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Nucleation in binary polymer blends: A self-consistent field study
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We study the structure and thermodynamics of the critical nuclei in metastable binary polymer
blends using the self-consistent field method. At the mean-field level, our results are valid
throughout the entire metastable region and provide a smooth crossover from the classical
capillary-theory predictions near the coexistence curve to the density functional predictions of Cahn
and Hilliard ~properly transcribed into expressions involving the parameters of the binary polymer
blends! near the spinodal. An estimate of the free energy barrier provides a quantitative criterion~the
Ginzburg criterion! for the validity of the~mean-field! self-consistent approach. The region where
mean-field theory is valid and where there can be a measurable nucleation rate is shown to be poorly
described by the existing limiting theories; our predictions are therefore most relevant in this region.
We discuss our results in connection with recent experimental observations by Balsara and
co-workers. ©2002 American Institute of Physics.@DOI: 10.1063/1.1429956#
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I. INTRODUCTION

The formation of a new phase from a homogeneo
metastable state occurs through an activated process kn
as nucleation.1 Although nucleation is fundamentally a non
equilibrium phenomenon, if the time scale for nucleation
sufficiently long relative to the molecular relaxation time, t
transition state—the critical nucleus—can be considered
quasiequilibrium state, leading to an Arrhenius-type expr
sion for the nucleation rateJ5J0 exp(2DF/kT), whereJ0 is
a kinetic prefactor associated with molecular relaxation a
DF is the free energy of formation of the critical nucleus.1,2

Because of the exponential dependence, the rate of nu
ation is largely determined byDF, which depends strongly
on the thermodynamic state of the metastable system,
the distance from the equilibrium coexistence curve. On
other hand, the kinetic prefactor is relatively insensitive
the thermodynamic state. Therefore, determination of
critical nucleus and its free energy of formation is a cen
problem for a molecular theory of nucleation.

In this work, we consider nucleation in a metastable
nary polymer blend. In a seminal paper that provided mu
insight into the dynamics of binary polymer blends, Binde3

examined the problem of nucleation in a metastable bin
blend by combining results from the classical capilla
theory ~hereafter referred to as the classical theory! near the
coexistence curve and from the Cahn–Hilliard theory for
nary mixtures4 near the spinodal~hereafter referred to as th
Cahn–Hilliard asymptotic theory!. Close to the coexistenc
curve, the classical theory predicts a large nucleation ba
that increases to infinity as the composition/temperature
proaches the coexistence value. While classical theory
vides an accurate description of the critical nucleus near
coexistence curve, its predictions are essentially irrelev
because the rate of nucleation in this region is unobserv
small for typical degrees of polymerization. The applicabil
of the Cahn–Hilliard asymptotic theory is similarly limite
2280021-9606/2002/116(5)/2289/12/$19.00
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but for different reasons. While yielding fundamental i
sights into the nature of the spinodal and becoming incre
ingly accurate~in the mean-field sense! as the spinodal is
approached, the predicted nucleation barrier becomes m
ingless when the composition/temperature is too close to
spinodal due to the large thermal fluctuation.5 Thus as far as
nucleation in a binary blend is concerned, the experiment
most relevant range of composition/temperature is proba
in the broad crossover region between these two limits,
which no theoretical studies have been conducted explic
on polymer blends. Recent experiments by Balsara
co-workers6–8 suggest the inadequacy of existing theor
and point to the need for a more systematic theoretical
amination of nucleation in polymeric systems.

In this paper, we present results of a self-consistent fi
study of nucleation in a binary polymer blend. At the mea
field level, self-consistent field theory~SCF! provides a sys-
tematic and accurate description of inhomogeneous p
meric fluids, as it yields detailed information on the cha
conformation, structure and thermodynamics. SCF has b
used successfully to study interfaces in polymer blends
solutions,9 polymer adsorption at surfaces,10 and microphase
separation in block copolymers.11,12The SCF can be consid
ered the polymeric counterpart of the density-functional
proach for small-molecule systems, which has met with c
siderable success in the study of nucleation in sim
fluids.2,13 In this regard, we note that even a systematic stu
of nucleation in binary polymer blends using the appro
mate Flory–Huggins–de Gennes square-gradient free en
functional approach does not yet exist in the literature. T
SCF bypasses any approximations with regard to spatial
relations ~such as the square-gradient approximation! be-
cause the chain connectivity is fully accounted for. The
fore, at the mean-field level, the predictions of SCF are va
throughout the entire metastable region and provide
smooth crossover from the behavior near the coexiste
curve to that near the spinodal. SCF also provides a con
9 © 2002 American Institute of Physics
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tency criterion for its own validity, through a quantitativ
evaluation of the nucleation barrier near the spinodal.5 Thus
a SCF study serves as an important benchmark for evalua
the accuracy of approximate theories, for assessing the
lidity of the mean-field approximation, and for suggesti
further improvements in the theoretical understanding
nucleation in polymeric systems.

The rest of this paper is organized as follows: in Sec.
we provide the essential SCF equations for a binary poly
blend that are used for determining the density profile of
critical nucleus and its free energy of formation. In Sec.
we present and discuss the results of our SCF study. F
chosen composition, we calculate the density profiles of
critical nuclei and the free energy of formation as we mo
from the coexistence curve to the spinodal. From the pro
of the critical nucleus, we obtain the nucleus size, as wel
the excess material contained within the nucleus. Our res
are compared with predictions of the classical theory near
coexistence curve using the interfacial free energy that
have calculated for a flat interface. Near the spinodal,
compare our results with those of the Cahn–Hillia
asymptotic theory by a proper transcription of their resu
into parameters for the polymer blend using the Flor
Huggins–de Gennes free energy functional. Our res
agree with the respective theories in these two limits.
then discuss the validity of the SCF theory in conjuncti
with recent experimental results of Balsara and co-work
Section IV summarizes the main findings of this paper.
nally, we provide an Appendix that contains detailed deri
tion of some of the theoretical results used in the paper.

II. SELF-CONSISTENT FIELD THEORY

We consider an incompressible binaryA/B polymer
blend. Insofar as nucleation represents a spatially local
fluctuation, we may focus on a subvolumeV of the entire
system. Because the system is incompressible, we
choose the volumeV and the volume fraction of one of th
polymers, sayA, as the independent thermodynamic va
ables. Henceforth, for notational conciseness, we will usf
to denote the volume fraction of theA polymers; the volume
fraction of theB polymers is simply 12f. Since the volume
V is part of a larger system, it is convenient to treatV as an
open system in equilibrium with a homogeneous reservoi
compositionf0 . The appropriate free energy is the gra
potential, defined as

G5E dr ~ f @f~r !#2m0f~r !!, ~2.1!

where f is the Helmholtz free energy density of the syste
andm is a chemical potential-like variable that is conjuga
to the volume fractionf. For a uniform system,m is defined
as

m[
] f

]f
. ~2.2!

The subscript 0 onm in Eq. ~2.1! means that this quantity i
evaluated at the homogeneous bulk compositionf0 . For a
given specification ofm0 , the equilibrium profilef~r ! is
Downloaded 15 Sep 2007 to 131.215.225.9. Redistribution subject to AIP
ng
a-

f

,
er
e
,

a
e

e
le
s

lts
e
e
e

s

ts
e

s.
i-
-

d

ay

-

at

obtained by a functional minimization of the free energyG.
The critical nucleus corresponds to a saddle point of the
energy functional; it is a maximum with respect to the e
change of species in the volume with that in the reserv
but a minimum with respect to the density profiles for
given overall composition in the volume.

Once the density profilef~r ! is determined, the exces
free energy with respect to the homogeneous state is
calculated as

DF5G2G0

[E dr ~ f @f~r !#2 f ~f0!2m0~f~r !2f0!!. ~2.3!

This is the free energy change associated with creatin
density profilef~r ! out of a large, uniform system at com
positionf0 . For the critical nucleus, this is then the rever
ible work of formation, or the free energy barrier for nucl
ation. In this paper, these two terms will be us
interchangeably.

The free energy functionalG or DF is not available
analytically for arbitrary inhomogeneity. A common approx
mation is to combine the Flory–Huggins free energy for
homogeneous blend with nonlocal terms represented by
square of the density gradients, as first proposed by
Gennes.14,15 Such an approximation is valid for weak inho
mogeneity but becomes inaccurate when the length sca
spatial variation becomes comparable to the radius of g
tion of the polymers.3,16,17 We avoid making any such ap
proximations introduced in constructing an analytical fr
energy by resorting to a numerical self-consistent field the
which, though still mean-field in nature, accounts fully t
spatial correlations due to the chain connectivity.

The SCF theory treats the many chain problem as
effective single polymer chain in a field that is to be det
mined self-consistently. A systematic derivation of the se
consistent field equations for polymer blends was given
Noolandi and Hong9 using a canonical formulation. For th
nucleation problem at hand, it is more convenient to form
late the SCF using a grand canonical ensemble. The de
of the derivation are provided in the Appendix. Here w
summarize the key equations.

For an incompressibleA/B binary polymer blend, with
degrees of polymerizationNA and NB , monomer volumes
vA andvB , and Kuhn lengthsbA andbB for the two respec-
tive polymers, the grand free energy of the system in eq
librium with a bulk reservoir of compositionf0 and chemi-
cal potentialm0 is

bG5E dr @xf~12f!2wAf2wB~12f!#

2
exp~bm0NAvA!ZA~wA!

NAvA
2

ZB~wB!

NBvB
, ~2.4!

where x is the Flory-Huggins parameter characterizing t
effective repulsion between the two polymer component.

In this equation,wa(a5A,B) is the effective field for thea
chains, andZa(wa) is the single chain partition function in
the fieldkTvawa , given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2291J. Chem. Phys., Vol. 116, No. 5, 1 February 2002 Nucleation in binary polymer blends
Za5E drqa~r ,Na!, ~2.5!

whereqa(r ,Na) is a reduced partition function for a cha
with one end atr and the other end anywhere in the volum
and is determined by the following diffusion equation:

S ]

]t
2

ba
2

6
¹ r

21vawa~r ! Dqa~r ;t!50, ~2.6!

with initial condition qa(r ;0)51. The density profilef~r !
and the fieldswA(r ) and wB(r ) are obtained from the fol-
lowing self-consistent equations:

wA~r !2wB~r !5x~122f~r !!, ~2.7!

f~r !5exp~bm0NAvA!E
0

NA
dtqA~r ,NA2t!qA~r ,t!,

~2.8!

12f~r !5E
0

NB
dtqB~r ,NB2t!qB~r ,t!. ~2.9!

The chemical potential for the homogenous bulk reserv
m0 is shown in the Appendix to be

bm05
1

NAvA
ln f02

1

NBvB
ln~12f0!1x~122f0!.

~2.10!

Thus, for a given reservoir compositionf0 , Eqs.~2.7!–~2.9!
form a solvable set of equations forf~r !, wA(r ), andwB(r ).

The SCF theory presented thus far is completely gen
and is applicable to any inhomogeneous binary polym
blend; generalization to include more homopolymer com
nents is straightforward. We now proceed to the problem
hand, namely nucleation in a metastable binary blend
order to highlight the essential features of the problem w
out introducing unnecessarily many parameters, in this st
we treat the fully symmetric blend withNA5NB5N, vA

5vB5v, andbA5bB5b. Assuming spherical symmetry fo
the shape of the nuclei, the inhomogeneity is only o
dimensional along the radial direction.

As previously stated, the critical nucleus corresponds
a free energy maximum with respect to the material exc
~defined as the excess amount ofA polymers in the nucleus
with respect to the bulk composition! in the volume. This
makes it difficult for the numerical methods to converge
the correct solution. One way to circumvent this difficulty
to introduce a constraint that demands a given amoun
excess; this would produce a nucleus corresponding to
specified excess and its associated free energy of forma
Alternatively and equivalently, we may specify the value
the density of theA polymers at a given radial distance fro
the center of the nucleus, and allow the system to find
optimal density profile consistent with this specification. T
latter method is numerically more convenient and is adop
in our study. Once we obtain the density profile, we can th
easily obtain the material excess and the free energy of
mation of the nucleus of this particular size. Varying t
value of the specified density allows us to obtain the f
energy as a function of the amount of material excess. T
information provides a free energy surface as a function
Downloaded 15 Sep 2007 to 131.215.225.9. Redistribution subject to AIP
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the ‘‘reaction’’ coordinates~the amount of excess!, the maxi-
mum corresponding to the critical nucleus. A typical fr
energy surface is given in Fig. 1 for a metastable state sp
fied by f050.16 andNx52.5. In the remainder of ou
study, we focus on the properties of thecritical nucleus.

III. RESULTS AND DISCUSSION

A. Results of the SCF calculation

We consider a blend consisting of two homopolyme
with equal degree of polymerizationN, monomer volumev,
and Kuhn lengthb. The mean-field phase behavior is dete
mined by two variables: the volume fraction of theA poly-
mersf and the combinationNxv. In the literature, the com-
binationxv is customarily calledx. For conciseness, we wil
usex for xv in the rest of this paper. The phase diagram
shown in Fig. 2 with a critical point at (Nx)crit52. To study
nucleation, we take a fixed compositionf0 in the region

FIG. 1. Free energy of formation of the nucleus as function of mate
excess, forf050.16,Nx52.5. The local maximum in free energy occurs
M̃ crit

ex 5260.

FIG. 2. Density at the center of the critical nucleus as function ofNx. The
metastable bulk state is given by the circles, and the density at the cen
the nucleus is given by the corresponding squares. The solid curve is
coexistence curve, and the dashed–dotted curve is the spinodal. The d
curve is the result of Cahn–Hilliard near the spinodal, and the dashed c
is the prediction of the classical treatment. The limits of the abscissa
Nxcrit andNxs corresponding tof050.16.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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between the coexistence curve and the spinodal curve
vary Nx. We have performed numerical calculations for tw
compositionsf050.16 andf050.1. These compositions ar
chosen so as to be far away from the critical region wh
meanfield theory is inapplicable.14 They also coincide with
the compositions used in the recent experiment by Bals
and co-workers.8 Since the results for these two compo
tions are qualitatively similar, detailed presentation and d
cussion of the results will be forf050.16 only. We will,
however, make use of the free energy data calculated
f050.1 when we discuss the experiments.

For f050.16, the metastable region is bounded
(Nx)coex52.438 57 at the coexistence curve and (Nx)s

53.720 23 at the spinodal. Obviously, the thermodyna
cally stable phase in coexistence withf050.16 hasf0

50.84.
For each givenNx, the density profile of the nucleus i

determined by solving the self-consistent field equations s
ject to a specified value of the density ofA polymers at some
particular radial distance, as mentioned in the last sect
The resulting profile is then used to obtain a new guess of
density at the specified radius, until the profile obtained
sufficiently close to that of the critical nucleus. From t
density profilef(r ), we define the material excess,Mex,

Mex[4pE
0

`

r 2dr@f~r !2f0#, ~3.1!

which measures the excess amount ofA polymers relative to
the ~metastable! bulk compositionf050.16. In this defini-
tion, Mex has the dimensions of volume, and measures
volume taken by the excessA polymers in a given nucleus
The grand potential is obtained from Eq.~2.4! and the free
energy of formation of the nucleus is calculated from E
~2.3!. The critical nucleus is identified as the nucleus cor
sponding to a free energy maximum with respect to the m
terial excess,Mex, as illustrated in Fig. 1. We comment th
the free energy of formation atMex50 vanishes as it should
thus our calculation is free of the consistency problems
countered in classical capillary theory.1

To make the results applicable for generalN, it is con-
venient to use dimensionless radial distancer̃ , material ex-
cessM̃ex, and free energy of formationDF̃ defined as

r̃[
r

N1/2b
, ~3.2!

M̃ex[
Mex

N3/2b3 , ~3.3!

DF̃[
bDF

N1/2

v
b3 . ~3.4!

Near the coexistence curve, the critical nucleus is
pected to approach that given by the classical approxima
in which a sharp interface separates a large nucleus from
parent bulk phase. As the spinodal is approached, the Ca
Hilliard asymptotic theory predicts that the critical nucle
density profile becomes large in extent but small in am
tude. In Fig. 3, we show three representative density profi
for the critical nucleus calculated at three values of theNx
Downloaded 15 Sep 2007 to 131.215.225.9. Redistribution subject to AIP
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parameter, one close to the coexistence curve, one clos
the spinodal, and one intermediate between the coexiste
curve and the spinodal. As can be seen from the figure,
Nx52.5, the density profile is fairly flat up to a distance
3 times the end-to-end distance of the chain. Thus the i
rior of the nucleus can be considered a pseudophase
nearly uniform density. However, the interfacial width fo
this value ofNx is not small and is nearly comparable to th
size of the uniform core. Nevertheless, when the correct
terfacial tension is used, the classical theory gives pre
tions that are in good agreement with results obtained us
the SCF theory.

As Nx increases toward the spinodal, the density pro
of the critical nucleus becomes more diffuse. ForNx
53.05, it is no longer possible to distinguish between
core and the interfacial regions. The density ofA at the cen-
ter of the nucleus is now considerably lower than the eq
librium value of the new phase. AsNx increases further to
3.6, the profile becomes very shallow with the density at
center only slightly exceeding that of the parent bulk pha
Upon careful inspection, one can see that the spatial rang
the density variation forNx53.6 is larger than that forNx
53.05.

The variation of the density ofA at the center of the
critical nucleus asNx increases is shown in Fig. 2. Als
shown on the same figure are the coexistence curve and
odal curves. The circles at a constantf050.16 and varying
values ofNx specify the bulk condition of the metastab
phase and the squares are the density ofA at the center of the
critical nucleus corresponding to eachNx. Interestingly,
very close to the coexistence curve, the center density of
critical nucleus slightly exceeds that of the equilibrium c
existence value. This behavior can be understood by no
that near the coexistence curve the core of the crit
nucleus can be considered to be at pseudo ‘‘phase coe
ence’’ with the metastable bulk. Since the chemical poten
of A in the metastable bulk is higher than its equilibriu
value, the density ofA in the new ‘‘phase’’ is higher than the
equilibrium coexistence value. Of course, asNx approaches
the coexistence curve, the size of the critical nucleus
verges, and we approach a true phase coexistence bet

FIG. 3. Three representative density profiles of the critical nucleus forf0

50.16. For this choice off0 , Nxcoex52.438 57, andNxs53.720 23.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the critical nucleus and the bulk; the density in the nucle
becomes identical to the equilibrium density of the n
phase. AsNx increases from the coexistence curve, the c
ter density first increases and then decreases, eventuall
proaching the bulk valuef0 at the spinodal, as dictated b
consistency.

The radius of the critical nucleus is well defined in t
classical limit, but becomes ambiguous far from the coex
ence curve, essentially losing its meaning as the spinod
approached~Fig. 3!. To provide a measure of the spati
extent of the nucleus, we present our results using two a
nate definitions of radius: the first moment of the dens
profile of the nucleus, defined as

R1[
4p

MexE
0

`

r 3dr@f~r !2f0#, ~3.5!

and the half-peak radiusR1/2 used by Cahn and Hilliard
defined as the radius at which

f~r 50!2f~R1/2!5f~R1/2!2f0 . ~3.6!

The dependence of these two defined radii onNx is shown
in Fig. 4. Both of these definitions give the same scal
dependence onNx2(Nx)coex and (Nx)s2Nx near the co-
existence curve and spinodal, respectively~insets!, although
the numerical values obtained from the two definitions c
differ by as much as a factor of 2.5 near the spinodal. T
minima of these two quantities occur at different values
Nx. The two definitions approach each other near the co
istence curve, as both give a measure of the size of the
form droplet. The deviation between these two measures
indicates the breakdown of the picture of the nucleus a
uniform droplet. Near the coexistence curve and spino
the radius defined by both measures diverge, in agreem
with the Cahn–Hilliard predictions obtained using a squ
gradient approach. The classical nucleation theory, whic
not thermodynamically consistent near the spinodal, pred
that the radius of the critical nucleus approaches a non
constant in that limit.4

FIG. 4. Radius of the critical nucleus as defined by the first mom
~circles!, and by R̃1/2 ~squares!. The limits on the abscissa correspond
Nxcoex andNxs . Included are theR̃1/2 results of Cahn and Hilliard near th
spinodal ~dotted line! and of the classical treatment near the coexiste
curve ~dashed line!.
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The material excessMex serves as a fundamental cha
acterization of a nucleating cluster and can be considered
order parameter for nucleation.18 In the present case,Mex is
directly related to the number of polymer chains involved
forming the critical nucleus. SinceMex is the volume taken
by the excessA polymer chains in the nucleus, and ea
polymer chain has volumeNv, the excess number ofA poly-
mers is

nA
ex5

N1/2b3

v
M̃ex. ~3.7!

BecauseM̃ex depends only on the bulk compositionf0 and
Nx of the metastable phase, for a givenf0 and Nx, the
number of excessA polymers increases asN1/2. The dimen-
sionless material excessM̃ex is shown as a function ofNx in
Fig. 5. Like the radius of the critical nucleus, this quant
exhibits a minimum intermediate between the coexiste
curve and the spinodal and diverges in these two limits. T
minima of M̃ex and critical nucleus radius occur at differe
Nx, again reflecting the nonuniformness of the density in
critical nucleus.

The most important quantity concerning the critic
nucleus is the reversible work of formation. This free ene
provides the activation barrier for the formation of the ne
phase from a metastable phase and is directly related to
rate of the kinetics of this process. The free energy bar
diverges at the coexistence curve, in agreement with the
diction by classical theory, and as demanded by thermo
namic consistency. AsNx increases away from the coexis
ence curve, the free energy barrier decreases, reflecting
fact that the metastable phase becomes less stable. The
energy barrier vanishes at the spinodal, in spite of the div
gence of both the radius and the material excess. Thi
again demanded by thermodynamic consistency, since b
very definition, at the spinodal a system is unstable w
respect to small, long length scale perturbation. The work
formation is shown on a log-linear scale in Fig. 6 in order
reveal the large order of magnitude changes asNx increases.
The free energy decreases rapidly near the coexistence c
and then undergoes a relatively slow decrease betweenNx

t

e

FIG. 5. Material excess in the critical nucleus as function ofNx. The limits
on the abscissa correspond toNxcoex andNxs . Included are the results o
Cahn and Hilliard near the spinodal~dotted line! and of the classical treat-
ment near the coexistence curve~dashed line!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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'2.6 andNx'3.4. AsNx approaches the spinodal, the fre
energy again decreases rapidly, eventually to zero at the s
odal. We will see that the classical theory and Cahn–Hillia
asymptotic theory are valid in the two respective narrow
gions near the coexistence curve and spinodal; however
broad range ofNx cannot be described by these two limitin
theories.

B. Comparison with the classical theory and the
Cahn–Hilliard asymptotic theory

Our self-consistent field calculation provides an ex
description of the critical nuclei at the mean-field level. W
the results we have obtained for the large range ofNx be-
tween the coexistence curve and the spinodal, we can
evaluate the accuracy of the two limiting theories.

In the classical theory, the nucleus is taken to be
spherical droplet of uniform density separated by a sh
interface from the parent metastable bulk phase. The wor
formation of the droplet is assumed to consist of two con
butions, an excess free energy for the interior of the dro
and the interfacial free energy; thus

DF5
4pR3

3
~g2g0!14pR2g, ~3.8!

whereg is the interfacial tension andg is the grand potentia
per unit volume,

g~f,m0!5 f ~f!2m0f, ~3.9!

with m0 the chemical potential of the metastable phase,m0

5(] f /]f)uf0
. The density in the nucleus is determined fro

]g/]f50. Using the free energy of the blend for a homo
enous state given in the Appendix, we obtain

ln f2 ln~12f!1Nx~122f!

5 ln f02 ln~12f0!1Nx~122f0!, ~3.10!

where the reader is reminded thatx here stands forxv in the
Appendix. Obviously, one solution of Eq.~3.10! is f5f0 ,
which simply reaffirms that the metastable state is a m
mum of the free energyg. Another solution, with the density

FIG. 6. Free energy of formation of the critical nucleus as function ofNx.
The limits on the abscissa correspond toNxcoex andNxs . Included are the
results of Cahn and Hilliard near the spinodal~dotted line! and of the clas-
sical treatment near the coexistence curve~dashed line!.
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falling within the spinodal region of the phase diagram, c
responds to a free energy maximum, and therefore canno
the density of the nucleus of the new phase. Only the rem
ing solution gives the physical solution for the density of t
nucleus, and hence the free energyg of the nucleus. Note
that g2g0,0, since the free energy of the newly forme
phase is lower than that of the metastable state.

The critical nucleus is that for which]F/]R50, which
yields

R52
g

g02g
. ~3.11!

This corresponds to a free energy barrier of

DF5
16p

3

g3

~g02g!2 . ~3.12!

The material excess for the classical model is simply

Mex5
4pR3

3
~f2f0!. ~3.13!

For the interfacial free energy, we use the interfacial te
sion between the two coexisting phases at theNx of interest.
Since an analytical expression is not available except n
the critical point and for very largeNx, we have performed
a separate SCF calculation to determine the interfacial
sion as a function ofNx. The data are shown in Fig. 7 for
large range ofNx values. A polynomial interpolation is use
to obtain the numerical value ofg for a givenNx.

The predictions of the classical theory for the density
the critical nucleusf, the radiusR, the material excessMex,
and the work of formationDF are shown in the respectiv
figures where the self-consistent field results are presen
Clearly, near the coexistence curve, good agreement is
served between results from the classical theory and th
from the SCF calculation. This is so even though the int
facial width in the range ofNx considered is rather diffuse

FIG. 7. Interfacial free energy vs (Nx2Nxcrit). The squares show dat
obtained in this work. The solid curve shows the behavior predicted by
Gennes~Ref. 15! for large Nx; the dashed curve shows the behavior pr
dicted by Joanny and Leibler~Ref. 31! for Nx near the critical point value;
and the dotted curve shows the polynomial fit through data from this w
used for calculating the interfacial contribution to the nuclei in the class
theory. The dimensional interfacial free energyg is obtained fromḡ by g
5kBTN21/2(b/v)ḡ.
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on the scale of the size of the polymer. Of these quantit
the agreement forMex is particularly remarkable since it cov
ers a fairly broad region away from the coexistence cur
However, this apparent agreement at larger values ofNx is
likely due to a cancellation of errors. For example, atNx
52.8 bothf and R deviate considerably from the SCF r
sults, yet good agreement is still obtained forMex. The free
energy provides a more stringent comparison. The curve
dicted from the classical theory and that predicted from
SCF begin to diverge from each other visibly at aboutNx
52.6.

The approach of Cahn and Hilliard4 employed a free
energy functional where the nonlocal terms were appro
mated by a square gradient term. The general framew
they provided is valid for any binary mixture. They als
obtained numerical data throughout the metastable regio
the phase diagram for an incompressible binary mixture
ing a model free energy. However, explicit application
their data for the present polymer blend problem is not p
sible except in the region close to the spinodal where t
provided analytical expressions. We thus compare our S
results with the Cahn–Hilliard results in this limit.

For an incompressible binary polymer blend, an expr
sion for the square gradient term was given by de Genne15

Near the spinodal, the density gradient in the critical nucl
is small and the square gradient approximation is valid.
the local term, we use the free energy density derived in
Appendix. The free energy functional is then

DF5E dr F ~ f @f~r !#2 f ~f0!!2m0~f~r !2f0!

1
b2

36vf~12f!
~¹f~r !!2G . ~3.14!

Near the spinodal, the volume fractionf in the critical
nucleus is close to the metastable bulk valuef0 . Thus Cahn
and Hilliard expanded the free energy densityf @f(r )# as a
power series inDf[f2f0 and kept terms up to (Df)3.
The results of their analyses were expressed in terms o
difference of the bulk composition from its spinodal value
a given temperature~or Nx in our case!. Experimentally, it is
much more convenient to varyx ~through changes in tem
perature or pressure! at a fixed composition. We thus prese
the results as a function of 12x/xs . After some straightfor-
ward substitution of notation, the reversible work of form
tion of the critical nucleus is found to be

bDF52.23
N1/2b3

v
f0~12f0!

~122f0!2 S 12
x

xs
D 3/2

. ~3.15!

The density at the center of the nucleus is

f~r 50!2f058.1
f0~12f0!

122f0
S 12

x

xs
D . ~3.16!

The value ofR1/2 is given by

R1/250.3N1/2bS 12
x

xs
D 21/2

. ~3.17!

And finally, the material excess in the nucleus is19
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Mex53.3N3/2b3
f0~12f0!

122f0
S 12

x

xs
D 21/2

. ~3.18!

Note that in these equations, it is assumed thatf0,0.5;
otherwisef0 should be exchanged with 12f0 .

Predictions using these asymptotic expressions are c
pared with results from our SCF in the plots for the cor
sponding properties. The density at the center of the crit
nucleus agrees remarkably well with the SCF result, exte
ing quite far from the spinodal. On the other hand, deviatio
are significant for the radius, the material excess and the
energy barrier, aside from the few data points near the s
odal. Calculation using the SCF becomes difficult as
spinodal is approached because of numerical instabilities
critical slowing down. On the other hand, the asympto
expressions should become exact in this limit~since both the
square gradient approximation and the order parameter
pansion truncated at the cubic order become increasingly
curate as the spinodal is approached!. Therefore, these
asymptotic predictions provide an excellent extrapolation
our SCF results near the spinodal.

Comparison between the result of our SCF calculat
for the free energy barrier and the predictions by the t
limiting theories shows that, over a broad range ofNx be-
tween the coexistence curve and the spinodal, the two lim
ing theories do not provide an accurate prediction. It
within this range that our SCF is most valuable.

C. Validity of the SCF theory:
Application to experiments

The SCF theory is a mean-field theory which negle
thermal fluctuations. Within the mean-field framework,
clear distinction exists between nucleation and spinodal
composition, with the two mechanisms separated by
spinodal curve. In the metastable region, as the spinoda
approached, thermal fluctuations become increasingly im
tant; at the same time, the free energy barrierDF for nucle-
ation decreases. The barrier is no longer meaningful w
DF;kT. The conditionDF;kT signals the breakdown o
the mean-field approximation and can be considered a G
zburg criterion for the validity of mean-field theory in th
metastable region.5 Within the Ginzburg region, it is no
longer possible to distinguish between nucleation and s
odal decomposition. No satisfactory theories exist in t
crossover region, which is characterized by nonclassical
ponents and fractal-like structures for the incipient phase.20,21

A correct theoretical treatment would require a kinetic22

rather than thermodynamic approach.
To rigorously address the validity of the mean-field a

proach requires that fluctuation effects be taken into acco
explicitly in the expression for therate of nucleation. Such a
framework was developed by Langer23 some time ago, who
included fluctuation contributions at the quadratic level n
the saddle point of the free energy surface. While this p
gram can in principle be carried out in the present stu
incorporation of fluctuation around an inhomogeneo
saddle-point state for polymeric systems is high
nontrivial24 and is beyond the scope of this paper. We w
therefore settle for using the free energy barrier calcula
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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from the SCF as a quantitative Ginzburg criterion. Followi
Binder5 we set the threshold atDF510kT. Thus we propose
that mean-field theory breaks down when

bDF[
N1/2b3

v
DF̃510. ~3.19!

For a given degree of polymerizationN and composition
f0 in the metastable region, the above equation determ
the value ofNx or x-denoted as (Nx)G and xG , respec-
tively, at which mean-field theory becomes invalid. For t
composition used in our SCF studyf050.16, if we takeN
5100, 103, and 104, we estimate (Nx)G to be 2.79, 3.05,
and 3.34, respectively, corresponding toxG /xs50.75, 0.82,
and 0.90. For general compositions, the width of the Gi
burg region 12xG /xs can be obtained approximately usin
the Cahn–Hilliard asymptotic expression Eq.~3.15! which
yields

12
xG

xs
52.72

v2/3

b2

~122f0!4/3

@f0~12f0!#2/3N21/3. ~3.20!

Because the Cahn–Hilliard asymptotic theory is valid o
very close to the spinodal, the above estimate is accu
only for largeN. For moderateN, the width of the Ginzburg
region predicted by the asymptotic theory is wider than t
predicted by the SCF since the asymptotic theory undere
mates the free energy barrier~see Fig. 6!.

We now discuss our results in connection to the rec
experiment by Balsara and co-workers.8 The experiment
used a binary blend made of partially deuterated polyme
ylbutylene ~A! and hydrogeneous polyethylbutylene~B!,
with degrees of polymerizationNA53357 andNB54260,
respectively. Two compositions were studied:f050.161
~sample B1! andf050.099 ~sample B2!. The work reports
unusual behavior in the early stage of nucleation in
ranges 0.84,x/xs'1 for sample B1~including one data
point atx/xs.1! and 0.7,x/xs,1 for sample B2. In par-
ticular they find that the size of the critical nucleus
identified as the inverse of the wave vector at which
scattering intensity remains unchanged—increases asx is de-
creased toward the coexistence curve and has an extrapo
divergence at aboutx/xs'0.81 and 0.68 for B1 and B2
respectively. These findings are in clear contradiction w
all known theoretical predictions.

Because the two polymers studied in Ref. 8 are not sy
metric, application of our SCF results calculated for a sy
metric blend to the experimental system is not immediat
obvious. However, the effect of the molecular asymme
can be incorporated explicitly into the Cahn–Hillia
asymptotic theory, with results that appear rather similar
Eqs.~3.15!–~3.18!. In particular, the free energy barrier ca
be shown to be

bDF52.23~11d!2
Veff

1/2

l eff
3/2

f0~12f0!

~122f0!2 S 12
x

xs
D 3/2

, ~3.21!

where

Veff5
VAVB

VAf01VB~12f0!
, ~3.22!
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f0~12f0!~VA2VB!

VB~12f0!22VAf0
2 , ~3.23!

and

l eff5
l Al B

l Af01 l B~12f0!
, ~3.24!

with l a[Va /Ra
2 (a5A,B). In these equations,Va and Ra

2

are, respectively, the molecular volume and mean squ
end-to-end distance of thea chains. We use these quantitie
since they are experimentally more accessible thanNa , va ,
andba .

We see that near the spinodal, the main effect of
molecular asymmetry, aside from a correction factor
1d)2, is the replacement of the overall free energy sc
N1/2b3/v by Veff

1/2/ l eff
3/2. We will assume that this remains tru

as long as the relative distance from the spinodal is not
large, so that the free energy barrier for the asymmetric c
can be simply obtained from that for the symmetric case
using Eq.~3.4! with the proper rescaling by this factor.

Reference 8 suggests VA5335 700 Å3, VB

5426 000 Å3. From the radii of gyration of the two poly
mers given in the same reference, we inferl A52.19 Å, l B

52.77 Å. The factorVeff
1/2/ l eff

3/2 changes little~'1%! between
the two compositions; its average value is 174. The corr
tion factor (11d)2 varies between 1.04 atf050.099 and
1.08 atf050.161; given the approximations involved an
the error margins in the parameters used, we will ignore
factor. By the same token, we ignore the small differen
between the experimental compositions and the comp
tions we used in the SCF study~f050.161 versus 0.16 and
f050.099 versus 0.10!.

Keeping in mind these caveats, we estimate the onse
the Ginzburg region to be atxG /xs50.86 forf050.16 and
xG /xs50.80 forf050.1, using a threshold free energy ba
rier of 10kT. Thus for both compositions, the width of th
Ginzburg region is quite significant, considering the reas
ably large degrees of polymerization~by experimental stan-
dards!. At x/xs50.84, the first data point in the experime
at f050.16, we estimate the free energy barrier to be 15kT.
For x/xs50.7 atf050.1, the free energy barrier is 24kT.
At x/xs50.81 and 0.68 corresponding to the extrapola
divergence of the size of the critical nuclei for samples
and B2, we estimate the free energy barrier to be 23kT and
29kT, respectively.

Given that thex range in which the data were reported
Ref. 8 overlaps with the Ginzburg region we have identifi
here, it is possible that the findings of Lefebvreet al. reveal
new dynamic behavior in the phase separation kinetics w
the free energy barrier becomes of orderkT. In the Ginzburg
region, the kinetics cannot be unambiguously described
either nucleation or spinodal decomposition, but rather
flects a crossover between these two mechanisms. On
other hand, the spinodal is no longer meaningful when
Ginzburg region is not small. The location of the mean-fie
spinodal, and the determination of thex parameter itself,
become problematic in this case.25 Although the spinodal in
Ref. 8 was identified with great care,26 one cannot rule out
the possibility that the location of the ‘‘apparent spinoda
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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could be shifted due to the large fluctuation; thus the kine
studied in the experiments could be more of the nature
spinodal decomposition than nucleation. Indeed, it has b
suggested that the onset of the Ginzburg region should
taken as the kinetic spinodal that separates the physic
accessible metastable region from the unstable region27,28

The evidence that the researchers in Ref. 8 were indeed
serving nucleation was strong but not overwhelming. T
we find a moderate free energy barrier~23kT and 29kT for
f050.16 and 0.1, respectively! at thex/xs value where the
size of the critical nucleus showed extrapolated divergenc
the experiment could also be due to possible uncertaintie
the experimental determination ofx and/orxs . For the con-
clusions of Ref. 8 to be definitive, it would be desirable
perform systematic experiments withx/xs less than 0.81 and
0.68 for samples B1 and B2. The work of Lefebvreet al.
reported one shallow quench experiment on B2 atx/xs

50.57 and found no evidence of nucleation for 1000 mi
At this value ofx, our SCF calculation predicts a free ener
barrier of 144kT. This is a prohibitively high free energ
barrier for nucleation to occur.

Cahn and Hilliard suggested a free energy barrier
60kT for an observable nucleation rate in small-molec
binary fluid mixture.4 Given that relaxation dynamics i
polymeric fluids is slower than in small-molecule fluids, w
anticipate that a somewhat smaller free energy barrier is
quired for nucleation to be observable. In the absence
kinetic theory for nucleation in polymers, we will use 60kT
as the upper limit of the free energy barrier. Forf050.16,
our SCF results determine that this free energy barrier co
sponds toNx52.8, or x/xs50.75. Forf050.1, we obtain
Nx53.5 or x/xs50.62. Thus, we suggest that systema
experiments be performed forx/xs.0.75 atf050.16, and
for x/xs.0.62 atf050.1. Experimental data from such
systematic study would clarify the nature of the process
curring in this metastable region~nucleation versus spinoda
decomposition!, and help determine the limit of validity o
the mean-field approximation where nucleation occurs.

IV. CONCLUSION

Using self-consistent field theory, we have studied va
ous properties of the critical nucleus for a symmetric bin
polymer blend, spanning the entire metastable region of
phase diagram from the coexistence curve to spinodal
fixed composition. At the mean-field level, the self-consist
field theory represents the most accurate and system
theory that fully accounts for the chain connectivity and t
spatial correlations that result from it. Thus it provides
useful benchmark for evaluating approximate theories, s
as the classical capillary theory and the square gradient
sity functional theory.

Our results show that the near the coexistence curve
critical nucleus is large and of nearly uniform density. T
composition of the bulk minority component in the nucle
is slightly higher than the equilibrium composition of th
new phase. As the controlling parameter~in our caseNx!
progresses toward the spinodal, the density of the bulk
nority component decreases, and eventually becomes in
tinguishable from the bulk density at the spinodal. The wo
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of formation of the critical nucleus representing the free e
ergy barrier for nucleation starts from infinity at the coexi
ence curve, decreases rapidly away from the coexiste
curve and vanishes at the spinodal. On the other hand,
the radius of the critical nucleus and the material excess
exhibit a minimum somewhere intermediate between the
existence curve and the spinodal, and diverge at the
limits. All these predictions are in qualitative agreement w
earlier predictions of Cahn and Hilliard4 using a square gra
dient density functional theory.

We have provided a detailed comparison between p
dictions of the SCF study and the classical nucleation the
near the coexistence curve on one hand and the Ca
Hilliard asympotic theory near the spinodal on the other.
find good agreement between the SCF results and these
limiting theories in their respective limits. However, th
agreement for most properties is limited to narrow regio
near these two limits. In particular, the free energy barrier
a wide range ofNx cannot be well represented by the
limiting theories.

We have examined the validity of the SCF theory
invoking a Ginzburg criterion using the free energy barri
We find that for typical degrees of polymerization, the Gin
burg region is not as small as commonly believed. In parti
lar, we find that some of the experimental data reported
the recent work of Lefebvreet al.8 are either in the Ginzburg
region or near it. The theoretical implication of their expe
mental findings is not entirely clear. Their results may refl
new dynamic behavior in the phase separation kinetics w
the free energy barrier becomes of orderkT. It is also pos-
sible that thermal fluctuation leads to a shift in the location
the apparent spinodal. If we take the onset of the Ginzb
criterion as the physical or kinetic spinodal, then some of
data points in Ref. 8 are already beyond this spinodal. T
predicted relative location of the kinetic spinodals for t
two compositions is consistent with the experimental resu
Finally, nucleation in polymeric systems may involve mech
nisms that are fundamentally different from those envision
in a quasiequilibrium approach.

Outside the Ginzburg region, our theory provides
quantitative prediction for the free energy barrier for nuc
ation which can be related to the nucleation rate. We estim
that a window ofx/xs exists in which the SCF is valid and a
the same time the nucleation rate is not too small. Thu
will be desirable that experiments be performed in this w
dow to provide a clear test of the theory. We remark that
this window, neither the classical theory nor the Cah
Hilliard asymptotic theory gives an accurate prediction of t
free energy barrier for typical degrees of polymerization. T
agreement in the free energy barrier between the Ca
Hilliard asymptotic theory and our SCF is limited to a na
row region near the spinodal that is contained in the Gi
burg region for moderately long chains. Thus, while it pr
vides a simple means of determining the validity of mea
field theory, in practice there is no regime where the Cah
Hilliard asymptotic theory is quantitatively valid except fo
very long polymers. On the other hand, the classical capill
theory, while valid and accurate near the coexistence cu
is irrelevant as far as quantitative prediction of the nucleat
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



g

s-

re
r

e
o

or
or
th
co
a

es
us

er
as
hu
r

ce

-
rk

he
in-
at
F
lcu-
he
tate
ory

he

er

2298 J. Chem. Phys., Vol. 116, No. 5, 1 February 2002 S. M. Wood and Z.-G. Wang
rate is concerned, since the nucleation rate is vanishin
small for polymers near the coexistence curve.

In future work, we plan to study the effects of polydi
persity and impurities on nucleation. Binder pointed out3 that
in a polydisperse blend, the long chains may serve as p
erential centers for nucleation, so in effect we have hete
geneous rather than homogeneous nucleation. Evidenc
heterogeneous nucleation was shown in the work
Cumminget al.,29 although no explanation was provided f
the origin of such behavior. Another extension of the the
is to study the effects of diblock copolymers made from
two homopolymers. Earlier experiments by Balsara and
workers on nucleation in polymer blends in fact involved
small amount of diblock copolymers.6,7 However, the effects
of the diblocks are not clear. On one hand, addition of th
amphiphilic molecules should facilitate nucleation beca
they lower the interfacial energy by adsorption at theA/B
interface; on the other hand, addition of diblock copolym
alters the phase behavior of the blend in a way that decre
the thermodynamic driving force for phase separation. T
we expect richer and more interesting nucleation behavio
such a 3-component system.
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APPENDIX: DERIVATION OF THE SCF EQUATIONS

In this appendix, we provide a detailed derivation of t
self-consistent field equations for an open system of an
compressible polymer blend. The derivation is similar to th
by Matsen30 for a homopolymer–copolymer blend. The SC
equations are used to solve for the density profile and ca
late the free energy of the critical nucleus. In addition, t
solution of these SCF equations for a homogeneous s
provides the free energy density used in the classical the
and the square-gradient theory.

We start with the statistical mechanical equivalent of t
free energy@Eq. ~2.1!#, the grand partition function for an
open, incompressible system of a two component polym
blend,
J~m,V,T![exp@2bG#5 (
nA50

`

(
nB50

`
1

nA!nB!

1

~NAvA!nA~NBvB!nB
exp~bmnANAvA!E DnA$RA%

3E DnB$RB%)
r

d~f̂A1f̂B21!expF2b(
i 51

nA

hi
A2b(

j 51

nB

hj
B2xE dr f̂A~r !f̂B~r !G . ~A1!
Here, b[1/kT, va and Na are, respectively, the monome
volume and the degree of polymerization of thea polymer;
hi

a is the single chain Hamiltonian for theith polymer of
speciesa that accounts for the chain connectivity; andf̂a(r )
is the instantaneous volume fraction ofa at r defined as
f̂a(r )5var̂a(r ) with r̂a(r ) the instantaneous density. Th
last term in the exponential represents the local repuls
interaction between the two polymers and the notat
* Dna$Ra% represents integration over all chain configu
tions ~including the center of mass translation! of polymers
of typea. Note that we have used the chain volumeNava as
the volume scale in the partition function instead of the cu
of the thermal de Broglie wavelength; the effect is simply
constant~i.e., composition independent! shift in the chemical
potential which has no consequences on the thermodyna
of interest.

Introducing collective variablesfa(r ) through the iden-
tity

)
r
E Dfad~fa2f̂a!51, ~A2!

and using the Fourier representation of thed-function, we
can rewrite the partition function as a multi-fold function
integral,
e
n
-

e

ics

J~m,V,T!5E DfAE DfBE DWAE DWB

3)
r

d~fA1fB21!

3exp@2bK~fA ,fB ,WA ,WB!#, ~A3!

where

bK5xE drfAfB2 i E dr ~WAfA1WBfB!

1bI @WA ,WB#. ~A4!

The integration over the auxiliary fieldsWA(r ) and WB(r )
results from the Fourier representation of thed-function in
Eq. ~A2!, andI is defined through

exp~2bI !5 (
nA50

`

(
nB50

`
1

nA!nB!

1

~NAvA!nA~NBvB!nB

3exp~bmnANAvA!ZA
nAZB

nB

5expFexp~bmNAvA!ZA~WA!

NAvA
1

ZB~WB!

NBvB
G ,
~A5!
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whereZA and ZB are the single chain configurational int
grals in the presence of external fields of magnitu
i (kBT)vAWA and i (kBT)vBWB , respectively. Taking the
polymer chains to be Gaussian, we have

Za~Wa!5E Dr t expS 23

2ba
2 E

0

Na
dtS dr t

dt D 2

2 ivaE
0

Na
dtWa~r t! D

5E drqa~r ,Na!, ~A6!

whereqa(r ,Na) is a reduced partition function for a cha
with one end atr and the other end anywhere and is det
mined by the following diffusion equation:

S ]

]t
2

ba
2

6
¹ r

21 ivaWa~r ! Dq~r ;t!50, ~A7!

with initial condition q(r ;0)51. Because the system is in
compressible, the local composition is uniquely specified
either fA or fB512fA . We denotefA simply by f; the
integration overfB in Eq. ~A3! can be trivially performed to
yield

J~m,V,T!5E DfE DWAE DWB

3exp@2bK~f,WA ,WB!# ~A8!

with now

bK5xE drf~12f!2 i E dr ~WAf1WB~12f!!

1bI @WA ,WB#. ~A9!

The development thus far is exact. We now make
self-consistent field approximation which amounts to eva
ating the functional integral, Eq.~A8!, by its value at the
stationary point ~saddle point! of the functional
K(f,WA ,WB). The value ofK at the saddle point is the
equated with the grand potentialG. Setting the functional
derivatives ofK with respect to its variables to zero produc
the set of self-consistent field equations given in Eqs.~2.7!–
~2.9!. The saddle point values ofWa turn out to lie on the
imaginary axis; thus we have definedwa5 iWa so that all
the variables are now real. It should be understood that
field variablesf, wA , and wB appearing in the SCF equa
tions refer to their saddle point values. However, for simp
ity, we do not introduce any new notation.

The SCF equations@Eqs. ~2.7!–~2.9!# can be easily
solved for the case of a homogenous state with uniform c
position. For the rest of this derivation, homogeneity is u
derstood; in the body of the paper, values of variables for
homogeneous case are denoted with subscript 0. For spa
independentf, wA , andwB , the SCF equations become

wA2wB5x~122f!, ~A10!

f5exp~bmNAvA2wANAvA!, ~A11!

12f5exp~2wBNBvB!. ~A12!
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It is more convenient to write the solutions in terms
wA , wB , andm as functions of the compositionf; doing so
we obtain

wA5x~122f!2
1

NBvB
ln~12f!, ~A13!

wB52
1

NBvB
ln~12f!, ~A14!

and

bm5
1

NAvA
ln f2

1

NBvB
ln~12f!1x~122f!. ~A15!

These results can be substituted into Eq.~2.4! to yield the
grand potential per unit volume as

bg5
1

NBvB
ln~12f!2

f

NAvA
2

12f

NBvB
1xf2, ~A16!

from which we obtain the Helmholtz free energy density,

b f ~f!5
f

NAvA
@ ln f21#1

12f

NBvB
@ ln~12f!21#

1xf~12f!. ~A17!

Noting that the free energy of mixing is simply

f mix5 f ~f!2@f f ~f51!1~12f! f ~f50!#, ~A18!

we recover the celebrated Flory–Huggins free energy,

b f mix5
f

NAvA
ln f1

12f

NBvB
ln~12f!1xf~12f!.

~A19!

1P. G. Debenedetti,Metastable Liquids: Concepts and Principles~Princ-
eton University Press, Princeton, 1996!.

2D. W. Oxtoby, inFundamentals of Inhomogeneous Fluids, edited by Dou-
glas Henderson~Dekker, New York, 1992!, pp. 407–442.

3K. Binder, J. Chem. Phys.79, 6387~1983!.
4J. W. Cahn and J. E. Hilliard, J. Chem. Phys.31, 688 ~1959!.
5K. Binder, Phys. Rev. A29, 341 ~1984!.
6N. P. Balsara, C. Lin, and B. Hammouda, Phys. Rev. Lett.77, 3847
~1996!.

7A. A. Lefebvre, J. H. Lee, H. S. Jeon, N. P. Balsara, and B. Hammoud
Chem. Phys.111, 6082~1999!.

8A. A. Lefebvre, J. H. Lee, N. P. Balsara, and B. Hammouda, J. Ch
Phys.~submitted!.

9K. M. Hong and J. Noolandi, Macromolecules14, 727 ~1981!.
10G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove,

B. Vincent,Polymers at Interfaces~Chapman and Hall, London, 1993!.
11E. Helfand, J. Chem. Phys.62, 999 ~1975!.
12M. W. Matsen and M. Schick, Phys. Rev. Lett.72, 2660~1994!.
13D. W. Oxtoby, Acc. Chem. Res.31, 91 ~1998!.
14P.-G. de Gennes, J. Phys.~France! Lett. 38, L-441 ~1977!.
15P.-G. de Gennes, J. Chem. Phys.72, 4756~1980!.
16A. Z. Akcasu and I. C. Sanchez, J. Chem. Phys.88, 7847~1988!.
17H. Tang and K. F. Freed, J. Chem. Phys.94, 1572 ~1991!; 94, 6321

~1991!; X. C. Zeng, D. W. Oxtoby, H. Tang, and K. F. Freed,ibid. 96,
4816 ~1992!.

18I. Kusaka, Z.-G. Wang, and J. H. Seinfeld, J. Chem. Phys.108, 3416
~1998!; I. Kusaka and D. W. Oxtoby,ibid. 110, 5249~1999!.

19The numerical prefactor has been approximated from a graphic integra
of the dimensionless density profile provided in Ref. 4.

20D. W. Heermann and W. Klein, Phys. Rev. B27, 1732~1983!.
21W. Klein and C. Unger, Phys. Rev. B28, 445 ~1983!; C. Unger and W.

Klein, ibid. 29, 2698~1984!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ly
cu

rt

2300 J. Chem. Phys., Vol. 116, No. 5, 1 February 2002 S. M. Wood and Z.-G. Wang
22G. Narsimhan and E. Ruckenstein, J. Colloid Interface Sci.128, 549
~1989!; E. Ruckenstein and B. Nowakowski,ibid. 137, 583 ~1990!.

23J. S. Langer, Ann. Phys.~N.Y.! 54, 258 ~1969!; in Systems Far From
Equilibrium, edited by L. Garrido~Springer-Verlag, Heidelberg, 1980!,
pp. 12–47.

24For a treatment of the equilibrium fluctuation in ordered diblock copo
mer phases, see A.-C. Shi, J. Noolandi, and R. C. Desai, Macromole
29, 6487~1996!.

25Z.-G. Wang~unpublished!.
26A. A. Lefebvre, J. H. Lee, N. P. Balsara, B. Hammouda, R. Krishnamoo
Downloaded 15 Sep 2007 to 131.215.225.9. Redistribution subject to AIP
-
les

i,

and S. Kumar, Macromolecules32, 5460 ~1999!; A. A. Lefebvre, J. H.
Lee, N. P. Balsara, and B. Hammouda,ibid. 33, 7977~2000!.

27A. Z. Patashinskii and B. I. Shumilo, Sov. Phys. Solid State22, 655
~1980!.

28S. B. Kiselev and I. G. Kostyukova, J. Chem. Phys.98, 6455~1993!.
29A. Cumming, P. Wiltzius, F. S. Bates, and J. H. Rosedale, Phys. Rev. A45,

885 ~1992!.
30M. W. Matsen, Phys. Rev. Lett.74, 4225~1995!.
31J. F. Joanny and L. Leibler, J. Phys.~Paris! 39, 951 ~1978!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


