*Department of Pharmacokinetics and Metabolism, Genentech, Inc., South San Francisco, CA 94080

ABSTRACT

When added to cultured opossum kidney cells, IGF-I is internalized and transported to distinct intracellular the monolayer, IGF-I is internalized by a clathrin coated pit pathway and delivered to the endosomal compartment. In contrast, cells growing at the edges of a monolayer or an experimental wound internalize IGF-I by an
alternative route which rapidly delivers IGF-I to the nucleus. Similarly to IGF-I, IGFBP-3 is also internalized and accumulates in the endosomal compartment in resting cells whereas it is targeted to the nucleus in proliferating cells, IGFBP-3, which contains a putative nuclear targeting signal, may act as a carrier for IGF-I nuclear transport. The
transport of IGF-I and IGFBP-3 to two different compartments may influence their biological activity
Fluorescent IGF-I and IGFBP-3 analogs. Human cocombinant IGF-I and IGFBP-3 were expressed in E.
coli and CHO cells, respectively (8). IGF-I, des-(1-3) GF-I and IGFBP-3 were conjugated with the fluoroprobes indocarbo-cyanine (Cy3) and dichloro-
trainylfluorescein DiHCl (DTAF) (Organic Research) Fluorescent IGF-I retained the ability to bind to and phosphorylate the type I receptor. Fluorescent IGFBP3 bound IGF-I with a slightly reduced affinity.

Internalization experiments. OK cells incubated in
medium without serum for 3 to 18 hr were treated with $1-5 \mu \mathrm{~g} / \mathrm{ml}$ of fluorescent IGF-I, des-(1-3) IGF-I or/and IGFBP-3 for 0 to 120 min at $37^{\circ} \mathrm{C}$. Experimental wounds were created by scratching a confluent monolayer with fixed in neutral formaldehyde, mounted in bufferedglycerol and observed in a Molecular Dynamics were incubated with Cy3 or DTAF alone, or with Cy3rhDNase, a protein with a MW similar to IGFBP-3.
Electron Microscopy. OK cells were incubated with ${ }^{25}$ I-IGF-I at $37^{\circ} \mathrm{C}$ for 0 to 120 min , fixed and processed for autoradiography as described (9).
 Most of the biological effects of insulin-like growth Type I IGF receptor, a membrane bound glycoprotein nvolved in signaling of cell growth and metabolism. IGF-binding proteins (IGFBPs) which regulate its bioavailability and modulate its actions (1). Many surface, leading to receptor autophosphorylation and production of multiple intermediate messengers. Rapid pathway to the lysosomes where they are degraded are common features of most peptide growth factors (2). nd growth factors including IGF-I have been found to internalize and translocate to the nucleus in target cells.
In the embryonic chicken lens, IGF-I accumulates in the

 the state of differentiation of the cells (3). Putative

 IGF-I itself (4). Early studies have shown that cells

 we show that, in resting cells, IGF-I and IGFBP-3 both
internalize and localize to the endosomal compartment
 or at the periphery of the culture, IGF-I and IGFBP-3 cytoplasm.

MATERIAL AND METHODS
Cell cultures. OK cells, a cell line with features of proximal tubule epithelium derived from opossum kidney, were cultured on glass coverslips for (GIBE) for electron microscope autoradiography (7). Received: 09/17/96

microscopy autoradiography. In proliferating cells, F). Cy3-des-(1-3) IGF-I, an analog of IGF-I that has reduced affinity for IGFBP-3, was not transported to GFBP-3. No fluorescence was detected within the cells incubated with free Cy3 or DTAF. The control
molecule Cy3-DNase internalized and accumulated in molecule Cy3-DNase internalized and accumulated in

DISCUSSION.
IGF-I and IGFBP-3 follow different intracellular
pathways according to the position of the cells in the
monolayer. In quiescent cells away from the periphery
of the monolayer, IGF-I and IGFBP-3 are internalized
and enter the endosomal compartment. In these cells,
IGF-I internalization is consistent with a receptor-
mediated pathway (3,7) but it remains to be
determined whether the internalization of IGFBP-3 is
also via a receptor-mediated process involving the
IGFBP-3 receptor (10). In contrast to quiescent cells,
IGF-I and IGFBP-3 appear to cross the plasma
membrane in proliferating cells by an alternate
pathway which leads to nuclear accumulation. The
mode of IGF-I and IGFBP-3 internalization in
proliferating cells is unclear although several
mechanisms can be considered. First, it is conceivable autoradiographic silver grains were first detected at
the plasma membrane (Fig. 2A). Within 10 min numerous silver grains were observed in the cytosol without apparent association with coated pits, vesicles or membrane bound organelles, and over the
nucleus (Fig. 2B and C). In contrast, in the quiescent cells, ${ }^{125}$ I-IGF-I was internalized via coated pits at

cells were free of silver grains.
As IGFBP-3 contains a NLS we hypothesized that
GFBP-3 may act as a carrier for IGF-I nuclear transport. We consequently treated cells with Cy3-GFBP-3 without addition of IGF-I. Consistent with accumulated in the nuclei in the cells at the edge of the wound (Fig. 1 C and D). In resting cells, however, GFBP-3 was located in the endosomal compartment
(Fig. 1 C). When the monolayer was simultaneously Fig. 1 C). When the monolayer was simultaneously
treated with fluorescent IGF-I and IGFBP-3, both molecules accumulated in an apparently synchronous but in vesicular structures that correspond to the endosomal compartment in the resting cells (Fig. 3D-
RAPID COMMUNICATIONS

the nucleus.
At least two mechanisms could account for the At least two mechanisms could account for the
accumulation of IGF-I and IGFBP-3 in the nucleus. One s the separate internalization and nuclear transport of the two molecules. Once internalized and released in the nucleus through the nuclear pores by free diffusion whereas IGFBP-3 would be selectively targeted to the
nucleus by its NLS. We favor, however, an alternative nucleus by its NLS. We favor, however, an alternative
 contain a NLS, is translocated to the nucleus with 3 acts as a carrier to which IGF-I binds, forming an
GF/IGFBP-3 complex that crosses the cell membrane. Once in the cytosol, the IGF/IGFBP-3 complex would

 GFBP-3, is not transported to the nucleus indicates
hat IGF-I may depend on IGFBP-3 for nuclear

GF-I and IGFBP-3 appear to be imported in the

 questions regarding IGF-I and IGFBP-3 cellular
functions in the nuclei of proliferating cells: First, is
 that IGF-I and IGFBP-3, either separately or as a
complex, internalize and are released from early
endosomes into the cytosol. Similar mechanisms have been proposed to explain the translocation of endocytosed growth hormone and insulin into cytosol and the nucleus $(11,12)$. Against this is the finding
 indicated that OK cells produce IGFBPs, including a
42 KD binding protein of the same MW as IGFBP-3 42 KD binding protein of the same MW as IGFBP-3 I and IGFBP-3, either added or produced by OK cells, I and IGFBP-3, either added or produced by OK cells,
form a complex that crosses the plasma membrane by
an internalization pathway independent of the

 likely to take place in the medium as IGF-I binds with
higher affinity to IGFBP-3 than to its receptor (1). Different models have recently been proposed that may explain the rapid translocation of exogenous proteins through the plasma membrane by mechanisms which require the presence of yet unidentified cell
surface unfoldases and protein transporters $(13,14)$. surface unfoldases and protein transporters $(13,14)$
We have reported that heregulin- $\beta 1$, a protein that activates the ErbB receptor tyrosine kinases family, is rapidly internalized and translocates to the nucleus of
breast cancer cells. Heregulin, which contains a breast cancer cells. Heregulin, which contains a no apparent involvement of the coated vesicle or caveolae pathway (9). Thus, translocation across the plasma membrane into the cytosol may be an early step
in a pathway common to growth factors that traffic to

