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All truth passes through three stages.
First, it is ridiculed.

Second, it is violently opposed.
Third, it is accepted as being self-evident.

Arthur Schopenhauer

Abstract

The thermodynamic theory of deliquescence of small soluble solid particles in an under-
saturated vapor is presented. The work of droplet formation as a function of droplet size
and size of the solid residue of the particle in the droplet is analyzed. Two-dimensional
and one-dimensional approaches are considered. The first refers to the case when droplet
size and size of the soluble solid core are considered as independent. The second assumes
that the soluble solid core is in chemical equilibrium with the solution in the droplet, and
its size depends on droplet size. The chemical potential of the condensing matter serving
as a solvent and the chemical potential of a dissolved particle matter within the solution
in the droplet are derived. The limits of chemical equilibrium of the residue of the particle
with a solution in the droplet, as well as the limits of one-dimensional thermodynamic
approach and its relation to the two-dimensional approach are considered. The quasi-
equilibrium distributions of droplets with partially and completely dissolved solid cores
and kinetics of establishing the final aggregative equilibrium between these droplets in
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undersaturated vapor are described within the one-dimensional approach. The specific
kinetic times of establishing these distributions are found.

12.1 Introduction

The stage of nucleation by soluble particles in the atmosphere of solvent vapor,
when arising droplets consist of a liquid solution film around incompletely dis-
solved particles, is called the deliquescence stage. In a supersaturated vapor, this
stage is the initial one in the whole condensation process, and the particles in-
side the droplets will completely dissolve in the growing droplets with time. In
an undersaturated vapor, this stage finishes by establishing the aggregative equi-
librium between droplets of different sizes, with residues of the particles (solid
cores within the droplets) varying in size down to complete dissolution. Experi-
menters are able now to monitor the equilibrium droplet size as a function of the
undersaturated vapor concentration [1-3]. By increasing the vapor concentration,
they observe thickening of a liquid film around the soluble nucleus with gradual
dissolution of the nucleus until it completely disappears. Subsequent decreasing
the vapor concentration leads to evaporation of the droplet until the solid nucleus
crystallizes inside the droplet. The experiment clearly demonstrates a hysteresis
effect at increasing and decreasing vapor concentration, and locations of the cor-
ners in the hysteresis loop can provide us with important information on solubility
and effective surface tension of small particles serving as nuclei of condensation
and the parameters of the solution films around the particles.

A thermodynamic theory of the deliquescence has been considered within two ap-
proaches: the one-dimensional approach [4-6] and the two-dimensional approach
[7-11]. The one-dimensional approach assumes that the chemical equilibrium be-
tween the soluble solid core and the liquid film establishes fast at every droplet
size. As a result, the solution concentration within a droplet equals the solubility
of the core matter at the core size. Thus the droplet size can be considered as
the only independent variable of the droplet state. The two-dimensional approach
is more sophisticated and assumes that the internal chemical equilibrium in the
droplet between the residue of the particle and the solution may not be achieved.
Thus two independent variables are considered, for instance, the solution concen-
tration and the number of condensate molecules in the droplet, or the sizes of the
soluble core and the droplet. Which physical situation is realized in experiment
depends upon the relations between the parameters of the problem. In fact, as
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12.2 Work of Droplet Formation on Condensation Nuclei 281

will be shown in this paper, in many cases these relations allow us to use the
one-dimensional approach.

To understand some peculiarities of the deliquescence and its experimental ob-
servation, the thermodynamics of deliquescence should be supplemented with ki-
netics. Activation energy for transition between the metastable droplet with par-
tially dissolved solid core and the critical droplet, which corresponds to unstable
equilibrium with the vapor, determines the deliquescence barrier for transforma-
tion into metastable droplet with completely dissolved core at the same vapor
chemical potential. Intensive fluctuating overcoming of the deliquescence barrier
by growing droplets starts at vapor concentrations below the maximum in the
curve of the undersaturated vapor concentration as a function of the droplet size.
This maximum realizes for condensation nuclei, with not small solubility in the
condensing solvent, in the region of undersaturated vapor concentrations. Thus
the kinetics of the transitions between states with incompletely and completely
dissolved particles can be observable in an undersaturated vapor [1-3].

The quasi-steady kinetic solution of the problem has been recently given within
the framework of the two-dimensional approach by Djikaev [9]. Nevertheless, the
one-dimensional kinetics of deliquescence may be of interest in many cases, and
can provide us with rather simple theoretical and numerical estimates. Therefore
we will consider the one-dimensional approach to the kinetics of deliquescence in
this paper. Even though our approach will have here a phenomenological form, by
contrast to the classical approach it takes into account the effects of overlapping
of the surface layers from the solid and the vapor sides of a liquid film around
the residue of the particle. In this way, the theory considered here will be able to
give both a qualitative and quantitative thermodynamic and kinetic description
of the deliquescence of small soluble particles.

12.2 The Work of Droplet Formation on Partially or

Completely Dissolved Nuclei of Condensation

Let us denote by W the work of droplet formation. We suppose that, in the
initial state, the system under consideration consists of a solid nucleus and va-
por within a fixed volume V at absolute temperature T . In the final state, the
system includes a droplet, with partially or completely dissolved condensation
nucleus, and vapor. If volume V , temperature T and numbers of molecules of
every component stay fixed in both states of the system, then the work W can be
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determined as a difference of the free energies Φ2 and Φ1 in the final and initial
states, correspondingly. Thus we have

W ≡ Φ2 − Φ1 . (12.1)

The free energy Φ1 can be written as

Φ1 = µβN + µnνn + Ω1 , (12.2)

where µβ is the vapor chemical potential, N is the number of vapor molecules,
µn is the chemical potential of the solid particle matter in the initial state when
the number of molecules within the particle equals νn and there is no droplet,
Ω1 is the grand potential of the system in the initial state. Analogously, the free
energy Φ2 of the system in the final state has the form

Φ2 = µβ(N − ν) + µνν + µ′
nν ′

n + µα
n

(
νn − ν ′

n

)
+ Ω2 , (12.3)

where ν is the number of molecules condensed in the droplet from vapor (number
of solvent molecules), µν is the chemical potential of solvent molecules in the
droplet, µ′

n and ν ′
n are the chemical potential and the number of molecules of the

soluble particle matter within the residue of the particle in the droplet in the final
state of the system, µα

n is the chemical potential of solute in the droplet coming
into solution film from the particle, Ω2 is the grand potential of the system in
the final state. Though the matter of soluble condensation nucleus is typically an
electrolyte and dissociates into ions under dissolution in a polar condensate, we
will consider below a simpler situation of the solid particle matter with molecular
dissolution in the condensing solvent without dissociation.

The grand potentials Ω1 and Ω2 of the system in the initial and final states, can
be represented under assumption that the particle and its residue have a spherical
form as

Ω1 = −P γ
1 (µn) VRn − P β

(
µβ
)

(V − VRn) + 4πR2
nσγβ , (12.4)

Ω2 = −P γ
2

(
µ′

n

)
VR′

n
− P β

(
µβ
)

(V − VR) − Pα (µν , µ
α
n)
(
VR − VR′

n

)
+ 4πR′

n
2
σαγ + 4πR2σαβ + ΩD , (12.5)
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where VRn , VR′
n
, and VR are the volumes of the initial particle, the residue of the

particle and the droplet, respectively. Indices α, β, γ mark the quantities referred
to the liquid film, vapor and solid particle, correspondingly, while the double
indices γβ, γα, and αβ mark the quantities referred to the interfaces between the
solid particle and vapor, solid particle and liquid film, the film and the vapor,
respectively.

We assume here, that the vapor pressure P β
(
µβ
)

remains the same in the initial
and final states of the system; P γ

1 (µn) and P γ
2 (µ′

n) are the scalar pressures in the
initial particle and in its residue (for simplicity, we consider a solid particle as a
structureless body characterized by a scalar pressure); σγβ, σγα, and σαβ are the
surface tensions referred to indicated interfaces; 4πRn

2, 4πR′
n

2, and 4πR2 are the
corresponding spherical surface areas with radii Rn, R′

n, and R. Pα (µν , µ
α
n) is

the pressure in the bulk liquid solution with the same chemical potentials µν and
µα

n of the solvent and solute as they are in the solution film around the residue
of the particle [12]. It does not coincide with a pressure in that film if the film is
thin and the surface layers from opposite film sides overlap [12-14]. The effect of
interface overlapping is described by the last term in Eq. (12.5).

Let

x =
(
νn − ν ′

n

)/
ν (12.6)

be the relative solute concentration in the film. The partial molar volumes vα

and vα
n for solvent and solute, respectively, can be defined as

(∂µν/∂Pα) ≡ vα, (∂µα
n/∂Pα) ≡ vα

n . (12.7)

Assuming the solution concentration x to be not large, we will neglect the depen-
dencies of vα and vα

n on x. The number of condensate molecules in the droplet
with partially dissolved nucleus may be related to the droplet volume VR and the
nucleus residue volume VR′

n
by the relation

ν =
[
VR − VR′

n
− vα

n

(
νn − ν ′

n

)]/
vα . (12.8)

We ignore in Eq. (12.8) the contributions to ν from adsorptions on the oppo-
site sides of the liquid film and assume that the surface tensions σγα and σαβ

are independent of solution concentration. Because of the spherical shape of the
droplet, the soluble particle and its residue, we have

VR =
4π
3

R3 , VRn =
4π
3

Rn
3 , VR′

n
=

4π
3

R′
n

3
, (12.9)
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νn = 4πRn
3
/
3vn , ν ′

n = 4πR′
n

3
/

3vn . (12.10)

Thus Eqs. (12.6)-(12.10) determine the relations between x, ν, νn, and ν ′
n and

the radii R, Rn, and R′
n.

Below we will consider for simplicity the case of diluted solutions. For diluted
solutions, the chemical potentials µν and µα

n of solvent and solute in the liquid
film can be represented as functions of pressure Pα and concentration x in the
form [15]

µν (Pα, x) = µ∞ − kBTx + vα (Pα − P∞) , (12.11)

µα
n (Pα, x) = µn∞ + kBT ln

x

x∞
+ vα

n (Pα − P∞) , (12.12)

where µn∞ and x∞ are the chemical potential and the solubility of the nucle-
us matter at equilibrium with a flat interface between solid phase of the nucleus
substance and the solution, kB is the Boltzmann constant. Analogously, the chem-
ical potentials µn and µ′

n of the substance in the condensation nucleus may be
represented as functions of pressure in the phase γ

µn = µn∞ + vn (P γ
1 − P∞) , µ′

n = µn∞ + vn (P γ
2 − P∞) . (12.13)

All Eqs. (12.11)-(12.13) assume incompressibility of phases α and γ.

A substitution of Eqs. (12.11)-(12.13) into Eqs. (12.2)-(12.5) yields, taking into
consideration Eqs. (12.1), (12.9), and (12.10), the following expression for the
work of droplet formation on partially dissolved condensation nucleus

W = 4πR′
n

2
σαγ + 4πR2σαβ − 4πRn

2σγβ −
(
µβ − µ∞

)
ν (12.14)

− kBTνx + kBT
(
νn − ν ′

n

)
ln

x

x∞
+ ΩD +

(
P β − P∞

)
(VR − VRn) .

The term ΩD in Eq. (12.14) can be determined with the help of the disjoining
pressure of a thin liquid film. In accordance with Refs. 12 and 16, we define the
disjoining pressure ΠD as

ΠD ≡ PN

(
R′

n, h
)− Pα , (12.15)

where PN is the normal component of the pressure tensor inside the spherical
liquid film with thickness h ≡ R − R′

n, taken at the surface of the spherical
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solid residue of the nucleus. By analogy with the case of a pure solvent film on a
wettable substrate [13], the term ΩD has the form

ΩD = 4πR′
n

2

∞∫
R−R′

n

ΠDdh , (12.16)

where we have taken into account that the surface of the substrate is spherical
with a radius R′

n and the outer surface of the film is also spherical with a radius
R. Using Eq. (12.16) in Eq. (12.14) and neglecting the difference P β − P∞ gives

W = 4πR′
n

2
σαγ + 4πR2σαβ − 4πRn

2σγβ −
(
µβ − µ∞

)
ν

(12.17)

− kBTνx + kBT
(
νn − ν ′

n

)
ln

x

x∞
+ 4πR′

n
2

∞∫
R−R′

n

ΠDdh .

In the case of a completely dissolved nucleus we have R′
n = 0, ν ′

n = 0 and, in
view of Eq. (12.16), ΩD = 0. Neglecting the term

(
P β − P∞

)
VR, one can reduce

Eq. (12.14) in this case to the form

W = 4πR2σαβ − 4πRn
2σγβ −

(
µβ − µ∞

)
ν − kBTνx

(12.18)

+ kBTνn ln
(

x

x∞

)
.

Another limiting situation realizes in the case of an insoluble nucleus with ν ′
n =

νn, R′
n = Rn and, in view of Eq. (12.6), with x = 0. As follows from Eqs. (12.17),

we have in this case [13, 14]

W = 4πR2σαβ + 4πRn
2
(
σαγ − σγβ

)
−
(
µβ − µ∞

)
ν

(12.19)

+ 4πRn
2

∞∫
R−Rn

ΠD (h)dh .
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12.3 The Generating Properties of the Work of
Droplet Formation

According to the definition of the work of droplet formation, the partial deriva-
tives of the work W with respect to the number ν of solvent molecules and to
the number ν ′

n of molecules in the residue of the condensation nucleus determines
the chemical potentials µν and µα

n

∂W

∂ν
= µν − µβ ,

∂W

∂ν ′
n

= µ′
n − µα

n . (12.20)

Before we start to analyze Eq. (12.20), let us simplify the problem. As was said
in Section 12.2, surface tensions σαγ and σαβ are considered to be independent of
the solution concentration. Moreover, the dependence of the disjoining pressure
ΠD on concentration x can be also omitted, since the solution concentration in
thin films is almost constant and equals approximately the solubility x∞.

Using Eq. (12.17) in the first equation from Eqs. (12.20) yields

µν − µβ = µ∞ − µβ − kBTx +
2σαβvα

R
− R′

n
2

R2
ΠDvα , (12.21)

where we took into account Eqs. (12.6), (12.8)-(12.10). Eq. (12.21) represents
indeed the expression for the chemical potential of the solvent in the droplet. It
can also be derived from Eq. (12.11) if one neglects the difference P β − P∞ and
recognizes that the condition of mechanical equilibrium of the spherical liquid
film with inner radius R′

n and outer radius R has the form [16]

Pα = P β +
2σαβ

R
− R′

n
2

R2
ΠD . (12.22)

Using Eq. (12.17) in the second equation from Eq. (12.20) yields

µ′
n − µα

n =
2σγαvn

R′
n

− 2σαβ (vα
n − vn)

R
− kBT ln

x

x∞
(12.23)

+
2vn

R′
n

∞∫
R−R′

n

ΠDdh + ΠD

[
vn − R′

n
2

R2
(vn − vα

n)

]
,
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where we took into account Eqs. (12.6), (12.8)-(12.10). In order to prove that
Eq. (12.23) represents indeed the expression for the difference in the chemical
potential of molecules in the condensation nucleus and the chemical potential
of solute in the droplet, one can use Eqs. (12.12) and (12.13). It follows from
Eqs. (12.12) and (12.13) that

µ′
n − µα

n = −kBT ln
x

x∞
+ vn (P γ

2 − P∞) − vα
n (Pα − P∞) . (12.24)

The condition of mechanical equilibrium for a spherical residue of the condensa-
tion nucleus within the droplet can be written as

P γ
2 = PN

(
R′

n

)
+

2σ̃γα

R′
n

, (12.25)

where σ̃αγ is the surface tension of the inner side of the thin film that does not
generally coincide with the macroscopic value σαγ . Thermodynamics of thin flat
films [17] provides us with the relationship

∂(σ̃αβ + σ̃αγ)
∂h

= −ΠD (12.26)

with σ̃αβ being the surface tension of the outer side of the thin film. According
to the definitions Eqs. (12.15) and (12.16) (i.e., according to the fact that the
disjoining pressure is defined by the normal component of the pressure at the
surface of the nucleus residue, and ΩD is proportional to the residue area), we
can replace σ̃αβ for a spherical film by the macroscopic value σαβ and reduce
Eq. (12.26) to the form

∂σ̃αγ

∂h
= −ΠD . (12.27)

Integrating Eq. (12.27) and substituting the result, as well as Eqs. (12.15) and
(12.22), into Eq. (12.25) yields

P γ
2 = P β +

2σαβ

R
− R′

n
2

R2
ΠD + ΠD +

2
R′

n

⎛
⎜⎝σγα +

∞∫
R−R′

n

ΠDdh

⎞
⎟⎠ . (12.28)
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In the limit of a flat film as R′
n → ∞ and R → ∞, P γ

2 = P β . Substituting
Eqs. (12.28) and (12.22) into Eq. (12.24) and neglecting the difference P β − P∞
leads to Eq. (12.23).

If the chemical equilibrium with respect to both components in the droplet, the
soluble component in the nucleus residue, and the condensing component in vapor
is reached, then µν = µβ and µ′

n = µα
n. In view of Eq. (12.20), we have at complete

equilibrium

∂W

∂ν
= 0 ,

∂W

∂ν ′
n

= 0 . (12.29)

As follows from Eqs. (12.21), (12.23), (12.6), (12.8)-(12.10), equations

µ∞ − µβ − kBTx +
2σαβvα

R
− R′

n
2

R2
ΠDvα = 0 , (12.30)

2vn

R′
n

⎛
⎜⎝σγα +

∞∫
R−R′

n

ΠDdh

⎞
⎟⎠ − 2σαβ (vα

n − vn)
R

(12.31)

− kBT ln
x

x∞
+ ΠD

[
vn − R′

n
2

R2
(vn − vα

n)

]
= 0

determine the values ν and ν ′
n corresponding to the minimum and the saddle

points of the work W which are important for barrier kinetics.

Eq. (12.30) is a generalization of the Gibbs-Kelvin-Köhler equation of the theory
of nucleation on soluble particles. Eq. (12.31) is a generalization of the Ostwald-
Freundlich equation of the theory of solutions. It gives the dependence of nucleus
residue solubility on the residue size and size of the droplet. In view of Eq. (12.6)
for the concentration x as a function of ν and ν ′

n, Eq. (12.31) can be regarded as
a relation between ν and ν ′

n (or between R and R′
n) at the chemical equilibrium

in droplet between the solute component and the nucleus residue.
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12.4 Two- and One-Dimensional Theories of
Deliquescence

Let us now consider the relation between two- and one-dimensional theories of
deliquescence stage of nucleation on soluble particles in undersaturated vapor.
The two-dimensional theory starts with the investigation of the two-dimensional
plot of the work of droplet formation as a function of the number ν of condensate
molecules in the droplet and number ν ′

n of molecules in the solid nucleus residue.
To deal with undersaturated vapor, we will consider the vapor chemical potential
µβ fixed somewhere below µ∞, µβ − µ∞ < 0. As a good approximation for the
disjoining pressure ΠD, we will employ the approximation [12-14]

ΠD = K exp
(
−R − R′

n

l

)
(12.32)

with l being the correlation length for the condensation film around the nucleus
and the factor K being related to surface tensions σβγ , σαγ , σαβ and length l by
the formula [13, 14]

K =
(
σβγ − σaγ − σaβ

)/
l . (12.33)

As we noted in Section 12.3, we do not consider the dependence of the quantities
l and K on the solution concentration and take them at a concentration x∞.

Using Eq. (12.32), we can rewrite the work W given by Eq. (12.17) in the form

W = 4πR′
n

2
σαγ + 4πR2σαβ − 4πRn

2σγβ −
(
µβ − µ∞

)
ν (12.34)

− kBTνx + kBT
(
νn − ν ′

n

)
ln

x

x∞
− 4πR′

n
2
lK exp

(
−R − R′

n

l

)
.

We define the numerical values for the parameters entering Eq. (12.34) as

Rn = 15 · 10−7 cm , vn = 2 · 10−23 cm3 ,

vα = 3 · 10−23 cm3 , vα
n = 2.2 · 10−23 cm3 ,

T = 298 K , σαγ = 200 dyn/cm , σαβ = 72 dyn/cm ,

x∞ = 0.2 , l = 2 · 10−7 cm , K = 3 · 109 dyn
/
cm2 .

(12.35)
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Fig. 12.1 The two-dimensional work F of droplet formation on a soluble nucleus in undersatu-
rated vapor at the vapor chemical potential b = −0.2

These values of the parameters are close to those for real condensation nuclei and
water as a condensate.

It is convenient to deal with dimensionless work of droplet formation, F ≡
W/kBT , dimensionless chemical potentials of vapor, b ≡ (

µβ − µ∞
)/

kBT , and
solvent, bν ≡ (µν − µ∞)/kBT , all of them expressed in terms of thermal units
kBT . The plot of F as a function of ν and ν ′

n is shown in Figs. 12.1 and 12.2
for two values of the vapor chemical potential: b = −0.2 and b = −0.25. The
relief of the ”waterfall path” in Figs. 12.1 and 12.2 shows the trajectory for a
droplet transition from the state with partially dissolved condensation nucleus to
the state with completely dissolved nucleus. Both considered cases demonstrate
the existence of the activation barrier for such a transition, at this Fig. 12.1 il-
lustrates the situation when such a transition occurs with a high probability, and
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Fig. 12.2 The two-dimensional work F of droplet formation on soluble nucleus in undersaturated
vapor at vapor chemical potential b = −0.25

the state with completely dissolved nucleus is more stable than the state with
partially dissolved nucleus. Fig. 12.2 refers to the opposite case when a droplet
state with partially dissolved nucleus is more stable.

Let us now try to describe the situation, illustrated in Figs. 12.1 and 12.2, by using
a one-dimensional approach. This approach assumes that chemical equilibrium
between solute and the soluble core establishes rather quickly, and Eq. (12.31)
holds for every value of the number ν of solvent molecules in a droplet. It is
convenient to rewrite Eq. (12.31) in view of Eqs. (12.6) and (12.32) in the form

kBT ln
(

νn − ν ′
n (ν)

ν

)
=

2vn

R′
n (ν)

[
σγα + lK exp

(
−R − R′

n

l

)]
− 2σαβ (vα

n − vn)
R

+ K exp
(
−R − R′

n

l

)[
vn − R′

n
2 (ν)
R2

(vn − vα
n)

]
. (12.36)
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Fig. 12.3 Plot of ν′
n as a function of ν according to Eq. (12.36)

The number of molecules ν ′
n (ν) in the equilibrium residue of the condensation

nucleus, found as a function of the number of solvent molecules ν by solving
Eq. (12.36) with account of Eqs. (12.35), (12.8)-(12.10), is shown in Fig. 12.3.
The plot demonstrates that there is no equilibrium solution for ν ′

n above a certain
value ν = νi (νi � 2.414 · 106 in Fig. 12.3). This means that rather small soluble
solid cores (ν ′

n < 62300 in Fig. 12.3) become unstable and inevitably dissolve if
the limiting value ν = νi is reached.

The whole picture becomes clearer if one considers the one-dimensional work F̃ =
F (ν ′

n = ν ′
n (ν)) with ν ′

n being determined as a function of ν in accordance with
Eq. (12.36) and the curve depicted in Fig. 12.3. The plots of F̃ are presented
in Figs. 12.4 and 12.5 for two values of the vapor chemical potential: b = −0.2
and b = −0.25. Both plots have two branches corresponding to the regions of
partial and complete dissolution of condensation nucleus along the ν-axis. In
Fig. 12.4, the branch for the partial dissolution of the nucleus has minimum and
maximum points located before the turning point ν = νi to solution instability
(νi � 2.414 · 106, the same as in Fig. 12.3) and the point of intersection with the
branch for complete dissolution. This means that the one-dimensional theory is
applicable in the situation in Fig. 12.4 for the kinetic analysis of droplet transition
between states with partial and complete dissolution of the nucleus.
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Fig. 12.4 Plot of the one-dimensional work F̃ of droplet formation at vapor chemical potential
b = −0.2
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Fig. 12.5 Plot of one-dimensional work F̃ of droplet formation at vapor chemical potential b =
−0.25
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Another situation is shown in Fig. 12.5. Here the maximum point appears some-
where beyond the turning point and a direct application of the one-dimensional
theory is questionable. But we will see in Sections 12.5 and 12.6 that the situation
shown in Fig. 12.5 is not interesting from the point of view of the kinetics.

complete dissolution of

the condensation nucleus
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�
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Fig. 12.6 Plot of one-dimensional chemical potential b̃ν of the solvent in the droplet

The relation between the two- and one-dimensional approaches can be finally
clarified with the help of Eq. (12.21). Substituting Eqs. (12.6) and (12.32) into
Eq. (12.21), we obtain

bν = −νn − ν ′
n

ν
+

2σαβvα

RkBT
− R′

n
2vα

R2kBT
K exp

(
−R − R′

n

l

)
. (12.37)

Using Eqs. (12.35), (12.8) - (12.10) and the dependence ν ′
n (ν) given by Eq. (12.36)

(as shown in Fig. 12.3) to calculate the one-dimensional chemical potential of the
solvent b̃ν ≡ bν (ν ′

n = ν ′
n (ν)) as a function of ν leads to the plot presented in

Fig. 12.6. As well as the plots in Figs. 12.4 and 12.5, the plot of b̃ν has also
two branches corresponding to the regions of partial and complete dissolution of
condensation nucleus along the ν-axis.
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From a thermodynamic point of view, the phenomenon of deliquescence is con-
nected with the existence of the maximum in the branch of the chemical potential
of the solvent in the region of partial dissolution of the nucleus. This maximum
is clearly seen in Fig. 12.6 at ν = νth. The stage of deliquescence is long-living
when the value of the vapor chemical potential b appears to be below from that
maximum (as shown in Fig. 12.6). A prompt transition from a droplet state with
partially dissolved nucleus to a state with complete dissolution of the nucleus
occurs if the vapor chemical potential reaches the close vicinity of the maxi-
mum from below or exceeds the maximum. In this sense, the maximal value
bth = b̃ν

∣∣∣
ν=νth

of the solvent chemical potential determines the deliquescence

threshold, i.e. a certain value of the vapor chemical potential, above which all the
droplets barrierlessly transform into a state with completely dissolved conden-
sation nuclei. Below the threshold, the transition between the states requires an
activation energy which may be called the deliquescence barrier. As follows from
Eq. (12.37),

bth = −νn − ν ′
n (νth)

νth
(12.38)

+
vα

kBT

[
2σαβ

Rth
− K

(
R′

n (νth)
Rth

)2

exp
(
−Rth − R′

n (νth)
l

)]
,

where νth is the root of the equation

db̃ν

dν

∣∣∣∣∣
ν=νth

=
[
∂bν

∂ν
+

∂bν

∂ν ′
n

dν ′
n (ν)
dν

]∣∣∣∣
ν=νth,ν′

n=ν′
n(νth)

= 0 (12.39)

with ν ′
n (ν) and dν ′

n (ν)/dν found from Eq. (12.36), Rth ≡ R|ν=νth,ν′
n=ν′

n(νth) and
R′

n (νth) ≡ R′
n|ν′

n=ν′
n(νth) determined with the help of Eqs. (12.6), (12.8)-(12.10).

As can be seen from Fig. 12.6, if the vapor chemical potential is close enough to the
deliquescence threshold from below, the one-dimensional approach is applicable
as far as the vapor chemical potential will be above the value bi ≡ b̃ν

∣∣∣
ν=νi

of

the chemical potential of the solvent at the turning point corresponding to the
beginning of the instability (the same turning point ν = νi as in Figs. 12.3-
12.5). It is the case for the situation shown in Fig. 12.1. It is not the case for
the situation shown in Fig. 12.2. The part of the b̃ν-curve, located in Fig. 12.6
beyond the turning point on the branch with partial dissolution of a nucleus, has
no physical meaning.
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12.5 Kinetics of Droplet Growth over the
Deliquescence Barrier

Let us consider, now, the kinetics of droplet growth over the deliquescence bar-
rier in the situation when the one-dimensional approach is applicable, i.e. in the
situation illustrated by Fig. 12.4. We denote by ν

(1)
s , νc, and ν

(2)
s the positions of

the extrema of the one-dimensional work of droplet formation. They are roots of
the equation

b = b̃ν

∣∣∣
ν=ν

(1)
s ,ν=νc,ν=ν

(2)
s

(12.40)

and correspond to the intersection points of the b-line with the b̃ν -curve in
Fig. 12.6 (note that the vapor is undersaturated in the situations illustrated
by Figs. 12.4 and 12.6). The root ν = ν

(1)
s corresponds to the stable equilibrium

droplet with ν ′
n > 0 (partly dissolved nucleus) at the bottom of the first potential

well of the one-dimensional work F̃ in the undersaturated vapor at a given vapor
chemical potential b. The root ν = νc corresponds to the critical droplet with
ν ′

n > 0 (the residue of the nucleus still present in the droplet), which is in unsta-
ble equilibrium with the vapor at the same b. This root determines the location of
the maximum in the curve of the one-dimensional work F̃ of droplet formation.
The root ν = ν

(2)
s refers to the droplet with completely dissolved nucleus, which is

in a stable equilibrium with the vapor at the same b at the bottom of the second
potential well of the one-dimensional work F̃ .

Introducing F
(1)
s ≡ F̃

∣∣∣
ν=ν

(1)
s

, Fc ≡ F̃
∣∣∣
ν=νc

, and F
(2)
s ≡ F (ν ′

n = 0)|
ν=ν

(2)
s

, let us

define the activation barriers

∆F (1) ≡ Fc − F (1)
s , ∆F (2) ≡ Fc − F (2)

s (12.41)

for the direct (denoted with index (1)) and reversal (denoted with index (2))
transitions of droplets over the deliquescence barrier. As follows from general
formulas of heterogeneous nucleation ([14], Eq. (2.11)) and can be seen from
Figs. 12.4 and 12.5, the following chain of inequalities,

∂F
(2)
s

∂b
<

∂Fc

∂b
<

∂F
(1)
s

∂b
< 0 , (12.42)
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holds for the derivatives of F
(1)
s , Fc, and F

(2)
s with respect to vapor chemical

potential b. As a result, the direct barrier ∆F (1) decreases with increasing the
vapor chemical potential, while the reversal barrier ∆F (2) increases.

Let ηn be the number of nuclei with an initial radius Rn (and with a corresponding
number νn of molecules of soluble substance) per unit of the system volume.
Denoting by η(1) (t) and η(2) (t) the total numbers of droplets at the bottoms of
the first and second potential wells of the work of droplet formation at a given
vapor chemical potential b, we have

ηn = η(1) (t) + η(2) (t) . (12.43)

We will be interested in finding the numbers η(1) (t) and η(2) (t) as functions of
time t and the barriers ∆F (1) and ∆F (2) at a given vapor chemical potential b.

The droplets under consideration, belonging to the first and the second potential
wells of work F̃ , are in distinct aggregative quasi-equilibrium states. They are
separated by the region of the maximum of the work F̃ where droplets obey the
quasi-steady state. Mutual aggregative equilibrium state of droplets is achieved
as a result of kinetic processes. Two distinct quasi-equilibrium distributions in
droplet sizes at the bottoms of the potential wells of the work F̃ can be written
as [16]

c(1)
n =

η(1) (t)

π1/2∆ν
(1)
s

exp
[
−
(
F̃ − F (1)

s

)]
, (12.44)

c(2)
n =

η(2) (t)

π1/2∆ν
(2)
s

exp
[
−
(
F
(
ν ′

n = 0
)− F (2)

s

)]
,

where

∆ν(1)
s ≡

⎡
⎣ 2

d2F̃
/

dν2

⎤
⎦

1/2

ν=ν
(1)
s

=

⎡
⎣ 2

db̃ν

/
dν

⎤
⎦

1/2

ν=ν
(1)
s

, (12.45)

∆ν(2)
s ≡

[
2

d2F (ν ′
n = 0)

/
dν2

]1/2

ν=ν
(2)
s

=
[

2
dbν (ν ′

n = 0)/dν

]1/2

ν=ν
(2)
s

(12.46)
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are correspondingly the half-widths of the left and right wells in the curve of
the work F̃ of droplet formation along the ν-axis. To write the second right-
hand parts in Eqs. (12.45) and (12.46), we took into account Eq. (12.20) and the
definitions F ≡ W/kBT , bν ≡ (µν − µ∞)/kBT .

If achievement of the quasi-equilibrium states at the bottoms of potential wells
and the quasi-steady state at the top of the potential hump of the work of droplet
formation requires much less time than is needed for establishing the total equi-
librium, one can use the following equation for transition kinetics over the deli-
quescence barrier,

dη(1) (t)
dt

= −
(
J (1) (t) + J (2) (t)

)
. (12.47)

Direct nucleation rate J (1) (t) and reversal nucleation rate J (2) (t) can be deter-
mined here as

J (1) (t) =
η(1) (t)

π∆νc∆ν
(1)
s

W+
c exp

[
−∆F (1)

]
,

(12.48)

J (2) (t) = − η(2) (t)

π∆νc∆ν
(2)
s

W+
c exp

[
−∆F (2)

]
,

where

∆νc ≡
⎡
⎣ 2∣∣∣d2F̃

/
dν2

∣∣∣
⎤
⎦

1/2

ν=νc

=

⎡
⎣ 2∣∣∣db̃ν

/
dν
∣∣∣
⎤
⎦

1/2

ν=νc

(12.49)

is the half-width of the maximum of the work of droplet formation at ν =
νc (we again took into account Eq. (12.20) and the definitions F ≡ W/kBT ,
bν ≡ (µν − µ∞)/kBT ),

W+
c = παCvT nβ

∞ebRc
2 (12.50)

is the rate of attachment of vapor molecules to the droplet with radius Rc ≡
R|ν=νc,ν′

n=ν′
n(νc)

at the maximum of the work of droplet formation, αC is the
condensation coefficient, vT is the mean thermal velocity of the vapor molecules,
nβ∞ is the concentration of vapor at equilibrium with a flat interface between the
vapor and its condensate. A substantiation of Eq. (12.48) can be given in the
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usual way in nucleation theory. For instance, it was done in Ref. 16 for the case
of micellization in surfactant solutions.

Solving Eq. (12.47) with the initial conditions,

η(1) (0) = ηn , η(2) (0) = 0 , (12.51)

yields

η(1) (t) =
ηn

1 + A

{
A + exp

[
−J (1) (0)

ηn
(1 + A) t

]}
, (12.52)

η(2) (t) =
ηn

1 + A

{
1 − exp

[
−J (1) (0)

ηn
(1 + A) t

]}
, (12.53)

where

A ≡ ∆ν
(2)
s

∆ν
(1)
s

exp
(
∆F (1) − ∆F (2)

)
. (12.54)

As follows from Eqs. (12.52) and (12.53), a characteristic time td of the deliques-
cence transition, i.e. of establishing the mutual aggregative equilibrium between
droplets with partially and completely dissolved condensation nuclei, is deter-
mined as

td =
ηn

J (1) (0) (1 + A)
. (12.55)

According to the considerations given above in the commentary to Eq. (12.42), the
smaller direct barrier ∆F (1) the larger is the reversal barrier ∆F (2). If ∆F (1) �
∆F (2) then Eqs. (12.54), (12.51), (12.48) and (12.55) give A → 0, and

td → π∆νc∆ν
(1)
s

W+
c

exp
(
∆F (1)

)
(12.56)

is fulfilled in this case. Evidently, the time td can be considered, in view of the
right-hand side of Eq. (12.56), as a mean expectation time for droplet transition
in the volume 1/ηn. The time-lag of reaching the quasi-equilibrium states at
the bottoms of the potential wells, t

(1)
s and t

(2)
s , and the time-lag of establishing
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the quasi-steady state at the top of the potential hump of the work of droplet
formation, tc, can be estimated [14] as

t(1)s =

(
∆ν

(1)
s

)2

2W (1)
s

, tc =
(∆νc)2

2W+
c

, t(2)s =

(
∆ν

(2)
s

)2

2W (2)
s

, (12.57)

where W
(1)
s and W

(2)
s are determined by Eq. (12.50) with replacing Rc

2 by(
Rs

(1)
)2

and
(
Rs

(2)
)2

correspondingly, where

Rs
(1) ≡ R|

ν=ν
(1)
s , ν′

n=ν′
n

(
ν
(1)
s

) , Rs
(2) ≡ R|

ν=ν
(2)
s ,ν′

n=0
. (12.58)

The following hierarchy of kinetic times,

t1 � t(1)s ∼ tc ∼ t(2)s � td , (12.59)

should exist if ∆ν
(1)
s ≈ ∆νc ≈ ∆ν

(2)
s . The time t1 is here a specific time of

establishing the internal chemical equilibrium in the droplet with solid dissolving
core which was calculated in Ref. 5 by considering kinetics of dissolution, diffusion
and adsorption of the core substance in the droplet. As follows from Eqs. (12.56)-
(12.59), the validity of the approach in this section is controlled by the strong
inequality

exp
(
∆F (1)

)
� 1 . (12.60)

The larger ∆F (1) (and the smaller ∆F (2)) the larger is the parameter A and the
slowlier is the transition.

12.6 Some Approximate Formulas and Conclusions

The application of the one-dimensional theory allows us to obtain rather simple
approximate formulas for distributions of droplets Eq. (12.44) and the specific
times Eq. (12.57). As was previously said, the values of the vapor chemical po-
tential b, at which an intensive kinetic overcoming of the activation barrier of
deliquescence does occur, should be rather close to the threshold value bth. This
fact permits one to use a parabolic approximation for the solvent chemical po-
tential bν in the vicinity of its maximum bth [14]. In this case, the direct barrier
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∆F (1), the locations ν
(1)
s , νc and the half-widths ∆ν

(1)
s , ∆νc of the first poten-

tial well and potential hump of the one-dimensional work F̃ of droplet formation
along the ν-axis can be expressed at b < bth as [13, 14]

∆F (1) =
4
3

(bth − b)3/2

⎡
⎣ 2∣∣∣d2b̃ν

/
dν2

∣∣∣
⎤
⎦

1/2
∣∣∣∣∣∣∣
ν=νth

, (12.61)

ν(1)
s = νth −

⎡
⎢⎣ 2 (bth − b)∣∣∣d2b̃ν

/
∂ν2

∣∣∣
ν=νth

⎤
⎥⎦

1/2

,

(12.62)

ν(1)
c = νth +

⎡
⎢⎣ 2 (bth − b)∣∣∣d2b̃ν

/
dν2

∣∣∣
ν=νth

⎤
⎥⎦

1/2

,

∆ν(1)
s = ∆νc =

⎡
⎢⎣ 2

(bth − b)
∣∣∣d2b̃ν

/
dν2

∣∣∣
ν=νth

⎤
⎥⎦

1/4

. (12.63)

In view of Eq. (12.39), the second derivative of the dimensionless condensate
chemical potential b̃ν with respect to the number of condensate molecules ν in
the droplet can be written at ν = νth in the form

d2b̃ν

dν2

∣∣∣∣∣
ν=νth

=

[
∂2bν

∂ν2
+ 2

∂2bν

∂ν∂ν ′
n

dν ′
n (ν)
dν

+
∂2bν

∂ν ′
n

2

(
dν ′

n (ν)
dν

)2

(12.64)

+
∂bν

∂ν ′
n

[
∂

∂ν

(
dν ′

n (ν)
dν

)
+

dν ′
n (ν)
dν

∂

∂ν ′
n

(
dν ′

n (ν)
dν

)]]
ν=νth,ν′

n=ν′
n(νth)

with ν ′
n (ν), dν ′

n (ν)/dν, ∂(dν ′
n (ν)/dν)/∂ν and ∂(dν ′

n (ν)/dν)/∂ν ′
n determined

with the help of Eq. (12.36).

Now we have all necessary formulas to estimate the characteristic times and
values of thermodynamic quantities at the deliquescence threshold and below it.
Substituting Eqs. (12.36) and (12.37) into Eq. (12.39) and solving Eq. (12.39)
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with respect to νth with the help of Eqs. (12.8)-(12.10) and the set of parameters
determined by Eq. (12.35), we obtain

νth � 1.319 · 106 , Rth = 2.3495 · 10−6 cm ,

ν ′
n (νth) � 3.9671 · 105 , R′

n (Rth) = 1.2373 · 10−6 cm .
(12.65)

As follows from Eqs. (12.38), (12.64) and (12.65) with the help of Eqs. (12.36),
(12.37), (12.8)-(12.10) and (12.35), the one-dimensional vapor chemical potential
and its second derivative with respect to the number of solvent molecules are
equal at the deliquescence threshold

bth = −0.19275 ,
d2b̃ν

dν2

∣∣∣∣∣
ν=νth

= −6.2874 · 10−14 . (12.66)

The negative sign of bth in Eq. (12.66) means that the deliquescence threshold
does realize in the undersaturated vapor.

Making estimations for the barrier transition from a deliquescence state to a
state with completely dissolved nucleus, let us choose a not too high value for
the direct activation barrier ∆F (1). For instance, taking ∆F (1) = 10, we assume
that the transition occurs intensively. It follows from Eqs. (12.61) and (12.66) at
∆F (1) = 10 that the value of the vapor chemical potential b, corresponding to
such barrier, is

b = −0.19287 . (12.67)

Substituting Eqs. (12.65)-(12.67) into Eqs. (12.62) and (12.63) yields the following
values of the quantities ν

(1)
s , νc and ∆ν

(1)
s , ∆νc at ∆F (1) = 10

ν(1)
s = 1.2570 · 106 , νc = 1.3811 · 106 , ∆ν(1)

s = ∆νc = 2.2647 · 104 . (12.68)

It is easy now to check the accuracy of the formulas (12.61)-(12.63). Direct solving
of Eq. (12.40) with the help of Eqs. (12.35)-(12.37) for a value of b given by
Eq. (12.67) yields

νs
(1) = 1.2594 · 106 , νc = 1.3835 · 106 , ν

(2)
s = 3.0950 · 106 ,

ν ′
n

(
ν

(1)
s

)
= 4.1079 · 105 , ν ′

n (νc) = 3.8135 · 105 .

(12.69)
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As follows from Eqs. (12.45), (12.46) and (12.49) in view of Eqs. (12.35)-(12.37)
and (12.69),

∆ν(1)
s = 2.1788 · 104, ∆νc = 2.3528 · 104, ∆ν(2)

s = 5.326 · 103 . (12.70)

Substituting Eqs. (12.35), (12.67) and (12.69) into Eqs. (12.34) with the help of
Eqs. (12.6), (12.8)-(12.10) and (12.41) results in

∆F (1) = 10.004 , ∆F (2) = 34152 . (12.71)

Comparing Eqs. (12.68) with Eqs. (12.69)-(12.71), one can conclude that the
accuracy of Eqs. (12.61)-(12.63) is appropriate.

Now we are able to estimate the characteristic kinetic times td, t
(1)
s and tc. As

follows from Eq. (12.71), ∆F (1) � ∆F (2) in the considered case, and we can use
Eq. (12.56) to find td. Assuming αC = 1, vT = 104 cm/s, nβ∞ = 1017 cm−3 and
using Eq. (12.35) in Eq. (12.50), substituting the result together with Eq. (12.68)
into Eqs. (12.56) and (12.57), we find at ∆F (1) = 10

td = 2.4 · 103 s , t(1)s = 1.7 · 10−2 s ,

(12.72)
tc = 1.9 · 10−2 s , t(2)s = 6 · 10−4 s .

The estimates in Eq. (12.72) show that the hierarchy of specific kinetic times
expressed by Eq. (12.59) is fulfilled for the data chosen to illustrate the results of
the one-dimensional theory of deliquescence.
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