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Inspired by recent experiments on DNA replication, we apply a one-dimensional nucleation-and-growth
model to DNA-replication kinetics, focusing on how to extract the time-dependent nucleation rateIstd and
growth speedv from data. We discuss generic experimental problems: namely, spatial inhomogeneity, mea-
surement noise, and finite-size effects. After evaluating how each of these affects the measurements ofIstd and
v, we give guidelines for the design of experiments. These ideas are then discussed in the context of the
DNA-replication experiments.
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I. INTRODUCTION

Since its development in the late 1930s, the phenomeno-
logical model of nucleation and growth of Kolmogorov,
Johnson-Mehl, and AvramisKJMAd has been widely applied
to the analysis of kinetics of first-order phase transforma-
tions, mostly in two and three spatial dimensionsf1–3g. The
model has several exact results given the following basic
assumptions:s1d The system is infinitely large and untrans-
formed at timet=0, s2d nucleations occur stochastically, ho-
mogeneously, and independently one from one another,s3d
the transformed domains grow outward uniformly, keeping
their shape, ands4d growing domains that impinge coalesce.

Although the KJMA model is conceptually simple, ex-
periments often have complicating factors that make the con-
tact between theory and experiment delicate and lead to de-
viations from the basic model. For example, a principal
result of the KJMA model is that the fractionfstd of the
transformed volume at timet is

fstd = 1 −e−Ata, s1d

where A and a are constants:A depends upon the growth
velocity v, the nucleation rateI, and the spatial dimensionD,
while a is determined byI andD. In the literature,a is called
the Avrami exponent. “Avrami plots” of −lnflns1− fdg vs ln t
should thus be straight lines of slopea f4g. Unfortunately,
Eq. s1d often does not fit data well because the experimental
conditions do not satisfy the assumptions of the KJMA
theoryf5–7g. For example, nucleation can be inhomogeneous
or correlatedf8,9g, real systems are finite, and there is always
measurement noise.

In two- or three-dimensional systems, where only limited
theoretical results such as Eq.s1d are available, it can be
difficult to pinpoint the origins of discrepancies between ex-
perimental data and the predictions of the KJMA model. In
one-dimensionals1Dd systems, however, several scientists

have shown since the 1980s that one can push the analysis
much further than for the original version of the KJMA
model f10–12g.

In this paper, we shall show that a detailed theoretical
understanding of the KJMA model in 1D lets us compare
theory and experiment more directly. In other words, we can
extract the kinetic parameters from data under less-than-ideal
experimental circumstances. Our discussion will be set in the
context of recent DNA-replication experiments that have
drawn attention from both the physics and biology commu-
nities f13–15g.

II. APPLICATION OF THE 1D KJMA MODEL TO
EXPERIMENTAL SYSTEMS

Although there are many analytical results for the 1D
KJMA model, only a very few 1D systems that are well
described by this model have been identifiedse.g.,f16gd, and
very little detailed analysis has been done on those systems.
Recently, however, Herricket al. have identified a formal
analogy between the 1D KJMA model and DNA-replication
processesf15g. Equally important, they have developed ex-
perimental methods that can yield large quantities of data,
allowing the extraction of detailed statistical quantities.
Since the DNA work provides a model system for testing the
general experimental problems discussed above and also in
order to fix the language, we begin by reviewing the map-
ping between DNA replication and the KJMA model.

A. Mapping DNA replication onto the KJMA model

Although the organization of the genome for DNA repli-
cation varies considerably from species to species, the dupli-
cation of most eukaryotic genomes shares a number of com-
mon featuresf17g.

sid DNA replication starts at a large number of sites
known as “origins of replication.” The DNA domain repli-
cated from each origin is referred to, informally, as an “eye”
or a “replication bubble” because of its appearance in elec-
tron microscopy.

sii d The position of each potential origin that is “compe-
tent” to initiate DNA replication is determined before the
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beginning of the synthesis part of the cell cycles“S phase”d,
when several proteins, including the origin recognition com-
plex sORCd bind to DNA, forming a prereplication complex
spre-RCd.

siii d During the S phase, a particular potential origin may
or may not be activated. Each origin is activated not more
than once during the cell-division cycle.

sivd DNA synthesis propagates at replication forks bidi-
rectionally, with propagation speed or fork velocityv, from
each activated origin. Experimentally,v is approximately
constant throughout the S phase.

svd DNA synthesis stops when two newly replicated re-
gions of DNA meet.

From Fig. 1, it is apparent that processessiii d–svd have a
formal analogy with nucleation and growth in one dimen-
sion. We identifys1d nucleation of islands as activationsini-
tiationd of replication origins,s2d growth of the eyes as
growth of the islands, ands3d coalescence of two expanding
eyes as the merging of growing islands. Of course, while
DNA is topologically one dimensional, it is embodied in a
three-dimensional space.

In an ideal world, one could monitor the replication pro-
cess continuously and compile domain statistics in real time.
In the real world, the 33109 DNA base pairssbp’sd of a
typical higher eukaryote, which replicate in as many as,105

sites simultaneously, are packed in a cell nucleus of radius
,1 mm, making a direct, real-time monitoring impossible
f18g. Recently, experiments have used two-color fluorescent
labeling of DNA bases to study replication kinetics indirectly
f13g. One beginssin a test tubed by labeling the bases used in
replicating the DNA with, say, a red dye. At some time dur-
ing the replication processse.g.,t1 in Fig. 1d, one floods the
test tube with green-labeled bases and allows the replication
cycle to go to completion. One then stretches the DNA onto
a glass slides“molecular combing”f19gd, a process that un-
fortunately also breaks the DNA strands into finite segments.
Under a microscope, regions that replicated before adding
the dye are red, while those labeled afterwards are predomi-
nantly green. The alternating red-and-green regions corre-
spond to eyes and holes in Fig. 1, forming a kind of snapshot
of the replication state of the DNA fragment at the time the
second dye was added. Each time point in Fig. 1 would thus
correspond to a separate experiment.

Using the formal analogy between DNA replication and
1D nucleation-growth model, we can extract the kinetic pa-
rametersIstd andv from the dataf15g. For the ideal case, the

procedure is straightforward. For real-world data, on the
other hand, one has to be cautious because of the generic
problems explained above. We have already mentioned that
the molecular combing process chops the DNA into finite-
size segments, which effectively truncates the full statistics
f13g. Another problem in the experimental protocols is that
an in vitro replication experiment usually has many different
nuclei in the test tube. These nuclei start replication at dif-
ferent, unknown times and locations along the genome
f13,14g. The asynchrony leads to sample heterogeneity and
creates a starting-time distribution for the DNA replication
f15g. Finally, the finite resolution of the microscope used to
measure domain sizes may affect the statistics.

Below, we shall examine each of these complicating fac-
tors, present empirical criteria for their significance, and then
discuss the implications of these criteria for the design of
experiments.

To set the stage, we begin with the problem of extracting
experimental parameters from ideal data.

B. Ideal case

From the theoretician’s point of view, a system can be
said to be ideal when it satisfies all underlying assumptions
of the theory. In the context of DNA replication and the
KJMA model, this means that the DNA molecule is infinitely
long and that the initiation rateI of replication is homoge-
neous and uncorrelated. Also, statistics should be directly
obtainable at any time pointt at arbitrarily fine resolution.
Because the growth velocity of replicated DNA domains has
been measured to be approximately constant, we shall limit
our analysis to this special case. One can then apply the
KJMA model to a single experimental realization to extract
kinetic parameters such asIstd andv.

In order to do this, we note that the simulation in our
previous paperf12g shereafter, paper Id is in practice such a
case fsystem size=107, v=0.5, dt=0.1, Istd= It, where I
=10−5g. Using the theoretical results obtained in paper I, we
can find an expression to invertIstd from data. For example,
the domain densitynstd and the island fractionfstd at timet,
given a time-dependent nucleation rateIstd are f12g

nstd = gstdexpS− 2vE
0

t

gst8ddt8D ,

fstd = 1 −Sstd = 1 − expS− 2vE
0

t

gst8ddt8D . s2d

In Eq. s2d, gstd=e0
t Ist8ddt8, andSstd is the hole fraction. Note

that nstd−1 is equal to the average island-to-island distance

,̄i2istd at timet. On the other hand, the average hole size,̄hstd
is Sstd /nstd=gstd−1. Since all three domainssisland, hole, and
island-to-islandd have equal densitiesnstd in one dimension,
we have the following general relationship among them,
which is valid even in the presence of correlations between
domain sizes:

,̄i2istd = ,̄istd + ,̄hstd, s3ad

FIG. 1. Mapping DNA replication onto the one-dimensional
KJMA model.
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fstd =
,̄istd

,̄istd + ,̄hstd
. s3bd

In other words, there are only two independent quantities

amongfstd, ,̄istd, ,̄hstd, and,̄i2istd, and we can calculate,̄istd
even if we do not know the exact expression for the island
distributionrisx,td:

,̄istd =
1

gstd
fexps2vE

0

t

gst8ddt8d − 1g,

,̄hstd =
1

gstd
,

,̄i2istd =
1

gstd
exps2vE

0

t

gst8ddt8d. s4d

Note that,̄istd f,̄hstdg is a monotonically increasingfde-
creasingg function of time, and therefore, Eq.s3ad implies

that ,̄i2istd has a well-defined minimum. We emphasize that
Eqs.s2d ands4d set the basic time and length scalest* and ,*
of the system. Because the KJMA model has essentially only
one scale, it is simpler than other common stochastic models
in physics that lack an intrinsic scale and hence show fractal
behavior sstructure at all scalesd. Since fstd is sigmoidal,
varying from 0 to 1, we definet* to be the time required for
the system to reachf =0.5. On the other hand, we define,*
to be the minimum eye-to-eyesisland-to-islandd distance
during the course of replicationfsee Figs. 2scd and 2sddg.

From Eqs.s2d and s4d, it is straightfoward to invert the
mean quantities to obtain the nucleation rateIstd and the
growth velocityv:

Istd =
d

dt

1

,̄hstd
,

v = −
1

2

ln Sstd

E
0

t

,̄hst8d−1dt8

. s5d

Equations5d can then be applied to an ideal set of data—
i.e., one for which noise-free measurements are made on
infinitely long DNA. As Fig. 2 shows, we can recover the
input parameters from simulation results in paper I accu-
rately: the extracted parameters areI =s0.99±0.04d310−5

andv=0.50±0.02.fThe errors are the statistical errors from
the curve fits in Figs. 2sad and 2sbd.g We note that the fluc-
tuations visible fort*75 arise from using direct numerical
differentiation in Eq.s5d. One could reduce the noise by
appropriate data processing, using, for example, a smoothing
splinef20g. However, because any data filtering is a delicate
issue and because direct numerical differentiation produced
satisfactory results, we have decided to forego any
smoothing.

We also note that there are statistical fluctuations related
to the finite size of the system: asfstd approaches 1, the
number of domainsnstd becomes very small; thus even small
changes innstd can cause significant fluctuations in average
domain sizes. However, the finite-size effect in this case be-
comes visible only when the number of new nucleations in
each step,Nstd, is roughly 1st*165 or f *0.999d. The effect
can be ignored forNstd@1 for the practically infinite system
considered heref5,21g.

In the following sections, we consider the complications
that arise from less-ideal experimental conditions.

C. Asynchrony

As we mentioned above, data often come from experi-
ments where the DNA from many different independently
replicating cells is simultaneously present in the same test
tube. The individual DNA molecules begin replicating at dif-
ferent unknown starting times. In such cases, it is simpler to
begin by sorting data by the replicated fractionf of the mea-
sured segmentf22g. The basic idea is that for spatially ho-
mogeneous replicationsnamely, nucleation and growthd, all
segments with a similar fractionf are at roughly the same
point in the S phase. Sincefstd is a monotonically increasing
function of t, we can essentially usef as our initial clock,
leaving the conversion to real timet to a second step.

Once the data have been sorted byf, we extract the ini-
tiation frequencyI as a function off. Using Eqs.s2d–s5d one
can straightforwardly obtain expressions analogous to
Eq. s5d:

Isfd
2v

=
1

,̄i + ,̄h

d

df

1

,̄h

,

FIG. 2. Parameter extraction from an almost ideal data set.sad
Inferred nucleation rate vs time.sbd Velocity vs time.scd Average
domain sizes vs time.sdd Island fraction vs time; theory and ex-
tracted fstd overlap. Inscd, ,* is the minimum average eye-to-eye
spacing and sets the basic length scale. Insdd, t* is the time at
which 50% of the genome has replicated. It sets the basic time
scale.
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2vtsfd =E
0

f

s,̄i + ,̄hddf8. s6d

In Eqs.s6d, ,̄i and ,̄h are functions off. In other words, we
have a direct inversionI /2v vs 2vt from data fFig. 3sadg.
Note that bothI and t are always accompanied by the factor
2v, which has to be determined independentlyssee belowd.
On the other hand, the fluctuations in the extractedI /2v are
the result of direct numerical differentiation in Eq.s6d dis-
cussed in the previous section.

In the two-color labeling experiments, we can compile
statistics into histograms of the distributionrsf ,tid of repli-
cated fractionsf at time ti fFig. 3sbdg, where ti is the time
point where the second dye was addedsFig. 1d. Note that the
spread inrsf ,tid is related to the starting-time distribution
fstd via the kinetic curvefstd, wheret is the laboratory time
that each DNA starts replicating, andt is the duration of
time since the onset of replication. Sincefstddt
=r(fst8d ,ti)dfst8d, wheret8= ti −t, we obtain

rsf,tid = fstd 3 SU df

dt
U

t=ti−t
D−1

. s7d

For a Gaussian starting-time distributionfstd, one can in
principle fit all rsf ,tid’s using three fitting parametersv, the
average starting timet0, and the starting time widthst. Un-
fortunately, this “brute-force” approach did not produce sat-

isfactory results as the basin of attraction of the minimum
proved to be relatively small.

Our strategy then was first to obtain a coarse-grainedv
versus globalx2 plot shown in Fig. 3 as follows.

sid Guess a range ofv betweenvmin andvmax.
sii d Fix v sstarting fromv=vmind, and tracersf ,tid back in

time. For a specific value off and time pointti, the corre-
sponding starting time isti − tsfd fEq. s6dg. Repeat for all
rsf ,tid’s and reconstructthe starting time distributionfstd.

siii d Fit fstd obtained in stepsid to an empirical model.
fIn the absence of correlations among starting times, a
Gaussian distribution is a reasonable choicef23g. One may
also know the rough form offstd from an understanding of
the origins of the asynchrony.g

sivd Regeneratersf ,tid using Eq.s7d with the parameters
obtained in stepssii d andsiii d. Calculatex2 for rsf ,tid. This is
also a global fit, as thex2 statistic is summed over data from
all time pointsti.

svd Increasev to v+Dv and repeatsii d–sivd. If there is a
well-defined minimum of thex2svd swith correspondingt0

and std fe.g., Fig. 3sfdg, one can find a more accurate esti-
mate of the minimum using astandard optimization technique
such as Brent’s methodf20,25g. Otherwise, go back tosid
and choose a different range ofv.

In order to test how well the optimization method de-
scribed above can work in the face of asynchrony, we have
repeated the simulation in paper I with several modifications.
First, we have used 1000 molecules that started nucleations
asynchronously, following a Gaussian distribution of average

FIG. 3. sColor onlined. Inversion results in the presence of asynchrony and finite-size effects.sad I /2v vs 2vt. The arrows indicate where
f =0.8 in f vs t curves insdd for three different molecule sizes: 104 sunchoppedd, 1000 and 250schoppedd. sbd rsf ,tid for six time points 60,
80, 100, 120, 140, 160sfrom left to rightd. The circles are simulation data; the solid lines are from Eq.s7d, using the extracted parameters
in Table I. scd Optimization results for the starting-time distributionfstd. The solid line is a Gaussian fit.sdd f vs 2vt for ,c=250 and,c

=1000. The solid line is the unchopped casessize 104d. sed Average domain sizes vsf. The open circles are for the unchopped case, while
the dotted and dashed curves correspond to,c=1000 and 250.sfd Plot of logx2 frsf ,tidg sarbitrary unitsd vs v for size 104. The complete fit
results are shown in Table I. See also text.
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starting timet0=40 and of starting time widthst=10 f26g.
Second, the size of each individual molecule is 104 instead of
107. This keeps constant the total number of “DNA base
pairs” analyzed.

Since we used the same nucleation rate, the time to rep-
licate to f =0.9 was roughly 100 min, about the same as for
the much larger systemfsee Figs. 2sdd and 3sddg. We have
chosen six time pointssti =60,80,100,120,140,160d at
which to collect data, and the distributions of fractionf are
shown in Fig. 3sbd. The spread inrsf ,tid reflects the starting
time distributionfstd.

We fit I /2v versus 2vt using Istd=a+ It in Fig. 3sad, ex-
cluding the last few points roughly abovef =0.9 to take into
account the finite-size effectssee the following sectiond. We
then used the fit result to obtain the growth ratev by the
optimization method given above. The results are shown in
Fig. 3 and Table I. In the plot ofx2 versusv fFig. 3sfdg, we
see a well-defined minimum ofx2 at v=0.453, 10% below
the input value 0.5. Figures 3sbd and 3scd are reconstructions
of rsf ,tid andfstd using the parameters in Table I. The mi-
nor discrepancies int0 andst are acceptable, given the small
number of points ofrsf ,tid used in the optimizations20
points in each of 6 histogramsd. Note that the finite size of
sampled DNA is responsible for a larger part of the discrep-
ancy with the original parameters than was our reconstruc-
tion algorithm.

The success of this method depends on the experimental
design, as well; i.e., one has to choose the right time pointsti
in order to deducefstd accuratelyfsee Figs. 3sbd and 3scdg.
The key parameter is the ratioa between the replication time
scale t* and the starting-time widthst, respectively:a
= t* / st. For the case considered herest* <75 andst<14d,
a<5.4.

Ideally, a@1 sbetter synchrony with slow kineticsd so
that rsf ,tid has a well-defined peak between 0, f ,1 and

rsf ,tid→0 as f →0 and 1. In this case, even a singlersf ,tid
can be used to reconstructfstd and extractv accurately. For
example, each single histograms for all time points in Fig.
3sbd produced results that are accurate to 15%.

For a!1 shigh asynchrony with fast kineticsd, rsf ,tid is
spread over 0ø f ø1. In this case, experimentalists should
choose at leastN=st / t* time points to cover the whole
range of fstd, where well-chosenti’s spread evenly the
peaks ofrsf ,tid between 0 and 1.

D. Finite-size effects

As mentioned above, the DNA is broken up into relatively
short segments during the molecular-combing experiments.
In order to estimate how the finite segment size affects the
estimates ofIstd andv, we have cut the simulated molecules
in the previous section into smaller pieces of equal size,c
f27g. Figure 3 shows results for,c=1000 and 250, with origi-
nal size 104. As one can see, there is a clear correlation
between,c and the statistics. First, the smaller the segments
are, the smaller the average domain sizes become asf →1.
This is as expected, since one obviously cannot observe a
domain size larger than,c. Note that an underestimate of the

average eye and hole sizes,̄i and,̄h leads to an overestimate
of the extractedIstd, as implied by Eq.s6d. Second, as,c

becomes smaller, the completion times are underestimated.
Third, the sharp increasesdecreased in average eyesholed
sizes disappears, becoming nearly flat at a characteristic frac-
tion f*, and the kinetic curvefstd significantly deviates from
its sigmoidal shape, becoming nearly linear. In fact, there is a
close relationship between these last two effects.The sharp
increase in average eye size results from to the merger of
smaller eyes, which dominates the late stage of replication
kinetics. Since chopping DNA eliminates the large eyes, as
shown in Fig. 3sed, it effectively increases the number of
domainsnstd per unit length in truncated segments and over-
estimates the replication rate.sThe replication ratedf /dt
=2vn.d

We emphasize that the first two observations above imply
that,c affects the basic time and length scales,t* and ,*, of
the schoppedd systems introduced in the previous section. In

Figs. 4sad–4scd, we replot fstd, Istd, and ,̄i and ,̄h using the
dimensionless axes. One can clearly see that the chopping
process straightens the sigmoidalfstd and the average do-
main size curves. Nevertheless, the basic shape ofIstd does
not change—i.e., curves corresponding to different values of

TABLE I. Comparison between input and extracted parameters
in the presence of asynchronysstartingtd. Note that the inputt0±st

is the Gaussian fit to a single realization of 1000 molecules, where
t0=40 andst=10 f26g.

Input Extracted

I 1310−5 s0.98±0.18d310−5

v 0.5 0.453

Startingt st0±std 39.6±14.1 36.5±13.9

FIG. 4. sColor onlined. Rescaled graphs for finite-size effects.
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,c collapse onto one another—and the finite-size effect only
makes the upshooting tails steeper.

As criteria for significance of finite-size effects, we first
define a new parameterb=,c/,*: namely, the maximum av-
erage number of domains per chopped moleculesaround f
=0.5d. Then, a more careful observation of Figs. 4sad and
4scd suggests that there might exist a critical valueb* sor
corresponding chopping size,c

*d, where the finite-size effects
severely affect the statistics. In other words, forb.b*, one
can ignore the finite-size effects by excluding the last few
data points close tof =1. sRecall that,* is the minimum
average eye-to-eye spacing.d To see this clearly, in Fig. 5, we
have plottedt* / t`

* versus b for two different casesIstd
=10−5t and Istd=0.001, wheret`

* has been calculated using
the basic kinetic curvefstd=1−expf−2ve0

t gst8ddt8g si.e., the
system is infinitely larged f4,12g.

Indeed, changes int* are very slow aboveb<10, but
drop sharply below this ratio. Sinceb is the average number
of domains per molecule, we argue that the KJMA model can
be applied to data directly when there are enough eyes in
individual molecule fragmentssroughly, at least 10d. On the
other hand, whenb&10, one would require more sophisti-
cated theoretical methods to obtain correct statistics.

One subtle point is thatt*, unlike ,*, is not very acces-
sible experimentally and requires data processing for accu-
rate extractionfe.g., Fig. 3sdd or 6sbdg.

Finally, we note that the sudden upshooting in the tails of
the extractedIstd /2v versus 2vt curves are yet another kind
of finite-size effect related to numerical differentiationfEq.
s5dg. This can be simply excluded from the analysis.

E. Finite-resolution effect

Another generic problem is the finite resolution of mea-
surements. In molecular-combing experiments, for example,
epifluorescence microscopy is used to scan the fluorescent
tracks of combed DNA on glass slides. The spatial resolution
f,1 kb skilobase pairsdg means that smaller domains will not
be detectable. Thus, two eyes separated by a hole of size
ø1 kb will be falsely assumed to be one longer eye. We
evaluate this effect by coarse-graining the statistics with ex-
perimental resolutionsDx*, while keepingDx=vdt in simu-
lation much finer. To coarse grain by a factord=Dx* / Dx,
we have used the raw, “unchopped” data set in the previous
finite-size-effect section: after the simulation, we have
scanned the final lists of eyes and holes,hij and hhj, and
removed any eyessholesd for d,1, combining them with the
two flanking holesseyesd into a larger holeseyed that equals
the size of all three domains.

FIG. 5. The finite-size effects and changes in the basic time and
length scales. Shown are two different initiation ratesIstd=10−5t
and Istd=0.001. The vertical line is where the average number of
domains per molecule is 10. They axis has been normalized rela-
tive to the initiation rate for an infinite systemsb→`d.

FIG. 6. sColor onlined. The effect of coarse graining.sad f vs 2vt. From left to right,Dx* =0,1,5. sbd I /2v vs 2vt. From top to bottom,
the coarse-graining factorDx* =0 sno coarse grainingd, 1 scomparable to optical resolutiond, and 5.scd Average domain sizes vsf. The open
circles are for no coarse graining, while the dashed lines are forDx* =1 and 5 sdotted and dashed lines, respectivelyd. sdd–sfd Rescaled
graphs.
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In Figs. 6sad–6scd, we show how the statistics change by
coarse graining onlysi.e., without choppingd, where the
coarse-graining factorsd are 20 and 100.

The finite-resolution effect biases estimates in a way that
is opposite to finite-size effects; i.e., converting eyessholesd
for d,1 to holesseyesd increases the average domain sizes.
As a consequence, the extractedIstd is slightly underesti-

mated. Nevertheless, the curves in each offstd, Istd, and ,̄i

and ,̄h almost perfectly collapse onto each other when the
axes are rescaled usingt* and ,*, confirming that, as with
finite-size effects, the main consequence is a change in the
basic time and length scales of the problemfFigs. 6sdd–6sfdg.

To find criteria for significance of finite-resolution effects,
we recall that coarse graining falsely eliminates eyes and
holes smaller than the resolutionDx* only sd,1d. For ex-
ample, statistics forf <0 ssmall eyesd or f <1 ssmall holesd
can be affected by coarse graining. For these two cases, how-
ever, one can easily avoid a problem by excluding data for
f <0 and 1 from analysis.

On the other hand, a more serious situation can arise
wheng=,* /Dx* &1, because a resolution comparable to the
minimum eye-to-eye distance will seriously alter the mean

domain sizes,̄i and ,̄h and thus the extractedIstd, as well.
Indeed, forg@1, thersf ,tid’s remain essentially unchanged
si.e., the optimization result forv remains the samed even at
d=100 swhere,g<70d sdata not shownd. We conclude that
g=1 is the relevant criterion to test the significance of finite-
resolution effects.

III. DISCUSSION AND CONCLUSION

In the previous section, we have tested various generic
experimental limitations via Monte Carlo simulations. When
the system is largef107 for v=0.5 andIstd=10−5tg, we have
been able to extract all the input parameters accurately from
a single realization of our simulation. As the experimental
ssimulationd conditions become less ideal, however, one re-
quires more sophisticated tools.

In the presence of asynchrony, we have demonstrated that
the input parameters can still be extracted to reasonable ac-
curacy sroughly 10% for a<5.4d using an optimization
method. In most DNA replication experiments,a*1. Forex-
ample, in theXenopusegg extracts experiments of Herricket
al. f13,15g, a<2.5 st* <15 min andst<6 mind. In this
case, the method presented here can even be applied to data
rsf ,tid for a single well-chosen time pointti to extractv. The
accuracy increases as more data are collected for different
timepoints.

The significance of finite-size effects can be estimated by

the criterion b=,* / ,c<10. Fortunately,,* for Xenopus
sperm chromatin is roughly 10 kb, while the typical size of
combed molecules ranges between 100 and 500 kb, thus giv-
ing 10&b&50. However, the origin spacing of many higher
eukaryotes, includingXenopusafter the mid-blastula transi-
tion, can be as large as 100 kb. In such cases, it is of critical
importance to obtain long combed moleculess.1 Mbd.

Similarly, finite-resolution effects are insignificant when
g=,* / Dx* .1. This condition is satisfied in almost all
molecular-combing experiments of DNA replication, since
Dx* <1 kb while ,* typically ranges between 10 and
100 kb sg<10 to 100d.

Among the various experimental limitations we have
tested, the finite-size effects seem to be potentially the most
serious problem in the molecular-combing experiments. For-
tunately, we expect the finite-size effects in the experiments
and analysis of Refs.f13,15g to be relatively insignificant
becauseb.10. On the other hand, we need more sophisti-
cated theoretical tools to correct the finite-size effects forb
,10. We recall that the coarse-graining of molecules affects
the tails in Fig. 6sbd opposite to the way the finite size of
molecules affects them. We thus speculate that an intelligent
way of annealing finite-sized molecules can reduce or correct
the finite-size effects. We leave a detailed evaluation of this
idea for future work.

In summary, we have discussed how to apply the KJMA
model to data to extract kinetic parameters under various
experimental limitations, such as asynchrony, finite-size, and
finite-resolution effects. For the application to DNA-
replication experiments, wehave shown that finite-size ef-
fects can be ignored when the chopped molecules contain
enough domainssi.e., b*10d. Even when the size of mol-
ecules is smaller than the critical value,c

* , the shape of the
nucleation rateIstd is not affected when plotted using res-
caled parameters. On the other hand, finite-resolution effects
are insignificant wheng@1, which is the case for molecular
combing experiments of DNA replication.

The theoretical understanding of these limitations given
here should provide guidelines for the design of future ex-
periments.
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