Nuclel: GPU-accelerated
Many-core Network Coding

Hassan Shojania, Baochun Li Xin Wang
Department of Electrical and Computer Engineering School ah@der Science
University of Toronto Fudan University
{hassan, blj@eecg.toronto.edu xinw@fudan.edu.cn

Abstract—While it is a well known result that network coding both proposed to apply random network coding, first proposed
achieves optimal flow rates in multicast sessions, its potential jn [6], in practical content distribution systems. Extemsi

for practical use has remained to be a question, due to its high gjmjation studies have shown that network coding delivers
computational complexity. Our previous work has attempted to | to th ticall timal f | |

design a hardware-accelerated and multi-threaded implemen- close to theoretically optimal periormance Ievels. .

tation of network coding to fully utilize multi-core CPUs, as Unfortunately, to date, there has been no commercial real-

well as SSE2 and AltiVec SIMD vector instructions on x86 and world systems reported in the literature that take advantag
PowerPC processors. This paper represents another step foad, of the power of network coding. We believe that the main
and presents the first attempt in the literature to maximize cause of this observation — and the main disadvantage of

the performance of network coding by taking advantage of
not only multi-core CPUs, but also potentially hundreds of network coding — is the high computational complexity of

computing cores in commodity off-the-shelf Graphics Processing random network coding with random linear codes, especially
Units (GPU). as the number of blocks to be coded scales up. Since random

~ With GPU computing gaining momentum as a result of |inear codes are universally adopted in all proposed paicti
increased hardware capabilities and improved programmability, protocols using network coding, we believe that it is impott

our work shows how the GPU, with a design involving thousands to desian and implement random linear codes such that its
of lightweight threads, can boost network coding performance 9 Imp : u !

significantly. Many-core GPUs can be deployed as an attractive '€al-world coding performance is maximized, on modern off-
alternative and complementary solution to multi-core servers, by the-shelf hardware platforms. This is particularly impaottfor
offering a better price/performance advantage. In fact, multi- streaming servers that need to sustain the bandwidth estjuir
core CPUs and many-core GPUs can be deployed and usediqr hyndreds of directly connected peers in a peer-assisted

to perform network coding simultaneously, potentially useful in . .
media streaming servers where hundreds of peers are ServedVldeo—on—Demand (VoD) streaming system, and to saturate

concurrently by these dedicated servers. In this paper, we presit the line speed of its Gigabit Ethernet interface.
Nuclei, the design and implementation of GPU-based network ~ Our previous work [7] has shown a SIMD-accelerated
coding. With Nuclei, only one mainstream NVidia 8800 GT GPU multi-threaded implementation of network coding, thatetak

outperforms an 8-core Intel Xeon server in most test cases. A aqyantage of both multi-core CPUs and SIMD vector instruc-
combined CPU-GPU encoding scenario achieves coding rates of

up to 116 MB/second for a variety of coding settings, which is tions on. modern processors. This paper rgpresents arlother
sufficient to saturate a Gigabit Ethernet interface. substantial step forward, and presents the first attempten t
literature to maximize the performance of network coding
by taking advantage of not only multi-core CPUs, but also
potentially hundreds of computing cores in commaodity bt
shelf many-coreGraphics Processing Units (GPUs)Modern

First introduced by Ahlswedet al. [1] in information the- NVIDIA GPUs, for example, are designed with hundreds of
ory, network codinghas received significant research attentiospecializedcores each with much less complexity than a CPU
in the networking community. The fundamental advantagmre, but nevertheless supports operations required farge
of network coding hinges upon theoding capabilities of purpose high-performance computing. We are motivated by
intermediate nodes, in addition to forwarding and repiigat the natural curiosity of whether or not GPUs are able to help
incoming messages. Ahlsweeéeal. [1] and Koetteret al.[2] improve the performance of network coding. Such an interest
have proved that the cut-set capacity bounds of unicast floigsfurther stimulated by the relative low cost of mainstream
from the source to each of the receivers can be achieved iGRUs as compared to multi-core CPUs. As an example, the
multicast session with network coding in directed networksNVIDIA GeForce 8800 GT retails for approximately 20 of

In theory, network coding helps to alleviate competithe cost of a dual Quad-core Intel CPU setup.
tion among flows at the bottleneck, thus improving sessionin this paper, based on the NVIDIA CUDA framework,
throughput in general. It has been repeatedly shown the¢ presentNuclei, our design and implementation of GPU-
network coding can lead to more robust protocols with lefmsed many-core network coding, across platforms incgudin
overhead [3], and better utilization of the available baiilv =~ Windows, Linux and Mac OS X. WitiNuclei, we have made
Intuitively, it is promising to apply principles of networkthe following new observations on the feasibility of GPU-
coding in large-scale content distribution and media stirg based network codingrirst, although the GeForce 8800 GT,
systems. Indeed, Wat al. [4] and Gkantsidiset al. [5] have featuring 112 cores, is less capable than the 8-core IntehXe

Index Terms—Network coding, Many-core GPU computing.

I. INTRODUCTION

server with respect to its raw computing power, the GPhlocks, which may lead to bursty CPU usage when the final
is designed to better hide memory latency, a critical issidocks are decoded. Alternatively, while Reed-Solomon)(RS
that affects the performance of network coding, partidylarcodes may also be used to reduce coding complexity, its
in the typical coding range for streaming serve8scongdby smaller coded message space makes it difficult for multiple
completely detaching the encoding process from the CPU aindependent encoders to code a shared data source, to be sent
hand it over to the GPU, the CPU cores on dedicated streamtnga single receiver.
servers are set free to perform other CPU-intensive tasits th While there is no doubt that more efficient codes exist,
GPUs are not able to perfornithird, due to the specific GPU they may not be suitable for random network coding in a
design that schedules its threads in hardware, the perfm@napractical setting. In contrast, random linear codes arglgm
of GPU-based network coding is not affected by competirgffective, and can be recoded without affecting the guaeant
threads and background tasks. In contrast, variations of wpdecode. We believe that our work on a high-performance
to 9% are observed with CPU-based network coding, dumplementation of random linear codes may help realize the
to background threadg&inally, GPUs are equally capable offull potential of random network coding in a real-world sedgt
both encoding and decoding. Though decoding is much maDar previous work [7] has evaluated the performance of our
challenging to be performed on the GPU with less capahl@aplementation of network coding that takes advantage of
performance than the 8-core Intel Xeon server at small blookulti-core CPUs and modern SIMD vector instruction sets.
sizes, the GPU decoding performance improves substantiathough we have achieved a level of performance in [7] that
as block sizes become larger, and is on par with 8-core CPhkss not been previously reported at the time, this papestake
at a block size ofi6 KB. another step forward, by evaluating the feasibility of many
Nuclei has achieved stellar performance results, makingdbre network coding using over a hundred specialized cares o
feasible to saturate Gigabit Ethernet interface by comigini GPUs. We believe that techniques explored in our GPU-based
8-core Intel Xeon CPUs and a mainstream NVIDIA GeForaeetwork coding implementation can readily be employed to
8800 GT GPU. With respect to encoding, for example, theerform other linear coding schemes operating in the Galois
GeForce 8800 GT by itself is able to achieve an encodiriigld, such as Reed-Solomon codes.
rate of 84 MB/second with 128 blocks, outperforming all
eight CPU cores combined. A combined CPU-GPU encoding [1l. OVERVIEW OF GPU COMPUTING
scenario achieves coding rates of upli® MB/second for a AND NETWORK CODING

va}riety of coding_settings, which is sufficient to saturdie t Modern GPUs have gradually evolved from specialized
G'gﬁb't Ethe_rnet m;e:}face. . . foll engines operating on fixed pixels and vertex data types, into
_The remainder of this paper is organlged as 1o ows._Sec. }ogrammable parallel processors with enormous computing
discusses related _Work. Sec. Il provides an overview Bwer [11]. NVIDIAS Tesla GPU architecture is employed in
both GPU compqtlng and random network coding. Sec. | ide range of professional and consumer GPU products, and

applications in the C language, using the Compute Unified
Il. RELATED WORK Device Architecture (CUDA) programming model and devel-
' 0 t tools [12].
Ho et al. [6] has been the first to propose the conceptpg1en O?S[] luation in thi h .
of random network codingusing random linear codes, in ur performance evaluation in this paper uses the main-
' r?lt(ream NVIDIA GeForce 8800 GT GPU withi 2 cores, which

Wh'.Ch an mterr_ned_late no<_je trar_15m|ts on each outgo_|_ng IIis supported by the CUDA platform. Our cross-platform im-
a linear combination of incoming messages, specified b

independently and randomly choseode coefficientsover pYementation IMucle; however, can be used on any CUDA-
some finite field. Wuet al. [4] and Ghantsidiset al, [5], S.PPOrtéd GPU, ranging from the high-end GeForce GTX 280

[8] have shown that random network coding is benefici(\;{Y!th 240 computing cores, to the mobile GeForce 8600M GT,

in bulk content distribution systems. Theoretically, thighh with 32 cores.

computational complexity of random linear codes has been i

well known: it motivates research on the use of more efff™ The Tesla Architecture and CUDA

cient codes in real-world systems, including traditionakR- The Tesla GPU architecture is based on a scalable array of
solomon (RS) codedpuntain codeqd9], and chunked codes Scalar Processors (SPs)hese SPs are grouped into groups of
[10]. While fountain codes are much less computationalB; calledStreaming Multiprocessors (SM&nd share a number
intensive as compared to random linear codes, they suffer fr of resources, includingegistersand shared memoryl13]. On

a number of drawbacks: (1) coded blocks cannot be recodbed 8800 GT, for example, there ar&2 SPs grouped intd4
without complete decoding, which defeats the originalnbtdf SMs, as shown in Fig. 1. Threads too are grouped timtead
network coding; (2) depending on the code used, there exibtecks which allow threads of each block to share data and
a small amount of overhead (about 5% with 10,000 blocksynchronize among themselves. Each thread block is askigne
and may be over 50% with 100 blocks), which decreases tttea SM and runs on its SPs. After a thread block terminates,
efficiency of using bandwidth; and (3) the decoding procesew blocks are launched on the vacated SM. The GPU process
cannot be progressively performed while receiving coddihally finishes when all thread blocks terminate.

Thread blocks

GeFor,c»eBBOOGT A CUDA-enabled program, written in C, consists of the

host codethat runs on the CPU, and device codethat
runs on the GPU. When the CPU invokes a GRinel (the
device code analogous to an application process), the CUDA
driver programs the GPU to launch a large number of threads.
””” I I The host code is compiled by a regular C/C++ compiler.
North

T
BEg ireadarp. N The device code is compiled by NVIDIA's own compiler,
[T _ generating an assembly language output in a format called
Shared memoy Pt T ' Parallel Thread eXecution (PTX). PTX is a “virtual” langeag
o Thread Blocky and is not specific to a particular GPU product. However,
r e.4es/s most of its instructions have machine instruction equivie
357.668/8 in the current CUDA GPUs. Either the PTX intermediate
Craphics memory repre_sentanon or, if the target GPL_J is known at comp_He time
(512 MB DDR3) the final generated code calledibin are embedded in the

final application executable. When an application executes,
g?dolGTng Sﬁ?jﬁﬂtufepm our Mac F_;Lotg;;ttgg with thCNW'fﬁte'I:;fce the CUDA runtime generates the machine code, if needed,
brocessorsz GB memory, and 2 MB cache per przogeusasor_ ore L2 and loads it to the GPU through the device driver.
Each SM manages and executes concurrent threads (of BndX@ndom Network Coding
or more thread blocks) in hardware with zero scheduling With random linear codes, data to be disseminated is divided
overhead. EvenBs2 threads of a thread block are groupedhto n blocks[bs, b, ..., b,]T, where each block; has a fixed
together in ahread warp running in a synchronized mannemumber of bytes: (referred to as the block size). To code a
with each other, executing the same instruction in a SIMiew coded block:;, a node first independently and randomly
(Single Instruction, Multiple Thread) fashion. Since there chooses a set of coding coefficients;, cja2,--- ,¢;n] In
no more thar8 SPs in a SM, thé&2 threads of a thread warp GF(2®), one for each received block (or each original block
are scheduled eight at a time dncycles. As the example in on the data source). It then produces one coded higckf
Fig. 1 shows, the firsB-thread group ofwarp, of the 4" & bytes: n
thread block is currently executed at cy¢leEach of the next Tj = Z Cji - bi (1)
8-thread group ofwarp, will execute in the nex8 cycles. i=1
However, threads ofvarp, are not ready to be scheduled, A node decodes as soon as it has receivedinearly
e.g., because of a pending memory access. independent coded bloclks= [1'1, T2,y (En}T. It first forms
Since each SP is deeply pipelined, read-after-write depéh? > 7 Coefficient matrixC, using the coefficients of each
dencies can occur often. Similarly, a memory access caus k b;. Each row in C corresponds to the coefficients
thread warp to stall for the next few hundred cycles till th@f ©ne coded block. It then recovers the original blocks
data arrives. The beauty of the Tesla architecture comes fr&® = 01,62, -+ bn]" as: .
the fact that, as soon as it detects a thread of a thread warp b=C"x 2)
can not proceed, it can switch to another ready warp with zefo this equation, it first needs to compute the inverseCof
scheduling overhead [13]. As a result, it is essential toehausing Gaussian elimination. It then needs to multiply" and
as many thread as possible so the SPs can execute from othe¥hich takesn® - k multiplications of two bytes in GR°).
thread warps till the stalled one can be rescheduled. Tige laf he inversion ofC is only possible when its rows are linearly
thread count, together with the support for many outstapdifndependenti.e., C is full rank.
load requests, helps to hide memory load latency [12]. GF(28) operations are routinely used in random linear codes
Comparing to the CPU, the GPU dedicates its die areaWgthin tight loops. Since addition in GE®) is simply an XOR
a higher number of processing cores. SPs are designed®B§ration, it is important to optimize the implementatidh o
be simple in-order engines without branch prediction, stegi multiplication on GF2®). A baseline implementation can take
renaming, multiple pipelines and many other more advancegvantage of the widely-used fast GF multiplication thifoug
but standard features found on modern CPUs. The good nd@@arithm and exponential tables, similar to the tradiion
is that, with wider and faster memory interfaces, the cp@ultiplication of large numbers. Fig. 2 shows a C function
has a much higher memory bandwidth at its disposal than #h@t multiplies using three table references, where and
CPU. For example, the DDR3 memory found in the 8800 GTXP reflect GR2®) logarithmic and exponential tables. Such a
has a peak performance bf.6 GB/s, compared to a meagerbaseline implementation requires three memory reads aad on
6.4 GB/s of our Mac Pro server based on dual Quad-core 2gdition for each multiplication.
GHz Intel Xeon CPUs, with its DDR2-800 memory. Furthef, byte table_gf_multiply(byte x, byte)
with a 16-lane bidirectional PCI Express 2.0 interface bus{
between GPU and CPU,&GB/s bidirectional data rate gives, i (Xre:tjmo g' y =20
us abundant bandwidth to move data around between the GPU return expllog[x] + log[yl];
and system memory, with almost no cost for the size of data
we cope with to perform network coding. Fig. 2. Table-based multiplication in GE8): baseline implementation.

Proc. 1 Proc. 2

System memory

Graphics board (2 GB DDR2-800)

A network node does not have to wait for all linearly loop_gf multiply _word to multiply a one-byte coef-
independent coded blocks before decoding begins. It clicient with a 4-byte word. This is not a straightforward
instead start to decode as soon as the first coded blockask, however. Both Intel SSE2 and PowerPC AltiVec SIMD
received, and then progressively decode coded blocks gs thestructions include special instructions that allow larietic
arrive over the network using Gauss-Jordan elimination. and comparison operations on individual bytes 16fbyte

registers in parallel. With no similar instruction avaikbon

IV. NUCLEI: GPU-ACCELERATED NETWORK CODING the GPU, we have to emulate such byte-long operations on 4-
. . . byte words. The main issues involved are the followifig:To

In th!s sectlon,_ we prese_nt ch_allenges an_d solutions 'f&tt-shift individual bytes ofdata word without affecting the
volved in the design oNL_chel,our implementation of GPU- neighboring bytes (statement (7) in Fig. 8) To determine
accelerated network coding. the “overflow” status by examining the top bit of individual
bytes of the32-bit data word (statement (6)J3) To apply
the irreducible polynomial byt®x1ld to each byte of the

Random network coding suffers from a major performancgata word based on the “overflow” states (statements (8) and
bottleneck. Byte-length multiplication in G#) is a costly (9)). We use a series iffelse conditions, byte extractions,
operation due to three memory accesses whgfexp tables pitwise operations and bit shifts to address these issues E
are used, and it is performed in tight loops over rows of coefyith our best effort to minimize the code complexity, the
ficients and coded blocks, eachofindk bytes, respectively. compiled code results in no fewer thaf cubin instructions
To address this bottleneck, we first proposed in [7] to révisin the 8800 GT.
the basics by performing the multiplication on-the-fly use 7o evaluate the computational performance of our loop-
loop-based approach in Rijndael’s finite field, rather thsingl based GF-multiplication, we have designed a benchmark that
traditionallog/exp tables. Although loop-based multiplicationentails an encoding process that produeces 7168 coded
takes longer to perform (up witerations), it lends itself better plocks of size2048 bytes each, where each coded block is a
to a parallel implementation that takes advantage of vectffear combination 01024 blocks,i.e., (n = 1024, k = 2048).
instructions in order to operate on wider chunks of elements detach the benchmark from the memory performance of
from a matrix row at the same time. The loop-based equivalafe GPU, we create input coefficients and rows of data on
of the table-based multiplication in Fig. 2 is shown in Fig. 3the fly, rather than loading them from graphics memory. To
evaluate the worst-case scenario, we consistentlyOxie

A. Random Network Coding: Performance Bottleneck

?’te loop_gf_multiply_byte(byte factor, byte data) as coefficients to make sure that the loop always iterates for
byte result = 0; @) the maximumsg8 times. Our benchmark is implemented by
boo. °(‘§§ft'g;”'!”:9:0) (g; launching 7168 GPU threads and assigning the computation

if ((factor & 1) 1= 0) @) of each coded block to its own thread. Since a core in the
overtoning ~ data & ous0: ©e GPU has a 32-bit execution unit, each GPU thread executes
data = data << 1; ™ loop_gf_multiply_word for n-k/4 times, and the entire
i (oaioing aomat X Brcancancz ® benchmark executes the function for a total@f.-k/4) times.
data = data ~ Ox1d; ©9) The execution of the benchmark tak&s09 ms (millisec-
) factor = factor >> 1; (10) onds) to complete, which shows a much better performance

} et result an than byte-length GF-multiplication, which tak&$86 ms to

complete.

Fig. 3. Loop-based byte-length multiplication in @F).

With such a loop-based approach, we were able to take Further Optimizations of Word-length GF-multiplicatio
advantage of SIMD (Single Instruction, Multiple Data) v@act In a CUDA kernel, all32 threads of athread warpexe-
instruction sets to perform GE®) multiplication on16 byte- cute the same instruction in a synchronized manner. When
long units of each row, rather than single-byte units [7teaching anf/else condition, even if only a single thread
Rather than using vector instructions provided by the CPthkes one path against the others, the overall warp execu-
is it possible to use the GPU and still achieve acceleratédn time will be delayed as ifboth pathsare executed.
multiplication using such a loop-based approach? At fir$¥hen generating the word-length polynomial mask pattern in

glance, it is a daunting challenge due to the lack of SIMBurloop_gf multiply_word implementation, with each

instructions and wide execution units on the GPU. byte having0x1d if individual bytes of thedata word is
o about to overflow, we resorted to a series of conditions. It

B. Loop-based GR2*) Multiplication on the GPU is apparent that, to further improve performance, we need to

Unlike modern CPU cores withh28-bit registers and exe- avoid these conditions as much as possible.
cution units, current CUDA-enabled GPUs have plain 32-bit As shown in statements (5), (6), and (7a) of Fig. 4, we can
registers and execution units. Nevertheless, they haves mgenerate the polynomial mask pattern by shifting the owerflo
than a hundred processing coresg(,112 SPs for the 8800 state of bits to the first bit of each byte and then multiply the
GT) that run in parallel. entire word byOx1d . With this improvement, the number of
To take full advantage of the availabB2-bit arithmetic cubininstructions decreases frohg to 14, and our benchmark
units in the GPU, we rewrite byte-length multiplication asow takes2373 ms, a5.7% improvement of performance.

word loop_gf_multiply_word(byte factor, word data) TABLE |
{ CPUvVs. GPU: THEORETICAL COMPUTING PERFORMANCE
wo_rd PrimPolyMask, result = 0; 1)
""h"eif (I?fgggr!:& Oi) " 0){ - @ Mac Pro 8-core Intel 8800 GT
result = result ~ data; 4) f Coregreq'f(GHZ) 28 1.5
/I creating the irreducible polynomial mask n'. number or cores 8 112
PrimPolyMask = data & 0x80808080; (5) w: multiply data width (bytes) 16 4
PrimPolyMask = PrimPolyMask >> 7; (6) ic: instruction count/iteration 12 11
Per core superscalar factor 3 1
(7a) PrimPolyMask = PrimPolyMask * Ox1d; ccy: cycle count/iteration 12/3 =4 11
PrimPolyMask = _ mul24(PrimPolyMask, Ox1d); Est. throughput (cycles/inst.) | 7-0.33 + 5 - 0.5 = 0.40 1
(70) if (data &0x80000000) cey: cycle count/iteration 12/(1/0.4) = 4.8 11
PrimPolyMask = PrimPolyMask + 0x1d000000; - - -
ccs3: cycle count/iteration 5 10.5
/I clear top-bit of bytes before shift Performance cpu fcpu | mcpu | wcpu | ccapu
data = data & OX7f7f7f7f; ®) GPU fepu nePu wepu cccpu
data = data << 1; 9
data - data PrimPolvMask 10 7168,n = 1024,k = 2048), divides each source block of
ata = aata rnmePo askK; . . .
factor = factor >> 1: Y (11) k bytes into 8 partitions, each processed by a dedicated
} a2 thread, one per CPU core on our 8-core Mac Pro server. The
) return result benchmark finishes execution 672 ms, reflecting that the

Fig. 4. Loop-based GR®) word-length multiplication for a CUDA-enabled 8-_Core Mac Pro SYStem outperforms the2-core 8800 GT
GPU. with a 13.9% margin.

Since current CUDA-enabled GPUs do not have natize As Table | shows, this is not a surprising result after
bit multiplication, the compiler translates the multiition comparing a number of performance metrics of the CPU with
of statement (7a) td instructions usin@4-bit multiplication those of the GPU. In our comparison, we can observe that
and shifting. However, we can rewrite statement (7a) as (784Ch GPU core is an in-order processing unit with a single
to take advantage of thed-bit multiplication directly. Now Arithmetic Logic Unit (ALU), while each CPU core has three
the compiled code is reduced t@ cubininstructions and the ALUS, each capable of processing a SSE2 instruction in any
benchmark executes 2067 ms. cycle [14]. This dramatically offsets the higher number &G

At a final attempt of our optimization effort, we sidestep th€ores, despite the fact that GPU cores run at almost half of
compiler and optimize the PTX virtual assembly file directlyfh® CPU speed. In our first estimate, we assume a coarse
This approach successfully removes anothesininstruction, throughput advantage of (equal to the superscalar factor)
now down tol1 instructions, which improves the benchmark'§or CPU cores. The performance advantage of CPU-based
execution time td 905 ms, a32% improvement over our initial Over GPU-based implementatior8¢rformance cey, can be
implementation. This is a very interesting result, sinceack- computed through estimating the cycle count per iteration.
of-the-envelope” calculation suggests that the total asting We now progress through three alternative estimates oecycl
power of all 112 cores on the 8800 GT is almost used tgount per iteration, from coarser to finer granularitiese Th

the best possible. The number of cycles taken by executingrgt estimatecc; results in a performance advantagelof7,
singleloop_gf_multiply_word can be derived as: where the CPU is faster. Our second estimaie, takes
a closer examination into CPU instructions and comes up

with an average throughput based on individual instrustion
— (1,905 112 1.5 GHz) /(7168 - 1024 - 2048/4) Wh_ich results in a performance advantageldf2. _Our fin_al _
_85'16 eycles ’ refinement considers the data dependency of instructions in

. T ! _ _ the CPU-based implementation, and results in a performance

Since our benchmark fixed the number of loop iterationgyantage o.12, quite close to our measurement results.

to 8, each iteration taked0.65 cycles. At first glance, it This confirms our measurement results thatsheore Intel

seems surprising that the result is less than the executien t y oqpy system is expected to have a higher computing power

required forll instructions. A closer examination reveals thaéompared to the12-core 8800 GT. However, as we shall soon

the conditional addition in statement (7b) executes ONe&YeV 4qe in the next section, memory performance will substintia

other time, resulting in an effectivé0.5 cycles in an ideal g¢ect the performance of a CPU-based implementation.

execution. .
E. Many-core Network Encoding on the GPU

Although both CUDA and PTX virtual instructions sup- Th ¢ rand K di iall
port 64-bit data types, &F-multiply implementation for € process of random network encoding essentially con-

double-worddata can not achieve better performance. This i§'5ts_°f a matrix muItlpllcgtlon in the GF domayn, and can be
due to the fact that the current CUDA-enabled GPUs Have considered as eambarrassingly paralletomputation problem,

bit integer engines, an@li-bit operations are emulated througﬁ'\'here a_par_allel |mdplemehntat|_on 1S possible Vﬁ'th I(ljttlevs_rhn
a series of 32-bit operations. communication and synchronization among threads. Without

o _ considering memory access to source blocks and coefficients
D. CPU vs. GPU: Estimating the Computing Power the performance of network encoding is only limited by the
Having our highly optimized GPU-based implementatiohardware’s computational power, since the encoding psoces
of GF-multiply , we are now ready to compare its perforof multiple coded blocks — and even different section of a
mance against a SIMD-accelerated CPU-based implemertaded block — can proceed in parallel by using a large number
tion [7]. Our corresponding benchmark for the CPWd,= of threads.

Cycleg;p_mu = total cycles/ total computed words
= (time- cores freq)/(c-n - k/4)

We now complete the picture by considering memory accesstwork encoding in parallel. There are two main approaches
in a complete process of network encoding. As we shall sder task partitioning between CPU and GPU, both having
achieving a high speedup can not be taken for granted amddamentally the same computation load. Either one divide
requires careful task partitioning. the working set by partitioning each source block into two

1) Partitioning for many-core network encoding Our (e.g.,half each), and assigns each partition to CPU and GPU,;
synthetic benchmark does not consider memory access.omone assigns the encoding tasks of some coded blocks
CUDA, GPUs can only access their graphics memory, so thatirely to the GPU, and the remainder to the CPU.
coefficients and source blocks have to be transferred fr@n th We choose to set up the sare= 7168, n = 1024,k =
host to the graphics memory first. Similarly, encoding ressul2048) experiment based on the second approach. First, we
residing in the graphics memory need to be transferred lackdivide a generation off168 coded blocks evenly between
system memory. Wit GB/s on the PCI Express 2.0 interfacethe 8-core CPU and GPU3584 coded blocks by each. The
transfer times to and from graphics memory are negligible.encoding process takd§94 ms, reflecting a speedup 99

We use the saméc = 7168,n = 1024,k = 2048) setup over a similar CPU only execution. Since the GPU has a better
for our new benchmark with memory access. To ensure a faimcoding performance, we may consider increasing the GPU’s
comparison with previous tests, we fill the coefficient matrishare of coded blocks. Assigning% of coded blocks to the
with all Oxff to ensure a maximum load. The encodin@GPU improves the encoding performancel@®0 ms, a2.17
benchmark on the GPU now takés06 ms, reflecting a speedup.
substantial increase frot905 ms, suggesting poor memory 3) Generating random coefficients in the GRUSo far, our
performance. GPU-based encoding implementation uses random coefficient

After attempting other alternatives, we have settled ongenerated by the CPU, and transferred to the graphics memory
partitioning mechanism with a much finer granularity, withbefore the start of the encoding process. Although neither
each GPU thread encoding only a “single word” of the codatle process of generating random coefficients nor the &ansf
block, rather than a full block. With careful assignments afmes take a long time to execute, migrating the task of
words to threads of each warp, we can now take advantagenerating random coefficients to the GPU makes the design
of memory coalescing [13], so most memory accesses okignpler, as it fully detaches the CPU from the encoding
thread warp fall next to each other, significantly reducing t process. In this case, the application using network coding
number of memory accesses by the memory controller simply requests the GPU for a number of coded blocks.
the GPU. With such fine-granularity partitioningl2 x 7168 Our GPU-based random number generation runs hundreds
threads have been launched, much higher than the originfigenerators in parallel, each generating the random segue
7168 threads. However, unlike CPU threads, GPU threafisr a coded block through a random seed. It takes no longer
are very lightweight as GPUs are designed to switch to nanan1.61 ms for 7168 x 1024 random coefficients, which is
threads seamlessly in hardware, in order to hide memash times faster than using the CPU.
latency. Using this new partitioning scheme, our encoding
process now take8016 ms, a76% improvement over our F. Many-core Network Decoding on the GPU
original coarse partitioning. The decoding process has a higher computational complex-

Our next measure towards further optimization reads codly than encoding, as Gauss-Jordan elimination involés
ficients in 4-byte chunks, rather than byte by byte, and therow operations on coefficient rows of length and coded
caches them for use in the next four multiplications. Thislocks of lengthk. Compared to encoding, this leads to a
reduces read requests for coefficientsif@ of the original reduced coding performance in general. However, the more
approach, and the execution time is reduced(@8 ms, now critical challenge is the smaller degree of parallelizatin
over 2.5 times better than our original partitioning. the decoding process. Gauss-Jordan elimination requiees t

On the8-core Mac Pro, the same network encoding bencHecoding of each coded block to start only after the decoding
mark take2250 ms, which implies that the GPU performancef the previous coded blocks is finished. This implies that th
defeats 8-core CPUs when memory access is considerediecoding process, unlike the encoding process, lends$ ftsel
reflecting the GPU'’s better ability to hide memory acceggarallelization onlywithin the decoding of the current coded
latency. While the CPU-based implementation suf§& due block, and notacrossa number of coded blocks.
to memory access, the GPU performance only degrad#s Such a lesser degree of parallelization limits the perfor-
This clearly demonstrates the GPU’s superior ability toehidnance gain of GPU-based decoding much more than the CPU-
memory access latency, due to seamless hardware switcHiaged implementation, since the GPU needs to run thousands
across a large number of threads. of threads to be able to achieve its peak performance. In

Finally, we use actual random coefficients instea@xif . addition, threaded decoding of each coded block requires at
The CPU takeg€157 ms, while the GPU, being constrained byeast one synchronization point, which makes the decoding
computation and not memory access, decreases significaptlgcess aoarse-grainedparallel program.
to 1751 ms, showing a23% advantage over the CPU. All We have tested a number of GPU-based decoding schemes
considered, the GPU perforri8% better than the 8-core CPUand their performance for tHe = 1024, n = 1024, k = 2048)
with memory access. setup. Not surprisingly, our best-performing scheme only

2) Mixed CPU-GPU network encodingWhen even better achieves’2% of the CPU-based decoding implementation at
performance is required, both CPU and GPU can perforthis setup, as presented in the following.

1) GPU-based decoding with CPU assistancl a pro- Such a decoding approach helps both CPU-based and GPU-
gressive decoding application scenario, we receive eadbdcobased decoding. First, more of the internal structuresd(use
block along with its associated coefficients and decode dtross the decoding of several coded blocks) can remain in
partially. After receiving and decoding theth coded block, the cache. Second, the threads can be executed longer withou
the decoding process completes andrakource blocks are being interrupted as individual coded blocks are decoded.
recovered if no linear dependence has been encounteredWith such an approach, the performance of the GPU-based
our first scheme, for every new coded block, we partition thmplementation improves t®175 ms, but our8-threaded
aggregaten + k coefficients and data —-e., a row of the CPU-based scheme also performs better, novi688 ms,
aggregatéC|x] matrix from Eq. (2) — such that each 4-bytewith GPU-based decoding achieving orif§% of the CPU
word of the aggregate data is assigned to a thread, leadingpésformance.

a total of (n + k) /4 threads.

Each thread reduces the leading coefficients of the new V. PERFORMANCEEVALUATION

coded block through a number of linear combinations. How-

ever, it can not do further work as a global search for the ﬁrstIn this section, we evaluate the performance Niiclei,

non-zero coefficient has now become necessary. Since cupdd design and implementation of GPU—gcceIergted mang-cor
network coding. We use fully dense coding matrices with non-

synchronization construct only works for threads within a e . . .
single thread block and not among all GPU threads, weero cqefﬁuents in our evalua_mon. The performance will be
are forced to perform this synchronization at the CPU sidg’e" higher with sparser matrices.
This effectively breaks the decoding process into two GP : :
kernel processes. After finding the first non-zero coeff'tcie#‘ Coding Bandwidth
at the CPU side, we launch another GPU kernel to performAs we evaluate the performance Wticlei, we have tested
the remainder of the decoding operations for the curreatrange ofl28 bytes to16 KB per block, with128, 256 and
block, with each GPU thread performing a series of linead2 blocks. When compared to our baseline SIMD-accelerated
combinations for a 4-byte column of the aggregpix]. CPU-based implementation wighthreads (one per CPU core),
Although this scheme perfectly divides each aggregate rdfae coding bandwidth oRuclei in MB per second, is shown
among threads, it suffers from launching an extra GPU kerrigl Fig. 5. The encoding (decoding) bandwidth should be
to perform synchronization at the CPU side. The decoding pétterpreted as the total number of bytes that are produced (o
formance of1024 coded blocks with dn = 1024, k = 2048) decoded) per second.
setup achieve82% of the CPU-based performanc2484 ms Fig. 5(a) shows that GPU encoding MNuclei achieves its
against2031 ms). peak performance across almost all coding settings. We are
2) Full GPU-based decodingIn an attempt to avoid CPU- able to make a number of observations from these results. As
assisted synchronization and the extra GPU kernel call, wee number of blocks doubles froml128 to 256 and again to
divide the data portion of the coded block among all thredd 2, the encoding bandwidth halves first fr@6.9 MB/s down
blocks, but give each thread block its own private copy dé 33.8 MB/s, and again td6.8 MB/s. This is due to the fact
the coefficient row. We can now use CUDA's synchronizatiotihat generating a coded word requiresGF multiplications.
construct within each thread block to perform the seardfor 128 blocks, the encoding of each word requires reading
for the first non-zero coefficient. However, we do not wisth28 words of source data and writing one word of coded data,
to consume an excessive amount of computing power @naddition to the reading of coefficients. As such, our cgdin
processing redundant coefficients, so we define a threaét bibandwidth of66.9 MB/s results in a memory access rate of
to be as large as possible, employing only one thread blotk8 GB/s, which is far below thé7.6 GB/s theoretical limit.
per each of thel4 SMs of the 8800 GT. This leads to each These results have confirmed that our encoding performance
thread block effectively decoding+ k/14 bytes of aggregate is only limited by the computation limits of the 8800 GT.
data through{n+ +%)/4 GPU threads, each thread working orFor a number of executed instructions to achieve an encoding
a 4-byte column. Unfortunately, even after applying a numbdrandwidth of66.9 MB/s at 128 blocks, it is equivalent to an
of data caching optimizations in the per-SM shared memoigstruction rate ofl51 GIPS (Giga instructions per second),
the GPU-only decoding is not able to perform better thaf8 which is 90% of the advertised theoretical limits df04
ms, lagging far behind our CPU-assisted decoding approadBFLOPS {.e., 168 GIPS). This represents a surprisingly high
So far, in both of our GPU-based and CPU-based schempsiformance level, confirming that our partitioning scheme
we considered progressive decoding in a sense that eacti cquerformed very well in hiding the memory latency. It also
block is decoded individuallyi.e., right after receiving the confirms that the GPU can execute concurrent thresitls
block from network, ending up with a total ef GPU kernel zero scheduling overheath hardware as claimed, and can
or CPU calls. From a measurement point of view, this impliggerfectly hide register read-after-write latencies whesu#ii-
that we have to synchronize all execution threads, eithdy CRient number of parallel threads exists within each SM. &inc
or GPU, right after the decoding of each new coded blodcke GPU is only limited by its computation power, its peak
finishes. For many practical application scenariag,, (n = performance has been achieved acrosqralk) settings. In
128,k = 4096), the complete decoding of coded blocks comparison, the CPU-based encoding performance follogss th
takes only around0—20 ms. This suggests that we can buffesame trend as discussed in [7], but at higher coding rates due
then coded blocks from the network, and then start decoding. more CPU cores. As the block size increases, the CPU

70 66.9 MB/s 50 i A4

60 ‘#_-—'V"" o GPU (n=128) 0
5 «V‘— & Mac Pro (n=128) S 40
S 5 - o GPU(n=256) 2
E R 4 Mac Pro (n = 256) g R
2 P _ P .
2 40 e < GPU (n=512) &30 V'
s ',V 33.6 MB/s ~- MacPro (n=512) S L°
= —tr —a—f = .
%30"’“7‘_:: T S R4
Y v La- 220
2 v AT] L 4
9 . 2 .
€ 20 - 16.8 MB/s S e
o 3 .

-
o

-
-
-

- -

-

block size (bytes)
128 256 512 1024 2048 4096 8192 16384 128 256 512 1024 2048 4096 8192 16384

(a) Encoding (b) Decoding
Fig. 5. Coding bandwidth of GPU-based and CPU-based (&de with SIMD acceleration) for th@) encoding; andb) decoding processes.

cache performance has improved, leading to better memdmyte-by-word GF-multiplication, similar to our loop-bakse
performance and higher encoding rates. approach. Still, our experiments have shown that such a
With respect to decoding, the decoding performance shodime-tuned design perform30% worse than our loop-based
in Fig. 5(b) is generally lower with both the GPU and the CPWpproach.
because each coded block has to be decoded serially. The CPlJ is, however, possible to optimize table-based GF-
performs better than the GPU across the board, especiallyriltiplication further, which is explored in details in ooingo-
smaller block sizes, since the GPU does not have sufficieng work. The basic idea is the following. In our partitiogin
data (smallk/14) to launch a sufficient number of threadssach GPU thread, which calculates a word-length worth of a
to achieve an acceptable performance gain, and the CPbgled block, accesses a full coefficient row@fand a full
computation power is not affected by the block size, unlikeolumn of original blocks>. However, many other threads use
its memory performance. On the GPU, as an example-at the same row and column in their own coding processes that
128, each of thel4 SMs decodes only:/14 = 9.14 bytes |eads to many redundant conversions to ke domain. By
of data on average. At = 128, the decoding time remainsfirst preprocessing andb and transferring them fully to the
around31 ms even if we increase the block size fra®8 1og domain, the number of table accesses can be effectively
to 2048 bytes, because latencies of the computation pipelifgduced by2/3. Our new optimized table-based encoding
and memory accesses can not be hidden when there is so Itti& improve the performance 5% over the loop-based
useful computation to be performed. Asincreases, though approach, as demonstrated in Fig. 7.
the CPU's performance has improved due to a highét Finally, we have also discovered that the performance of op-
ratio and improved memory performance, the GPU has quickiyhized table-based GF-multiplication can be further ioyed
caught up as soon as it has sufficient data to process angyamanipulating the tables to more optimally exploit the GPU
launch a sufficient number of threads. hardware of SP cores, and by improving the access pattern to
B. Network Coding with Both GPU and CPU the shared memory. With these performance improvements, we

. . are able to achieve encoding rates uR9 MB/second with
In order to evaluate the maximum achievable performance

L .) 7= 128 blocks, in our experiments on the high-end NVIDIA
we now explore the limits of encoding bandwidth when Wgso e GTX 280 GPU. At this performance level, there is no

employ both the CPU and GPU in parallel. We partition thﬁeed to involve the CPLl&.g.,in a combined encoding scheme

encoding process by generating portion of the required ith the GPU, to satisfy most real-world performance needs
coded blocks by GPU, and the remainder of the coded blocks ’ fy 1167MBZ '
a=53% .

by CPU. Because the coding performance of GPU and CPU 120

are not equal, and with the GPU outperforming CPU, we = a=51% =

need to configurex optimally. Fig. 6 shows our results. A 100

peak encoding bandwidth dfi6.7 MB/s has been achieved at o n=128

n = 128, which can offer sufficient packet payload to saturate §eso —~ " =2

the Gigabit Ethernet interface at servers. § A n=1024 62.3 MBls

C. Reuvisiting Table-Based Network Coding %60 a=56% a=52% a=%% q-s50%
We have mainly focused on loop-based GF-multiplication 2 ,, *~*"

on the GPU so far in this paper. A table-based implementation§ 81.6 MB/s

creates theéog/exp tables once at the host side and transfers 2 15.9 MB/s

them to the graphics memory. To achieve higher performance A— A A —A —A

as these tables are heavily accessed, the GPU threads can o block size (bytes)

better designed by first loading the tables from the graphics o, 2048 4096 8192 16384

memory into theshared memoryeffectively using it as a Fig. 6. Encoding bandwidth with the 8-core CPU and the 112@&800
managed L1 cacheAfterwards, each GPU thread performssT GPU combined.

83.9 MB/s

90 of the server CPU in network coding is to transfer new source
—O- O -o—0—0 .

gp o——°o— > segments to the GPU for encoding, to request a number of
Ty O N1 coded blocks from a particular segment in the GPU, and when
2 ¥ n=256 . .
260 O n=512 they are ready, transfer them back to its buffers in the ayste
& memory. As such, the CPUs are relieved to perform other
2%0 41.5 MB/s CPU-intensive tasks, such as media encoding.
%40 V- v v V v v v
2
230 21 MBls VI. CONCLUSION
°5 B——g—g——f—n o o o

—
o

block size (bytes)

0
128

Fig. 7. Encoding bandwidth of the optimized table-based @ on the
8800 GT GPU.

256 512 1024 2048 4096 8192 16384

This paper presentduclei, a high-performance design and
implementation of many-core network coding using GPUs.
Nuclei is able to achieve®d0% of the advertised theoretical
limits (504 GFLOPS) of the NVIDIA GeForce 8800 GT,
across a wide range of network coding configurations. We
have provided an in-depth comparison of GPU-accelerated

This result certainly does not imply that the loop-basegetwork coding against a CPU-based implementation. We have

encoding on GPU should be written off altogether. The neghown that many-core GPUs can be deployed as an attractive
generations of CUDA GPUs will likely increase their integealternative solution to multi-core servers, by offeringigher
arithmetic units to 64 bits which potentially can double thencoding performance level at a much lower cost. Further-
performance of loop-based GF-multiplication. In contrigss more, multi-core CPUs and many-core GPUs can be used
less likely to observe a substantial performance improvemeéo perform network coding simultaneously, which achieves a
of the shared memory on GPU SMs in the future. level of coding performance sufficient to saturate a Gigabit
Ethernet interface and to serve in media streaming servers.

D. Feasibility of using Network Coding on Streaming Servew

ith a much better memory performance than CPUs and a

As we have just shown, the performancehafcleimakes it yapidly increasing number of cores, GPUs are very promising
feasible for it to be deployed in high-performance streaming pring network coding to reality.

servers using network coding, with hundreds of clientsexrv
concurrently. As an example, consider the scenario of using
a media segment size dfl2 KB, with 128 blocks of 4
KB each, corresponding to @&n = 128,k = 4096) setting.
With a streaming rate of68 Kbps that is typical for high
quality video streams, each segment contains contentabtst |
5.33 seconds, which is an acceptable buffering delay on thg;
client side. WithNuclei operating at this setting, the coding
bandwidth is sufficiently high to serve up &0 clients with

the mainstream 8800 GT GPU alone. In addition, when a

(2]

REFERENCES

] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network enfnation

Flow,” IEEE Trans. on Information Theoryol. 46, July 2000.

R. Koetter and M. Medard, “An Algebraic Approach to Netko
Coding,” IEEE/ACM Transactions on Networkingol. 11, no. 5, pp.
782-795, October 2003.

C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network Qugti An
Instant Primer,” ACM SIGCOMM Computer Communication Review
vol. 36, January 2006.

] P. Chou, Y. Wu, and K. Jain, “Practical Network Codingti Proc. of

Allerton Conference on Comm., Control, and Computidgtober 2003.

media segment is ready to be encoded and served, it can bk C. Gkantsidis and P. Rodriguez, “Network Coding for Lar§cale

transferred and stored in the graphics memory on the GP
Even with the modest memory capacity 8f2 MB on the

8800 GT, hundreds of such segments can be accommodated.

The layout of segments and buffers in both graphics and!
system memory are shown in Fig. 8. The GPU keeps two

Content Distribution,” inProc. of IEEE INFOCOM 2005March 2005.
T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, ‘@&h
Benefits of Coding over Routing in a Randomized Setting,Pinc. of
International Symposium on Information Theory (ISIT 20@%)03.

H. Shojania and B. Li, “Parallelized Network Coding Withardware
Acceleration,” inProc. of the 15th IEEE International Workshop on
Quality of Service (IWQoSXhicago, IL, June 20-22 2007.

other buffers to manage random seeds and their associafél C. Gkantsidis, J. Miller, and P. Rodriguez, “Compreheasiiew of

random coefficients. Coded blocks are directly loaded frioen t
graphics memory as they are produced. The only involvemeny,

GeForce cPU
8800 GT / /| streaming 10
> network ’// algorithm [10]
Graphics memory 4bytes . N=128
Seg: (N-1) System memory (11]
i-(N-
T c= ||[Random| [Random Seg; [12]
2048 || seeds | |coefficients [i-(N-1) }
S y PCle packet buffer
o) : [13]
[m 4 bytes k=4096 H
- /\ Segi_1 [14]
Segi . packet buffer
- c= Coded blocks :
Source video 2048 buffer Segi
segments
(N segments M| packet buffer
512KB each) seed coded block header seed _coded block payload

Fig. 8. GPU-accelerated network coding in a dedicated rsiirea server.

a Live Network Coding P2P System,” iACM Internet Measurement
Conference (IMC 2006)2006.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Bfman,
“Efficient Erasure Correcting Codes,JEEE Trans. Info. Theoryvol.
47, no. 2, pp. 569-584, February 2001.

P. Maymounkov, N. Harvey, and D. Lun, “Methods for Efficie
Network Coding,” inProc. of 44th Annual Allerton Conference on
Communication, Control, and Computin§eptember 2006.

E. Lindholm and J. Nickoll®t al, “NVIDIA Tesla: A Unified Graphics
and Computing Architecture,” ilEEE MICRQ March-April 2008.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Sdala Parallel
Programming with CUDA,”ACM Queuevol. 6, no. 2, 2008.

NVIDIA Corporation, NVIDIA CUDA: Programming Guide, Version
2.0, July 2008.

Intel Corporation,Intel 64 and IA-32 Architecture Software Developer’s
Manual, Volume 1: Basic Architectyrépril 2008.

