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Nucleation and growth in one dimension.
II. Application to DNA replication kinetics
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Inspired by recent experiments on DNA replication, we apply a one-dimensional nucleation-and-growth
model to DNA-replication kinetics, focusing on how to extract the time-dependent nucleatioh(tjased
growth speed> from data. We discuss generic experimental problems: namely, spatial inhomogeneity, mea-
surement noise, and finite-size effects. After evaluating how each of these affects the measurertt¢mtschf
v, we give guidelines for the design of experiments. These ideas are then discussed in the context of the
DNA-replication experiments.
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I. INTRODUCTION have shown since the 1980s that one can push the analysis

Since its development in the late 1930s, the phenomenqmnggzl[ﬂl’lgffé than for the original version of the KIMA

logical model of nucleation and growth of Kolmogorov,

Johnson-Mehl, and AvrantKJMA) has been widely applied In this paper, we shall show that a detailed theoretical

. e . understanding of the KIMA model in 1D lets us compare
to the analys_|s of kinetics of f|rst-.ord¢r pha_se transforma—theory and experiment more directly. In other words, we can
t'onj' ln;]ostly n twc: and t{wree s|$at|a_ll dlmtehn3|]:ﬁ[1|1|53]._ Theb .extract the kinetic parameters from data under less-than-ideal
model has several exact results given the following as'(éxperimental circumstances. Our discussion will be set in the
assumptions(1) The system is infinitely large and untrans- context of recent DNA-replication experiments that have

formed at timet=0, (2) nucleations occur stochastically, ho- drawn attention from both the physics and biology commu-
mogeneously, and independently one from one anofBgr, nities [13-15

the transformed domains grow outward uniformly, keeping
their shape, an) growing domains that impinge coalesce.
Although the KIMA model is conceptually simple, ex- Il. APPLICATION OF THE 1D KJMA MODEL TO
periments often have complicating factors that make the con- EXPERIMENTAL SYSTEMS
tact between theory and experiment delicate and lead to de-
viations from the basic model. For example, a principal
result of the KIMA model is that the fractiof(t) of the
transformed volume at timeis

Although there are many analytical results for the 1D
KIMA model, only a very few 1D systems that are well
described by this model have been identifiedy.,[16]), and

very little detailed analysis has been done on those systems.
Recently, however, Herriclet al. have identified a formal
analogy between the 1D KIMA model and DNA-replication
processe$15]. Equally important, they have developed ex-
perimental methods that can yield large quantities of data,
allowing the extraction of detailed statistical quantities.
Since the DNA work provides a model system for testing the
general experimental problems discussed above and also in
atprder to fix the language, we begin by reviewing the map-
ping between DNA replication and the KIMA model.

f(t)=1-eA", (1)

where A and a are constantsA depends upon the growth
velocity v, the nucleation rate and the spatial dimensidd,
while a is determined by andD. In the literaturea is called
the Avrami exponent. “Avrami plots” of —[in(1-f)] vs Int
should thus be straight lines of slope[4]. Unfortunately,
Eq. (1) often does not fit data well because the experiment
conditions do not satisfy the assumptions of the KIMA
theory[5-7]. For example, nucleation can be inhomogeneous

or correlated8,9], real systems are finite, and there is always A. Mapping DNA replication onto the KIMA model
measurement noise.

In two- or three-dimensional systems, where only limited
theoretical results such as E@.) are available, it can be
difficult to pinpoint the origins of discrepancies between ex-
perimental data and the predictions of the KIMA model. In
one-dimensional1D) systems, however, several scientistskn

Although the organization of the genome for DNA repli-
cation varies considerably from species to species, the dupli-
cation of most eukaryotic genomes shares a number of com-
mon feature$17].

(i) DNA replication starts at a large number of sites
own as “origins of replication.” The DNA domain repli-
cated from each origin is referred to, informally, as an “eye”
or a “replication bubble” because of its appearance in elec-
*Present address: FOM-Instituut AMOLF, Kruislaan 407, 1098 SXron microscopy.
Amsterdam, the Netherlands. Electronic address: s.jun@amolf.nl  (ii) The position of each potential origin that is “compe-
"Electronic address: johnb@sfu.ca tent” to initiate DNA replication is determined before the
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DNA replication KIMA procedure is straightforward. For real-world data, on the
t other hand, one has to be cautious because of the generic
ts problems explained above. We have already mentioned that
the molecular combing process chops the DNA into finite-
— —o— size segments, which effectively truncates the full statistics
t, [13]. Another problem in the experimental protocols is that
 hole g _8ap anin \./I.tI‘O replication experiment usu.ally has many dlffereljt
eye/— 2 island” nuclei in the test tL_Jbe. These nuclgl start replication at dif-
t; ferent, unknown times and locations along the genome
initiation nucleation [13,14. The asynchrony leads to sample heterogeneity and

) o . . creates a starting-time distribution for the DNA replication
FIG. 1. Mapping DNA replication onto the one-dimensional [15] Finally, the finite resolution of the microscope used to
KIMA model. measure domain sizes may affect the statistics.
beginning of the synthesis part of the cell cy¢l8 phase, Below, we shall examine each of these complicating fac-
when several proteins, including the origin recognition com-{0rs, present empirical criteria for their significance, and then

plex (ORC) bind to DNA, forming a prereplication complex discuss the implications of these criteria for the design of
(pre-RO. experiments.

(iii) During the S phase, a particular potential origin may To set the stage, we begin V\_/lth the problem of extracting
or may not be activated. Each origin is activated not moré®XPerimental parameters from ideal data.
than once during the cell-division cycle.

(iv) DNA synthesis propagates at replication forks bidi-

. . - . B. Ideal case
rectionally, with propagation speed or fork velocity from
each activated origin. Experimentally, is approximately From the theoretician’s point of view, a system can be
constant throughout the S phase. said to be ideal when it satisfies all underlying assumptions
(v) DNA synthesis stops when two newly replicated re-of the theory. In the context of DNA replication and the
gions of DNA meet. KJIJMA model, this means that the DNA molecule is infinitely

From Fig. 1, it is apparent that proces$gis—v) have a long and that the initiation rate of replication is homoge-
formal analogy with nucleation and growth in one dimen-neous and uncorrelated. Also, statistics should be directly
sion. We identify(1) nucleation of islands as activatigimi- obtainable at any time poirtat arbitrarily fine resolution.
tiation) of replication origins,(2) growth of the eyes as Because the growth velocity of replicated DNA domains has
growth of the islands, an¢B) coalescence of two expanding been measured to be approximately constant, we shall limit
eyes as the merging of growing islands. Of course, whileour analysis to this special case. One can then apply the
DNA is topologically one dimensional, it is embodied in a KIMA model to a single experimental realization to extract
three-dimensional space. kinetic parameters such &) andv.

In an ideal world, one could monitor the replication pro- In order to do this, we note that the simulation in our
cess continuously and compile domain statistics in real timeprevious papef12] (hereafter, papen lis in practice such a
In the real world, the % 10° DNA base pairs(bp’s) of a  case [system size=10 v=0.5, dt=0.1, I(t)=It, where |
typical higher eukaryote, which replicate in as many-d<® =10"°]. Using the theoretical results obtained in paper I, we
sites simultaneously, are packed in a cell nucleus of radiusan find an expression to invdit) from data. For example,
~1 um, making a direct, real-time monitoring impossible the domain density(t) and the island fractiofi(t) at timet,

[18]. Recently, experiments have used two-color fluorescengiven a time-dependent nucleation rate are[12]

labeling of DNA bases to study replication kinetics indirectly .

[13]. One begingin a test tubgby labeling the bases used in _ _ Nyt

replicating the DNA with, say, a red dye. At some time dur- n(t) = g(t)exp( vao g(t')dt )

ing the replication proced®.g.,t; in Fig. 1), one floods the

test tube with green-labeled bases and allows the replication t

cycle to go to completion. One then stretches the DNA onto fh)=1-St)=1- ex;(— zvf g(tf)dtf)_ 2)

a glass slidg“molecular combing19]), a process that un- 0

fortunately also breaks the DNA strands into finite segments, Rty e A . .
Under a microscope, regions that replicated before addirrr\g Eq. (2_)i g(t)—fol (t')d’, andS(t) is t.he hole fr.actlon. l_\lote
the dye are red, while those labeled afterwards are predomin@t ()™ is equal to the average island-to-island distance
nantly green. The alternating red-and-green regions correfiz(t) at timet. On the other hand, the average hole gig¢)
spond to eyes and holes in Fig. 1, forming a kind of snapshads S(t)/n(t)=g(t)~*. Since all three domairissland, hole, and

of the replication state of the DNA fragment at the time theisland-to-island have equal densities(t) in one dimension,
second dye was added. Each time point in Fig. 1 would thusve have the following general relationship among them,
correspond to a separate experiment. which is valid even in the presence of correlations between

Using the formal analogy between DNA replication anddomain sizes:
1D nucleation-growth model, we can extract the kinetic pa- _ -
rameterd (t) andv from the datd 15]. For the ideal case, the Cini(t) = €;(t) + €,(D), (33
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Equation(5) can then be applied to an ideal set of data—
i.e., one for which noise-free measurements are made on
infinitely long DNA. As Fig. 2 shows, we can recover the
input parameters from simulation results in paper | accu-
rately: the extracted parameters dre(0.99+0.04x 1075
andv=0.50+£0.02[The errors are the statistical errors from
the curve fits in Figs. @) and 2b).] We note that the fluc-
tuations visible fort=75 arise from using direct numerical
differentiation in Eq.(5). One could reduce the noise by
appropriate data processing, using, for example, a smoothing
spline[20]. However, because any data filtering is a delicate
issue and because direct numerical differentiation produced

©)

which 50% of the genome has replicated. It sets the basic timgatisfactory results, we have decided to forego any

scale.

fy=—0U
Gi(0) + €h(1)

. (3b)

In other words, there are only two independent qﬂantitieéj

amongf(t), ?i(t), ?h(t), and?m(t), and we can calculaté(t)

smoothing.

We also note that there are statistical fluctuations related
to the finite size of the system: &$t) approaches 1, the
number of domainga(t) becomes very small; thus even small
changes im(t) can cause significant fluctuations in average
omain sizes. However, the finite-size effect in this case be-
comes visible only when the number of new nucleations in
each steplN(t), is roughly 1(t= 165 orf=0.999. The effect

even if we do not know the exact expression for the islandCan be ignored foN(t)> 1 for the practically infinite system

distribution p;(x,1):

_ t
6t = i[exlﬂ(ZvJ g(t")dt’) - 1],

g(t) 0
— 1
€n(t) = @,
_ 1 t
Cizi(t) = @eXF(ZUL g(t")dt"). (4)

Note that{Ti(t) [?h(t)] is a monotonically increasinfde-
creasing function of time, and therefore, Eq3a) implies

that?iZi(t) has a well-defined minimum. We emphasize that

Egs.(2) and(4) set the basic time and length scateand ¢*

of the system. Because the KIMA model has essentially onl
one scale, it is simpler than other common stochastic mode
in physics that lack an intrinsic scale and hence show fractal

behavior (structure at all scalés Since f(t) is sigmoidal,

varying from 0 to 1, we defin& to be the time required for

the system to reacfi=0.5. On the other hand, we defiiie
to be the minimum eye-to-eyésland-to-islangl distance
during the course of replicatidsee Figs. &) and 2d)].

From Egs.(2) and (4), it is straightfoward to invert the

mean quantities to obtain the nucleation rate and the
growth velocityv:

considered hergs,21].
In the following sections, we consider the complications
that arise from less-ideal experimental conditions.

C. Asynchrony

As we mentioned above, data often come from experi-
ments where the DNA from many different independently
replicating cells is simultaneously present in the same test
tube. The individual DNA molecules begin replicating at dif-
ferent unknown starting times. In such cases, it is simpler to
begin by sorting data by the replicated fractibof the mea-
sured segmerf22]. The basic idea is that for spatially ho-
mogeneous replicationamely, nucleation and growthall
segments with a similar fractioh are at roughly the same
oint in the S phase. Sindét) is a monotonically increasing

nction of t, we can essentially uskas our initial clock,
Paving the conversion to real timedo a second step.

Once the data have been sortedfbyve extract the ini-
tiation frequency as a function off. Using Eqs(2)—(5) one
can straightforwardly obtain expressions analogous to

Eq. (5):

M__ 1 d1
2v zl+?hdf?h,
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FIG. 3. (Color onling. Inversion results in the presence of asynchrony and finite-size effactg2v vs 2vt. The arrows indicate where
f=0.8inf vst curves in(d) for three different molecule sizes: 4Qunchoppeyl 1000 and 25@chopped. (b) p(f,t;) for six time points 60,
80, 100, 120, 140, 16@Grom left to right). The circles are simulation data; the solid lines are from (Ej.using the extracted parameters
in Table I.(c) Optimization results for the starting-time distributi@iir). The solid line is a Gaussian fifd) f vs 2vt for €.=250 and¢,
=1000. The solid line is the unchopped césize 10d). (e) Average domain sizes Vs The open circles are for the unchopped case, while
the dotted and dashed curves corresponé. 91000 and 250(f) Plot of logx? [p(f,t,)] (arbitrary unit$ vs v for size 1d. The complete fit
results are shown in Table I. See also text.

L isfactory results as the basin of attraction of the minimum
2ot(f) = | (€ + £pdf’. (6)  proved to be relatively small.

0 Our strategy then was first to obtain a coarse-graimed
versus global? plot shown in Fig. 3 as follows.

(i) Guess a range af betweenv i, and v max

(i) Fix v (starting fromv =v ), and tracep(f,t;) back in
time. For a specific value of and time pointt;, the corre-
sponding starting time i$;—t(f) [Eq. (6)]. Repeat for all
p(f,t)’s and reconstructthe starting time distributigt).

(iii) Fit ¢(7) obtained in stefi) to an empirical model.
[In the absence of correlations among starting times, a
Gaussian distribution is a reasonable chdizg]. One may
also know the rough form of(7) from an understanding of

In Egs.(6), ¢; and{,, are functions off. In other words, we
have a direct inversiom/2v vs 2t from data[Fig. 3@)].
Note that both andt are always accompanied by the factor
2v, which has to be determined independeritige below.
On the other hand, the fluctuations in the extradtet) are
the result of direct numerical differentiation in E@) dis-
cussed in the previous section.

In the two-color labeling experiments, we can compile
statistics into histograms of the distributigif,t;) of repli- -
cated fractiond at timet; [Fig. 3(b)], wheret; is the time the_onglns of the asynchrolﬂy. .
point where the second dye was addEit). 1). Note that the (iv) Regeneratg(f,t;) using Eq.(7) Vg'th the parameters
spread inp(f,t;) is related to the starting-time distribution ©Ptained in stepéi) and2(|||). Calculatey” for p(f,t). This is
#(7) via the kinetic curve(t), wherer is the laboratory time also a global fit, as thg” statistic is summed over data from

that each DNA starts replicating, artdis the duration of all ime pointst;. . .
time since the onset of replication. Since)(n)dr (v) Increasev to v+Av and repeatii)(iv). If there is a

_ - , P : well-defined minimum of they(v) (with correspondingr,
=p(f(t), H)df(t'), wheret' =t~ 7, we obtain and o) [e.g., Fig. )], one can find a more accurate esti-
. mate of the minimum using astandard optimization technique
) ) such as Brent's methof20,25. Otherwise, go back tdi)
ter) and choose a different range of
' In order to test how well the optimization method de-
For a Gaussian starting-time distributigi7), one can in  scribed above can work in the face of asynchrony, we have
principle fit all p(f,t;)’s using three fitting parametets the  repeated the simulation in paper | with several modifications.
average starting time,, and the starting time width.. Un-  First, we have used 1000 molecules that started nucleations
fortunately, this “brute-force” approach did not produce sat-asynchronously, following a Gaussian distribution of average

df
p(f.t;) = ¢(7) X ( ar

T

011909-4



NUCLEATION AND GROWTH IN ONE .... Il .... PHYSICAL REVIEW E 71, 011909(2005

TABLE I. Comparison between input and extracted parameterg(f,t;) —0 asf— 0 and 1. In this case, even a singid ,t;)
in the presence of asynchro(startingt). Note that the inputoto.  can be used to reconstrugtr) and extracv accurately. For
is the Gaussian fit to a single realization of 1000 molecules, Wher%xample, each single histograms for all time points in Fig.
7=40 ando,=10[26]. 3(b) produced results that are accurate to 15%.

For <1 (high asynchrony with fast kinetigsp(f,t;) is
spread over &f=<1. In this case, experimentalists should
| 1% 1075 (0.98+0.18 X 10°5 choose at leasN=¢,/t* time points to cover the whole
; 05 0.453 range of ¢(7), where well-chosert;’s spread evenly the

Startingt (rp* ) 39.6+14.1 36.5+13.9 peaks ofp(f,t) between 0 and 1.

Input Extracted

D. Finite-size effects
starting timer,=40 and of starting time widtlr,=10 [26].

Second, the size of each individual molecule i$ ib@tead of As mentioned above, the DNA is broken up into relatively

10’. This keeps constant the total number of “DNA baseShort segments during the mo_Ie_cuIar-combmg experiments.
In order to estimate how the finite segment size affects the

pairs” analyzed. ) :
Since we used the same nucleation rate, the time to re estimates of(t) andv, we have cut the simulated molecules

licate tof=0.9 was roughly 100 min, about the same as for" the .previous section into smaller pieces of eq_ual gif'@.e
the much larger syster?seilz Figs. @) and 3d)]. We have [27]. Figure 3 shows results fdi,=1000 and 250, with origi-

o - | size 16. As one can see, there is a clear correlation
chosen six time points(t;=60,80,100,120,140,160at & an see,
which to collect datpa andlthe distributions of fractibare between( and the statistics. First, the smaller the segments

shown in Fig. 8b). The spread in(f,t;) reflects the starting are, t_he smaller the average doma"? sizes becorrfe-ab.
. S This is as expected, since one obviously cannot observe a
time distribution¢(7).

We fit 1/20 versus 2t usingl(t)=a+It in Fig. 3a), ex- domain size larger tha@._Note that an underestimate _of the
cluding the last few points roughly abo¥e0.9 to take into  2Verage eye and hole sizésand(y, leads to an overestimate

account the finite-size effe¢see the following sectionWe of the extracted (t), as impliedi by !Eq.(6). Second, ag_ic
then used the fit result to obtain the growth ratéy the becomes smaller, the completion times are underestimated.

optimization method given above. The results are shown iﬁl"hird, t.he sharp increas_édecreas)ain average eye{hqle_)
Fig. 3 and Table I. In the plot of? versusv [Fig. 3f)], we  SIZ€S disappears, becoming nearly flat at a characteristic frac-

see a well-defined minimum of? at v=0.453, 10% below tion f*, and the kinetic curvd(t) significantly deviates from

the input value 0.5. Figures® and 3c) are reconstructions its sigmoidgl sha}pe, becoming nearly linear. In fact, there is a
of p(f,t) and ¢(7) using the parameters in Table I. The mi- ¢lose relationship between these last two effects.The sharp

nor discrepancies im, ando, are acceptable, given the small INCréase in average eye size results from to the merger of
number of points ofo(f,t) used in the optimizatior(20 s_mal!er eyes, which QOmmates t.he. late stage of replication
points in each of 6 histogramsNote that the finite size of <iNetics. Since chopping DNA eliminates the large eyes, as

sampled DNA is responsible for a larger part of the discrep—ShO\Nr.1 in Fig. 39)’.“ effectiyely increases the number of
ancy with the original parameters than was our reconstrucgoma'nsn(t) per unit length in truncated segments and over-
tion algorithm. estimates the replication ratéThe replication ratedf/dt
The success of this method depends on the experimentﬁlzvn') . i ) )
We emphasize that the first two observations above imply

design, as well; i.e., one has to choose the right time pgints S .
in order to deduceh(7) accurately[see Figs. @) and 3c)]. that €. affects the baS|c_ time and Igngth scalk?sand €*, _of
the (chopped systems introduced in the previous section. In

The key parameter is the ratiobetween the replication time = =

scale t* and the starting-time widtho,, respectively:a  Figs. 4a8)-4(c), we replotf(t), I(t), and {; and ¢}, using the

=t*/ o,. For the case considered hét& ~75 ando,~14), dimensionless axes. One can clearly see that the chopping

a=5.4. process straightens the sigmoidét) and the average do-
Ideally, @>1 (better synchrony with slow kinetigsso ~ main size curves. Nevertheless, the basic shagétptioes

that p(f,t;) has a well-defined peak betweer<®@<1 and not change—i.e., curves corresponding to different values of

—_
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FIG. 4. (Color onling. Rescaled graphs for finite-size effects.
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Indeed, changes ittt are very slow above8=10, but
drop sharply below this ratio. Singgis the average number
of domains per molecule, we argue that the KIMA model can
be applied to data directly when there are enough eyes in
individual molecule fragment&oughly, at least 10 On the
other hand, whe8=10, one would require more sophisti-
cated theoretical methods to obtain correct statistics.

One subtle point is thatt, unlike €*, is not very acces-
sible experimentally and requires data processing for accu-

rate extractiorje.g., Fig. d) or 6(b)].
Finally, we note that the sudden upshooting in the tails of
FIG. 5. The finite-size effects and changes in the basic time ant€ extracted(t)/2v versus 2t curves are yet another kind
length scales. Shown are two different initiation raté3=10"5t of finite-size effect related to numerical differentiatipiq.
and 1(t)=0.001. The vertical line is where the average number of(5)]. This can be simply excluded from the analysis.
domains per molecule is 10. Theaxis has been normalized rela-
tive to the initiation rate for an infinite systeff3— ).

B=el e

E. Finite-resolution effect

¢, collapse onto one another—and the finite-size effect only Another generic problem is the finite resolution of mea-
makes the upshooting tails steeper. surements. In molecular-combing experiments, for example,
As criteria for significance of finite-size effects, we first epifluorescence microscopy is used to scan the fluorescent
define a new paramet@={./¢*: namely, the maximum av- tracks of combed DNA on glass slides. The spatial resolution
erage number of domains per chopped mole¢ateundf  [~1 kb (kilobase pair§ means that smaller domains will not
=0.5. Then, a more careful observation of Fig¢adand  be detectable. Thus, two eyes separated by a hole of size
4(c) suggests that there might exist a critical vajée (or <1 kb will be falsely assumed to be one longer eye. We
corresponding chopping siZg), where the finite-size effects evaluate this effect by coarse-graining the statistics with ex-
severely affect the statistics. In other words, B¥ g%, one  perimental resolutiondx*, while keepingAx=vdt in simu-
can ignore the finite-size effects by excluding the last fewation much finer. To coarse grain by a faciérAx*/ Ax,
data points close td=1. (Recall that¢* is the minimum  we have used the raw, “unchopped” data set in the previous
average eye-to-eye spacingo see this clearly, in Fig. 5, we finite-size-effect section: after the simulation, we have
have plottedt*/t, versus B for two different cased(t) scanned the final lists of eyes and holé$, and {h}, and
=105 andI(t)=0.001, wheret, has been calculated using removed any eye@oles for <1, combining them with the
the basic kinetic curvd(t)=1-exd—2v[tg(t")dt’] (i.e., the  two flanking holeseyes into a larger holgeye that equals
system is infinitely large[4,12]. the size of all three domains.

1.0 — 0.003 - 500 —:
) "5 { i holes
- e o 1% eyes 3
i > N &
f 05 N ;
i > | £ :
7 £
- [e]
. el
0.0 — 0,
0 180 0
(a) (b) ()
1.0 15 —
] N
I el
f o5 o (3]
J =
0.0 I | 0 , |
0 1 2 0 1 2
* *
(d) t/t (e) t/t

FIG. 6. (Color onling. The effect of coarse grainingg) f vs 2vt. From left to right,Ax*=0,1,5.(b) I/2v vs 2vt. From top to bottom,
the coarse-graining factdrx* =0 (no coarse graining 1 (comparable to optical resolutiprand 5.(c) Average domain sizes \fs The open
circles are for no coarse graining, while the dashed lines araXé=1 and 5 (dotted and dashed lines, respectively)—(f) Rescaled
graphs.
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In Figs. Ga)—6(c), we show how the statistics change by the criterion 8=€*/ {.~10. Fortunately,£* for Xenopus
coarse graining onlyi.e., without chopping where the sperm chromatin is roughly 10 kb, while the typical size of
coarse-graining factorg are 20 and 100. combed molecules ranges between 100 and 500 kb, thus giv-

The finite-resolution effect biases estimates in a way thaing 10=< 8=<50. However, the origin spacing of many higher
is opposite to finite-size effects; i.e., converting eylesles eukaryotes, includingkenopusafter the mid-blastula transi-
for §<1 to holes(eyes increases the average domain sizestion, can be as large as 100 kb. In such cases, it is of critical
As a consequence, the extractdt) is slightly underesti- importance to obtain long combed molecu(esl Mb).

mated. Nevertheless, the curves in eacH (of, 1(t), and?i Similarly, finite-resolution effects are insignificant when

and ¢, almost perfectly collapse onto each other when theyzg*/AX* >1. This condition is satisfied in almost all
h P Y p* = . molecular-combing experiments of DNA replication, since
axes are rescaled usittyand €*, confirming that, as with

finite-size effects, the main consequence is a change in th%é(o :bl()lfi 1V(\)/r1|(|)elgo typically ranges between 10 and

basic time and length scales of the problgigs. d)-6(f)]. Among the various experimental limitations we have

To find criteria for significance of finite-resolution effects, o :
we recall that coarse graining falsely eliminates eyes an st_ed, the f|n|te-_5|ze effects seem to b_e po‘e”t'?‘"y the most
holes smaller than the resolutigxx* only (§<1). For ex- serious problem in the m_ol_eculgr-combmg_ experiments. For-
ample, statistics fof ~0 (small eyesor f~1 (small holes tunately, we expect the finite-size effects in the experiments
' and analysis of Refd.13,15 to be relatively insignificant

can be affected by coarse graining. For these two cases, ho‘f\)’écause)8>10. On the other hand, we need more sophisti-

ever, one can easily av_0|d a problem by excluding data forcated theoretical tools to correct the finite-size effectsdor
f=0 and 1 from analysis.

On the other hand. a more serious situation can arise- 10. We recgll that the co_arse-graining of mol_e(_:ules_ affects
wheny=¢"/Ax* <1 bécause a resolution comparable to theﬁ‘Ie tails in Fig. §o) opposite to the way the finite size .Of
minimum eye—to-eyé distance will seriously alter the meaanIeCUIeS affgcts .th_em..We thus speculate that an intelligent
T — way of annealing finite-sized molecules can reduce or correct
domain sizest; and ¢, and thus the extractedt), as well. e finite-size effects. We leave a detailed evaluation of this
Indeed, fory>1, thep(f,t;))’s remain essentially unchanged idea for future work.
(i.e., the optimization result fay remains the samesven at In summary, we have discussed how to apply the KIMA
6=100 (where, y=70) (data not shown We conclude that model to data to extract kinetic parameters under various

y=1 is the relevant criterion to test the significance of finite-experimenta| limitations, such as asynchrony, finite-size, and

resolution effects. finite-resolution effects. For the application to DNA-
replication experiments, wehave shown that finite-size ef-
[l. DISCUSSION AND CONCLUSION fects can be ignored when the chopped molecules contain

.enough domaingi.e., 8=10). Even when the size of mol-
imental limitati 2 Monte Carlo simulati Wh Ecules is smaller than the critical valdg the shape of the
experimental imitations via Monte L.arlo simuiations. YWhen, ;- eation rate (t) is not affected when plotted using res-

H Y4 - —
the system is largg10" for U._O'S andl (t)=10"%t], we have caled parameters. On the other hand, finite-resolution effects
been able to extract all the input parameters accurately frorHre insignificant whery> 1, which is the case for molecular

?'Smglll?' rgahzag_c;n of l:c))ur S|mullat|0f1d A:l:, thhe experlmentalCombing experiments of DNA replication.
simulatior) condrtions become [ess ideal, NOWEVEr, ON€ Ie- 1o iaretical understanding of these limitations given

quires more sophisticated tools. here should provide guidelines for the design of future ex-
In the presence of asynchrony, we have demonstrated th@&riments

the input parameters can still be extracted to reasonable a
curacy (roughly 10% for a=5.4) using an optimization
method. In most DNA replication experimentsz 1. Forex-
ample, in theXxenopusegg extracts experiments of Herriek

al. [13,15, a=2.5 (t* =15 min ando,~6 min). In this We thank Aaron Bensimon and John Herrick for collabo-
case, the method presented here can even be applied to dadgion in the interpretation of their experiments on DNA rep-
p(f,t) for a single well-chosen time poifitto extractv. The lication, and we thank Tom Chou, Massimo Fanfoni, Govind
accuracy increases as more data are collected for differetddenon, Nick Rhind, and Ken Sekimoto for helpful com-
timepoints. ments and discussions on 1D nucleation-and-growth models.

The significance of finite-size effects can be estimated byrhis work was supported by NSERCanada
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