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Abstract: NR2E3 is a nuclear hormone receptor gene required for the correct development of the
retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-
specific gene expression and, in concert with other transcription factors including NRL, activates
the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of
retinopathies, including enhanced S-cone syndrome, Goldmann–Favre syndrome, retinitis pigmen-
tosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype–phenotype
correlations. A common feature of NR2E3-related disease is an abnormally high number of cone
photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been
supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photorecep-
tors to develop as cells that are intermediate between rods and cones. While there is currently no
available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies
under investigation, including the use of viral gene therapy and gene editing, that have shown
promise for the future treatment of patients with NR2E3 variants and other inherited retinal dis-
eases. This review provides a detailed overview of the current understanding of the role of NR2E3
in normal development and disease, and the associated clinical phenotypes, animal models, and
therapeutic studies.

Keywords: NR2E3; inherited retinal disease; enhanced S-cone syndrome; retinitis pigmentosa;
Goldmann–Favre syndrome; clumped pigmentary retinal degeneration

1. Introduction

NR2E3 (Nuclear Receptor subfamily 2 group E member 3; OMIM #604485), previ-
ously known as PNR, encodes a photoreceptor-specific orphan nuclear hormone receptor
essential for the normal development of the retinal photoreceptors [1]. The gene is located
on chromosome 15q23 and is comprised of 8 coding exons. NR2E3 has two isoforms:
(i) a full-length transcript containing all 8 exons, producing a 410-amino acid (aa) protein,
and (ii) a second transcript that retains intron 7, coding for a smaller 367-aa protein that
lacks the region encoded by exon 8 [2]. Pathogenic variants in NR2E3 show significant
clinical heterogeneity and have been associated with a number of retinopathies, with a
lack of clear genotype–phenotype correlations [1]. A common hallmark of NR2E3-related
disease is an abnormally increased number of cone photoreceptors that are sensitive to
short wavelength (blue) light, the S-cones, which has been evidenced by psychophysical,
electrophysiological [3,4], and histopathological [5] examination of patients, and animal
studies [6]. While there is still much to be uncovered, significant progress has been made
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toward understanding the role of NR2E3 in retinal development and disease and, in re-
cent years, toward the development of effective treatments through promising pre-clinical
therapeutic studies.

2. NR2E3 Structure

The NR2E3 protein is a member of a large family of ligand-modulated transcription
factors, the nuclear receptors. In the human genome, there are 48 nuclear receptors, which
include endocrine, adopted orphan, and orphan receptors [7]. NR2E3 is an orphan receptor
that shares a conserved structural organization with all nuclear receptors, consisting of
several key regions: the A/B, DNA-binding, hinge, and ligand-binding domains [8,9]. In
the N-terminus, the highly variable A/B domain comprises a ligand-independent activator
function (AF-1). This is followed by the most conserved region, the DNA-binding domain,
which consists of two Cys4 zinc fingers that contain a P-box, thought to allow the receptor
to bind to unique DNA response element sites and regulate gene expression, and a D-box,
proposed to be involved in protein–protein interactions. The hinge domain links the DNA-
binding and ligand-binding domains and contains a nuclear localization signal that may
overlap with the DNA-binding domain.

The C-terminal ligand-binding domain of nuclear receptors typically consists of 12 α-
helices that fold into a conserved hydrophobic pocket where a ligand could bind to, which
is unknown in the case of NR2E3. In addition to this ligand-dependent activator function
(AF-2), the ligand-binding domain is also essential for homo- and heterodimerization. Tan
et al. solved the crystal structure of the ligand-binding domain of NR2E3 in a ligand-free
state and found that it has a dimeric arrangement, with each monomer being formed of
a canonical antiparallel three-layer α-helical sandwich fold made up of 8 α-helices [7,10].
The ligand-binding pocket was found to be filled by the side chains of hydrophobic and
aromatic residues and the AF-2 helix occupies the canonical cofactor binding site. It was
concluded that the NR2E3 ligand-binding domain has an auto-repressed configuration.

3. NR2E3 Function
3.1. Rod and Cone Photoreceptor Differentiation

The appearance of NR2E3 in evolutionary time is thought to coincide with the emer-
gence of rod and cone photoreceptors [1]. Prior to this, early vertebrate ancestors had only
one photoreceptor cell type, which is thought to have been more structurally similar to
cones than to rods [11]. Rods and cones differ in several key aspects, including their shape,
photopigments, distribution within the retina, and pattern of synaptic connection [12].
Typically, the human retina contains ~5% cones and ~95% rods [13]. Cones are found at the
highest density in the macula, whereas rods are more concentrated around the peripheral
retina. Rods contain a single type of visual pigment, rhodopsin, for high-sensitivity low-
light vision [12]. In contrast, human cones contain one of three alternative pigments (S-, M-,
and L-opsins) each, which respond to short (S), medium (M), and long (L) wavelengths
(i.e., blue, green, red, respectively) for color and bright-light high-resolution vision. The
S-cone photoreceptor cell population is typically the least prevalent of the photoreceptor
cell subtypes, accounting for 5–10% of the cone mosaic [14]. S-cones morphologically differ
from M and L cones by displaying a longer and wider inner segment joining the outer
segment and are most dense at ~2000 cells mm2, just outside the center fovea [15].

During embryonic development, rods and cones differentiate from common photore-
ceptor precursor cells [5]. Their differentiation is controlled by several transcription factors,
including NR2E3, which ensure that rod- and cone-specific genes are confined to their
corresponding photoreceptor type (Figure 1) [16]. Studies of animal models and human
patients with NR2E3 variants suggest that the gene’s role in photoreceptor differentiation is
two-fold, in that it suppresses the expression of cone-specific genes, such as OPNSW1 (blue
opsin), GNAT2, and GNB (cone transducin subunits), and helps to activate the expression of
rod-specific genes, such as the rod transducin β subunit GNB1 [17] and rhodopsin [18,19].
NR2E3 is exclusively expressed in rods and is first detected in immature rods on the foveal
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edge from fetal week 11.7 [20]. Without the expression of NR2E3, photoreceptor precursors
differentiate to the “default” photoreceptor cell type, S-cones [18].
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Other than NR2E3, the main factors involved in rod differentiation are CRX, NRL, and
NR1D1 [16,21]. Evidence suggests that the transcription factors encoded by these genes,
along with NR2E3, interact to form multi-protein transcriptional regulatory complexes [21].
CRX promotes the expression of both rod- and cone-specific transcripts, and pathogenic
variants in CRX can cause several retinopathies, including early-onset diseases such as
Leber congenital amaurosis [22] and cone-rod dystrophy [23]. Both NRL and NR2E3 are
confined to rods and rod precursors and suppress cone-specific transcripts [1]. NRL also
up-regulates the expression of NR2E3 and other rod-specific transcripts. Deletion of Nrl in
mice also causes photoreceptors to develop as S-cones rather than rods [19].

Neither NR1D1 nor NR2E3 alone has much effect on the activity of rod-specific promot-
ers [21]. However, when both are active together, NR1D1 and NR2E3 work synergistically
to increase rhodopsin promoter activity. NR2E3 can also only bind to the promoter regions
of rod-specific genes in the presence of CRX [24]. These interactions indicate that NR2E3
forms part of a complex network of signals that determine the cell fates of photoreceptor
precursors. This complexity may in part account for the extensive variety of phenotypes
seen in patients and animal disease models.

3.2. Role in the Adult Retina and Other Tissues

NR2E3 continues to be expressed in the adult retina, and several studies have indi-
cated that it is involved in retinal maintenance [17,25,26]. In the mature mouse retina,
NR2E3 regulates a different set of genes to those targeted in development; these include
several genes responsible for the maintenance and survival of photoreceptors, such as
phototransduction-related genes Opnsw1 and Gnb1 [14]. Furthermore, Olivares et al. found
that Nr2e3 is involved in several gene networks in the adult retina and regulates genes
associated with age-related macular degeneration, including Flt1, Abca1, and Alcam [25].
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Nr2e3 protein expression has been found in murine liver cells, suggesting its role is
more widespread than was previously considered [27]. However, the role of NR2E3 in the
liver and other tissues is not well understood. Higher levels of NR2E3 were associated with
good clinical outcomes in liver cancer patients [28], while loss of NR2E3 was correlated
with the development of liver disease and cancer [27]. Expression of NR2E3 showed a
similar association in breast cancer patients, where it appears to regulate the estrogen
receptor α [29].

4. Clinical Phenotype

There are currently more than 80 identified disease-causing variants of NR2E3, which
cause a variety of retinopathies, most of which show autosomal recessive inheritance
(Figure 2 and Table 1). Among the recessively inherited disorders are enhanced S-cone
syndrome (ESCS; MIM #268100), Goldmann–Favre syndrome (GFS; MIM #268100), retinitis
pigmentosa (RP; MIM #611131), and clumped pigmentary retinal degeneration (CPRD). In
addition, NR2E3 is associated with an autosomal dominant form of RP.
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Figure 2. Pathogenic variants in NR2E3. The types and locations of the variants identified to date are
marked on the human, mouse, and zebrafish NR2E3 proteins with the corresponding exons displayed
underneath. Approximate locations of the A/B domain, DNA binding domain (DBD), hinge domain,
and ligand binding domain (LBD) are marked on the human protein.

Pathogenic variants in NR2E3 were initially described in patients with ESCS, a develop-
mental condition that causes enhanced sensitivity to blue light, early onset night blindness
(nyctalopia), and abnormal ERG responses due to an overabundance of S-cones and lack of
functional rods [30]. Patients also have varying degrees of sensitivity to green and red light
(due to varying abundance of M-cones and L-cones). Visual function for patients with these
variants is highly variable, even within families, and can range from normal to severely
reduced [31]. Additional clinical findings include hypermetropia, astigmatism, macular
holes, vessel attenuation, and degenerative changes including subretinal white dots or
yellow flecks and characteristic clumped or nummular pigment deposition observed in the
mid-peripheral fundus [31–33]. Retinal images taken from a patient with ESCS are shown
in Figure 3A–C. GFS is similar to ESCS, and the disorders are now considered to share
the same clinical spectrum [33,34], with GFS representing a more severe form. In addition
to enhanced S-cone function, early onset nyctalopia, and clumped fundus pigmentation,
GFS is typically characterized by degenerative changes in the vitreous humor, macular and
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peripheral retinoschisis (splitting of retinal layers), and posterior subcapsular cataracts [35].
CPRD is a further disorder discovered to be on the NR2E3 phenotypic spectrum, sharing
some clinical features with ESCS and GFS (i.e., clumped pigmentation throughout the
mid-peripheral fundus and nyctalopia early in life), with ERG responses more similar to
that of RP patients [33,36]. However, an assessment of 11 confirmed NR2E3 patients with
CPRD, ESCS, or GFS revealed functional defects of little or absent rod function, regardless
of diagnosis [33]. The same study found that pathogenic NR2E3 variants accounted for
approximately half of CPRD cases. In all NR2E3-associated disorders, there is degenera-
tion of photoreceptors over time and patients often suffer from a progressive decline in
vision [37,38]. However, follow-up assessments of some 50 patients have found that the
best-corrected visual acuity remains stable over time for many patients [31]. In this study,
the follow-up time ranged from 0 to 34 years, with a mean of 6.1 years.
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Figure 3. Examples of NR2E3 patient retinal phenotypes. (A) Optos color fundus image of enhanced
S-cone syndrome with (B) corresponding optos fundus autofluorescence (FAF) image showing
diffuse peripheral hypoautofluorescence with a half-ring of pronounced hyper-AF along the temporal
macular rim and (C) spectral domain optical coherence tomography (SD-OCT) through the macula
of the same patient. (D) Optos color fundus image of autosomal dominant NR2E3-related retinitis
pigmentosa with (E) corresponding optos FAF image that shows nummular hypoautofluorescent
areas around the arcades, a hyperAF ring at the macula and another more diffuse ring along the
arcades, and (F) SD-OCT through the macula of the patient showing cystoid macular edema and a
restricted ellipsoid zone.

ESCS, GFS, and CPRD are all linked to shared recessive biallelic NR2E3 variants,
and patients show considerable clinical heterogeneity even when carrying identical muta-
tions [39]. The majority of the NR2E3 pathogenic variants are found in either the DNA- or
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ligand-binding domains of the protein (Figure 2) [8,40]. For instance, the most common vari-
ant of NR2E3 found in patients is a missense mutation in exon 6, c.932G>A p.(Arg311Gln),
which occurs in the ligand-binding domain [30,33]. However, there are exceptions, includ-
ing one of the most common NR2E3 variants reported in the U.S., c.119-2A>C, which falls
within the canonical splice acceptor site of intron 1 and has been shown to induce skipping
on exon 2 [41]. It has not been possible to establish clear genotype–phenotype correlations
among the recessively inherited NRE23 diseases [8,33,39,41,42]. A number of factors may
contribute to the high phenotypic variability, including the complex interactions between
NR2E3 and other molecules involved in photoreceptor cell fate determination, the presence
of modifier genes, and environmental influences.

NR2E3 variants have also been identified as causing both autosomal recessive [43]
and autosomal dominant RP [44]. RP is a common form of inherited retinal disease
characterized by progressive loss of rod photoreceptors (presenting with nyctalopia and
peripheral field loss) with subsequent cone degeneration, causing loss of central vision.
In NR2E3-RP patients, night blindness is usually the first reported symptom starting in
childhood or adolescence [43,44]. In typical RP, bone spicule-like pigment deposits are
seen in the mid-peripheral retina; however, in some patients, clumped pigmentation has
also been observed [37,43,45]. Retinal images taken from a patient with NR2E3-related
autosomal dominant RP are shown in Figure 3D–F.

Table 1. Published patient NR2E3 variants and associated phenotypes.

Region Variant Mutation Type Amino Acid
Change Protein Domain Reported

Phenotypes References

Intron 1

c.119-2A>C Splicing ESCS, GFS,
CPRD, RP [30,33,41]

c.119-3C>G Splicing ESCS [46]

c.119-57_166 Gross
deletion RP [47]

Exon 1 c.95G>A Nonsense p.Trp32 * A/B RP [48]

Exon 2

c.142C>T Missense p.Arg48Cys DBD ESCS [40]

c.143_144delGCins25 Indel/
Frameshift p.Arg48Glufs*66 DBD RP [49]

c.145G>A Missense p.Val49Met DBD ESCS [46]

c.151G>A Missense p.Gly51Arg DBD ESCS [40]

c.166G>A Missense p.Gly56Arg DBD RP [44]

c.166G>C Missense p.Gly56Arg DBD RP [50]

c.188C>A Missense p.Ala63Asp DBD Cone–rod
dystrophy [51]

c.194_202del Deletion p.Asn65_Cys67del DBD RP, ESCS [30,52]

c.196_201delGGCTGC Deletion p.Gly66_Cys67del DBD ESCS [53]

c.202A>G Missense p.Ser68Gly DBD ESCS [54]

c.211T>C Missense p.Phe71Leu DBD ESCS [31]

c.211_213delTTC Deletion p.Phe71del DBD ESCS [42]

c.223G>A Missense p.Val75Ile DBD RP [55]

c.226C>T Missense p.Arg76Trp DBD ESCS [30]

c.227G>A Missense p.Arg76Gln DBD ESCS [30]

c.242A>G Missense p.Tyr81Cys DBD ESCS [46]
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Table 1. Cont.

Region Variant Mutation Type Amino Acid
Change Protein Domain Reported

Phenotypes References

Exon 3

c.248G>A Missense p.Cys83Tyr DBD ESCS [56]

c.263G>T Missense p.Gly88Val DBD ESCS [57]

c.290G>A Missense p.Arg97His DBD ESCS, RD [30,58]

c.305C>A Missense p.Ala102Asp DBD ESCS, RP, RD [59–61]

c.309C>A Nonsense p.Cys103 * DBD RP [62]

c.310C>T Missense p.Arg104Trp DBD ESCS [30]

c.311G>A Missense p.Arg104Gln DBD ESCS, RP, RD [63–65]

c.328C>T Nonsense p.Gln110 * DBD RD, RP [16,66]

c.328dupC Insertion/
Frameshift p.Gln110Profs*31 DBD GFS [67]

Exon 4

c.352G>A Missense p.Val118Met DBD RP [68]

c.364C>T Missense p.Arg122Cys DBD RP, RD [16,69]

c.371C>T Missense p.Pro124Leu DBD RP [70]

c.373C>T Nonsense p.Arg125 * DBD ESCS, RP [71,72]

c.406G>T Nonsense p.Glu136 * DBD RP [66]

c.481delA Deletion/
Frameshift p.Thr161Hisfs*18 Hinge RP, ESCS [57,73]

c.554delA Deletion/
Frameshift p.Lys185Serfs*66 Hinge RP [74]

Intron 4 c.571+2T>C Splicing RP [75]

Exon 5

c.626dupA Insertion/
Frameshift p.Tyr209 * LBD RP [74]

c.639_640insT Insertion/
Frameshift p.Pro214Serfs*9 LBD RD [76]

c.646G>A Missense p.Gly216Ser LBD GFS, RP [72,77]

c.701G>C Missense p.Trp234Ser LBD ESCS [30]

c.724_725delTC Deletion/
Frameshift p.Ser242Glnfs*17 LBD

ESCS, RP,
cone–rod
dystrophy

[78–80]

c.731delT Deletion/
Frameshift p.Leu244Argfs*7 LBD RP [81]

c.739C>T Missense p.Arg247Trp LBD ESCS [31]

Intron 5 c.747+1G>C Splicing ESCS [39]

Exon 6

c.755T>C Missense p.Leu252Pro LBD ESCS [82]

c.767C>A Missense p.Ala256Glu LBD ESCS, RD [33,65]

c.767C>T Missense p.Ala256Val LBD ESCS [83]

c.788T>C Missense p.Leu263Pro LBD ESCS [57]

c.790G>A Missense p.Gly264Arg LBD ESCS [84]

c.797T>A Missense p.Ile266Asn LBD RD [61]

c.808_809delCT Deletion/
Frameshift p.Leu270Alafs*70 LBD ESCS [85]

c.827_843del17 Deletion/
Frameshift p.Leu270Alafs*70 LBD ESCS, GFS, CPRD [33]

c.908T>C Missense p.Leu303Pro LBD ESCS [31]

c.919_920delAT Deletion/
Frameshift p.Ile307Leufs*33 LBD ESCS [86]

c.925C>G Missense p.Arg309Gly LBD ESCS [30]

c.925C>T Missense p.Arg309Trp LBD GFS [87]

c.926G>T Missense p.Arg309Leu LBD GFS [72]
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Table 1. Cont.

Region Variant Mutation Type Amino Acid
Change Protein Domain Reported

Phenotypes References

c.926G>A Missense p.Arg309Gln LBD ESCS [31]

c.930C>G Missense p.Phe310Leu LBD ESCS [88]

c.931C>T Missense p.Arg311Trp LBD RD, RP [66,89]

c.932G>A Missense p.Arg311Gln LBD RP, ESCS, GFS,
CPRD [30,33,41,43]

c.951delC Deletion/
Frameshift p.Thr318Argfs*6 LBD RP [90]

c.967dupA Insertion/
Frameshift p.Met323Asnfs*18 LBD RP [52]

Exon 7

c.994G>A Missense p.Glu332Lys LBD ESCS [59]

c.994G>T Nonsense p.Glu332 * LBD RD [91]

c.1000C>G Missense p.Arg334Gly LBD ESCS [63]

c.1007T>C Missense p.Leu336Pro LBD ESCS [57]

c.1018G>A Missense p.Glu340Lys LBD ESCS [92]

c.1025T>C Missense p.Val342Ala LBD ESCS [59]

c.1025T>G Missense p.Val342Gly LBD RP [93]

c.1034_1038delTGCAG Deletion/
Frameshift p.Leu345 * LBD RP [41]

c.1048C>G Missense p.Gln350Glu LBD RD [76]

c.1048C>T Nonsense p.Gln350 * LBD ESCS [94]

c.1049A>G Missense p.Gln350Arg LBD ESCS, RP [42,95]

c.1057C>G Missense p.Leu353Val LBD ESCS [57]

Intron 7 c.1101-1G>A Splicing ESCS [46]

Exon 8

c.1112T>G Missense p.Leu371Trp LBD ESCS [92]

c.1118T>C Missense p.Leu373Pro LBD ESCS, RD [16,96]

c.1154G>C Missense p.Arg385Pro LBD ESCS [30]

c.1171_1172delTT Deletion/
Frameshift p.Phe391Profs*15 LBD RP [97]

c.1184T>C Missense p.Ile395Thr LBD RP [98]

c.1194delT Deletion/
Frameshift p.Pro399Glnfs*79 ESCS [59]

c.1217A>G Missense p.Asp406Gly GFS [99]

c.1220T>A Missense p.Met407Lys ESCS [30]

c.1223delT Deletion/
Frameshift p.Phe408Serfs*7 RD [16]

DBD, DNA-binding domain; LBD, ligand-binding domain; ESCS, enhanced S-cone syndrome; CPRD, clumped
pigmentary retinal degeneration; GFS, Goldmann–Favre syndrome; RP, retinitis pigmentosa; RD, unspecified
retinal dystrophy; * premature termination codon (PTC). The pathogenic variants are listed in the Human Gene
Mutation Database (HGMD) Professional version, accessed on 16 January 2023.

There is a genotype–phenotype association for the autosomal dominant RP, with
all cases linked to an NR2E3 missense variant, c.166G>A p.(Gly56Arg), which occurs in
the first zinc finger of the DNA-binding domain [44]. This variant has been found to
cause 1–2% of autosomal dominant RP in North America [51] and to have a frequency of
3.5% in a large Spanish cohort [37]. Functional analysis showed that the absence of DNA-
binding but competition for dimer formation may explain the dominant negative activity
exhibited by the p.(Gly56Arg) mutant protein [45]. Furthermore, the p.(Gly56Arg) mutant
NR2E3 protein was found to show a distinct in vivo protein–protein interaction with CRX,
comparable to that of wild-type NR2E3, and unlike the protein with biallelic recessive
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variants located in the DNA-binding domain [100]. Escher et al. investigated a family with
autosomal dominant RP caused by the heterozygous p.(Gly56Arg) variant, in which two
family members that carried compound heterozygous variants (p.Gly56Arg/p.Arg311Gln)
had an ESCS-like phenotype [45]; it was suggested that the p.(Arg311Gln) variant may
have a beneficial modifying effect on p.(Gly56Arg) due to increased photoreceptor-specific
gene expression caused by impaired corepressor binding.

5. Animal Models

One commonly used NR2E3 animal model is the rd7 mouse, which was initially
considered to have a naturally occurring recessively inherited 380 bp deletion in the coding
region of Nr2e3, resulting in a frameshift premature stop codon [101]. However, Chen
et al. later reported in 2006 a 10-fold increase in a 9 kb photoreceptor-specific Nr2e3
transcript, which was found to arise from the antisense insertion of a long interspersed
nuclear element (LINE-1) (or L1) into exon 5. This L1 insertion subsequently blocks splicing,
leading to incompletely spliced transcripts and their accumulation of mutant Nr2e3 in
photoreceptor nuclei [102]. These mice suffer from progressive photoreceptor degeneration
starting at 12 months and have a 1.5 to 2-fold increase in S-cone numbers [1]. At the age of
1 month, the outer nuclear layer of rd7 mouse retinas shows patterns of waves, whorls, and
rosettes, which gradually disappear between 5 and 16 months [101]. ERGs are normal until
5 months, after which there is a progressive reduction in signals for both rods and cones. A
mottled pigment can be seen in the retina at the age of 16 months, along with a reduction
in outer nuclear layer thickness. The retinas of these mice also included some cells that are
intermediates between rods and cones [1]. Cheng et al. found that 50% of cells expressing
S-opsin in the rd7 mouse also express Nrl, which is not seen in wild-type mice. In the rd7
retina, cells that should develop into rods show downregulated expression of rod-specific
genes (such as Rho, Gnb1, and Pde6b) and upregulated expression of cone-specific genes
(such as Opnsw, Gnb3, and Pde6c) compared with those of wild-type [18].

A recent longitudinal study using spectral domain optical coherence tomography
(SD-OCT) to compare the retinas of rd7 mice and ESCS patients found that the disease
progression correlates well between the two species, and identified characteristics on the
patient scans that may be equivalent to the whorls and rosettes seen in mice [103].

An additional Nr2e3 knockout mouse model (Nr2e3−/−) mouse was previously gener-
ated through the ablation of exons 1–6, showing a phenotype and gene expression profile
similar to the rd7 mouse [104]. In recent years, two new mouse models have been generated
by Aísa-Marín et al. using the CRISPR/Cas9 D10A nickase system [2]. Allele ∆27 was an
in-frame deletion of 27 bp in exon 8 that ablates the dimerization domain, whereas allele
∆E8 (full deletion of exon 8) produced only the short isoform, which lacks the C-terminal
part of the LBD involved in repressor activity.

Both models showed retinal invaginations similar to the rosettes found in the rd7
mouse; however, the ∆E8 model displayed an RP-like phenotype with progressive retinal
degeneration, while ∆27 had a more ESCS-like disease with developmental defects.

Zebrafish have been used to study the role of NR2E3. Xie et al. used CRISPR/Cas9 to
create an nr2e3 knockout line with a 37 bp deletion c.485_521del, causing a frameshift pre-
mature stop codon (p.Leu162Glnfs*30) [105]. These fish showed no rhodopsin expression
and a lack of rod photoreceptors at 10 days post fertilization, which were still absent at ages
6 and 10 months. Other rod-specific genes, such as gnat1 and pde6b, were not expressed at
the mRNA or protein level. These fish were found to suffer from selective degeneration of
L- and M-cones, with their outer segments beginning to shorten around the age of 1 month.
However, the variant appeared to have no effect on the number of UV- or S-cones. The
nr2e3 Sanger zebrafish line Sa15662 harboring a nonsense mutation in exon 6 (c.1036A>T,
p.[Lys346*]) also shows an absence of rod photoreceptors (Figure 4) (unpublished data).
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Figure 4. Lack of rod differentiation in nr2e3 mutant zebrafish. Immunohistochemical staining for
rhodopsin shows a lack of rod photoreceptors (red) in the nr2e3Sa15662 mutant retina at 5 days post
fertilization. Nuclei are counterstained with DAPI (blue). Scale bars are 50 µm (top) and 10 µm
(bottom). Retinal layers are indicated: photoreceptor outer segments (OS), outer nuclear layer (ONL),
and inner nuclear layer (INL). Image kindly prepared by Dr. Manuela Lahne from Prof. Mariya
Moosajee’s group.

As in humans, the expression of nr2e3/Nr2e3 in zebrafish and mice is largely confined
to the photoreceptors, although in zebrafish the expression of nr2e3 is transiently expressed
in both rod and cone precursors during early photoreceptor development [105]. Other than
the initially normal ERGs, the mouse rd7 model appears to phenocopy human patients
with NR2E3 pathogenic variants in a fairly faithful manner [38]. The zebrafish model does
not mimic the human disease as closely, as it does not show any increase in S- or UV-cone
development. However, the lack of rod cell development and the progressive degeneration
of L- and M-cones are reminiscent of human patients with NR2E3 variants. The differences
between human patients, rd7 mice, and zebrafish nr2e3 models are most likely due to
the evolutionary history of rods and cones. Mammalian S-cones are thought to be most
closely related to teleost UV-cones, whereas teleost M-cones are evolutionarily closer to the
mammalian rods than cones [11].

6. Treatments

Although there are currently no approved therapies for the primary genetic defects
associated with NR2E3, several strategies for treating NR2E3-related retinal disease and
other inherited retinopathies are currently under development and have shown promise.
The treatment strategy will likely depend on the clinical phenotype, with developmental
effects on the ESCS spectrum, such as the low number or absence of rod photoreceptors,
posing a greater challenge as the ideal window for therapeutic intervention may be prenatal.
In contrast, the late onset of RP provides a longer and more accessible time period for
potential intervention.



Genes 2023, 14, 1325 11 of 17

One of the leading treatment avenues being pursued for many inherited retinal dis-
eases is the use of viral gene therapy for the replacement of the defective gene. A phase
1/2 clinical trial (NCT05203939) has commenced testing AAV-NR2E3 gene therapy (OCU400)
in adults with autosomal recessive and dominant NR2E3 retinopathy. This is based on the
work of Li et al. [26], who investigated the use of AAV vectors to over-express Nr2e3 in
5 different mouse models of RP, via subretinal injection in neonatal mice or adult mice. This
method was found to reduce retinal degeneration caused by mutations in several genes,
as well as NR2E3, highlighting this as a potential broad-spectrum therapy for multiple
retinopathies. In addition, subretinal delivery of Nr1d1 using expression constructs was able
to ameliorate retinal degeneration in the rd7 mouse, further demonstrating the beneficial
effects of modifier genes in mediating disease progression [106]. Interestingly, intravitreal
injection of Nr2e3 antagonist photoregulin-1 has been shown to prevent photoreceptor
death in rod degeneration mouse models Pde6brd1 and RhoP23H [107], with similar results
being found in knockout experiments of Nrl in the adult retina [108]. This demonstrates
the marked difference in roles of Nr2e3 in the developing versus adult retinas.

A potential agnostic gene therapy approach for patients suffering from advanced
stages of RP is the use of optogenetics, which involves the transduction of light-sensitive
ion channels called channel rhodopsin or related photosensitive molecules, which can
open existing ion channels on the remaining retinal cells, including ganglion and bipolar
cells [109,110]. Clinical trials are underway (NCT02556736; NCT03326336; NCT04945772).
However, while these methods may restore some measure of light sensitivity to patients,
they would be unlikely to result in high-resolution vision.

Preclinically, CRISPR/Cas9 gene editing was used to correct NR2E3 pathogenic vari-
ants in induced pluripotent stem cells (iPSCs) generated from two patients with ESCS, using
a homology-directed repair (HDR)-based strategy [111]. Patient 1 carried a homozygous
c.119-2A>C splice site variant, and patient 2 had compound heterozygous p.(Arg73Ser) and
p.(Arg311Gln) variants. They achieved relatively high efficiency (~72–83% of clones initially
screened showed incorporation of HDR cassette) with minimal off-target mutagenesis. As
most of the NR2E3 pathogenic variants are point mutations or small deletions rather than
large indels or complex rearrangements, CRISPR/Cas9 may be applicable to NR2E3-related
diseases in the future.

The frequent autosomal dominant NR2E3 RP-associated variant, p.(Gly56Arg), was
targeted using antisense oligonucleotides (AONs), which were designed to bind and silence
expression of the mutant mRNA transcripts by inducing RNAse-H1 cleavage [112]. Wild-
type or mutant NR2E3 was over-expressed in RPE-1 cells before treatment with the AONs,
all of which showed a general knock-down in both the mutant and wild-type NR2E3 at
the mRNA and protein level, although a preferential mutant protein-specific knock-down
was observed for most of the AONs. While this investigation showed the accessibility of
the region for AON-induced knockdown, further modifications are needed to increase
allele-specificity to ensure this is an effective therapeutic approach in the future.

Although it is unlikely that the gene-based therapies described would reverse devel-
opmental photoreceptor defects in adults with ESCS-type disease, NR2E3 continues to be
expressed in adult life, and boosting its function or that of its modifier genes with such
treatments might help to maintain normal photoreceptor function and prolong survival.
Alternatively, in patients with ESCS or late-stage RP, stem cell therapies to replace pho-
toreceptor loss may be the most suitable future option [113,114]. However, it may not be
possible for implanted cells to form proper synaptic connections in the retinas of patients
with developmental defects.

While there is currently no approved treatment for genetic defects underlying NR2E3
disorders, the associated disease complications, such as hypermetropia and retinoschisis,
should be monitored and management offered where appropriate to reduce further sight
loss. For instance, macular retinoschisis and cystoid macular edema can be effectively
treated using the oral carbonic anhydrase inhibitor, acetazolamide [115,116].
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7. Future Perspectives

In spite of the variety of studies conducted on NR2E3 and its role in the developing and
mature retina, there are still significant gaps in our understanding. The high levels of disease
heterogeneity, particularly among patients with recessive mutations, demonstrate the
complex interactions of this gene that have yet to be understood. A greater understanding
of the underlying disease mechanisms and genotype–phenotype correlations is needed
to better inform genetic counseling and the most effective treatment approaches. Further
investigation into the function of NR2E3 will be aided by the use of iPSCs, which have
already been generated from patients with NR2E3 pathogenic variants. iPSC-derived retinal
organoids have recapitulated the enhanced S-cone phenotype and have been used for
in vitro therapeutic studies [111,117–119]. For in vivo disease modeling, the CRISPR/Cas9
system could be used to create higher-order animal models harboring specific mutations,
which can further aid in pre-clinical therapeutic work. In recent years, NR2E3 has been
highlighted as an important modifier of retinal disease and, in addition to the treatment of
patients with NR2E3-related conditions, NR2E3 gene supplementation could be pursued as
a broad-spectrum therapy for various other retinopathies, which is particularly promiseng
for the significant proportion of patients that remain without a molecular diagnosis.
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