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Abstract. Nucleation in phase transition is a
classical problem. Close to the transition

point, the critical radius
is

known to be much larger than the diffusion length In this paper, we

focus
on

the
case

far from the critical point, as it is the case in
a

supercooled liquid, or in the

related context of excitable media. We show that the physics of nucleation
is

different from the

classical case. The critical radius is of the order of the diffusion length (in 2-dimensions), and

smaller thorn the diffusion length (in I-dimension) As a
result, diffusion first leads to a

decrease

in amplitude of the initial seed, before
a propagating pulse (or front) is initiated. This results in

different laws for the critical radius The relevance of these effects to stimulation in biological
tissues, such

as
cardiac muscle, is discussed

1. Introduction

Front propagation is a common phenomenon in many physical systems. Examples include

solidification of an undercooled melt, flame propagation la particular case of excitable medium),
and many hydrodynamic, pattern forming systems [1-3]. Because of its importance, the subject
has received a great deal of theoretical attention, since the pioneering work of Kolmogorov,
Petrovsky and Piskunov [4], and Fischer [5]. Particularly, much work has been devoted to the

problem of velocity selection for a front describing how a system in an unstable state is invaded

by a stable phase [6-8].
In a number of problems, especially

m systems undergoing first order phase transitions, a

front may propagate, leading to the invasion of the metastable phase by a more stable phase.
In such systems, it is known that a small seed of radius R of the more stable phase grows only
if the radius R is larger than a critical size, R~ [9]. Nucleation in first order phase transitions

has been extensively studied [10-13]. Close to the transition point, the critical radius is known

to be much larger than the width of propagating fronts (or equivalently, the diffusion length).
In this case, the critical radius has been estimated by considering the motion of a curved front.

The effect of curvature is to slow down the velocity of propagation. The critical radius can be

simply estimated as the radius of curvature corresponding to zero velocity of propagation (see
Ref. [12], see also Section 5.3 below). It has to be emphasized that this picture makes sense

only when the radius of curvature is much larger than the diffusion length.

© Les Editions de Physique 1995



1534 JOURNAL DE PHYSIQUE II N°10

In I-dimension, this kind of approach leads to the conclusion that the critical radius is zero,

which of course is not consistent with the assumptions that the critical radius is large compared

to the diffusion length. Close to the point where the metastable state becomes unstable (I.e.,
far away from the phase transition point), the critical radius goes to zero. This leads to an

interesting dynamics. Qualitatively, diffusion first prevails, therefore leading to a decrease of

the amplitude of the initial perturbation. The amplifying effect of the nonlinearity becomes

important only after this initial phase. On the other hand, close to a phase transition, the

critical radius becomes large compared to the diffusion length (it diverges logarithmically with

the distance to the phase transition point), so diffusion never dominates the dynamics.
The picture is qualitatively similar in 2-dimensions. One of our main results here is that

far away from the transition point (close to the point where the metastable state becomes

unstable), the critical radius is smaller than the width of the front, and as a result, the dy-
namics is qualitatively similar to what is observed in I-dimension. In this regime, the classical

predictions [10-13] generally overestimate the critical radius. As expected, the classical results

(based on the curved front approximation) are recovered close to the phase transition point.
These results can be extended to the case of excitable media. The two problems (excitable

media and bistable systems) can be treated within the same framework, using the well-known

FitzHugh-Nagumo model [14] (two partial differential equations, first order in time) which is the

simplest model describing impulse propagation in biological tissues. This system contains as a

limit a model describing the dynamics of first order phase transitions (the Sch16gl model [10])
with one partial differential equation, first order in time. The limit is obtained when the

restoration time in the second equation (the refractory time) tends to infinity. This limit is

known to be singular [13].
The notion of critical radius is no longer defined in excitable media, very close to the transi-

tion point. This is due to the fact that when the refractory time is finite, propagation becomes

impossible close to the transition point [13]. Close to the point where the metastable state

becomes unstable (which corresponds to a small excitation threshold, in the terminology of

excitable media), the critical radius has a linear dependence on the excitation threshold (finite
refractory time), but a square root dependence on the excitation threshold in the phase tran-

sition problem (infinite refractory time). In excitable media, when the excitation threshold is

zero, the critical radius behaves like the power -1/4 of the refractory time.

Conceptually, nucleation is perhaps the simplest fully time-dependent problem. For this rea-

son, a good understanding of its mechanisms may be useful to describe the complex, transient

effects involved in a number of problems related to chemistry and biology. One of our main

motivations here is cardiology. Various methods of stimulation of the tissue allow to treat a

number of arrhythmias (defibrillation, Anti-Tachycardia Pacing, etc.) [15-17], and nucleation

is an important issue there. In this context, we study the critical size of an excited domain,

necessary to induce propagating waves.

Our results are organized as follows: m Section 2, we briefly introduce our model, recall

some elementary considerations, and formulate the problem we are interested
m.

In Section 3

we show qualitatively what happens to a localized excited region larger than the critical width,
when the critical width is small. Then, we present and discuss our results in I (Section 4), and

2-dimensions (Section 5). In Section 6 we briefly summarize and discuss our results.

2. Formulation of the Problem

The simplest model providing a qualitatively correct picture of propagation in excitable tissues

is the FitzHugh-Nagumo model [14]. It involves two variables only: e(z,t), the membrane

potential, and v(z,t), the inhibitory variable. They obey the following partial differential
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eoUat~°~.
ai~

=
~ie)

v + Dv2e, ii)

and

div
= ee, (2)

where

fle)
=

Aell e)le U). 13)

The diffusion coefficient, D, and the kinetic coefficient, A, essentially set the length and time

scales. The small parameters, e, is the inverse time scale of the evolution of the variable v

(the so-called refractory time). Observe that when
e =

0, the system reduces to a model

describing first order phase transition (the Sch16gl model [10]). We restrict to the case where

0 < u < i. In this case, both e =
0 and e =

i are stable equilibrium points, and e = u is

an unstable equilibrium point. The parameter u is the excitation threshold. The inhibitor, u,
does not diffuse in the case of action potential propagation. A very different limit, where the

inhibitor diffuses faster than the propagator, describes a number of pattern formation problems
in biology (see, e.g., Ref. [18,19]).

In a uniform state (i7e e 0), it is well known that equation (I) can be written as:

where F is a Lyapunov function l'free energy'). The positions of equilibrium correspond to

the extrema of F. When
u < 1/2 (respectively

u > 1/2), the minimum of F associated with

the solution e =
0 is lower (respectively higher) than the minimum of F at e =

I. The point
corresponding to the absolute minimum of F will be refered to here as the stable point, and the

other relative minimum of F as the metastable point. In a system governed by equation ii ),
the stable phase tends to invade the metastable state. A remarkable solution describing prop-

agation of a front, with a velocity u =

fill 2u) in a system asymptotically at z ~ -cc

in the state e =
I, and at z - +cc, in the state e =

0, has been found in closed form (see,

e.g., Ref. [20] ). For u =
1/2, the velocity of the front is zero. It is easy to see that in this

case, the free energy, F, is equal for
e =

0 and e =
I, meaning that u =

1/2 corresponds to

the transition point. For this reason, we refer to the case when u ~
l/2 as close to a phase

transition. In the following, we restrict ourselves to u < 1/2, so e =
I is the stable state, and

e =
0 is the metastable state. Note that for excitable biological tissues, u is small (of the order

0 1- 0.2), I.e., the system is close to the case where the metastable branch disappears, far from

the transition point. This leads to qualitative differences, as we will demonstrate below.

When e > 0, instead of fronts, the steadily propagating solutions of equations (1,2) are

pulses. The front solutions corresponding to u close to 1/2 disappear as soon as e # 0.

We consider here the jroblem of growth of an initial seed of the stable phase,
e =

I, in a

system prepared in the metastable phase e =
0. Elementary dimensional considerations show

that the critical radius, w~, must be of the form:

w~ =

/@#d(u,e). (5)

where d
=

1, 2 is the space dimension.

The initial condition we used in this work is:

e(z, t
=

0)
= exp

-(z/w)~. (6)

land u =
0 everywhere). The parameter w is the width of the initial perturbation. With this

choice of initial condition, it is possible to estimate the function #d(u, e), because a Gaussian
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Fig. I. Evolution of
a

Gaussian initial condition (see Eq.(5)) In Figure la, solutions e(x)
are

shown at different times, separated by At
=

2. Figure 16 shows the evolution of e at the center of the

system. The maximum of e first decreases sharply, when the dJflusive term dominates the nonlinear

term. Finally,
e

bounces up raises again, and the stable phase (e
=

I) tends to invade the system. The

dip in amplitude
is

due to the fact that the width is initially small. It disappears in
the

case
where

the critical radius is larger,
i e, close to a

phase transition point In this calculation,
u =

0 1, D
=

I

and A
=

1.

profile remains Gaussian under the diffusion equation. When w is of the order of the diffusion

length, diffusion first prevails. It is then reasonable to consider the reaction terms in equations
(1,2)

as perturbations compared to the diffusion term (i7~e).
We have also investigated the problem numerically. Briefly, we describe our numerical meth-

ods. Equations (1,2) were integrated numerically in I-dimension, or in 2-dimensions, by im-

posing axisymmetry. The boundary conditions were either periodic (I-d), or of Neumann type.
A standard Crank-Nicholson scheme, second order in time and space, was used. The code was

checked by studying the decay of the initial condition (6), with the nonlinearity turned off, and

by comparing the velocity of front propagation with the analytic result mentioned above. To

determine the critical width, w~ =
#1,2(u, e), we integrated equations (1,2), with equation (6)

as the initial condition. For too small value of w, the initial condition shrinks to 0, and for a

large value of w, the small bump eventually evolves towards propagating pulse(s). The critical

value, w~, is searched by dichotomy, once two values wi and w2 are found, with wi < w~ < w2

Extensive checks of our resolutions, in space and time, gave us confidence in our numerical

results.

3. Qualitative Aspects of the Evolution

This short section illustrates our point, stated in the introduction, that: I) the critical radius

can be of size comparable to the width of the front (or
even smaller in I-dimension), and ii)

when the seed is larger than the critical radius, the amplitude of the solution may go down

before it goes up again.
These qualitative features are illustrated by Figure I. Figure la shows a series of curves

e(z, t), as a function of position ix), at different times (m the I-dimensional case). The values

of the parameters are u =
0.I and e =

0. Time increases upwards, and the time separation
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between two solutions is At
=

2. The initial pulse is visible in the lower record. In the next 7

records, the amplitude of the disturbance has significantly decreased. It increases later, after

+~
8 records. Figure 16 shows the value of e, as a function of time, at z =

0, the location

of the initial bump (see Eq. (6)). The value of
e drops very quickly, and after a while, it

increases again. As we will explain below in more detail, diffusion prevails when w is small,
and is responsible for the fast initial decay of the initial pulse. This behavior contrasts with

the case where w is sufficiently large, so the diffusion term is initially small, and essentially no

drop of the maximum value of
e is observed.

It has to be emphasized that in 2-dimensions also, for u $ 0.2, the evolution is qualitatively
similar to what is seen in Figure I. For this reason, the approximations used in references

[11-13] are reasonable only in the regime where u ~ 0.3. We now turn to a discussion of our

results.

4. I-Dimension Results

4.I. NUMERICAL RESULTS. We first discuss the results in I-dimension. The function

Ii Iv, e) is shown in Figure 2a for several values of
e: e =

0,0.01, 0.02 As expected, when

e increases, the critical radius increases. Also, propagation becomes impossible to close to

u =
1/2 when e # 0 [14], which explains why the upper curves, corresponding to e =

0.01, 0.02

do not extend to u =
1/2.

When
u ~

0, Ii Iv,
e =

0) goes to zero with an
1/2 power (Fig. 2b). The function Ii Iv,

e =
0)

diverges weakly when u -
1/2, as In(1/2 u) (Fig. 2c).

The function Ii Iv
=

0, e) behaves as
e~R,

as Figure 2d demonstrates. Last, the behavior of

ii Iv, e) is shown near u =
0, e =

0. For eo > 0, the function ii Iv, eo) seems to have a linear

behavior when u ~
0 (Fig. 2e).

The goal of the following three subsections is to give analytic arguments to explain our

numerical observations.

4.2. THE
e =

0, SMALL u CASE. Our numerical results show that when
u ~

0,
ii Iv,

e =
0)

+~

u~/2 (Fig. 2b). Understanding this result is the aim of this subsection.

The imporant remark is, again, that the critical width is small. The evolution of the ini-

tial condition is governed by a balance between diffusion (i7~e) and the reaction term, f(e).
Because the critical width, w~, is small the diffusion term first prevails, and as a first approx-

imation the solution simply obeys the diffusion equation (Fig. I). It is well known that the

diffusion equation transforms a Gaussian into a Gaussian: e(z,t)
=

eo(t) exp(-(z/wo(t))~),
where eo(t) and wo It) are the amplitude and width of the perturbation. Elementary algebraic
manipulations lead, in the I-dimensional case, to the following equations for the amplitude,

eo(t) and for the width, wo It):

~~°~~~
=

-2
°~~~~,

(7)
dt wo(t)

and
~~~~

~w~(tl' ~~~

It results from these two equations that d(wo(t)eo(t))/dt
=

0 (which is a consequence of the

conservation law),
so it is convenient to rewrite equation (7) as:

~~°~
=

-2~°~~~
,

(9)t~ ~ ~
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Fig 2. Figure 2a shows the dependence of the critical width of
a

pulse, ~§i Iv, E), in
I-dimension, as

a
function of the parameter u for

E =
0 (lower curve),

E =
0 01 and

E =
0.02 (upper curve) Figure 2b

shows the dependence of ii Iv,
E =

0)
as a

function of @ close to u =
0. Figure 2c shows ii Iv,

E =
0)

as a
function of In(1/2 u) Figure 2d shows the E~/~ dependence of ii (u

=
0,E). Last, Figure 2e

shows
a

blow-up of the region close to u =
0 and E =

0. When e
# 0, the function ii (u, E) behaves

approximately linearly with u for small values of
u
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where the initial condition, eo(0)
=

1 and wo(0)
= w have been taken into account (see Eq.(6)).

Equation (9) describes the evolution of the amplitude of the Gaussian. We now estimate the

effect of the reaction term, as in equation (3). Assuming that the effect of reaction term is weak,

so the shape of the bump is not too much affected, one can write the following approximate
equation for the amplitude of the solution:

@
"

-2~$~ + ~oit)ieoit) I)1" colt)). 11°)

It is a simple matter to study the behavior of the solution of this Ordinary Dilferential Equation
(ODE), as a function of the parameter w. The polynomial on the Right Hand Side (RHS) of

equation (10) always has a root, at eo "
0. When w = cc, there are two other roots, at eo = u

and eo =
I. The largest root is stable, for the evolution described by equation (10). When w

decreases, the two roots move towards eo =
0, and get closer to one another. They merge at

e =
2u Ill + u), for w = I, with

~°

~)
~~

When w < I, the RHS of equation (10) is negative for 0 < eo < I, so the solution of equation
(10) tends to zero. When w > I, the right hand side of equation (lo) is negative between +cc

and the largest root of the RHS of equation (10), and positive between the two non zero roots.

As a consequence, the solution of equation (8) cannot reach 0. This simple picture suggests
that for

w < I, the initial perturbation will eventually decay, whereas for w > I, the solution

could grow again. This suggests that w~ +~
I. Obviously the simple approximation that lead

to equation (10) cannot always hold. Because of the nonlinearities, the shape of the bump

cannot remain Gaussian forever. However, we could check that the picture just described has

some validity, by comparing the time derivative of the maximum value of e, minus the reaction

term, f(e), to the RHS of equation (9). The agreement was found better and better when

u ~
0, at least for short times. Eventually, the solution differs from its approximated form,

therefore rendering the argument no better than qualitative.
It is easy to modify our analysis, so as to treat the case where the initial amplitude is

arbitrary. In this case, w should be replaced by the product (eo(0)w) in equations (9,10). At

fixed radius, w, this suggests that there is a
threshold in amplitude of excitation, given by

eo(0)w
=

lbi
Again,

we emphasize that the picture presented here is significantly different from the picture
usually put forward to treat the nucleation problem.

4.3. THE e =
0, u -

1/2 CASE. The limit where the system is
close to the a first order

transition is considered next (u
~

l/2) We present an analytic argument to explain the

logarithmic dependence of ii(u,e
=

0) in this case (Fig. 2c).
To proceed, it is useful to remember the existence of an unstable, steady solution, obtained

by solving the ODE:
die(z) + e(z)(e(z) I)(u e(z))

=
0. (12)

When u ~
l /2, the unstable solution has a maximum: 2 /3(1+

u
~/(2 u)(1/2 u)), which

is of order I. The length of the domain where e > 1/2 diverges logarithmically when u ~
l /2.

This solution is unstable, in the sense that when it is dilated a bit, the stable phase will tend

to completely invade the system, whereas when it is compressed a bit, the system will return

to the solution uniformly equal to 0. To obtain a solution developing into a pair of traveling

fronts, one needs to initiate a pulse larger than the steady, unstable solution. Since the spatial

extension of this solution grows like In(1/2 u), when
u ~

l/2, the initial width must be
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Fig. 3. The phase plane, (e, ~) The fast nullcbne, ~ =
f(e) is shown for

u =
0. Two solutions, one

with initial size greater than the critical radius (I), and
one

with initial
size

smaller than the initial

size (2) can be
seen.

The two solutions start at the point M
=

(1, 0), and move first almost parallel to

the
~ =

0 axis, until the reach the curve ~ =
g(e)

=

-e~(e I) e~ /w~, shown in dashed lines. The

two solutions
are very close until they meet the curve ~ =

g(e), and differ completely afterwards.

larger than a quantity, growing logarithmically to be able to initiate propagation. Very close

to u =
1/2, and for w m wc, it happened that our numerical solutions fell so close to the steady

solution that the solution seemed to have converged to the (very weakly) unstable solution.

4.4. THE e
# 0 CASE Last, we explain the features observed when e

# 0, namely: I)
ii (u

=
0,e)

+~

e~R when e ~
0 (Fig. 2d), and it) ii Iv,

e =
eo) behaves linearly with u for

small u, when eo # 0 (Fig. 2e).
It is possible to treat the case e

# 0 by using some elaboration of the ideas presented in the

case e =
0. For small values of e and u

(hence for small values of w~), we again approximate
the solution by a Gaussian, with a width wo It) and an amplitude eo(t). In the same spirit,
volt) denotes the amplitude of the inhibitory variable at the maximum ix

=
0). Equation (10)

becomes:
~~l it)

=
-2~([~ + colt)ieoit) i)iU colt)) volt) i13)

t° it)
=

feoit) i14)

To describe the evolution of this system of ordinary differential equations, it is convenient

to introduce the phase space (eo, uo) (Fig. 3).
When e =

0, the point representing the solution of equations (13,14)
moves along the uo =

0

line. When e is small, but non zero (0 < e « I), the point (eo, uo moves up slowly at

first above the uo =
0 line. If the trajectory (eo(t), volt)) is always above the curve uo =

eo(eo I)(u eo) 2e(/w~, then, the amplitude eo will relax to zero, implying that no

propagation is initiated. If, on the other hand, the trajectory (eo It), volt) intersects the curve

uo "
eo(eo I)(u eo) 2e( /w~, then, the point eo will bounce up, and propagation will be

initiated. To study the critical width, it is natural to focus on the region where the function

g(eo) + eo(eo 1)(11 eo) 2e(/w~ is maximum. Our strategy is then to introduce scaled

variables in this region, and to derive an inner problem for the scaled variables.



N°10 NUCLEATION FAR FROM EQUILIBRIUM 1541

To this end, we first consider the case11 =
0. The maximum of the function g(eo) is located

at emax =
2/3(w2 /(2 + w~ )). We introduce the change of variables:

~ ~2
~°

3 (~ ~ q~2)
~~ ~ ~~~' ~~~~

so the function g(eo) becomes:

~~~°~
7

(2 ~w2)2 ~~ ~~~~ ~~~~' ~~~~

Introducing the ratio A + e(2 + w2)2 /w~, the scaled inhibitory variable 6u by: uo + (w~ /(2 +

w2)2)6u, and the scaled time f
a (w2 /(2 + w2))t, equations (13,14) become:

d£6e
=

~
(l 36e~ 6e~) + 6u, (17)

and:

d£6u
=

~
Ail + 6e). (18)

3

The inner problem, equations (17,18), depends on the parameter A only. This suggests that

the critical width is given by a condition of the form:

e

~~ ~
=

A~, (19)
w

~ ~

where A~ is given by the solution of equations (17,18). Equation (19) reduces, for small e,

to w +~
e~/~, as found numerically (Fig. 2d). Our analysis suggests that the slow time scale,

when e -
0, is t

+~
e~~/2, and in the inner region, e +~

e~/~ and u +~ e.
These predictions were

explicitely checked by superposing e~~/~e and e~~u
as a function of e~/~t, for w

slightly above

(5i~) the critical radius. The various curves superpose well, therefore confirming the results of

our analysis. No attempt was made to solve explicitely equations (17,18), since it provides at

best a qualitative description of the evolution.

Using the same scaling as before, when 11 # 0, it is easy to see that provided 11 « e~/~, the

extra term in equation (17) is of order (ule~/2)(1+ 6e). When u le~/~
-

0, this term is a small,
regular perturbation which explains why, when

e
# 0, ii Iv, e) behaves linearly as a function

of u, for small u.

We again emphasize that for e # 0, propagating solutions do not exist for u close to 1/2.
This means that the problem of nucleation does not make sense in this case, although "pulses"

could be observed transiently sometime m our numerics.

5. 2-Dimension Results

5.I. NUMERICAL RESULTS. We now turn to the results in 2-dimensions. The function

#2 Iv, e) is shown in Figure 4a for several values of e: e =
0, 0.01 and 0.02. As it was the case

in I-dimension, the critical radius increases with
e.

Propagation becomes impossible for e
# 0,

when u -
1/2. As a consequence, the curves corresponding to e =

0.01 and e =
0.02 do not

extend to u =
1/2. When u -

0, #2(u,
e =

0)
+~ a + fl@,

as Figure 4b demonstrates. Figure

4c shows 1/#2(u,
e =

0) as a function of u. It strongly suggests that #2(u,
e =

0)
+~

1/(1/2 u)

when u ~
l/2.

The function #2 (u
=

0, e) goes to cx like e"~,
as shown in Figure 4d. Last, as it was the case

in I-dimension, for eo > 0, the function #2(u, eo) behaves linearly with u, for small values of u.

In the next three subsections we give analytic arguments to explain our numerical observa-

tions.
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Fig 4. Figure 4a shows the dependence of the critical width oi
a

pulse, #2(u,E),
in 2-dimensions,

as a iunction oi the parameter u
for

e =
0 (lower curve),

e =
0 01 and

e =
o.02 (upper curve)

Figure 4b shows the dependence of #2(u,e
=

o)
as a

function of @ close to u =
o, and Figure 4c

shows 1/#2(u,e
=

0) as a
function of (u -1/2) In Figure 4c, the dashed line corresponds to the

asymptotic behavior #2(u)
~w

o.82522/(1/2 u), which
is very close to the value predicted by using

equation (26), with the correction described in the text (1/fi
=

0.84932). Figure 4d shows the

e~/~ dependence of d2(u
=

0,e) close to e =
0. Finally, Figure 4e shows the region close to u =

o and

e =
0 When

e
# 0, the function #2(u,e) behaves approximately linearly with

u
for small values of u
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5.2. THE e =
0, SMALL u CASE. Again, we consider first the case e =

0. Figure 4b shows
that #2(u,e

=
0) m a + flu~/~. In this subsection, we present an approximate argument to

explain this dependence.
Our numerical results show that the critical size, #2(u,

e =
0) seems to go to a finite limit

when u ~
0. It is therefore not a pTioTi obvious that the approximations used to understand

the limit u ~
0 in I-dimension are applicable. However, the qualitative aspect of the evolution

shown in Figure I was also found in 2-dimension, at least for small values of
u

(u $ 0.2). It

is therefore interesting to modify the analysis of the I-dimensional problem, since, as we show

now, it provides some insight on the small u limit.

Again, we first consider the case e =
0. For a narrow bump (small

w in Eq.(6)), the diffusion

term in equation (I) first dominates, and the reaction term can be treated, at least for a while,

as a perturbation. As it is the case in I-dimension, an (axisymmetric) Gaussian initial condition

remains Gaussian: e(T, t)
=

e2D(t) exp(-(T/w2D(t))~). A straightforward substitution in the

diffusion equation leads to the ordinary differential equation for e2D(t) and w2D It):

and
~~~~~ w2~

Itl' ~~~~

These two equations imply that d(w(~ it )e2D(t)) /dt
=

0, so equation (20) can be rewritten as:

where the initial ondition e2D(t = 0) = 1 and w2D(0) = w have
been

pproximate equation for the evolution of the amplitude of the bump,

the
effect

of
ffusion

(Eq.(22)),

and the term, reads:

~~ji~~ = -4~~)(~~ + e2D lt)(e2D It) - I)lU - e2Dlt)) . 123)

The term
originating

from the
iffusion equation

is quadratic in instead of
cubic

in
I-dimension.

The alitative ehavior of this simple
ODE

can be asily determined by

studying the oots of its RHS. For large w, the RHS of
quation

(23) has three roots, including

one at 0, which is always stable and two roots greater than
0.

hen decreases, the two

tive oots get close

to one
nother, and merge for 12D = 2/(1+ u - @)~/~

(the
corresponding

root
is e2D = @). For w < 12D, the lution of the equation decreases

to 0, whereas

w > 12D, the solution of equation (23) ecreases until it reaches the
largest

root of
of equation (23). Of course, the validity

of the pproximations
which have lead us

(23)
eventually ecome questionable.

Even
so,

the results

of this
simple the

right kind
of

of
#2(u,

e
= 0) to u = 0

5.3. THE e = 0, u
~ l/2 CASE. - As we have xplained before, when

to the transition point (u m 1/2), the
critical

nucleus is large, and the
approximations

used

in ferences [11-13] are

predictions
of

these references.

The limit of #2(u, e = 0) in the other case (u

simple
In and

for an
equation

reads:
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The modification, compared to the I-dimensional case, comes from the advection term, with

velocity I IT, in the Left Hand Side (LHS) of equation (24). When the front is located at a

distance T, much larger than the width of the front, the term I IT is roughly constant. As

a consequence, the effective velocity of propagation is equal to the velocity of the front in

I-dimension, minus I IT. Therefore, a seed of radius R will be able to grow only if I /R < c =

/fi(1 2u). This shows that the order of magnitude of the critical radius must scale as

I /(1/2 u),
as found numerically.

Note that this phenomenological approach rests entirely on the fact the the normal compo-

nent of the velocity of a front, un, and the radius of curvature, T~, are related via:

un =
V D/T~, (25)

where V is the velocity of propagation in a I-dimensional medium [13]. As such, it can also be

applied to an excitable medium.

A straight application of equation (25) for determining the critical nucleus would lead to:

~~ Ill /2 u)
~~~~

The coefficient of the inverse power law in equation (26) is significantly different from the

coefficient we find numerically The discrepancy can be explained by the fact that, for u +~

1/2,
only the parts of the initial condition larger than 1/2

are amplified by the reaction term.

This suggests that T~, in equation (26), should be compared with w~ x
fi. Once this

correction is taken into account, the computed coefficient of the inverse power law differ from

the approximated one by less than 3i~. Significant discrepancies exist between #2 Iv) and the

asymptotic behavior,
+~

I Ill /2 u), away from u close to 1/2. They imply that predictions
based on equation (25) (see, e.g. Ref. [13]) generally overestimate the critical radius.

5.4. THE e
# 0 CASE. To treat the

e # 0 case, one may, as in I-dimension, extend our

analysis to incorporate the effect of the inhibitor variable, u2D (t). Equation (23) then becomes:

de~j(t) _ _4~~ji~~ + e2D(t)(e2D(t) ~~~" ~~~~~~~ ~~~~~~ ~~~~

~~~~~
~~~~~~~' ~~~~

One may again work close to the maximum of the polynomial in the right hand side of equation
(27), and derive an inner problem, similar to what had been done in I-dimension. The analysis,
completely similar to what had been done in I-dimension, see equations (15-19), leads to the

conclusion that the critical width, w~, scales as w~ +~

e~R, in agreement with the numerics.

Also, the time scale of the problem diverges like e~~/~,
a prediction which agrees with the

numerical results. However, the scaling of e and u are not correctly predicted by our analysis.
The numerical solutions of equations (1,2) suggest that

e +~

e~/~ and u +~

e~/~, contrary to our

simplified model, which instead suggests that
e +~

e~R and
u +~

e~R. This shows the limit of

our analysis, and calls for a more elaborate theoretical treatment.

The question of stability of an axisymmetric, growing nucleus remains to be addressed.

6. Conclusion

We have investigated nucleation in bistable and in excitable media. Our results allow us to

identify two different regimes. Close to a first order phase transition point, the critical radius
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is large, compared to the diffusion length. In this regime, and in dimension d > 2, the classical

results give an accurate prediction of the critical radius (the I-dimensional case requires a

special treatment). On the other hand, away from the critical point, close to the point where

the metastable state disappears, or equivalently, for small excitation threshold, the critical

radius is of the order of, or smaller than the width of the front. This leads to a dynamics
qualitatively different from the case where the system is close to a phase transition, and to

quantitatively different predictions for the critical radius, both in the phase transition case

and in the excitable media case. When e
(the inverse refractory time) is non zero, the critical

radius increases sharply when the excitation threshold is zero (like e~R). Because propagation
is not possible when

e > 0, close to the phase transition point, the critical radius is not defined

there

Although in excitable media (e.g. for a nerve
fiber), the excitation threshold is typically

small we wish to stress here that the other limit (close to a phase transition) is also relevant for

fundamental problems in biology. The inhibitory variable is typically non zero, so the system

is effectively above the resting point in phase plane (e,u), corresponding to an increase of the

excitation threshold. It is a common situation for pattern formation in biology (morphogen-
esis), hormone regulation of biochemical processes, interaction of excitation and inhibition in

neurons in the brain, propagation excitation in striated, smooth and cardiac muscle [21].
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