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Nucleation in binary polymer blends: A self-consistent field study
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We study the structure and thermodynamics of the critical nuclei in metastable binary polymer
blends using the self-consistent field method. At the mean-field level, our results are valid
throughout the entire metastable region and provide a smooth crossover from the classical
capillary-theory predictions near the coexistence curve to the density functional predictions of Cahn
and Hilliard (properly transcribed into expressions involving the parameters of the binary polymer
blends near the spinodal. An estimate of the free energy barrier provides a quantitative citieeion
Ginzburg criterion for the validity of the(mean-field self-consistent approach. The region where
mean-field theory is valid and where there can be a measurable nucleation rate is shown to be poorly
described by the existing limiting theories; our predictions are therefore most relevant in this region.
We discuss our results in connection with recent experimental observations by Balsara and
co-workers. ©2002 American Institute of Physic§DOI: 10.1063/1.1429956

I. INTRODUCTION but for different reasons. While yielding fundamental in-
sights into the nature of the spinodal and becoming increas-
The formation of a new phase from a homogeneousngly accurate(in the mean-field sengas the spinodal is
metastable state occurs through an activated process knovapproached, the predicted nucleation barrier becomes mean-
as nucleatio.Although nucleation is fundamentally a non- ingless when the composition/temperature is too close to the
equilibrium phenomenon, if the time scale for nucleation isspinodal due to the large thermal fluctuatiofihus as far as
sufficiently long relative to the molecular relaxation time, thenucleation in a binary blend is concerned, the experimentally
transition state—the critical nucleus—can be considered asmost relevant range of composition/temperature is probably
quasiequilibrium state, leading to an Arrhenius-type expresin the broad crossover region between these two limits, for
sion for the nucleation raté=J, exp(—AF/KT), whereJy is  which no theoretical studies have been conducted explicitly
a kinetic prefactor associated with molecular relaxation andn polymer blends. Recent experiments by Balsara and
AF is the free energy of formation of the critical nucléifs. co-worker§~® suggest the inadequacy of existing theories
Because of the exponential dependence, the rate of nuclend point to the need for a more systematic theoretical ex-
ation is largely determined b&xF, which depends strongly amination of nucleation in polymeric systems.
on the thermodynamic state of the metastable system, e.g., In this paper, we present results of a self-consistent field
the distance from the equilibrium coexistence curve. On th&tudy of nucleation in a binary polymer blend. At the mean-
other hand, the kinetic prefactor is relatively insensitive tofield level, self-consistent field theof§sCP provides a sys-
the thermodynamic state. Therefore, determination of theematic and accurate description of inhomogeneous poly-
critical nucleus and its free energy of formation is a centraimeric fluids, as it yields detailed information on the chain
problem for a molecular theory of nucleation. conformation, structure and thermodynamics. SCF has been
In this work, we consider nucleation in a metastable bi-used successfully to study interfaces in polymer blends and
nary polymer blend. In a seminal paper that provided muctsolutions? polymer adsorption at surfac&sand microphase
insight into the dynamics of binary polymer blends, Birfder separation in block copolymet§}2The SCF can be consid-
examined the problem of nucleation in a metastable binargred the polymeric counterpart of the density-functional ap-
blend by combining results from the classical capillary proach for small-molecule systems, which has met with con-
theory (hereafter referred to as the classical thg¢argar the siderable success in the study of nucleation in simple
coexistence curve and from the Cahn—Hilliard theory for bi-fluids>*3In this regard, we note that even a systematic study
nary mixture$ near the spinodahereatfter referred to as the of nucleation in binary polymer blends using the approxi-
Cahn—Hilliard asymptotic theoyyClose to the coexistence mate Flory—Huggins—de Gennes square-gradient free energy
curve, the classical theory predicts a large nucleation barri¢fiunctional approach does not yet exist in the literature. The
that increases to infinity as the composition/temperature apSCF bypasses any approximations with regard to spatial cor-
proaches the coexistence value. While classical theory praelations (such as the square-gradient approximatibe-
vides an accurate description of the critical nucleus near theause the chain connectivity is fully accounted for. There-
coexistence curve, its predictions are essentially irrelevarfore, at the mean-field level, the predictions of SCF are valid
because the rate of nucleation in this region is unobservablthroughout the entire metastable region and provide a
small for typical degrees of polymerization. The applicability smooth crossover from the behavior near the coexistence
of the Cahn—Hilliard asymptotic theory is similarly limited curve to that near the spinodal. SCF also provides a consis-
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tency criterion for its own validity, through a quantitative obtained by a functional minimization of the free enefgy
evaluation of the nucleation barrier near the spinddetius  The critical nucleus corresponds to a saddle point of the free
a SCF study serves as an important benchmark for evaluatingnergy functional; it is a maximum with respect to the ex-
the accuracy of approximate theories, for assessing the vahange of species in the volume with that in the reservoir,
lidity of the mean-field approximation, and for suggestingbut a minimum with respect to the density profiles for a
further improvements in the theoretical understanding ofgiven overall composition in the volume.

nucleation in polymeric systems. Once the density profiles(r) is determined, the excess

The rest of this paper is organized as follows: in Sec. Il,free energy with respect to the homogeneous state is then
we provide the essential SCF equations for a binary polymecalculated as
blend that are used for determining the density profile of the
critical nucleus and its free energy of formation. In Sec. I,
we present and discuss the results of our SCF study. For a
chosen composition, we calculate the density profiles of the Ef dr(fle(r)]—=f(do) —po(d(r)—¢o)). (2.3
critical nuclei and the free energy of formation as we move
from the coexistence curve to the spinodal. From the profilelhis is the free energy change associated with creating a
of the critical nucleus, we obtain the nucleus size, as well agensity profile¢(r) out of a large, uniform system at com-
the excess material contained within the nucleus. Our resultgosition ¢ . For the critical nucleus, this is then the revers-
are compared with predictions of the classical theory near thible work of formation, or the free energy barrier for nucle-
coexistence curve using the interfacial free energy that wation. In this paper, these two terms will be used
have calculated for a flat interface. Near the spinodal, wénterchangeably.
compare our results with those of the Cahn-—Hilliard  The free energy functionaG or AF is not available
asymptotic theory by a proper transcription of their resultsanalytically for arbitrary inhomogeneity. A common approxi-
into parameters for the polymer blend using the Flory—mation is to combine the Flory—Huggins free energy for a
Huggins—de Gennes free energy functional. Our resulthomogeneous blend with nonlocal terms represented by the
agree with the respective theories in these two limits. Wesquare of the density gradients, as first proposed by de
then discuss the validity of the SCF theory in conjunctionGennes:***> Such an approximation is valid for weak inho-
with recent experimental results of Balsara and co-workersnogeneity but becomes inaccurate when the length scale of
Section IV summarizes the main findings of this paper. Fi-spatial variation becomes comparable to the radius of gyra-
nally, we provide an Appendix that contains detailed derivation of the polymers:*'” We avoid making any such ap-
tion of some of the theoretical results used in the paper. proximations introduced in constructing an analytical free

energy by resorting to a numerical self-consistent field theory
which, though still mean-field in nature, accounts fully the
IIl. SELF-CONSISTENT FIELD THEORY spatial correlations due to the chain connectivity.

We consider an incompressible binaA/B polymer The SCF theory treats the many chain problem as an
blend. Insofar as nucleation represents a spatially localizeffféctive single polymer chain in a field that is to be deter-
fluctuation, we may focus on a subvoluriveof the entire mlne_d self—gonsstentl_y. A systematic derivation of the self-
system. Because the system is incompressible, we mdgPnsistent field equations for polymer blends was given by
choose the volum¥ and the volume fraction of one of the Noolandi and Honusing a canonical formulation. For the
polymers, sayA, as the independent thermodynamic vari- hucleation probl_em at hand, it is more convenient to formut
ables. Henceforth, for notational conciseness, we will gise 12t€ the SCF using a grand canonical ensemble. The details
to denote the volume fraction of tepolymers: the volume ©f the derivation are provided in the Appendix. Here we
fraction of theB polymers is simply . Since the volume Summarize the key equations. _

V is part of a larger system, it is convenient to tr¥aas an For an incompressibl&/B binary polymer blend, with
open system in equilibrium with a homogeneous reservoir af€9rees of polymerizatiohl, and Ng, monomer volumes

compositioné,. The appropriate free energy is the grandVa @hdve, and Kuhn length®, andbyg for the two respec-
potential, defined as tive polymers, the grand free energy of the system in equi-

librium with a bulk reservoir of compositiog, and chemi-
I tialwg i
G=f dr(fLé(r)]—pod(r)), (2.9 calpotentialuo is

AF=G-G,

wheref is the Helmholtz free energy density of the system ,8G=f drix¢(1— ) —wap—wg(1l— )]
and u is a chemical potential-like variable that is conjugate
to the volume fractionp. For a uniform systemu is defined exp(BuoNava)Za(Wa)  Zg(Wg)

as Nava Ngvg

Ea_f. (2.2 where y is the Flory-Huggins parameter characterizing the
dg effective repulsion between the two polymer component.

, (2.9

The subscript 0 o in Eq. (2.1) means that this quantity is In this equationw,(a=A,B) is the effective field for thex
evaluated at the homogeneous bulk compositign For a  chains, andZ,(w,) is the single chain partition function in
given specification ofug, the equilibrium profile¢(r) is  the fieldkTv ,w,, given by
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6 r
Za:f drqa(riNa)i (25) 0999
5 C,o [
whereq,(r,N,) is a reduced partition function for a chain o °
with one end at and the other end anywhere in the volume, a 2 °
and is determined by the following diffusion equation: AF : o
i bf’v2 ;7)=0 2.6 3-5 °
E__F r+vawa(r) qa(r’T)_ ’ ( . ) ol
[+]
with initial condition q,(r;0)=1. The density profiles(r)
and the fieldsw,(r) andwg(r) are obtained from the fol- 1
lowing self-consistent equations: 0 ) . _ _°
2 4 1
WA(F) —Wa(r) = x(1—2(r)), 2.7 0 00 00N6x600 800 000
Na . . .
_ _ FIG. 1. Free energy of formation of the nucleus as function of material
¢(1)=expBroNav a) fo d7Qa(r,Na= 7)Qa(r, 7), excess, fopo=0.16,Ny=2.5. The local maximum in free energy occurs at

(2.8  MZ=260.

Ng
1=¢(r)= fo d70g(r,Ng = 7)qa(r, 7). 2.9 the “reaction” coordinatesthe amount of excessthe maxi-

mum corresponding to the critical nucleus. A typical free
renergy surface is given in Fig. 1 for a metastable state speci-
fied by ¢9=0.16 andNy=2.5. In the remainder of our
study, we focus on the properties of tbetical nucleus.

The chemical potential for the homogenous bulk reservoi
Mo IS shown in the Appendix to be

IN(1= o) + x(1=2¢0)-
(2.10 11l RESULTS AND DISCUSSION

Thus, for a given reservoir compositiahy,, Eqs.(2.7)—(2.9 A. Results of the SCF calculation
form a solvable set of equations fer), w(r), andwg(r).

The SCF theory presented thus far is completely general ith equal degree of polymerizatios, monomer volume,

and is applicable to any inhomogeneous binary polyme . o
) o . and Kuhn length. The mean-field phase behavior is deter-
blend; generalization to include more homopolymer compo ined by two variables: the volume fraction of tAepoly-

nents is straightforward. We now proceed to the problem a L .
hand, namely nucleation in a metastable binary blend. Irmersg) and _the comb|nf_;1t|oNXv. In the Ilter_ature, the com-
bination yv is customarily calledy. For conciseness, we will

order to highlight the essential features of the problem with- fo i1 the rest of thi er The oh dia .
out introducing unnecessarily many parameters, in this studgﬁg\fv N irn)l(:li)gl 5 witr: ascritice;ISpF())?Et ;NX) i):azseTo'ngrg;n IS
: cri :

we treat the fully symmetric blend wittNa=Ng=N, v . ) I : .
—vg=v, andb,=bg=b. Assuming spherical symmetry for nucleation, we take a fixed compositiah, in the region

the shape of the nuclei, the inhomogeneity is only one-
dimensional along the radial direction.

As previously stated, the critical nucleus corresponds to
a free energy maximum with respect to the material excess
(defined as the excess amountfopolymers in the nucleus
with respect to the bulk compositipiin the volume. This
makes it difficult for the numerical methods to converge to
the correct solution. One way to circumvent this difficulty is ¢
to introduce a constraint that demands a given amount of
excess; this would produce a nucleus corresponding to the
specified excess and its associated free energy of formation.
Alternatively and equivalently, we may specify the value of
the density of theA polymers at a given radial distance from
the center of the nucleus, and allow the system to find the
optimal density profile consistent with this specification. The
latter method is numerically more convenient and is adopted
in our study. Once we obtain the density profile, we can ther#IG. 2. Density at the center of the critical nucleus as functioN gf The
easily obtain the material excess and the free energy of fometastable bulk state is given by the circles, and the density at the center of
mation of the nucleus of this particular size. Varying thethe n_ucleus is given by the corresponding squares. The §0Iid curve is the
value of the specified density allows s to obtain the fre®(SeTe cuie s he e dotled cunve s he ot Tre ot
energy as a function of the amount of material excess. Thig the prediction of the classical treatment. The limits of the abscissa are
information provides a free energy surface as a function ofiy. andNy, corresponding tap,=0.16.

1
- N
Bro N0 ®o Noo g

We consider a blend consisting of two homopolymers

Nx
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between the coexistence curve and the spinodal curve and 1
vary Ny. We have performed numerical calculations for two ] .
compositionspy=0.16 andpy=0.1. These compositions are o-éM .
chosen so as to be far away from the critical region where
meanfield theory is inapplicablé.They also coincide with
the compositions used in the recent experiment by Balsara é
and co-worker§. Since the results for these two composi-
tions are qualitatively similar, detailed presentation and dis- 0.4
cussion of the results will be fo,=0.16 only. We will, -y
however, make use of the free energy data calculated for
¢0=0.1 when we discuss the experiments.

For ¢¢=0.16, the metastable region is bounded by

o Ny=25
Ny = 3.05
Ny = 3.6

[+}
-]
o
o
o
=}
©
o
(]
o
[e)
Q

(Nx)coex=2.43857 at the coexistence curve anMyis Go 1 2 3 a 5 6 7
=3.72023 at the spinodal. Obviously, the thermodynami- r
cally stable phase in coexistence withy=0.16 has e, FIG. 3. Three representative density profiles of the critical nucleugsfor

=0.84.

For each giverNy, the density profile of the nucleus is
determined by solving the self-consistent field equations sub-
ject to a specified value of the densityApolymers at some
particular radial distance, as mentioned in the last sectio

=0.16. For this choice 0, Ny coex=2.438 57, andN ys=3.720 23.

arameter, one close to the coexistence curve, one close to

. L . he spinodal, and one intermediate between the coexistence
The resulting profile is then used to obtain a new guess of thgurve and the spinodal. As can be seen from the figure, for

den.si.ty at the specified radius, un.ti_l the profile obtained iSN)(=2.5, the density profile is fairly flat up to a distance of
sufﬂqently glose to that O.f the critical .nUCIEUS' Ferxom the3 times the end-to-end distance of the chain. Thus the inte-
density profiled(r), we define the material excedd,”, rior of the nucleus can be considered a pseudophase with
nearly uniform density. However, the interfacial width for
this value ofNy is not small and is nearly comparable to the
size of the uniform core. Nevertheless, when the correct in-
which measures the excess amounfgdolymers relative to  terfacial tension is used, the classical theory gives predic-
the (metastable bulk compositiong,=0.16. In this defini- tions that are in good agreement with results obtained using
tion, M® has the dimensions of volume, and measures théhe SCF theory.

volume taken by the excegspolymers in a given nucleus. As Ny increases toward the spinodal, the density profile
The grand potential is obtained from E@.4) and the free of the critical nucleus becomes more diffuse. Ry
energy of formation of the nucleus is calculated from Eq.=3.05, it is no longer possible to distinguish between the
(2.3). The critical nucleus is identified as the nucleus correcore and the interfacial regions. The densityAodt the cen-
sponding to a free energy maximum with respect to the mater of the nucleus is now considerably lower than the equi-
terial excessM®, as illustrated in Fig. 1. We comment that librium value of the new phase. Ady increases further to
the free energy of formation & ®*=0 vanishes as it should; 3.6, the profile becomes very shallow with the density at the
thus our calculation is free of the consistency problems eneenter only slightly exceeding that of the parent bulk phase.

Mexs4wfoxr2dr[¢(r)—¢o], (3.1

countered in classical capillary thedry.

To make the results applicable for genelit is con-
venient to use dimensionless radial digtaicenaterial ex-
cessM® and free energy of formatioAF defined as

_
=N (3.2

ex
MeXE Wzb_g" (3.3)
~ BAF v

Ffmz—ﬁ. (3.4)

Upon careful inspection, one can see that the spatial range of
the density variation foNy= 3.6 is larger than that foNy
=3.05.

The variation of the density oA at the center of the
critical nucleus afNy increases is shown in Fig. 2. Also
shown on the same figure are the coexistence curve and spin-
odal curves. The circles at a constaf=0.16 and varying
values of Ny specify the bulk condition of the metastable
phase and the squares are the density af the center of the
critical nucleus corresponding to eadfy. Interestingly,
very close to the coexistence curve, the center density of the
critical nucleus slightly exceeds that of the equilibrium co-
existence value. This behavior can be understood by noting

Near the coexistence curve, the critical nucleus is exthat near the coexistence curve the core of the critical
pected to approach that given by the classical approximationucleus can be considered to be at pseudo “phase coexist-
in which a sharp interface separates a large nucleus from thence” with the metastable bulk. Since the chemical potential
parent bulk phase. As the spinodal is approached, the Cahmef A in the metastable bulk is higher than its equilibrium
Hilliard asymptotic theory predicts that the critical nucleusvalue, the density of\ in the new “phase” is higher than the
density profile becomes large in extent but small in ampli-equilibrium coexistence value. Of course,Ng approaches
tude. In Fig. 3, we show three representative density profilethe coexistence curve, the size of the critical nucleus di-

for the critical nucleus calculated at three values of khe

verges, and we approach a true phase coexistence between
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FIG. 4. Radi f th itical | defined by the first tFIG. 5. Material excess in the critical nucleus as functioNgf The limits
A adius of the critica nuc_eu_s as define _y € first moment,, the abscissa correspondNgyoex @aNd Ny . Included are the results of
(circles, and byR;;, (squares The limits on the abscissa correspond to

A Cahn and Hilliard near the spinodaotted ling and of the classical treat-
Nxcoex@NdNys. Included are th&®;), results of Cahn and Hilliard near the ment near the coexistence curidashed ling

spinodal (dotted ling and of the classical treatment near the coexistence
curve (dashed ling

The material exces®®* serves as a fundamental char-

acterization of a nucleating cluster and can be considered the
the critical nucleus and the bulk; the density in the nucleugrder parameter for nucleatidfiin the present casé/® is

becomes identical to the equilibrium density of the newdirectly related to the number of polymer chains involved in
phase. ANy increases from the coexistence curve, the cenforming the critical nucleus. Sincl** is the volume taken
ter density first increases and then decreases, eventually apy¥ the excessA polymer chains in the nucleus, and each

proaching the bulk valug, at the spinodal, as dictated by Polymer chain has volumiv, the excess number &fpoly-
consistency. mers is

The radius of the critical nucleus is well defined in the
classical limit, but becomes ambiguous far from the coexist- n{= 5 M e, (3.7
ence curve, essentially losing its meaning as the spinodal is

approachedFig. 3). To provide a measure of the spatial BecauseM®* depends only on the bulk compositigh, and
extent of the nucleus, we present our results using two alteNy of the metastable phase, for a givep and Ny, the
nate definitions of radius: the first moment of the densitynumber of excesé polymers increases a¢'2. The dimen-
profile of the nucleus, defined as sionless material exce$4®* is shown as a function dfiy in
A [ Fig. 5. Like the radius of the critical nucleus, this quantity
RlEWJ r3dr[ ¢(r)— o], (3.5  exhibits a minimum intermediate between the coexistence
0 curve and the spinodal and diverges in these two limits. The

N1/2b3 -

and the half-peak radiuR;, used by Cahn and Hilliard,

minima of M® and critical nucleus radius occur at different
defined as the radius at which Ny, again reflecting the nonuniformness of the density in the
critical nucleus.
d(r=0)— d(Ry0) = d(Ryj0) — oo (3.6

The most important quantity concerning the critical

nucleus is the reversible work of formation. This free energy
in Fig. 4. Both of these definitions give the same scalingprovides the activation barrier for the formation of the new

dependence oy —(Nyx)cex@Nd Nx)s— Ny near the co- phase from a metastable phase and is directly related to the
existence curve and spinodal, respectiv@hgets, although rate of the kinetics of this process. The free energy barrier
the numerical values obtained from the two definitions cardiverges at the coexistence curve, in agreement with the pre-
differ by as much as a factor of 2.5 near the spinodal. Theliction by classical theory, and as demanded by thermody-
minima of these two quantities occur at different values ofnamic consistency. Ably increases away from the coexist-
Ny. The two definitions approach each other near the coexence curve, the free energy barrier decreases, reflecting the
istence curve, as both give a measure of the size of the unfact that the metastable phase becomes less stable. The free
form droplet. The deviation between these two measures thuenergy barrier vanishes at the spinodal, in spite of the diver-
indicates the breakdown of the picture of the nucleus as gence of both the radius and the material excess. This is
uniform droplet. Near the coexistence curve and spinodalagain demanded by thermodynamic consistency, since by its
the radius defined by both measures diverge, in agreemenery definition, at the spinodal a system is unstable with
with the Cahn—Hilliard predictions obtained using a squareaespect to small, long length scale perturbation. The work of
gradient approach. The classical nucleation theory, which iformation is shown on a log-linear scale in Fig. 6 in order to
not thermodynamically consistent near the spinodal, predicteeveal the large order of magnitude changeblgsncreases.
that the radius of the critical nucleus approaches a nonzerdhe free energy decreases rapidly near the coexistence curve

constant in that limif. and then undergoes a relatively slow decrease betiwgen

The dependence of these two defined radiiNop is shown
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FIG. 6. Free energy of formation of the critical nucleus as functiol pf .

The limits on the abscissa correspond\ig.,e, andNys. Included are the FIG'_ 7 Interff’imal s energy VSN = Nxer). The squares shpw data

results of Cahn and Hilliard near the spinoddbtted ling and of the clas- obtained in this work. The solid curve shows the behavior predlctt_ed by de

sical treatment near the coexistence cuis@shed ling G_ennes(Ref. 15 for Iarge_ Ny; the dashed curve show_s_the be_hawor pre-
dicted by Joanny and LeibléRef. 31 for Ny near the critical point value;
and the dotted curve shows the polynomial fit through data from this work

. used for calculating the interfacial contribution to the nuclei in the classical
~2.6 andNx~3.4. AsNx approaches the spinodal, the free yeory. The dimensional interfacial free energys obtained fromy by y

energy again decreases rapidly, eventually to zero at the Spia-k, TN Y4 b/v)7y.

odal. We will see that the classical theory and Cahn—Hilliard

asymptotic theory are valid in the two respective narrow re-

gions near the coexistence curve and spinodal; however, tHalling within the spinodal region of the phase diagram, cor-
broad range oNy cannot be described by these two limiting responds to a free energy maximum, and therefore cannot be

theories. the density of the nucleus of the new phase. Only the remain-
ing solution gives the physical solution for the density of the

B. Comparison with the classical theory and the nucleus, and hence the free enegyf the nucleus. Note

Cahn—Hilliard asymptotic theory that g—gy<<0, since the free energy of the newly formed

) ) ) ) phase is lower than that of the metastable state.

Our self-consistent field calculation provides an exact e critical nucleus is that for whichF/gR= 0, which
description of the critical nuclei at the mean-field level. With yields
the results we have obtained for the large rangél gfbe-
tween the coexistence curve and the spinodal, we can now _ Y

e . R=2 . (3.1)

evaluate the accuracy of the two limiting theories. Jo—0

In the classical theory, the nucleus is taken to be a-
spherical droplet of uniform density separated by a sharp
interface from the parent metastable bulk phase. The work of _ 167 y® a1
formation of the droplet is assumed to consist of two contri- 3 (go—9)?% (3.12
butions, an excess free energy for the interior of the dropl

and the interfacial free energy; thus

his corresponds to a free energy barrier of

e . . o
%’he material excess for the classical model is simply

47R3 o 4R
AF=——(g—go) +47R%Y, (3.9 M®=—=—(¢= o). (3.13

For the interfacial free energy, we use the interfacial ten-
sion between the two coexisting phases atNheof interest.
Since an analytical expression is not available except near

9( b, u0)= () — oo, (3.9  the critical point and for very larghly, we have performed
with o the chemical potential of the metastable phasg, & separate SCF calculation to determine the interfacial ten-

= (df13¢)| 4,- The density in the nucleus is determined from sion as a function oRy. The data are shown in Fig. 7 for a
29/96=0. Using the free energy of the blend for a homog_Iarge range oNy values. A polynomial interpolation is used

enous state given in the Aopendix. we obtain to obtain the numerical value of for a givenNy.
g PP ' The predictions of the classical theory for the density of

INp—In(1—¢)+Nx(1—2¢) the critical nucleusp, the radiusR, the material excessl
and the work of formatiom\F are shown in the respective
=In do=In(1= o)+ Nx(1=2¢0), (3.10 figures where the self-consistent field results are presented.
where the reader is reminded thahere stands foxv inthe  Clearly, near the coexistence curve, good agreement is ob-
Appendix. Obviously, one solution of EG3.10 is ¢= ¢, served between results from the classical theory and those
which simply reaffirms that the metastable state is a minifrom the SCF calculation. This is so even though the inter-
mum of the free energg. Another solution, with the density facial width in the range oNy considered is rather diffuse

wherevy is the interfacial tension anglis the grand potential
per unit volume,
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—1/2

(3.18

on the scale of the size of the polymer. Of these quantities, a3 do(1— o) X
the agreement fav®*is particularly remarkable since it cov- M®*=3.3N"D 124y ( 1-—
ers a fairly broad region away from the coexistence curve. 0 Xs
However, this apparent agreement at larger valueN pfis ~ Note that in these equations, it is assumed gt 0.5;
likely due to a cancellation of errors. For example,Ng¢ ~ Otherwiseg, should be exchanged with-1¢,.
=2.8 both¢ and R deviate considerably from the SCF re- Predictions using these asymptotic expressions are com-
sults, yet good agreement is still obtained k6f*. The free pared with results from our SCF in the plots for the corre-
energy provides a more stringent comparison. The curve pré&ponding properties. The density at the center of the critical
dicted from the classical theory and that predicted from théucleus agrees remarkably well with the SCF result, extend-
SCF begin to diverge from each other visibly at abbiyt ing quite far from the spinodal. On the other hand, deviations
=26. are significant for the radius, the material excess and the free
The approach of Cahn and Hillidrcemployed a free €nergy barrier, aside from the few data points near the spin-
energy functional where the nonlocal terms were approxiDda|- Calculation using the SCF becomes difficult as the
mated by a square gradient term. The general frameworgpinodal is approached because of numerical instabilities and
they provided is valid for any binary mixture. They also cfitical slowing down. On the other hand, the asymptotic
obtained numerical data throughout the metastable region @Xpressions should become exact in this lisihce both the
the phase diagram for an incompressible binary mixture ussquare gradient approximation and the order parameter ex-
ing a model free energy. However, explicit application of pansion truncated at the cubic order become increasingly ac-
their data for the present polymer blend problem is not poscurate as the spinodal is approache@herefore, these
sible except in the region close to the spinodal where thefSymptotic predictions provide an excellent extrapolation for
provided analytical expressions. We thus compare our SCRUr SCF results near the spinodal.
results with the Cahn—Hilliard results in this limit. Comparison between the result of our SCF calculation
For an incompressible binary polymer blend, an expresfor the free energy barrier and the predictions by the two
sion for the square gradient term was given by de Gehhes.limiting theories shows that, over a broad rangeNof be-
Near the spinodal, the density gradient in the critical nucleuéween the coexistence curve and the spinodal, the two limit-
is small and the square gradient approximation is valid. Fofd theories do not provide an accurate prediction. It is
the local term, we use the free energy density derived in th&ithin this range that our SCF is most valuable.

Appendix. The free energy functional is then
AF= f dr
The SCF theory is a mean-field theory which neglects
) thermal fluctuations. Within the mean-field framework, a
* m(%ﬁ(r)) ' (314 clear distinction exists between nucleation and spinodal de-
composition, with the two mechanisms separated by the
Near the spinodal, the volume fractiahin the critical  spinodal curve. In the metastable region, as the spinodal is
nucleus is close to the metastable bulk vaye Thus Cahn  gpproached, thermal fluctuations become increasingly impor-
and Hilliard expanded the free energy dendifys(r)] as a  tant; at the same time, the free energy bartiér for nucle-
power series inA ¢=¢— ¢, and kept terms up ©0X$)°.  ation decreases. The barrier is no longer meaningful when
The results of their analyses were expressed in terms of th¢F—kT. The conditionAF ~kT signals the breakdown of
difference of the bulk composition from its spinodal value atthe mean-field approximation and can be considered a Gin-
a given temperaturér Ny in our cas¢ Experimentally, itis  zpurg criterion for the validity of mean-field theory in the
much more convenient to vary (through changes in tem- metastable region.Within the Ginzburg region, it is no
perature or pressurat a fixed composition. We thus present jonger possible to distinguish between nucleation and spin-
the results as a function of-1x/xs. After some straightfor-  odal decomposition. No satisfactory theories exist in this
ward substitution of notation, the reversible work of forma- crossover region, which is characterized by nonclassical ex-

C. Validity of the SCF theory:
(FL(r)]—F(ho)) — mol A(r)— o) Application to experiments

2

tion of the critical nucleus is found to be ponents and fractal-like structures for the incipient pHfagé.
NY203 ho(1— dbo) x |32 A correct theoretical treatment would require a kinétic
BAF=2.23 (10 20 ;)2 (1— X_) (3.15 rather than thermodynamic approach.
- 0 s

To rigorously address the validity of the mean-field ap-
The density at the center of the nucleus is proach requires that fluctuation effects be taken into account
explicitly in the expression for theate of nucleation. Such a
-~ o Po(1— o) X framework was developed by Lang&some time ago, who
$(r=0)—¢o=81——|1——]|. (3.1 . : o2 ,
1-2¢g Xs included fluctuation contributions at the quadratic level near
Th | Ron is ai b the saddle point of the free energy surface. While this pro-
€ value oiRy IS given by gram can in principle be carried out in the present study,

x| 12 incorporation of fluctuation around an inhomogeneous
Ry,=0.3N"| 1 —> (3.17  saddle-point state for polymeric systems is highly
Xs nontrivia?* and is beyond the scope of this paper. We will
And finally, the material excess in the nucleu¥is therefore settle for using the free energy barrier calculated
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from the SCF as a quantitative Ginzburg criterion. Following do(1— o) (Va—Vp)
Binder we set the threshold atF = 10k T. Thus we propose T Va(1— o> Vad? ' (3.23
that mean-field theory breaks down when B 0 ATO
1253 _ and
AF= AF=10. 3.19
’ v 19 Lele (3.24

Ieff: ’

For a given degree of polymerizatidhand composition ladotle(1~ o)
¢, in the metastable region, the above equation determinesith IazvalRi(azA,B). In these equations/, and Ri
the value ofNy or y-denoted asNy)s and xg, respec- are, respectively, the molecular volume and mean square
tively, at which mean-field theory becomes invalid. For theend-to-end distance of the chains. We use these quantities
composition used in our SCF studsy=0.16, if we takeN since they are experimentally more accessible tagnv
=100, 16, and 10, we estimate Ny)s to be 2.79, 3.05, andb,.
and 3.34, respectively, correspondingxtg/xs=0.75, 0.82, We see that near the spinodal, the main effect of the
and 0.90. For general compositions, the width of the Ginzimolecular asymmetry, aside from a correction factor (1
burg region  yg/xs can be obtained approximately using + )2, is the replacement of the overall free energy scale
the Cahn—Hilliard asymptotic expression E§.15 which ~ NY?b%/v by V132, We will assume that this remains true

yields as long as the relative distance from the spinodal is not too
23 413 large, so that the free energy barrier for the asymmetric case
1-X6_5 0% (1-2¢0) N-1E (3.20  can be simply obtained from that for the symmetric case by

Xs b? [ho(1— ¢ho) 1" using Eq.(3.4) with the proper rescaling by this factor.

Because the Cahn—Hilliard asymptotic theory is valid only Reference = 8  suggests V,=335700K, Vg

very close to the spinodal, the above estimate is accuratE426 000 &. From the radii of gyration of the two poly-

. . mers given in the same reference, we infg=2.19A, |
only for largeN. For moderatéN, the width of the Ginzburg _o 779A The factoV¥2/1%2 changes Iittle(jl%) betweeBn
region predicted by the asymptotic theory is wider than that = ) oo veft eff 9 :
he two compositions; its average value is 174. The correc-

redicted by the SCF since the asymptotic theory underesti- .
pred y ! ympiot yu tion factor (1+ 6)? varies between 1.04 ab,=0.099 and

mates the free energy barriesee Fig. 6. B o - .
We now discuss our results in connection to the recen?"08 at$o=0.161; given the approximations involved and

experiment by Balsara and co-work&r&he experiment the error margins in the parameFers used, we will ignore this
used a binary blend made of partially deuterated polymethtaCtor' By the same token, we \ghore the small d|ﬁerence§
ylbutylene (A) and hydrogeneous polyethylbutyler@), petween the gxperlmental compositions and the composi-
with degrees of polymerizatiohl,=3357 andNg=4260, tions we used in the SCF stud,=0.161 versus 0.16 and
respectively. Two compositions were studiedy=0.161 020'09_9 Versus 0.20 :

(sample B1 and ¢, =0.099 (sample B2. The work reports Keeping in mind these caveats, we estimate the onset of

unusual behavior in the early stage of nucleation in thdhe Ginzburg region 1o be 4l /xs=0.86 for ¢, =0.16 and

- : /xs=0.80 for = 0.1, using a threshold free energy bar-
ranges 0.84 y/xs~1 for sample Bi(including one data XG'Xs 0 9 .
poir?t aty/y >X1))(Sand 0 7<X/Xp<1 for(lsart:pllegBZ In par- "€ of 10kT. Thus for both compositions, the width of the
S " S "

ticular they find that the size of the critical nucleus— Ginzburg region is quite significant, considering the reason-

identified as the inverse of the wave vector at which theably large degrees of polymerizati¢hy experimental stan-

scattering intensity remains unchanged—increasgssie- dards)_. 'gtl)é/XS: 0'?.4’ t?eﬂf;rs; data point g‘ the ?Xpbe;%ent
creased toward the coexistence curve and has an extrapolat% 07 ~ 0’ ;V etes 'Tgf the ;ee energy E‘"‘?r ° R
divergence at about/x<~0.81 and 0.68 for B1 and B2, 'OF X/xs=0.7 al¢o=0.1, the free energy barrier is R%.

respectively. These findings are in clear contradiction WitHg‘_t X/XSZO'S%t?nd _0'68 fctcr)]rresp:_)ndllng tlo_t?e extrapl)ola;ef
all known theoretical predictions. ivergence of the size of the critical nuclei for samples

Because the two polymers studied in Ref. 8 are not sym‘—'Jlnd B2, we estimate the free energy barrier to b&2and
29KT, respectively.

metric, application of our SCF results calculated for a sym- Gi that th in which the dat ted i
metric blend to the experimental system is not immediately iven that they range In which Ihe data were reported in
ef. 8 overlaps with the Ginzburg region we have identified

obvious. However, the effect of the molecular asymmetr)ﬁ e . -
can be incorporated explicitly into the Cahn—Hilliard here, it is possible that the findings of Lefebwatal. reveal

asymptotic theory, with results that appear rather similar td'ew dynamic behavior in the phase separation kinetics when

: : the free energy barrier becomes of orér In the Ginzburg
Egs.(3.15-(3.18. | ticular, the f b
bgssr(]ow? té be8) fl particuiar, the lree energy barrier can region, the kinetics cannot be unambiguously described as

either nucleation or spinodal decomposition, but rather re-

Veit bo(1= o) x |2 flects a crossover between these two mechanisms. On the
BAF=2.231+ 5)2W7 m(l— —) : (3.2)  other hand, the spinodal is no longer meaningful when the

eff 0 Xs Ginzburg region is not small. The location of the mean-field
where spinodal, and the determination of theparameter itself,

become problematic in this ca$eAlthough the spinodal in
= VaVe ' (3.22  Ref. 8 was identified with great caf®one cannot rule out
VadotVa(1l— o) the possibility that the location of the “apparent spinodal”

\Y,
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could be shifted due to the large fluctuation; thus the kineticef formation of the critical nucleus representing the free en-
studied in the experiments could be more of the nature oérgy barrier for nucleation starts from infinity at the coexist-
spinodal decomposition than nucleation. Indeed, it has beeence curve, decreases rapidly away from the coexistence
suggested that the onset of the Ginzburg region should beurve and vanishes at the spinodal. On the other hand, both
taken as the kinetic spinodal that separates the physicalie radius of the critical nucleus and the material excess in it
accessible metastable region from the unstable regi#h. exhibit a minimum somewhere intermediate between the co-
The evidence that the researchers in Ref. 8 were indeed okxistence curve and the spinodal, and diverge at the two
serving nucleation was strong but not overwhelming. Thatimits. All these predictions are in qualitative agreement with
we find a moderate free energy barri@8kT and 2KT for  earlier predictions of Cahn and Hilligtdising a square gra-
¢o=0.16 and 0.1, respectivelyat the x/ xs value where the dient density functional theory.
size of the critical nucleus showed extrapolated divergence in  We have provided a detailed comparison between pre-
the experiment could also be due to possible uncertainties iglictions of the SCF study and the classical nucleation theory
the experimental determination gfand/orys. For the con- near the coexistence curve on one hand and the Cahn-—
clusions of Ref. 8 to be definitive, it would be desirable toHilliard asympotic theory near the spinodal on the other. We
perform systematic experiments wiithxs less than 0.81 and  find good agreement between the SCF results and these two
0.68 for samples B1 and B2. The work of Lefebweal.  |imiting theories in their respective limits. However, the
reported one shallow quench experiment on B2y&ks  agreement for most properties is limited to narrow regions
=0.57 and found no evidence of nucleation for 1000 minsnear these two limits. In particular, the free energy barrier in
At this value ofy, our SCF calculation predicts a free energya wide range ofNy cannot be well represented by these
barrier of 144T. This is a prohibitively high free energy |imiting theories.
barrier for nucleation to occur. We have examined the validity of the SCF theory by
Cahn and Hilliard suggested a free energy barrier ofnyoking a Ginzburg criterion using the free energy barrier.
60kT for an observable nucleation rate in Sma”'m0|eCU|eWe find that for typ|ca| degrees of po|ymerizati0n, the Ginz-
binary fluid mixture! Given that relaxation dynamics in purg region is not as small as commonly believed. In particu-
pOlymeriC fluids is slower than in small-molecule fluidS, we lar, we find that some of the experimenta| data reported in
anticipate that a somewhat smaller free energy barrier is rehe recent work of Lefebvret al® are either in the Ginzburg
quired for nucleation to be observable. In the absence of gegion or near it. The theoretical implication of their experi-
kinetic theory for nucleation in polymers, we will usel60  mental findings is not entirely clear. Their results may reflect
as the upper limit of the free energy barrier. kFby=0.16,  new dynamic behavior in the phase separation kinetics when
our SCF results determine that this free energy barrier corrghe free energy barrier becomes of orddr. It is also pos-
sponds toNx=2.8, or /xs=0.75. For¢,=0.1, we obtain  gjple that thermal fluctuation leads to a shift in the location of
Nx=3.5 or x/xs=0.62. Thus, we suggest that systematiCthe apparent spinodal. If we take the onset of the Ginzburg
experiments be performed foi/ xs>0.75 at¢o=0.16, and  cyiterion as the physical or kinetic spinodal, then some of the
for x/xs>0.62 at$o=0.1. Experimental data from such a gata points in Ref. 8 are already beyond this spinodal. The
systematic study would clarify the nature of the process oCpredicted relative location of the kinetic spinodals for the
curring in this metastable regianucleation versus spinodal o compositions is consistent with the experimental results.
decompositio and help determine the limit of validity of Finajly, nucleation in polymeric systems may involve mecha-
the mean-field approximation where nucleation occurs.  pigms that are fundamentally different from those envisioned
in a quasiequilibrium approach.
Outside the Ginzburg region, our theory provides a
Using self-consistent field theory, we have studied vari-quantitative prediction for the free energy barrier for nucle-
ous properties of the critical nucleus for a symmetric binaryation which can be related to the nucleation rate. We estimate
polymer blend, spanning the entire metastable region of ththat a window ofy/ x exists in which the SCF is valid and at
phase diagram from the coexistence curve to spinodal at the same time the nucleation rate is not too small. Thus it
fixed composition. At the mean-field level, the self-consistentill be desirable that experiments be performed in this win-
field theory represents the most accurate and systematitow to provide a clear test of the theory. We remark that in
theory that fully accounts for the chain connectivity and thethis window, neither the classical theory nor the Cahn-
spatial correlations that result from it. Thus it provides aHilliard asymptotic theory gives an accurate prediction of the
useful benchmark for evaluating approximate theories, sucfree energy barrier for typical degrees of polymerization. The
as the classical capillary theory and the square gradient deagreement in the free energy barrier between the Cahn-
sity functional theory. Hilliard asymptotic theory and our SCF is limited to a nar-
Our results show that the near the coexistence curve, th®w region near the spinodal that is contained in the Ginz-
critical nucleus is large and of nearly uniform density. Theburg region for moderately long chains. Thus, while it pro-
composition of the bulk minority component in the nucleusvides a simple means of determining the validity of mean-
is slightly higher than the equilibrium composition of the field theory, in practice there is no regime where the Cahn-
new phase. As the controlling parameter our caseNy) Hilliard asymptotic theory is quantitatively valid except for
progresses toward the spinodal, the density of the bulk mivery long polymers. On the other hand, the classical capillary
nority component decreases, and eventually becomes indigheory, while valid and accurate near the coexistence curve,
tinguishable from the bulk density at the spinodal. The workis irrelevant as far as quantitative prediction of the nucleation

IV. CONCLUSION
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rate is concerned, since the nucleation rate is vanishingfACKNOWLEDGMENTS
small for polymers near the coexistence curve.

In future work, we plan to study the effects of polydis- ¢, yation (DMR-9970589 and the Camille and Henry
persity and impurities on nucleation. Binder pointed®abat

. X . fus F tiofTC-96-063. Th thors thank Profes-
in a polydisperse blend, the long chains may serve as preErey us FoundatiofTC-96-063. The authors thank Profes

. . . or Nitash Balsara for sending us a preprint of their work
erential centers for nucleation, so in effect we havg heterol?ef. 8 and for helpful discussions.
geneous rather than homogeneous nucleation. Evidence of-
heterogeneouszgnucleatlon was sho_vvn in the _work OTAPPENDIX: DERIVATION OF THE SCF EQUATIONS
Cumminget al,“” although no explanation was provided for
the origin of such behavior. Another extension of the theory In this appendix, we provide a detailed derivation of the
is to study the effects of diblock copolymers made from theself-consistent field equations for an open system of an in-
two homopolymers. Earlier experiments by Balsara and coeompressible polymer blend. The derivation is similar to that
workers on nucleation in polymer blends in fact involved aby Matser’ for a homopolymer—copolymer blend. The SCF
small amount of diblock copolymefs.However, the effects equations are used to solve for the density profile and calcu-
of the diblocks are not clear. On one hand, addition of theséate the free energy of the critical nucleus. In addition, the
amphiphilic molecules should facilitate nucleation becausesolution of these SCF equations for a homogeneous state
they lower the interfacial energy by adsorption at #e3 provides the free energy density used in the classical theory
interface; on the other hand, addition of diblock copolymersand the square-gradient theory.
alters the phase behavior of the blend in a way that decreases We start with the statistical mechanical equivalent of the
the thermodynamic driving force for phase separation. Thusree energy[Eq. (2.1)], the grand partition function for an
we expect richer and more interesting nucleation behavior impen, incompressible system of a two component polymer
such a 3-component system. blend,
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] [

e 1
E(w,V,T)=exd - BG]= 2 TN
nA:O nB:O I’IA.nB.

1
(Nava)"(Ngvg)™® exp(,B,unANAvA)f DA(R}

« [ DRIl 5<$A+3>B—1>exp[—ﬁ§1 hf=p2, nf—x | drEbA(r)ZﬁB(r)] (A1)

Here, B=1KkT, v, and N, are, respectively, the monomer

volume and the degree of polymerization of tagolymer; E(M,V:T):I D¢Af D¢Bf DWAJ DWjs
hi* is the single chain Hamiltonian for thigh polymer of

speciesy that accounts for the chain connectivity; ang(r) > H S(pat dg—1)

is the instantaneous volume fraction afat r defined as r

(1) =v,p.(r) with p,(r) the instantaneous density. The

last term in the exponential represents the local repulsive
interaction between the two polymers and the notation,nere
I D"«{R,} represents integration over all chain configura-

tions (including the center of mass translatiasf polymers

of type a. Note that we have used the chain voluhMg , as BK:XJ dr¢A¢B_iJ dr(Wada+Wgdp)

the volume scale in the partition function instead of the cube

of the thermal de Broglie wavelength; the effect is simply a + BI[Wa,Wg]. (A4)
constani(i.e., composition independerghift in the chemical

potential which has no consequences on the thermodynamiagl1e Integration over Fhe auxiliary f'efldNA(r) and WB(r.)
results from the Fourier representation of théunction in

xXexd — BK(pa, b, Wa,Wg)], (A3)

of interest. dl is defined th h
Introducing collective variableg ,(r) through the iden- Eq. (A2), and| is defined throug
tity © o
1 1
exp(—gl)=
) Xp(—Al) néo nBE:o Na!Ng! (Nav)"A(Ngug)™
Do, 6(p,— =1, A2
l_r[ f PadlPa= o) (A2) Xexp( BunaNava) ZAZ 8

and using the Fourier representation of théunction, we
can rewrite the partition function as a multi-fold functional
integral, (A5)

eXPBuUNAVA)ZA(Wa)  Zg(Wp)
=ex +
Nava Nguvg
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whereZ, and Zg are the single chain configurational inte- It is more convenient to write the solutions in terms of
grals in the presence of external fields of magnitudew,, wg, andu as functions of the compositiogy; doing so
i(kgT)vaW, and i(kgT)vgWg, respectively. Taking the we obtain
polymer chains to be Gaussian, we have

1
—3 (N, (dr,\? Wa=x(1—-2¢)— N B|n(1—<f>), (A13)
Za(Wa):J DrTEX[{Z—biJO dT(E) )
N,, Wg=— In(1-¢), (A14)
—ivaf dTWa(I',.)) B
0 and
— 1
Jdrq“(r'N")’ (A6) Bu= N g— (1= ¢)+ x(1-24). (AL5)
AUA U

whereq,(r,N,) is a reduced partition function for a chain . . .
with one end ar and the other end anywhere and is deter-1 N€S€ results can be substituted into E4) to yield the
grand potential per unit volume as

mined by the following diffusion equation:

7 _Dags Bo= (- )~ Ty, (AL
(E_EV +iv W, (r)) (r;7)=0, (A7) Ngvg Najva Ngug X9
with initial condition q(r:0)=1. Because the system is in- from which we obtain the Helmholtz free energy density,
compressible, the local composition is uniquely specified by ¢ ¢
either ¢, or pg=1— 5. We denotegp, simply by ¢; the Bf((;b): [In d— 1]+ [In(l $)—1]
integration overpg in Eq. (A3) can be trivially performed to
yield +xP(1— o). (A17)

Noting that the free energy of mixing is simply

frix=f(d)—[¢f(¢=1)+(1-#)f(¢=0)],  (A18)

we recover the celebrated Flory—Huggins free energy,

¢ ¢
Bfmix N In ¢+

E(M,V'T):f chf DWAJ DWg

Xexq_BK(¢vWAIWB)] (A8)
with now

In(1 )+ x (1= ¢).

pr=x | drs1-)-i [ drWag+ Wo1- ) (A19)

+BI[Wa, Wg]. (A9) _ o -
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