligand binding (Fig. 5) [80].  WINAC

dysfunction seems to be at least partly responsible for

some of the phenotypes associated with Williams syn-

drome, a rare autosomal dominant hereditary disorder

with multiple symptoms, typically including congeni-

tal vascular lesions, elfin face, mental retardation,

growth deficiency, and transient appearance of infan-

tile aberrant vitamin D metabolism, including hyper-

calcemia [79].  Although some of the biological roles

of ATP-dependent chromatin remodeling factors re-

main to be investigated, defects or mutations in Ini1,

hBrg1, or hBrm, which are subunits of the SWI/SNF

type ATP-dependent chromatin remodeling complex

subtype, have been found in several cancers [81–85].

Furthermore, an SWI2/SNF2-like ATPase motif is pre-

sent in ATRX, a protein produced by a causative gene

for myelodysplasia associated with �-thalassemia

(ATMDS) [86], and an SNF2-like domain is present in

SMARCAL1, a protein that when defective leads to

Schimke immuno-osseous dysplasia [87].  Hence,

upon confirmation that these factors do act as chroma-

tin remodelers, their related syndromes could be re-

ferred to as “chromatin remodeling factor diseases”,

and therefore considered as part of the “co-regulator

disease” category.  As chromatin remodeling is an es-

sential step in gene regulation, ATP-dependent chro-

matin remodeling complexes presumably directly and

indirectly support the ligand-induced transactivation of

NRs.  However, the functional interplay between NRs

and chromatin modifying enzyme complexes remains

to be clarified.

IV. NR Co-regulators and 

Co-regulator Complexes

A. NR AF-2 co-activators

It is well understood that ligand-induced transcrip-

tional activation by NRs consists of two activation
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steps [88, 89].  The first step is coupled with histone

modifications such as acetylation, and is then followed

by the formation of multi-complexes with general tran-

scription factors that constitute a transcription initia-

tion complex.  Two such complexes, the p160/p300

HAT complex and the DRIP/TRAP complex, have

been well characterized.  Some components of these

complexes have been shown to bind to liganded NR

AF-2 domains through consensus LXXLL and related

motifs present on some components [90].  p160/p300

complexes harbor one of three p160 family members

(SRC-1 [91], TIF2/GRIP-1/SRC-2 [92, 93], pCIP/

RAC3/ACTR/AIB1/TRAM-1/SRC-3 [94–98]) and

CBP/p300 [99].  All these components are in fact HAT

proteins presumably required by NRs either as single

factors or, more likely, as multisubunit complexes with

other components in a ligand-dependent manner.

HAT activity facilitates transcription by loosening

chromatin structures through the acetylation of histone

N-terminal tails.

SRC-1, one of the three p160 protein family mem-

bers, contains three LXXLL motifs essential for

ligand-dependent binding to NR AF-2 domains.  SRC-

1 has been shown to assemble with CARM1, an en-

zyme with dual histone methyltransferase [100, 101]

and HAT activities [102].  From structural analyses, it

appears that SRC-1 binds to a groove formed by NR

�-helixes 3, 4, 5, and 12 via the LXXLL motifs upon

ligand binding.  However, the three SRC-1 LXXLL

motifs are not equivalent with respect to NR inter-

actions.  Altered amino acid sequences around the

LXXLL motifs demonstrated altered NR interaction

efficiencies dependent on the NR being used, which

suggested that amino acids around the LXXLL motifs

are essential for recognition and specific interactions

with liganded NRs.

p300 was originally identified as a protein that

bound adenovirus E1A [103], while the p300-related

CBP protein was initially characterized as a co-activator

of cAMP responsive element binding protein (CREB),

a transcription factor activated by cAMP signaling

[104].  CBP is thought to be the causative gene for the

developmental disorder Rubinstein-Taybi syndrome

characterized by multiple abnormalities, including

broad thumbs and halluces, mental retardation, growth

retardation, developmental delay, microcephaly, and

craniofacial abnormalities [105].  p300/CBP exhibit

high structural homology to each other, and are ubiqui-

tously expressed in a variety of cells and tissues.  It is

likely that p300/CBP bind to other classes of DNA-

binding transcriptional factors in addition to NRs,

functioning as common co-activators for these factors

Fig. 5. Ligand-induced transrepression by VDR mediates functions of a novel chromatin remodeling complex (WINAC) and co-

regulator complexes of histone modifying enzymes in the gene promoter of a vitamin D biosynthesis enzyme [1�(OH)ase].



NUCLEAR RECEPTOR AND CHROMATIN REGULATION 165

[106–109].  Although p300/CBP physically bind in

a ligand-dependent manner to NR AF-2 domains to

activate transcription [110], they also function as co-

activators for AF-1 [58], which suggests that the

p300/CBP co-activators bridge AF-1 and AF-2.

Many other co-activators have been identified that

may be important in NR functions.  PGC-1 was initial-

ly described as a PPAR� co-activator [111], and re-

ported to dock with p160 member co-activators to

NRs.  PGC-1 has more recently been shown to be

important for energy homeostasis.  Indeed, a single

nucleotide polymorphism (SNP) of the PGC-1 gene

(Gly482Ser) is associated with the conversion from

impaired glucose tolerance to Type II diabetes [112,

113].  Other NR co-activators include PRIP/ASC-2/

AIB3/RAP250/NRC that contains a single LXXLL

motif and may act as a bridging factor between p300/

CBP and DRIP130, as well as being a component of

the DRIP complex.  Interestingly, its gene is known to

be amplified in breast cancer [114–117].  Another ex-

ample is GT-198.  While its gene is localized to a

breast cancer susceptibility locus, GT-198 protein ex-

hibits kinase activity and acts as a tissue-specific NR

co-activator through interaction with NR DNA-binding

domains [118].  Hydrogen peroxide-inducible clone-5

(Hic-5), which belongs to the group III LIM domain

protein family, contains four carboxyl-terminal LIM

domains (LIM1–LIM4) and acts in the nucleus as a

co-activator for steroid hormone receptors such as GR

and AR [119, 120].

Following histone modification and chromatin re-

modeling, a mediator-like complex that forms a bridge

between the NR-associated histone modifying com-

plexes and the RNA polymerase II/transcription initia-

tion complex is believed to be recruited to NRs.  One

such mediator-like complex is the DRIP/TRAP com-

plex.  This complex appears to contain no HAT activi-

ty, and was identified independently by two groups as

a protein complex that interacted with VDR and TR�

in a ligand-dependent manner [121, 122].  The DRIP/

TRAP complex enhances the transcriptional activity of

NRs on naked DNA templates in cell-free, ligand-

dependent transcription assays [123, 124], and also

appears to activate transcription mediated by several

transcriptional factor classes in addition to NRs.

The complex component DRIP205/TRAP220 exhibits

ligand-dependent binding to NRs via two LXXLL mo-

tifs, NR1 and NR2 [125].  In the presence of thyroid

hormone, the TR-RXR heterodimer recruits the DRIP/

TRAP complex through the binding of RXR and TR to

the NR1 and NR2 motifs, respectively.  Mice heterozy-

gous for a defective TRAP220 gene display pituitary

hypothyroidism, whereas humans with TRAP230

abnormalities develop hypothyroidism [126].  Such

conditions might also be classified as “co-regulator

diseases” as might Rubinstein-Taybi syndrome that is

caused by abnormal CBP function [105].

It is noteworthy that a third class of NR co-activator

complex, the TFTC-type HAT complex, has also been

identified [127].  This co-activator complex class har-

bors HAT activity, like p160/p300 complexes, but

functionally resembles the DRIP/TRAP complex as a

mediator complex.  The TFTC-type HAT complex

contains GCN5 HAT, the c-Myc interacting protein

TRRAP/PAF400, and TAFII30, which are common

factors shared with HAT complex subclass members

including hTFTC, hPCAF, and hSTAGA HAT co-

activator complexes.  Three LXXLL motifs located in

the central region of the TRRAP protein serve as the

direct ligand-dependent surface for several NRs, in-

cluding ER�.  Surprisingly, antisense mRNA mole-

cules for TRRAP inhibit the estrogen-dependent cell

growth of breast cancer cells, which indicates that

TRRAP might represent a new therapeutic target in

the treatment of estrogen-dependent breast cancer

[126, 127].

B. AF-1 co-activators of NRs

While the above factors and complexes act as NR

AF-2 co-activators, a number of NR AF-1 co-activa-

tors have also been documented.  Amino acid sequenc-

es of NR A/B domains, which contain AF-1 activity,

vary among NRs, which suggests that tissue-specific

AF-1 functions of particular NRs are supported by

unique co-activators.  For instance, ER� is phosphory-

lated by mitogen-activated protein (MAP) kinase

activated by growth factor signaling.  This phosphory-

lation occurs at the serine residue at position 118 in

the A/B domain, and potentiates hER� AF-1 function

[128].  DEAD box helicases p68 and p72 form a p160/

p300 co-activator complex with the RNA co-activator

SRA.  This complex appears to bind more strongly to

phosphorylated than non-phosphorylated ER� A/B

domains, and serves as an ER� AF-1 co-activator

[129, 130].  Thus, p68 and p72 AF-1 co-activators may

mediate cross-talk between the growth factor and es-

trogen signaling pathways.  Besides p68/p72, an RNA
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splicing complex also appears to be preferentially re-

cruited to phosphorylated Ser118 in hER� [131].  In

this case, the hER� AF-1 domain appears to also serve

as an interacting domain for the activated dioxin re-

ceptor (AhR), establishing another potential cross-talk

between estrogen- and AhR-mediated signals [132].

“Co-regulator diseases” due to AF-1 co-activators

abnormalities have also been reported, such as defects

in an AR-specific AF1 co-activator that results in Tfm

[133], and mice genetically deficient in Cnot 7

(CAF1), an AF-1 co-activator of retinoid X receptor

(RXR) �, have recently been reported to exhibit oligo-

asetheno-teratozoospermia [134].

C. Co-repressors of NRs

Generally, NRs activate the transcription of target

genes through the recruitment of co-activators in a

ligand-dependent manner, while in the absence of

ligand NRs suppress transcription by recruiting co-

repressors.  These co-repressors can include histone

modifying complexes such as the NR-co-repressor

(N-CoR) and silencing mediator for retinoic acid

receptor and thyroid hormone receptor (SMRT) com-

plexes [135–137].  NCoR and SMRT complexes share

a number of proteins such as HDAC 1/2/3, the Mad

presumptive co-repressor mSin3, and transducin

(beta)-like (TBL) 1, and a WD-40 repeat-containing

protein, the gene for which was found to be mutated

in human sensorineural deafness [138–142].  These

co-repressor complexes deacetylate the N-terminal tails

of histones, thereby “locking” the chromatin structure,

leading to suppression of target gene transcription.

TBL1 and the homologous TBLR1 are thought to

serve as factors that exchange co-repressors for co-

activators.  The ubiquitin/proteasome system includes

the 26S proteasome, a complex composed of a 20S

catalytic core involved in protein proteolysis and two

ATPase-containing 19S regulatory particles that rec-

ognize polyubiquitin-tagged substrates [143].  TBL1

and TBLR1 are thought to function as adaptors for the

recruitment of ubiquitin/19S proteasome complexes,

thereby mediating the proteasomal degradation of co-

repressors, and inducing the recruitment of coacti-

vators [144].

The mechanisms of transcriptional repression by

nuclear orphan receptors remain largely unknown.

However, it has been reported that the nuclear orphan

receptor chicken ovalbumin upstream promoter-tran-

scription factors (COUP-TF) I represses the transcrip-

tional activity of target genes that interact with NCoR

and SMRT [145].  Another nuclear orphan receptor,

PNR, which is the causative gene for enhanced S-cone

syndrome, acts as a sequence-specific repressor that

controls neuronal differentiation in the developing ret-

ina.  A PNR co-repressor complex has been identified

that includes E2F/Myb-associated proteins, NCoR/

HDAC complex-related components, TBL3 (part of

the same protein family as TBL1), and the DEVH-box

co-repressor (Dev-CoR) that belongs to the DEAD/

DEVH protein family.  This co-repressor directly in-

teracts with PNR and functions as a platform protein.

Notably, the PNR-associated Dev-CoR complex ap-

pears to function as a negative cell cycle repressor via

inhibition of cell cycle-related gene promoters, indi-

cating that co-repressors may have similar biological

importance as co-activators in gene regulation (S. T.,

H. K., S. K., unpublished results).

V. Perspectives

NRs require a number of distinct classes of factors

and/or complexes for their ligand-independent and

-dependent functions in gene regulation.  From the

most current views on the molecular mechanisms of

gene regulation by DNA-binding transcription factors,

it appears that a number of complexes and factors as-

sociate with a given transcription factor in a sequential

and highly regulated manner.  However, while NRs

appear to recruit a number of factors/complexes, it is

still unclear whether particular NR molecules require

many factors/complexes or only limited numbers of

factors/complexes depending on the promoter/chroma-

tin context.  Also, it is likely to become clear in the

near future how many of the numerous diseases and

pathophysiologies related to NR functions are linked

to malfunctions within co-regulators or co-regulator

complexes.  Such advances in the understanding of

molecular mechanisms that underlie NR function in a

variety of physiological and pathophysiological situa-

tions will contribute to drug discovery and new clini-

cal applications.
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