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Abstract

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging contributor to biofilm-related
infections. We recently reported that strains lacking sigma factor B (sigB) in the USA300 lineage of CA-MRSA are unable to
develop a biofilm. Interestingly, when spent media from a USA300 sigB mutant was incubated with other S. aureus strains,
biofilm formation was inhibited. Following fractionation and mass spectrometry analysis, the major anti-biofilm factor identified
in the spent media was secreted thermonuclease (Nuc). Considering reports that extracellular DNA (eDNA) is an important
component of the biofilmmatrix, we investigated the regulation and role of Nuc in USA300. The expression of the nuc gene was
increased in a sigB mutant, repressed by glucose supplementation, and was unaffected by the agr quorum-sensing system. A
FRET assay for Nuc activity was developed and confirmed the regulatory results. A USA300 nuc mutant was constructed and
displayed an enhanced biofilm-forming capacity, and the nucmutant also accumulatedmore highmolecular weight eDNA than
the WT and regulatory mutant strains. Inactivation of nuc in the USA300 sigB mutant background partially repaired the sigB
biofilm-negative phenotype, suggesting that nuc expression contributes to the inability of the mutant to form biofilm. To test
the generality of the nuc mutant biofilm phenotypes, the mutation was introduced into other S. aureus genetic backgrounds
and similar increases in biofilm formation were observed. Finally, using multiple S. aureus strains and regulatory mutants, an
inverse correlation between Nuc activity and biofilm formation was demonstrated. Altogether, our findings confirm the
important role for eDNA in the S. aureus biofilm matrix and indicates Nuc is a regulator of biofilm formation.

Citation: Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, et al. (2011) Nuclease Modulates Biofilm Formation in Community-Associated
Methicillin-Resistant Staphylococcus aureus. PLoS ONE 6(11): e26714. doi:10.1371/journal.pone.0026714

Editor: Michael Otto, National Institutes of Health, United States of America

Received April 10, 2011; Accepted October 3, 2011; Published November 11, 2011

Copyright: � 2011 Kiedrowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants to MSS from the National Institute of Allergy and Infectious Diseases (AI083211, ARH, KWB and AI074087) and JMV
was supported by the National Institute of Health-National Center for Research Resources grant (P20RR020185). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alex-horswill@uiowa.edu

Introduction

Staphylococcus aureus is an opportunistic pathogen capable of

causing a diverse spectrum of acute and chronic infections.

Methicillin-resistant S. aureus (MRSA) has received considerable

attention due to reports that invasive MRSA infections are

surpassing other infectious agents as a cause of death [1]. Over the

past decade, the healthcare challenge has worsened with an

epidemic wave of MRSA in the community, also called

community-associated MRSA or CA-MRSA. These strains are

known for causing severe invasive infections not seen in previous

epidemic waves of antibiotic resistance [2,3].

The emergence of CA-MRSA has led to a growing number of

reports that these strains are also an important cause of chronic

disease, such as infective endocarditis [4], osteomyelitis [5,6], and

foreign body infections [7]. The common theme of these various

chronic infections is adherence to a host surface and persistence in

the presence of immune defenses and antibacterial therapy.

Generally, these types of persistent communities are considered to

be growing as biofilms, defined as surface-attached communities of

cells encased in an extracellular polymeric matrix that are more

resistant to antimicrobial agents.

With a recent surge in studies on S. aureus biofilms, our

knowledge of the properties of these structured communities

continues to develop. One area of recent interest is the matrix

material, which displays significant divergence across the Staph-

ylococci. The polysaccharide intercellular adhesin (PIA) is a

dominant component of the Staphylococcus epidermidis biofilm matrix

[8], but there are increasing reports that PIA is less important in

the matrix of methicillin-susceptible S. aureus (MSSA) and MRSA

biofilms [9,10,11,12,13]. In contrast, many reports have docu-

mented a critical role for proteinaceous material in the S. aureus

matrix [9,13,14,15,16,17,18,19,20]. S. aureus produces multiple

extracellular proteases with self-cleavage activity that can detach

cells from surfaces [9,17,19,21], supporting the proposal of a

protein-based matrix.

An emerging view of S. aureus biofilms is that extracellular DNA

(eDNA) has an important structural role in the matrix composition

[8,13,22,23]. There is growing appreciation for the contribution of

eDNA in a wide range of bacterial biofilms, including Pseudomonas

aeruginosa [24,25,26], Bacillus spp. [27,28], Haemophilus influenzae

[29], Neisseria spp. [30,31], Enterococcus faecalis [32,33], and Listeria

monocytogenes [34]. For S. aureus, the source of matrix eDNA is
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thought to be chromosomal DNA released through the controlled

lysis of a subpopulation of cells [22,23]. In an intriguing analysis of

the S. aureus eDNA composition, Izano et al. used a range of

restriction enzymes to demonstrate that fragments of at least 11 kb

are required to maintain biofilm integrity [8], suggesting the

eDNA has to be of sufficient size to serve as effective matrix

material.

We have previously shown that S. aureus mutants lacking the

stress-response alternative sigma factor B (SigB) are unable to form

biofilms [12]. Genetic or chemical inhibition of extracellular

protease activity restored biofilm capacity [12,16]. This observa-

tion led to our initial hypothesis that the increased protease

production in sigBmutants, which has also been observed with sarA

mutants [14,15], contributed to the biofilm-negative phenotype. In

this report, we utilized a biochemical approach to continue our

analysis of secreted factors that impact biofilm formation. In

contrast to our expectation that a specific protease(s) would be

identified, this approach identified secreted nuclease in the spent

media of a CA-MRSA sigB mutant as a potent anti-biofilm agent.

For decades, it has been known that S. aureus secretes a

thermostable nuclease enzyme, and this activity is highly

conserved among clinical isolates and has been used as a marker

for direct detection of S. aureus in blood cultures [35]. The enzyme

is referred to by many different names, such as micrococcal

nuclease, thermonuclease, deoxyribonuclease and DNase, and

hereafter we will refer to the enzyme as ‘‘nuclease’’ or ‘‘Nuc.’’ Due

to its ease of purification [36], the Nuc protein became a favorite

among enzymologists and crystallographers, leading to numerous

kinetic, protein folding and structural studies [37,38,39,40,41]. By

the time S. aureus molecular genetic techniques emerged in the

1980’s, interest in Nuc had waned, and less is known about the

biological contribution of this enzyme. Herein, we examined the

regulation of the nuc gene and present a new role for the encoded

enzyme in biofilm maturation.

Results

Fractionation of LAC spent media identifies secreted
nuclease as an anti-biofilm factor
We recently demonstrated that sigma factor B (sigB) is essential

for biofilm formation in S. aureus in both the MSSA strain SH1000

and the CA-MRSA strain ‘‘LAC’’ [12]. Strain LAC is a member

of the pulse field gel electrophoresis (PFGE) type ‘‘USA300’’,

which is the dominant clone of the CA-MRSA [42]. Strain LAC

has been the subject of extensive transcriptional, proteomic, and in

vivo pathogenic analysis [43,44,45], and we have continued studies

on this strain as a model for USA300 chronic infection. The

reason for the biofilm negative phenotype of the LAC sigB mutant

is unknown, but we reasoned that increased levels of extracellular

proteases were contributing to this phenotype. To investigate this

possibility, we prepared cell-free spent media from LAC sigB and

discovered that the presence of this spent media inhibited biofilm

formation by other wild-type S. aureus strains. For this experiment,

we used the SigB proficient model strain SH1000 [46], which is a

strong biofilm former in microtiter based assays [9,12] and thus

served as a standard to test anti-biofilm activity of spent media. As

shown in Figure 1A, as little as 10 mL of spent media from the

LAC sigB mutant inhibited biofilm formation of SH1000. To rule

out the possibility of detachment mediated by autoinducing

peptide (AIP) present in the culture supernatant [9], an agr mutant

(SH1001) unresponsive to AIP was used as the test strain, and the

same inhibition of attachment was observed. We concluded that

the LAC sigB mutant was secreting one or more anti-biofilm

factors independent of AIP.

In an initial attempt to identify the secreted factor, the spent

media of the LAC sigB mutant was fractionated by anion-

exchange chromatography. When column fractions were assayed

for their ability to inhibit microtiter plate biofilm formation by

SH1001, only the flow-though fractions contained anti-biofilm

activity, indicating the unknown factor was cationic. Spent media

was fractioned on cation-exchange resin, and two dominant peaks

of anti-biofilm activity were identified through microtiter biofilm

testing with strain SH1001 (Fig. 1B). These peaks were active

beyond two layers of standard deviation in the microtiter biofilm

assay. The samples were separated by SDS-PAGE to visualize

protein content, and the first active fraction contained two protein

bands of ,14 and 19 kDa, respectively, and the second contained

one ,16 kDa protein (Fig. 2A). Each of these three protein bands

was excised from the SDS-PAGE gel, subjected to trypsin

digestion, and the peptide fragments were then identified by

MALDI mass spectrometry. Following database comparison, the

14 kDa band was identified as chemotaxis inhibitory protein

(CHIPS), while the 16 and 19 kDa proteins were identified as

different-length forms of the secreted Nuc enzyme (Fig. 2B). Based

on the original Nuc naming convention, the longer form of Nuc

released by signal peptidase processing is called ‘‘NucB’’ [39]. This

protein has a pI of ,9.3 and elutes from the cation-exchange

column first. The shorter processed form of the enzyme called

‘‘NucA’’ has a higher pI of ,9.5 and elutes later during cation

exchange. The processing event removes 19 amino acids from the

amino-terminal end and is catalyzed by an unknown protease

(Fig. 2B). Considering Nuc was identified in both peaks of anti-

biofilm activity, and the processed form of Nuc was pure in the

second peak, we concluded that Nuc was the secreted factor in

LAC sigB mutant spent media that inhibited biofilm attachment.

To confirm this finding, purified Nuc enzyme (Worthington

Biochemicals) was tested with SH1001 in a microtiter biofilm

assay. Similar to testing of the fractionated spent media, Nuc

enzyme blocked biofilm formation in a dose-dependent manner

(data not shown).

Regulation of nuclease gene expression
Knowing that the Nuc enzyme could inhibit biofilm develop-

ment, we hypothesized that S. aureus regulates this enzyme in order

to control eDNA levels for biofilm maturation. To evaluate Nuc

regulation, we developed an enzyme activity based on fluorescence

resonance energy transfer (FRET) (see Methods and Materials for

additional details). The assay was verified using purified Nuc

enzyme, and as anticipated, the assay responded in a dose-

dependent manner to Nuc (data not shown). Purified enzyme used

to generate a standard curve for calculation of activity units

throughout this report. Nuc enzyme activity levels were measured

in sigB and agr global regulatory mutants in the SH1000 and LAC

genetic backgrounds (Fig. 3A & 3B). In sigB mutants, Nuc levels

were up ,240-fold in SH1000 and 11.5-fold in LAC. Contrary to

our expectations, inactivation of agr had no adverse effect on Nuc

activity levels.

To expand on these regulatory studies, time courses were

performed in LAC WT and regulatory mutants using media with

and without glucose supplementation. Addition of glucose to

growth media is a common practice used to simulate biofilm

forming conditions for S. aureus, and cells grown in media without

supplemental glucose do not form biofilms [9]. Throughout the

time course, transcription of the nuc gene was monitored with a

promoter fusion to sGFP (plasmid pCM20), Nuc activity levels

were measured with the FRET-based assay, and the pH of the

media was determined. As anticipated from published reports

[47], the pH dropped during logarithmic growth as the glucose

Nuclease Modulates Biofilm Formation
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was consumed and acidic metabolites were excreted, and no

significant difference was observed in the pH profiles of any of the

strains tested (data not shown). In the presence of excess glucose,

the pH dropped to ,5 for each strain, and did not recover to a

neutral pH in the time frame of the experiment (data not shown).

Like many extracellular enzymes, expression of nuc correlated with

growth. Transcription of nuc in the WT strain, as measured by the

Pnuc-GFP reporter, was first detected during logarithmic growth

and continued into early stationary phase (Fig. 3C). Likewise,

extracellular Nuc enzyme, as measured using the FRET activity

assay, was first detected during logarithmic growth and continued

to accumulate into earlier stationary (Fig. 3D), reaching 1955 U/

ml at the end of the time course. Supplementation of the media

with 0.4% glucose repressed nuc transcription (Fig. 3C) and

prevented Nuc enzyme from accumulating (Fig. 3D), although

trace activity (0.2–0.5 Units/ml) was detected during early

logarithmic growth before dropping to undetectable levels. In

the absence of supplemental glucose, the timing of nuc transcrip-

tion and accumulation of Nuc enzyme by the sigB mutant was

similar to that of WT, except the sigB mutant accumulated several

fold more transcript (Fig. 3E) and Nuc enzyme (Fig. 3F), reaching

7670 U/ml at the end of the time course. The effect of 0.4%

supplemental glucose on nuc expression was significantly attenu-

ated in the sigB mutant. Nuc activity levels were still quite high,

reaching 660 U/ml in late logarithmic growth and remaining in

the 660–860 U/mL range through the end of the time course

(Fig. 3FD). In contrast, and in support of the Nuc activity assays in

Fig. 3B, nuc expression and enzyme activity profiles of the agr

mutant were identical to those of WT (data not shown).

Controlled nuc gene expression modulates biofilm
formation
Considering that Nuc levels are repressed during growth in

biofilm media, we hypothesized that controlled nuc expression

could impact biofilm formation. To investigated this hypothesis we

transformed tetracycline-inducible expression vectors containing

nuc into SH1001, a strain that normally produces low levels of Nuc

(Fig. 3A) and is a good biofilm former (Fig. 1A), and we tested

whether induction of nuc expression could disrupt biofilm

formation in flow cells and microtiter plates. In a flow cell

experiment with anhydrotetracycline (aTet) induction, the strain

harboring pALC2073-nuc failed to develop biofilm (Figure 4B),

whereas the strain harboring empty vector established a robust

biofilm (Figure 4A). Similarly in a microtiter plate biofilm assay,

Figure 1. Anti-biofilm activity of spent media from LAC sigBmutant. A. Cell-free spent media of strain AH1483 (LAC DsigB) was prepared and
varying amounts were incubated with SH1000 (white bars) or SH1001 (black bars) in microtiter biofilm assays. B. AH1483 spent media was
fractionated on cation exchange resin. Relative protein concentration (closed circles) in the fraction was approximated using Bradford reagent, and
each fraction was tested for inhibition of biofilm formation (closed triangles) using SH1001. Horizontal lines display biofilm formation for control wells
to which column equilibration buffer was added. The middle black line is the average biofilm formation, and the lines above and below indicate 1
(thin line) and 2 (dashed line) standard deviations from the mean. The two peaks of anti-biofilm activity (fractions 34–40 and 57–61) were more than 2
standard deviations from the mean.
doi:10.1371/journal.pone.0026714.g001
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SH1001 containing pRMC2-nuc displayed a dose-dependent

decrease in biomass as the concentration aTet inducer was

increased, whereas SH1001 containing empty vector did not

(Fig. 4C). As anticipated, Nuc activity levels rose in conjunction

with the increased levels of aTet inducer (data not shown).

Coupled with the time course studies in Figure 3, it is evident that

glucose suppression of Nuc levels enhances biofilm formation and

distorting this regulatory event has a negative impact on biofilms.

Construction and characterization of a LAC nuc mutant
With an important role for Nuc in biofilm modulation being

revealed, we assessed the contribution of Nuc to biofilm formation

in strain LAC. A nuc mutant (AH1680) was constructed and

characterized using multiple different methods to assess Nuc

function. Using DNA agar plates, the secreted DNase activity was

markedly lower in the nuc mutant and restored in a complemented

strain (Fig. 5A). Nuc activity measured with the FRET assay was

almost undetectable in the mutant and overproduced ,10-fold in

the complemented strain (Fig. 5A). Using Nuc antibodies, secreted

Nuc protein was absent from the mutant and somewhat

overproduced in the complemented strain (Fig. 5A). The long

(NucB) and short (NucA) forms of nuclease were apparent in the

immunoblot for both WT and the complemented mutant strain,

while both bands were absent in the nuc mutant. As anticipated,

both long and short forms of Nuc are active as confirmed by DNA

zymography (Fig. S1A & S1B) and the FRET-based enzyme assay

(data not shown). To examine the processing of NucB to NucA,

the LAC sigB mutant was grown with protease inhibitors E64,

EGTA, and PMSF to inhibit the cysteine, metallo, and serine

classes of proteases. In an immunoblot (Supplementary Fig. 1C),

the longer NucB form of the enzyme was restored with E64,

suggesting a cysteine protease is contributing to the cleavage event,

and to a lesser extent, calcium chelation with EGTA also inhibited

the processing. Finally, exoprotein analysis by SDS-PAGE

indicated the only difference between the extracellular proteomes

of the WT, complemented and nuc mutant strains was the absence

of the Nuc protein bands in the mutant (data not shown).

Characterization of nuc mutants in other strain
backgrounds
To expand the Nuc studies beyond the LAC genetic

background, spent media from LAC and additional strains were

assayed for Nuc activity using the FRET-based assay and for the

ability to prevent biofilm formation using a SH1001 microtiter

assay. The strains tested were MSSA strains Newman [48] and

UAMS-1 [49]; hospital-associated MRSA isolate COL [50]; and

CA-MRSA isolates MW2 [51], SF8300 [52], and TCH1516 [53].

Some variability in Nuc activity was observed in the spent media

from cultures grown in TSB (Fig. 5B). The USA300 strains had

the highest Nuc levels, with LAC, SF8300 and TCH1516 all

accumulating approximately 1100 U/ml of activity. The Nuc

levels were 310 U/ml in COL, 585 U/ml in Newman, and

452 U/ml in UAMS-1, all substantially lower than the USA300

strains. MW2 had the lowest amount of Nuc (116 U/ml),

accumulating only 10% of the USA300 activity. The significantly

longer doubling times of Newman (46 min) and COL (64 min),

relative to that of the USA300 strains (32 min) [54], may account

for the lower Nuc accumulation in these strains. In contrast, the

low level in MW2 is indicative of altered growth-dependent

expression of nuc, since this strain has a doubling time similar to

USA300 strains [51]. The spent media from all the strains was

able to prevent biofilm formation by SH1001 (Fig. 5C), with high

Figure 2. Secreted nuclease (Nuc) is the anti-biofilm factor in LAC sigB spent media. A. The two major peaks of activity identified in cation-
exchange chromatography were separated by SDS-PAGE. Fraction numbers are listed on the top of the gels. The gel on the left shows peak 1 and on
the right shows peak 2. Protein bands were excised and identified by MALDI mass spectrometry as NucB and CHIPs in peak 1, and NucA in peak 2. B.
Schematic of nuclease protein domains. For NucA, only tryptic peptides corresponding to the blue colored residues were identified by MALDI
following trypsin digestion. The typtic peptide drawn in red was not observed. For NucB, the blue residues and the additional red colored residues at
the amino terminus were identified by MALDI. The indicated location of the cleavage event (between Ser and Ala) that yields the shorter NucA is
based on the report of Davis et al. [39].
doi:10.1371/journal.pone.0026714.g002
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statistical significance compared to the untreated control.

Considering only ,12 U/ml Nuc is present in the MW2 spent

media sample following dilution, the amount of Nuc needed to

prevent SH1001 microtiter biofilm formation is less than this

amount.

To determine whether Nuc was contributing to the anti-biofilm

activity of spent media, nuc mutations were generated in each of

the strains assayed in Fig. 5B. After confirming the mutations

through molecular analysis, DNase agar plate assays, and FRET-

based activity assays (data not shown), the ability of spent media

from nuc mutant cultures to prevent biofilm formation by SH1001

was assayed. In all cases, when compared to the corresponding

WT control, the spent media from the nuc mutant had reduced

ability to prevent SH1001 biofilm formation (Fig. 5C). For the

USA300 (LAC, SF8300, TCH1516), Newman and UAMS- 1

strains, the amount of SH1001 biofilm formed in the presence of

nuc mutant spent media was statistically indistinguishable from the

untreated control, implying that Nuc could account for the

majority of the anti-biofilm activity observed with this assay. In the

presence of spent media from either the COL or MW2 nuc

mutants, the amount of SH1001 biofilm formed was more than

the corresponding WT media, but less than the untreated control.

To determine whether the nuc mutants share a common biofilm

deficient phenotype, microtiter plate assays were performed for

each WT strain and its nuc mutant counterpart (Fig. 5D). In all but

one case, the introduction of a nuc mutation resulted in a

significant enhancement of biomass accumulation. The only

exception to the enhancement phenotype was strain COL, which

was the weakest biofilm former of the group. The COL phenotype

could be due in part to the additional anti-biofilm activity that was

Figure 3. Regulation of Nuc levels in strain LAC. A. Extracellular Nuc activity of SH1000 and Dagr::Tet and DsigB mutants in this genetic
background. B. Extracellular Nuc activity of LAC and Dagr::Tet and DsigBmutants in this genetic background. Panels C–F represent timecourse results
with strain LAC. The Pnuc-sGFP promoter fusion (pCM20) was placed into LAC WT (C, D) and DsigB mutant (E,F), and the strains were grown in BHI
with and without 0.4% glucose supplementation. Plots of growth versus nuc GFP reporter are C, E. For labels of these plots, OD of growth in BHI
(black closed circles), OD of growth in BHI + glucose (red circles), nuc reporter in BHI (green triangles), nuc reporter in BHI + glucose (blue diamonds).
Plots of growth versus Nuc activity are D, F. The Nuc activity labels correlate with color coding of nuc reporter measurements, and the OD plots are
the same.
doi:10.1371/journal.pone.0026714.g003
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revealed by the spent media SH1001 microtiter plate assay

(Fig. 5C).

Flow cell biofilms of the LAC nuc mutant
We recently reported that a nuc mutation in the MSSA strain

UAMS-1 increases the biofilm forming capacity in a flow cell [22].

To learn whether CA-MRSA displays a similar phenotype, the

LAC WT, nuc mutant and complemented strains were grown in

flow cells, and biofilms were post-stained with the live cell stain

Syto9 and dead stain Toto3 to indicate eDNA and dead cells

(Fig. 6). The Toto3 dye was selected because its far-red emission

collection does not overlap with that of Syto9, and Toto3 has

increased sensitivity as compared to another common dead stain,

propidium iodide, in detecting eDNA [22]. Following confocal

fluorescence microscopy, we observed that average thickness of

biofilms was markedly increased in the nuc mutant (38.5 mm vrs.

18.1 mm for WT), and the WT phenotype was restored with

complementation of nuc on a plasmid (14.7 mm). We also observed

an increase in Toto-3 staining near the substratum of the nuc

mutant biofilm. This increase in Toto-3 staining could be

indicative of more eDNA at the initial point of bacterial

attachment, but this staining technique does not distinguish

between eDNA and dead cells.

High molecular weight eDNA accumulates in culture
media of the nuc mutant
Although expression of nuc is repressed under biofilm forming

conditions (Fig. 3), the LAC WT biofilm is still substantially

reduced when compared to the nuc mutant in microtiter (Fig. 5)

and flow-cell experiments (Fig. 6). We hypothesized that the nuc

mutant would accumulate eDNA, while residual Nuc activity in

the WT strain would degrade eDNA into smaller fragments,

negatively impacting biofilm formation. To assess eDNA accu-

mulation and fragment size, eDNA was isolated from media of

cultures grown with and without glucose supplementation and

separated in agarose gels (Fig. 7). Without excess glucose, eDNA

Figure 4. The effect of controlled nuc gene expression in biofilms. For images A and B, biofilms were grown in TSB supplemented with 0.2%
glucose and 100 ng/mL aTet and post-stained with Syto9. The nuc gene was expressed from an aTet-inducible promoter in plasmid pALC2073. A z
series of images were obtained with CLSM and reconstructed for the 3D rendering. Beneath each 3D reconstruction is a XZ cross-section of the
biofilm with each side of a grid square at 20 mm. A. SH1001 with pALC2073 (vector). B. SH1001 with pALC2073-nuc (nuc induction). For a dose-
response test (C), SH1001 with pRMC2 (vector) was compared to SH1001 with pRMC2-nuc (nuc induction) comparison in microtiter biofilm assays at
increasing aTet concentrations.
doi:10.1371/journal.pone.0026714.g004
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isolated from WT and an agr mutant strain appears as a smear of

lower molecular weight (MW) DNA fragments (Fig. 7A). The

intensity of these smears is highest at the bottom of the gel under

5 kb in size, indicating that the majority of eDNA in these lanes is

low MW. In contrast, eDNA isolated from the nuc mutant is

similar in size to purified, high MW genomic DNA with minimal

degradation, and this phenotype can be complemented. In the sigB

mutant where Nuc levels are high, the eDNA is completed

Figure 5. Characterization of MSSA and MRSA nuc mutants. A. LAC WT, nuc mutant, and complemented strains were tested in three
conditions: DNase agar plates (top panels) with zones of clearing indicating secreted Nuc activity, Nuc enzyme activity measurement (middle panel),
and immunoblot for Nuc protein (bottom panel). The long form (NucB) and processed short form (NucA) are indicated. B. Extracellular Nuc activity of
various WT S. aureus strains. C. Effect of nuc mutant (black bars) and WT (white bars) spent media on inhibition of SH1001 biofilm formation. Values
are the average of 16 wells. Untreated control (n = 36 wells) is shown on the left as a gray bar. D. Biofilm formation of nucmutants (black bars) versus
WT strains (white bars). Values are the average of 8 wells.
doi:10.1371/journal.pone.0026714.g005

Nuclease Modulates Biofilm Formation
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Figure 6. Growth of the LAC nuc mutant in a flow cell. The LAC WT (A–D), nuc mutant (E–H), and complemented (I–L) strains were grown in
flow cell biofilm conditions for 3 days. The biofilms were post-stained with Syto9 (live stain, green) and Toto3 (dead stain, red). Top-down and cross-
section CLSM images were taken for Syto9 (A, E, I) and Toto3 (B, F, J) channels. A merged image of these two channels was also prepared (C, G, K).
Finally, a z series of merged images was obtained for a 3D reconstruction of the biofilm (D, H, L) and each side of a grid square is 20 mm.
doi:10.1371/journal.pone.0026714.g006

Figure 7. Accumulation of high MW eDNA in the nuc mutant. The eDNA was purified from the spent media of LAC WT and strains with
mutations in the nuc, agr, and sigB loci. A nuc complement (+ nuc) and nuc sigB double mutant was also included. A. Agarose gel of eDNA purified
from strains grown in TSB. B. Agarose gel of eDNA purified from strains grown in TSB with 0.4% glucose supplementation. In each gel, lane ‘‘SM’’ is a
DNA size marker with a top size of 12 kb. Purified chromosomal DNA was included as a control and is shown in the lane labeled ‘‘genomic’’.
doi:10.1371/journal.pone.0026714.g007

Nuclease Modulates Biofilm Formation
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degraded, and this phenotype can be restored by introducing a nuc

mutation.

With excess glucose, a high MW band of eDNA is again

observed for the nuc mutant and the nuc sigB double mutant

(Fig. 7B). Interestingly, WT and the agr mutant have increased

amounts of high MW eDNA compared to the low glucose

condition (Fig. 7B vrs. 7A), although some degradation was still

apparent, which consistent with trace Nuc activity accumulating in

the high glucose media. The eDNA in the sigB mutant and the

complemented nuc strain is degraded, presumably due to the high

levels of Nuc enzyme in both conditions. Taken together, these

experimental observations indicate that the nuc mutant accumu-

lates more high MW eDNA compared to WT and a sigB mutant,

and the introduction of the nuc mutation is dominant for this

phenotype in variant genetic backgrounds.

Removal of nuclease improves sigB mutant biofilms
With the apparent correlation of high Nuc levels to a biofilm-

negative phenotype, we hypothesized that inactivation of the nuc

gene in the sigB mutant background would restore biofilm-forming

capacity. The nuc sigB double mutant was constructed in the LAC

strain, and biofilm formation was compared to WT and single

mutants in nuc and sigB using flow cells. The controls behaved as

anticipated with WT forming a biofilm (Fig. 8A) and the nuc

mutant showing increased biomass accumulation (Fig. 8B), while

the sigB mutant formed no biofilm (data not shown), which is

consistent with our previous report that a sigB mutant is incapable

of forming a biofilm under flow-cell conditions [12]. In contrast,

the nuc sigB double mutant (Fig. 8C) formed a patchy biofilm

compared to WT and the nuc mutant. Based on COMSTAT

analysis, the average biomass of the nuc sigB double mutant

(11.1 mm3/mm2) was similar to WT (11.8 mm3/mm2), while the

average thickness was much reduced (4.3 mm vrs. 16.7 mm),

consistent with the uneven distribution of biofilm across the

surface. The ability of a nuc mutation to partially restore biofilm

formation in the sigB strain confirms that Nuc activity negatively

affects this phenotype. However, eliminating Nuc did not fully

restore sigB biofilm to a WT level, indicating that other factors also

contribute to the sigB phenotype.

Nuc vrs. biofilm correlation
In order to quantify the inverse relationship between Nuc

activity and biomass, microtiter plate biofilm assays were

conducted on strains containing mutations that modulate Nuc

activity in the LAC WT (Fig. 9A) and UAMS-1 (Fig. 9B) genetic

backgrounds. Nuc activity measurements were performed on the

filter-sterilized media removed from the microtiter plate wells

following growth, allowing for a direct comparison between Nuc

activity and biomass. The most notable finding is that the

logarithmic fits of the data demonstrate a quantitative relationship

between biomass and Nuc activity in the LAC WT and UAMS-1

backgrounds, and these fits are strikingly similar across genetic

backgrounds (Fig. 9). Several other observations are consistent

with the overall findings in this work: (1) nuc mutants accumulated

the most biomass, had the lowest measurable Nuc activity, and

complementation restored the WT phenotype; (2) a sigB mutant

had high Nuc activity and accumulated low levels of biomass, and

introduction of the nuc mutation restored the WT phenotype; (3)

agr mutants were similar to wildtype strains in both Nuc activity

levels and biomass; and (4) sarA regulatory mutants had high Nuc

activity and accumulated the least amount of biomass. Based on

these correlation plots, Nuc activity levels are a strong predictor of

biofilm formation across multiple S. aureus strain lineages.

Discussion

We observed that USA300 LAC sigB mutant spent media

contained potent anti-biofilm activity that counteracted the ability

of other wild-type S. aureus strains to develop biofilms. In this work,

we identified the source of this activity as the secreted Nuc enzyme

and further examined the regulation and role of Nuc in biofilm

maturation. The discovery of Nuc in the fractionation experiment,

and not proteases, was somewhat unexpected. Based on the recent

reports that proteases can disperse S. aureus biofilms [9,17,19], we

anticipated identifying proteolytic activity in the fractions that

blocked biofilm formation. Multiple reports have demonstrated

that overproduction or exogenous addition of SspA (V8) protease

cleaves fibronectin binding proteins, which are important in the

accumulation of biofilm biomass [19,21]. In particular, exogenous

addition SspA was found to prevent biofilm formation for various

strain lineages in a microtiter plate assay that uses uncoated plates

and glucose supplementation [19]. Given the similarities between

the microtiter assay employed in this report and the published

SspA work, we anticipated finding anti-biofilm activity in the spent

media associated with this protease. However, we failed to identity

SspA (pI = 4.6) in any of the elution fractions from anion-exchange

chromatography or flow-through fractions from cation-exchange

chromatography.

Figure 8. Rescuing LAC sigBmutant biofilms with nucmutation. The LAC WT (A), nucmutant (B), and nuc sigB double mutant (C) strains were
grown in flow cell biofilm conditions for 2 days. The biofilms were post-stained with Syto9 (live stain, green) and ToPro3 (dead stain, red).
Representative 3D reconstruction and cross-section images from CLSM are shown. Each side of a grid square is 38 mm.
doi:10.1371/journal.pone.0026714.g008
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Several factors may have contributed to lack of proteases in the

anti-biofilm fractions. First, it is possible that the concentration of

SspA (or other proteases) in the column fractions was too low to

prevent biofilm formation. Testing whether this is the case would

require a quantitative determination, similar to what we have

reported here for Nuc, of the minimal amount of exogenous SspA

(or other protease) required to prevent biofilm formation. Second,

a number of studies suggest that effects of proteases on biofilm

formation require the combined activities of multiple different

enzymes. Introduction of single protease mutations into the

SH1000 sigB background [12,17] or into the UAMS-1 sarA

background [15] failed to restore biofilm forming capacity to the

sigB mutant and sarA mutants, respectively. However, simulta-

neous introduction of the aur and splABCDEF mutations restored

biofilm forming capacity to the SH1000 sigB mutant [12], and the

addition of protease inhibitor cocktails restored biofilm-forming

capacity to the UAMS-1 sarA mutant [15]. Given these

observations, the failure of the fractionation experiment to

establish a link between proteases and anti-biofilm activity is

consistent with reports that the coordinated function of multiple

enzymes might be required. Lastly, it may be that under altered

biofilm assay conditions, such as coating a surface with matrix

proteins, SspA or other proteolytic enzymes would have more

impact on biofilm formation.

With a newly identified role for Nuc as a biofilm inhibitor, we

hypothesized that S. aureus must repress enzyme production during

biofilm formation. Regulatory studies using a promoter fusion

confirmed that the nuc gene was repressed by glucose supplemen-

tation, which is a common additive used by researchers to induce

biofilm formation [9,10,19,55]. As anticipated, mutations in sigB

lead to increased nuc expression and Nuc activity (Fig. 3),

confirming microarray studies on these mutants [56,57]. The

reason for the enhanced Nuc levels is unknown but could provide

future insights on nuc gene regulation. There has long been

speculation that Nuc, like other extracellular enzymes, is part of

the agr regulon [58,59]. Surprisingly, using both transcriptional

fusions and Nuc activity assays, we were unable to find a role for

agr in Nuc regulation at either the transcriptional or post-

transcriptional level. We are currently following up on these

observations to further understand Nuc regulation.

Considering that nuc is already repressed with glucose

supplementation, the question also remained as to why the nuc

mutant grew a thicker flow cell biofilm than the WT strain (Fig. 6).

It is important to note that even with glucose supplementation,

trace levels of Nuc activity (0.2–0.5 U/ml) were still detected in the

WT spent media. This Nuc activity difference is apparent when

looking at the eDNA that accumulates outside the cell. Higher

MW DNA accumulated in the nuc mutant (Fig. 7), and the length

of the eDNA isolated was predominantly over 10 Kb, in range of

the previously identified cutoff necessary to maintain intact

biofilms [8]. The trace Nuc activity in the WT media may also

explain the difference in biomass accumulation in WT vrs. nuc

mutants in the microtiter biofilm assay (Fig. 5D). We hypothesize

that enough high MW eDNA accumulates after 4 hours of growth

to allow for biofilm formation to occur. After this threshold point is

reached, further cell lysis is not required, perhaps explaining why

inhibition of lysis is most effective at the initial growth stages in

preventing biofilm formation [22]. Other aspects of the eDNA

isolation paralleled Nuc regulation studies, such as when Nuc

levels were high in a sigB mutant or in media without glucose, the

eDNA was digested into smaller fragments. Overall, these findings

confirm previous reports and demonstrate that eDNA must be

high MW in order to be an effective matrix material [8].

The information acquired on the control of nuc gene expression

may provide insight on the biofilm phenotypes observed for

various S. aureus strains and regulatory mutants. Our findings

demonstrate that Nuc levels are tightly correlated with biofilm

formation, and this correlation applies across different WT stains

(Fig. 5). The only strain that behaved differently was COL, which

failed to develop a biofilm in the microtiter assay. Further, the

spent media from a COL nuc mutant still retained anti-biofilm

activity (Fig. 5C). Whether this strain produces an additional anti-

biofilm factor, such as an extracellular protease or a second

nuclease, is not clear. Most S. aureus strains tested produced high

levels of Nuc, in particular USA300 isolates (Fig. 5B), which might

be a factor in the technical challenges of assaying for biofilm

formation using uncoated microtiter plates. Our findings also

suggest that conditions or mutations leading to distorted Nuc

regulation contribute to biofilm phenotypes (Fig. 9). For instance,

sigB mutants overproduce Nuc even in the presence of glucose

suppression (Fig. 3F), leading to the degradation of eDNA (Fig. 7B)

and the inability to form biofilms. We demonstrate that removal of

Nuc repairs these phenotypes and recovers biofilm capacity

(Fig. 7B and 8C), although not completely. It is already

appreciated that proteases are an important contributor to the

biofilm-negative phenotype of sigB and sarA mutants [12,14,15],

Figure 9. Correlation of Nuc activity with biofilm formation. Nuc activity of mutants in the LAC (A) and UAMS-1 (B) strain backgrounds was
measured and compared to the amount of biomass accumulated by each strain. Nuc activity was measured using a FRET assay and is displayed in U/
mL. Biofilm formation was assessed by measuring biomass accumulation in microtiter assays. Logarithmic fits were performed (shown as line on
plots) with similar results for each plot.
doi:10.1371/journal.pone.0026714.g009
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and the high level of extracellular proteases likely explains the

inability of sigB nuc mutants to form a wildtype level of biofilm

(Fig. 8C). This proposal would be consistent with our previous

observations that the reduction or elimination of protease activity

partially restored sigB mutant biofilms [12]. Taken together, we

conclude that S. aureus biofilm formation is simultaneously

impacted by high levels of Nuc and extracellular proteases.

However, in vivo confirmation of this proposal is not yet available.

Ongoing studies in our laboratories will begin to address these

questions.

Considering our observations and other published reports

[8,22,23], the release and utilization of eDNA as a matrix material

may be an underappreciated factor in the survival of S. aureus.

There is evidence in previous reports that eDNA is necessary for S.

aureus in vivo biofilm formation [23,60]. Although it has been

proposed that medical devices become coated with host matrix

proteins following implantation [61,62,63], a recent report

demonstrated that abolition of nuclease production partially

restores biofilm formation in a S. aureus sarA mutant even in the

presence of plasma protein and protease inhibitors [15], suggesting

there is potential for eDNA during in vivo chronic infection. There

are also a growing number of examples where eDNA is required

for in vivo biofilm formation by other bacterial pathogens [29,64].

While we have investigated the contribution of S. aureus Nuc to

modulating eDNA levels, the host nucleases could also be a

significant factor in vivo. DNase I is the most extensively distributed

host nuclease and the enzyme responsible for the majority of

DNase activity in blood [65]. In serum samples, reports of DNaseI

levels range from 65627 U/g protein [66], which corresponds to

0.004460.0018 U/ml, to higher estimates of 0.35660.410 U/ml

[66] and 2.4762.48 U/ml [67]. Given these low levels of activity,

it is not clear whether there are sufficient quantities of DNaseI to

impact S. aureus biofilm formation during infection. Clearly, more

in-depth studies on the role of eDNA and nuclease enzymes in vivo

are warranted.

Herein, we have presented evidence that Nuc levels have a

significant impact on in vitro biofilm formation in S. aureus. Whether

growth of biofilms on biotic surfaces will be equally affected by

Nuc remains to be determined. While it is challenging to relate in

vitro observations to pathogenesis in vivo, S. aureus is able to persist in

healthcare settings on the abiotic surfaces of fomites. There are

numerous examples of MSSA and MRSA strains being isolated

from hospital objects [68,69,70,71,72,73], and MRSA has the

ability to persist for periods up to 2 weeks on environmental

surfaces in hospitals [74,75]. Recent studies have demonstrated

that environmental contamination may contribute to the spread of

USA300 strains [76]. Whether eDNA release and modulation of

eDNA levels with Nuc will impact hospital surface colonization is

worthy of further exploration. With the growing recognition for

the role of eDNA in bacterial biofilms, the use of nuclease enzymes

as a potential means of controlling S. aureus attachment warrants

further study.

Materials and Methods

Bacterial strains and growth conditions
Bacterial strains and plasmids used are described in Table 1. E.

coli cultures were grown in Luria-Bertani (LB) broth or on LB agar,

and S. aureus strains were grown in tryptic soy broth (TSB) or on

tryptic soy agar (TSA) unless otherwise indicated. Difco methyl

green DNase test agar used to examine nuclease production in S.

aureus was purchased from BD (Sparks, MD) and prepared

according to manufacturer’s instructions. Plasmids in E. coli were

maintained using antibiotic concentrations (in mg/ml) of ampicillin

(Amp), 100. Plasmids in S. aureus were maintained using antibiotic

concentrations of chloramphenicol (Cam), 10; erythromycin

(Erm), 10; and tetracycline (Tet), 10, unless otherwise noted.

Strains were incubated at 37uC with liquid cultures shaken at 200

RPM. When required, the growth medium was supplemented

with glucose at concentrations of 0.2% or 0.4% W/V.

Recombinant DNA and genetic techniques
Plasmid DNA was prepared from E. coli and electroporated into

S. aureus RN4220 as previously described [77]. DNA was moved

from RN4220 into other S. aureus strains through transduction with

bacteriophage a80 or 11 [78]. All restriction enzymes and

enzymes for DNA modification were purchased from New

England Biolabs (Beverly, MA) and used according to manufac-

turer’s instructions. Oligonucleotides were synthesized by Inte-

grated DNA Technologies (Coralville, IA). Non-radioactive

sequencing was performed at the University of Iowa DNA

Sequencing Facility.

Plasmid construction
Nuclease promoter fusion. The nuclease promoter region

was amplified by PCR from AH1263 genomic DNA using

the oligonucleotides CLM400: 59 GTTGTTAAGCTTGTA-

AATTATAAGTTATACATCTCG 39 and CLM404: 59 GT-

TGTTGGTACCCTTTTTAGTTAATTTTAATATTAAACG

39. The PCR product was purified, digested by HindIII and KpnI

and ligated to pCM11 [13], also cut by the same enzymes. The

plasmid was confirmed by DNA sequencing. The nuc promoter

sGFP plasmid was designated pCM20.

Tetracycline-inducible vectors. The nuc gene was

amplified by PCR from AH1263 genomic DNA using the

following oligonucleotides: MRK24: 59 GTTGTTGGTACC-

ACTAAAAAGAAAGAGGTGTTAGTTATGACAGAATACT-

TATTA 39 and MRK25: 59 GTTGTTCTCGAGTTATTG-

ACTGAATCAGTGTCT 39. The PCR product was purified and

digested using the restriction enzymes SacI and KpnI, then ligated

to pALC2073 [79] and pRMC2 [80], also cut by SacI and KpnI.

The plasmids were confirmed by DNA sequencing and called

pALC2073-nuc and pRMC2-nuc, respectively.

Nuclease complementation plasmid. The nuc gene, along

with 360 bp of the upstream promoter region and 100 bp

downstream, was amplified by PCR from AH1263 genomic

DNA using the following oligonucleotides: MRK26: 59

GTTGTTGCTAGCGTAAATTATAAGTTATACATCTCG

39 and MRK27: 59 GTTGTTGAATTCAATACACTTA-

CTTTTGATACTATTTAC 39. The resulting PCR product

was digested using the enzymes NheI and EcoRI, then ligated to

pCM28 [81] cut by the same enzymes. Plasmid construction was

confirmed by DNA sequencing and called pCM28-nuc.

Construction of nuclease mutant
The nuclease mutant was constructed using the Targetron Gene

Knockout System (Sigma, TA0100). Primers (antisense at position

532/533) as designed by the Targetron Design Site are: CLM413:

59 AAAAAAGCTTATAATTATCCTTAAAGCTCCGTTTAG-

TGCGCCCAGATAGGGTG 39, CLM414: 59CAGATTGTA-

CAAATGTGGTGATAACAGATAAGTCCGTTTACCTAAC-

TTACCTTTCTTTGT 39, CLM415: 59 TGAACGCAAGTTT-

CTAATTTCGGTTAGCTTCCGATAGAGGAAAGTGTCT 39.

PCR was performed according to the Targetron protocol. The

PCR product was gel purified, digested by BsrG1 and HindIII and

ligated to the S. aureus Targetron donor plasmid pNL9164 (Sigma,

T6701) digested by the same enzymes. After electroporation into

E. coli, the colonies were screened by PCR and subsequently
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sequenced. The plasmid retargeted to the nuclease gene was

designated pNL-532. pNL-532 was electroporated into RN4220

and subsequently phage transduced into AH1263 at 30uC. An

overnight culture grown in TSB with Erm was diluted 1:100 in

fresh media and grown at 30uC to an optical density (OD) at

600 nm of 0.5. Addition of CdCl2 to 10 mM followed by growth at

30uC for 90 min induced expression from the cadmium promoter.

The cells were diluted and plated on TSA with Erm at 30uC.

Colony PCR was used to screen for insertions using oligonucle-

otides CLM400: 59 GTTGTTAAGCTTGTAAATTATAAGTT

ATACATCTCG 39 and CLM405: 59 CAGTGACACTTTTA-

CAATGAGC 39. Positive colonies showed a 900 bp insertion. To

cure the plasmid, an intron-positive colony was grown overnight at

42uC in TSB without antibiotic, plated and subsequently screened

for erythromycin sensitive colonies. The nuc::LtrB mutant was

designated strain AH1680.

Identification of anti-biofilm activity by chromatography
An overnight culture of strain AH1096 (LAC DsigB) was

inoculated 1:500 into 200 ml of TSB in a 1 L flask and grown at

37uC with shaking (200 rpm) for approximately 20 hr. Cells were

removed by centrifugation at 60006g for 15 min at 4uC, and the

Table 1. Strains and Plasmids.

Strain or Plasmid Description Source or reference

Strains

E. coli strains

BW25141 Cloning strain [88]

S. aureus strains

AH845 (LAC) USA300 CA-MRSA [44]

AH1012 SH1000 DsigB [12]

AH1263 USA300 CA-MRSA ErmS (LAC*) [16]

AH1292 AH1263 Dagr::TetM This work

AH1483 AH1263 DsigB This work

AH1525 AH1263 sarA::Kan This work

AH1680 AH1263 nuc::LtrB This work

AH1921 AH1263 nuc::LtrB DsigB This work

COL HA-MRSA [50]

AH2496 COL nuc::LtrB This work

MW2 USA400 CA-MRSA [51]

AH2497 MW2 nuc::LtrB This work

Newman MSSA, Type 5 capsule producer [48]

AH2495 Newman nuc::LtrB This work

RN4220 Restriction deficient cloning host [89]

SF8300 USA300 CA-MRSA [52]

AH2498 SF8300 nuc::LtrB This work

SH1000 sigB+ derivative of NCTC8325-4 [46]

SH1001 SH1000 Dagr::TetM [46]

SH1002 SH1000 sarA::Kan [46]

TCH1516 USA300 CA-MRSA [53]

AH2499 TCH1516 nuc::LtrB This work

UAMS-1 Osteomyelitis isolate [49]

UAMS-1471 UAMS-1 nuc [14]

UAMS-1472 UAMS-1471 + nuc [14]

UAMS-155 UAMS-1 agr::tet [14]

UAMS-929 UAMS-1 sarA::kan [14]

Plasmids

pALC2073 Tet inducible expression plasmid [79]

pALC2073-nuc pALC2073 with nuc cloned into SacI and KpnI sites This work

pCM20 pCE with Pnuc - sGFP This work

pCM28 pDB59 MCS [81]

pCM28-nuc pCM28 with nuc cloned into NheI and EcoRI sites This work

pRMC2 Low-range Tet inducible expression plasmid [80]

pRMC2-nuc pRMC2 with nuc cloned into SacI and KpnI sites This work

doi:10.1371/journal.pone.0026714.t001
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conditioned media was filter sterilized. The media was concentrated

approximately 100-fold using Amicon Ultra-15 3 K centrifugal

filter units (Millipore, Bedford, MA) and dialyzed at 4uC against

10 mM sodium phosphate pH 6.5 (664 L) using dialysis tubing

with a 3350MW cut-off. Following dialysis the conditioned media

was concentrated to ,2.5 ml using an Amicon Ultra-15 3 K

centrifugal filter unit, and 2.4 ml was loaded onto a Toyopearl CM-

650M (Tosoh Biosciences, Tokyo, Japan) column (1 cm615 cm)

equilibrated with 10 mM sodium phosphate pH 6.5 at 4uC. The

column was washed with ,90 ml of 10 mM sodium phosphate

pH 6.5 at a flow rate of,1 ml/min until no protein was detected in

the column effluent. Proteins were eluted using a 500 ml linear

gradient of 0–0.3 MNaCl in 10 mM sodium phosphate pH 6.5 at a

flow rate of ,1 ml/min. Elution fractions (a total of 90, ,5 ml

elution fractions) were assayed for protein concentration by mixing

60 ml of the fraction with 200 ml of Bradford reagent and measuring

the OD at 595 nm. The anti-biofilm activity of all fractions (the 18

flow-through and 90 elution fractions) was determined using a 96-

well microtiter plate biofilm assay based on that previously

described [9]. Specifically 66% TSB supplemented with 0.2%

glucose was inoculated 1:1000 with an overnight culture of SH1001

and then 190 ml aliquots of this culture were transferred to wells of

96-well microtiter plates (Corning 3596) that contained 10 ml of

each fraction. 18 control wells were included in the assay that

contained 10 ml of 10 mM sodium phosphate pH 6.5 and 190 ml of

the SH1001 culture. Plates were incubated at 37uC with shaking

(200 r.p.m.) for 15 hr and cultures were removed by gentle

aspiration. Wells were washed twice with 200 ml of water, stained

for 10 min with 200 ml of 0.1% crystal violet in water, and washed

twice with 200 ml of water. Liquid was removed from the wells

following each wash or staining step by gentle aspiration. Following

the final wash, bound crystal violet was solubilized in 200 ml of 2-

propanol and quantified by measuring OD at 615 nm.

Identifying proteins by mass spectrometry
Fractions identified as having anti-biofilm activity (elution

fractions 34–41 and 57–61) were analyzed by SDS-PAGE [82],

and the protein bands in these fractions were cut from the gels and

sent to the University of Iowa Proteomics Facility for identification

by mass spectrometry. Proteins were digested with trypsin and

extracted from the gels [83] and the resulting peptides were

analyzed by MALDI-TOF (matrix-assisted laser desorption/

ionization time-of-flight) mass spectrometry using a Bruker Biflex

III instrument. The identities of the proteins was determined by

submitting the mass spectrometric data for peptide mass

fingerprinting using MASCOT [84].

Development of a FRET based nuclease assay
Quantitative assays of nuclease activity typically measure the

release of acid soluble oligonucleotides following nuclease

digestion of DNA, with one unit of activity corresponding to a

change in optical density of 1.0 at 260 nm at 37uC and pH 8.0

[85]. We developed a simple Fluorescence Resonance Energy

Transfer (FRET) based assay capable of efficiently measuring the

nuclease activity in conditioned media over a large dynamic range.

The FRET substrate, a ‘‘PrimeTimeTM’’ qPCR probe purchased

from Integrated DNA Technologies (Coralville, IA), consists of a

short (15 mer) single-stranded oligonucleotide that is modified at

the 59 end with a Cy3 fluorophore and at the 39 end with Black

Hole Quencher 2 (BHQ2). The sequence of the substrate (59 CCC

CGG ATC CAC CCC 39) is the same as that reported by Lee

et al. [86], with an additional C at the 39 end. When the

oligonucleotide is intact, the Cy3 and BHQ2 are close enough that

fluorescence is quenched, but when the oligonucleotide is cleaved,

fluorescence from Cy3 is proportional to the amount of cleavage

and can be used to quantify nuclease activity. Fluorescence

measurements were made by mixing 25 ml of FRET substrate,

diluted to 2 mM in buffer consisting of 20 mM Tris pH 8.0 and

10 mM CaCl2, with 25 ml of conditioned media (diluted with TSB

as necessary) in the well of a microtiter plate (Corning), and

measuring the rate of fluorescence change (excitation 552 nm/

emission 580 nm) at 30uC in a Tecan Infinity 200 M plate reader.

Initial reaction velocities were determined by linear least-squares

fitting and converted to Units of Nuc activity per mL (U/mL)

using a standard curve that was generated using various amounts

of purified Nuc enzyme (0.1, 0.5, 0.025, 1.0, and 10 U/ml)

purchased from Worthington Biochemicals (Lakewood, NJ). Points

on the Nuc standard curve are the average of four kinetic

measurements. The units of nuclease activity reported here are

equivalent to reported values [85], where one unit of activity

corresponds to a change in optical density of 1.0 at 260 nm at

37uC, pH 8.0, with DNA as a substrate. The detection limit for

purified Nuc dissolved in growth media was found to be 0.015 U/

ml, using the assay conditions and procedure employ here

Growth dependent expression of nuc in LAC and LAC
mutants
Overnight cultures of strains AH1263 (WT), AH1292 (agr), and

AH1483 (sigB) grown in BHI were inoculated 1:1000 into 200 ml

of BHI or 200 ml of BHI supplemented with 0.4% glucose in 1 L

flasks. Cultures were grown at 37uC with shaking (200 rpm). At

designated times, approximately 5 mL of culture was removed

from each flask to measure the cell density, pH, and Nuc activity

with the FRET assay. Cell densities (OD at 600 nm) were

measured in Thermo Spectronic Genesys20. The culture that

remained after measuring cell density was filter sterilized and

assayed for Nuc activity using the FRET assay described above in

triplicate. The pH of the remaining sterile conditioned media was

measured using an Acumet AB15 pH meter (Fisher Scientific).

Microtiter biofilm assays for controlled nuc expression
experiment
A modified microtiter assay was developed to assess biofilm

formation and Nuc activity levels. Briefly, overnight cultures of

strains grown in TSB supplemented with 0.2% glucose were

subcultured at 1:1000 into 66% TSB supplemented with 0.2%

glucose. After growing cultures at 37uC for ,1 hr with shaking

(200 rpm), 1 mL aliquots were transferred to 24-well tissue culture

treated polystyrene plates (Corning 3548). For aTET induction

experiments, a total of eight wells per aTET concentration were

assayed for each strain. Plates were grown at 37uC with shaking

(200 rpm) for 15 hr. To measure Nuc activity in the wells, 400 ml

of culture was removed and the cultures were pooled according to

test condition. Bacteria were removed using 0.22 mm filters and

Nuc activity was measured using the FRET assay. To quantify

biofilm formation, remaining culture was removed by gentle

aspiration, wells were washed three times with 1 ml of water,

stained with 0.1% crystal violet for 10 min, and again washed

three times with 1 ml of water. After solubilizing the bound crystal

violet in 1 ml of 2-propanol, 200 ml was transferred to a 96-well

plate and OD at 615 nm was measured in a plate reader.

Reported relative biomass is the average of eight wells.

Microtiter biofilm assays for nuc versus biomass
correlation
Overnight cultures grown in BHI were subcultured at 1:1000

into BHI supplemented with 0.4% glucose. After growing cultures
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at 37uC for ,40 min with shaking (200 r.p.m.), 750 ml aliquots

(eight wells per strain) were transferred to 24-well tissue culture

treated polystyrene plates (Corning 3548). Plates were grown at

37uC with shaking (200 r.p.m.) for 15–16 hr. To measure Nuc

activity in the wells, 400 ml of culture was removed from each well

and the cultures were pooled according to strain. Bacteria were

removed using 0.22 mm syringe tip filters and nuclease activity was

measured in triplicate using the FRET assay at a substrate

concentration of 2 mM. Biomass was quantified using a slightly

modified staining procedure that incorporated a single washing

step after cultures were removed from the wells, since the nuc single

and nuc sigB double mutant biofilms were found to detach from the

plates in sheets during the multiple washing steps of a standard

assay. Specifically, the remaining culture was removed from the

wells by gentle aspiration using a 26.5 gauge needle with the bevel

turned toward the wall of the well and wells were washed with

1 ml of water and stained with 200 ml of 0.1% crystal violet for

15 sec. After removing unbound crystal violet by aspiration,

bound crystal violet was solubilized in 1 ml of 2-propanol and

200 ml was transferred to a 96-well plate and OD at 615 nm was

measured in a plate reader. This modified procedure was used for

all of the mutant strains, not just the nuc and nuc sigB double

mutants. Reported relative biomass are the average of eight wells.

Flow cell biofilm assays
Flow cell biofilms were prepared in a similar manner as

described [9] with some modifications. Briefly, S. aureus cultures

were grown overnight in 5 mL TSB and diluted 1:10 in sterile

water. Flow cell chambers were inoculated with 1 mL of the

diluted culture and bacteria were allowed to attach to acid-etched

glass coverslips for 1 hr at room temperature. Laminar flow was

initiated at a rate of 3.75 rpm, and the flow cells and media were

incubated at 37uC. Biofilm growth media consisted of 2% TSB

supplemented with 0.2% glucose, and when required, plasmids

were maintained at an antibiotic concentration of 1 mg/mL. For

imaging, live/dead staining was performed using the live stain

SYTO9 and dead stain Toto3 or ToPro3 (as indicated) at a

concentration of 1 mM in sterile PBS, as instructed in the BacLight

live/dead staining kit (Invitrogen). Confocal laser scanning

microscopy (CLSM) was performed on a Nikon Eclipse E600

microscope using the Radiance 2100 image capturing system

(Biorad). Image acquisition was performed with the Laser Sharp

2000 software (Zeiss), and images were processed using the

Volocity program (Improvision). Statistical analysis on flow cell

biofilms was done using the COMSTAT program [87].

Extracellular DNA isolation
Strains for eDNA preparations were grown overnight in TSB at

37uC shaking at 200 RPM. Fresh media was inoculated at a

1:1000 dilution and grown for 4 hr with shaking at 37uC to an OD

at 600 nm of 2.0. 5 mL of each culture was collected and filter

sterilized to remove cells. Proteins were extracted from the

supernatants using 1 volume of Phenol/Chloroform/Isoamyl

alcohol (Roche, Indianapolis) followed by centrifugation for

15 min at 3,7256 g to separate phases. DNA was precipitated

by addition of 2.5 volumes 100% ethanol and 1/10 volume 3 M

sodium acetate to the aqueous phase. Precipitations were

incubated overnight at 220uC and spun down the following day

at 22,0006 g for 15 minutes, followed by a wash with cold 70%

ethanol. Pellets were air dried and resuspended in TE buffer.

eDNA samples were run on 1.0% agarose gels with 1 kb plus

DNA ladder (Invitrogen, Carlsbad, CA). Genomic DNA used as a

control for size comparison was prepared by lysis of S. aureus cells

with Lysostaphin (Ambi Products, Purchase, NY) for 1 hr at 37uC

followed by purification of chromosomal DNA with the Puregene

Yeast/Bacteria Kit B (Qiagen, Maryland) according to the

manufacturer’s protocol. Gels were stained with ethidium bromide

to visualize high MW DNA.

DNase zymography
An overnight culture was used to inoculate 20 mL TSB at an

initial OD at 600 nm of 0.1. Cultures were allowed to grow for

approximately 24 hrs at 37uC with shaking at 200 rpm. Cell-free

spent media was prepared by filtering through a 0.22 mM syringe

filter (Millex-GS). Spent media was diluted 1:5 in TSB and then

mixed with an equal volume of SDS-PAGE sample buffer without

b-mercaptoethanol. 7.5 ml was electrophoresed on a 12% SDS-

PAGE that included 200 mg/mL heat-treated salmon sperm DNA

(Invitrogen). To remove SDS following electrophoresis, gels were

washed with 50 mL portions of 2.5% (v/v) Triton X-100 in distilled

water (2 times, 10 min each), 2.5% Triton X-100 in 50 mM Tris-

HCl, pH 7.4, buffer (2 times, 10 minutes each), and Tris buffer

alone (2 times, 10 min each). After washing, gels were placed in

50 mL of Tris buffer and incubated at 37uC for 15 min. Gels were

stained in ethidium bromide for 10 minutes, destained by rinsing

36 in distilled water, and imaged using a Gel Doc 2000 (Bio-Rad).

Immunoblots for Nuc in spent media
S. aureus strains were grown overnight in TSB containing

appropriate antibiotics. Overnight cultures were diluted to an OD

at 600 nM of 0.1 in 5 mL TSB containing antibiotics and grown

with shaking at 37uC for 15 hr. Cells were removed by

centrifugation, and the supernatant was clarified using a 0.22 mm

Spin-X centrifuge filter (Corning). Filtered supernatants were mixed

1:1 with SDS-PAGE loading buffer, and 5 mL of each sample was

electrophoresed on 12% SDS-PAGE. The proteins were transferred

to nitrocellulose or Immobilon-P PVDF membranes (Millipore)

using a Protean II device (Bio-Rad Laboratories). Membranes were

blocked overnight at 4uC with 5% milk in Tris-buffered saline

(20 mM Tris-HCl, pH 7.0, with 137 mM NaCl) containing 0.1%

Tween 20 (TBST). Sheep anti-DNase IgG conjugated to horserad-

ish peroxidase (Toxin Technology, Sarasota, FL) was diluted

1:2,500 in 5% milk in TBST and incubated with the membranes at

room temperature for 2 hours. Membranes were washed with

agitation for 15 min, twice for 5 min with TBST, and developed

with SuperSignal West Pico chemiluminescent substrate followed

by exposure to X-ray film. Concentrations of protease inhibitors

were as follows: 1 mM EGTA, 200 mM PMSF, and 10 mM E-64.

Supporting Information

Figure S1 Processing of Nuc protein. On each panel the

Nuc protein is labeled as the processed forms NucB or NucA. For

panels A and B, LAC WT and strains with mutations in the nuc

gene and agr and sigB regulators were grown 18 hr in TSB, and

cells were removed by filtration. An additional culture was

prepared with complemented nuc mutant. A. Immunoblot for

Nuc. B. DNA zymography. C. An immunoblot of the spent media

from the LAC DsigB mutant grown with protease inhibitors E64,

EGTA, PMSF, or a cocktail of these three inhibitors (PIC).

(TIF)
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