
Nuclei: GPU-accelerated
Many-core Network Coding
Hassan Shojania, Baochun Li Xin Wang

Department of Electrical and Computer Engineering School of Computer Science
University of Toronto Fudan University

{hassan, bli}@eecg.toronto.edu xinw@fudan.edu.cn

Abstract—While it is a well known result that network coding
achieves optimal flow rates in multicast sessions, its potential
for practical use has remained to be a question, due to its high
computational complexity. Our previous work has attempted to
design a hardware-accelerated and multi-threaded implemen-
tation of network coding to fully utilize multi-core CPUs, as
well as SSE2 and AltiVec SIMD vector instructions on x86 and
PowerPC processors. This paper represents another step forward,
and presents the first attempt in the literature to maximize
the performance of network coding by taking advantage of
not only multi-core CPUs, but also potentially hundreds of
computing cores in commodity off-the-shelf Graphics Processing
Units (GPU).

With GPU computing gaining momentum as a result of
increased hardware capabilities and improved programmability,
our work shows how the GPU, with a design involving thousands
of lightweight threads, can boost network coding performance
significantly. Many-core GPUs can be deployed as an attractive
alternative and complementary solution to multi-core servers, by
offering a better price/performance advantage. In fact, multi-
core CPUs and many-core GPUs can be deployed and used
to perform network coding simultaneously, potentially useful in
media streaming servers where hundreds of peers are served
concurrently by these dedicated servers. In this paper, we present
Nuclei, the design and implementation of GPU-based network
coding. With Nuclei, only one mainstream NVidia 8800 GT GPU
outperforms an 8-core Intel Xeon server in most test cases. A
combined CPU-GPU encoding scenario achieves coding rates of
up to 116 MB/second for a variety of coding settings, which is
sufficient to saturate a Gigabit Ethernet interface.

Index Terms—Network coding, Many-core GPU computing.

I. I NTRODUCTION

First introduced by Ahlswedeet al. [1] in information the-
ory, network codinghas received significant research attention
in the networking community. The fundamental advantage
of network coding hinges upon thecoding capabilities of
intermediate nodes, in addition to forwarding and replicating
incoming messages. Ahlswedeet al. [1] and Koetteret al. [2]
have proved that the cut-set capacity bounds of unicast flows
from the source to each of the receivers can be achieved in a
multicast session with network coding in directed networks.

In theory, network coding helps to alleviate competi-
tion among flows at the bottleneck, thus improving session
throughput in general. It has been repeatedly shown that
network coding can lead to more robust protocols with less
overhead [3], and better utilization of the available bandwidth.
Intuitively, it is promising to apply principles of network
coding in large-scale content distribution and media streaming
systems. Indeed, Wuet al. [4] and Gkantsidiset al. [5] have

both proposed to apply random network coding, first proposed
in [6], in practical content distribution systems. Extensive
simulation studies have shown that network coding delivers
close to theoretically optimal performance levels.

Unfortunately, to date, there has been no commercial real-
world systems reported in the literature that take advantage
of the power of network coding. We believe that the main
cause of this observation — and the main disadvantage of
network coding — is the high computational complexity of
random network coding with random linear codes, especially
as the number of blocks to be coded scales up. Since random
linear codes are universally adopted in all proposed practical
protocols using network coding, we believe that it is important
to design and implement random linear codes such that its
real-world coding performance is maximized, on modern off-
the-shelf hardware platforms. This is particularly important for
streaming servers that need to sustain the bandwidth required
for hundreds of directly connected peers in a peer-assisted
Video-on-Demand (VoD) streaming system, and to saturate
the line speed of its Gigabit Ethernet interface.

Our previous work [7] has shown a SIMD-accelerated
multi-threaded implementation of network coding, that takes
advantage of both multi-core CPUs and SIMD vector instruc-
tions on modern processors. This paper represents another
substantial step forward, and presents the first attempt in the
literature to maximize the performance of network coding
by taking advantage of not only multi-core CPUs, but also
potentially hundreds of computing cores in commodity off-the-
shelf many-coreGraphics Processing Units (GPUs). Modern
NVIDIA GPUs, for example, are designed with hundreds of
specializedcores, each with much less complexity than a CPU
core, but nevertheless supports operations required for general-
purpose high-performance computing. We are motivated by
the natural curiosity of whether or not GPUs are able to help
improve the performance of network coding. Such an interest
is further stimulated by the relative low cost of mainstream
GPUs as compared to multi-core CPUs. As an example, the
NVIDIA GeForce 8800 GT retails for approximately1/20 of
the cost of a dual Quad-core Intel CPU setup.

In this paper, based on the NVIDIA CUDA framework,
we presentNuclei, our design and implementation of GPU-
based many-core network coding, across platforms including
Windows, Linux and Mac OS X. WithNuclei,we have made
the following new observations on the feasibility of GPU-
based network coding.First, although the GeForce 8800 GT,
featuring 112 cores, is less capable than the 8-core Intel Xeon

server with respect to its raw computing power, the GPU
is designed to better hide memory latency, a critical issue
that affects the performance of network coding, particularly
in the typical coding range for streaming servers.Second, by
completely detaching the encoding process from the CPU and
hand it over to the GPU, the CPU cores on dedicated streaming
servers are set free to perform other CPU-intensive tasks that
GPUs are not able to perform.Third, due to the specific GPU
design that schedules its threads in hardware, the performance
of GPU-based network coding is not affected by competing
threads and background tasks. In contrast, variations of up
to 9% are observed with CPU-based network coding, due
to background threads.Finally, GPUs are equally capable of
both encoding and decoding. Though decoding is much more
challenging to be performed on the GPU with less capable
performance than the 8-core Intel Xeon server at small block
sizes, the GPU decoding performance improves substantially
as block sizes become larger, and is on par with 8-core CPUs
at a block size of16 KB.

Nuclei has achieved stellar performance results, making it
feasible to saturate Gigabit Ethernet interface by combining
8-core Intel Xeon CPUs and a mainstream NVIDIA GeForce
8800 GT GPU. With respect to encoding, for example, the
GeForce 8800 GT by itself is able to achieve an encoding
rate of 84 MB/second with 128 blocks, outperforming all
eight CPU cores combined. A combined CPU-GPU encoding
scenario achieves coding rates of up to116 MB/second for a
variety of coding settings, which is sufficient to saturate the
Gigabit Ethernet interface.

The remainder of this paper is organized as follows. Sec. II
discusses related work. Sec. III provides an overview of
both GPU computing and random network coding. Sec. IV
presents our design towards many-core GPU-based network
coding. Sec. V evaluates our GPU-based network coding
implementation. Finally, Sec. VI concludes the paper.

II. RELATED WORK

Ho et al. [6] has been the first to propose the concept
of random network codingusing random linear codes, in
which an intermediate node transmits on each outgoing link
a linear combination of incoming messages, specified by
independently and randomly chosencode coefficientsover
some finite field. Wuet al. [4] and Ghantsidiset al. [5],
[8] have shown that random network coding is beneficial
in bulk content distribution systems. Theoretically, the high
computational complexity of random linear codes has been
well known: it motivates research on the use of more effi-
cient codes in real-world systems, including traditional Reed-
solomon (RS) codes,fountain codes[9], and chunked codes
[10]. While fountain codes are much less computationally
intensive as compared to random linear codes, they suffer from
a number of drawbacks: (1) coded blocks cannot be recoded
without complete decoding, which defeats the original intent of
network coding; (2) depending on the code used, there exists
a small amount of overhead (about 5% with 10,000 blocks,
and may be over 50% with 100 blocks), which decreases the
efficiency of using bandwidth; and (3) the decoding process
cannot be progressively performed while receiving coded

blocks, which may lead to bursty CPU usage when the final
blocks are decoded. Alternatively, while Reed-Solomon (RS)
codes may also be used to reduce coding complexity, its
smaller coded message space makes it difficult for multiple
independent encoders to code a shared data source, to be sent
to a single receiver.

While there is no doubt that more efficient codes exist,
they may not be suitable for random network coding in a
practical setting. In contrast, random linear codes are simple,
effective, and can be recoded without affecting the guarantee
to decode. We believe that our work on a high-performance
implementation of random linear codes may help realize the
full potential of random network coding in a real-world setting.
Our previous work [7] has evaluated the performance of our
implementation of network coding that takes advantage of
multi-core CPUs and modern SIMD vector instruction sets.
Though we have achieved a level of performance in [7] that
has not been previously reported at the time, this paper takes
another step forward, by evaluating the feasibility of many-
core network coding using over a hundred specialized cores on
GPUs. We believe that techniques explored in our GPU-based
network coding implementation can readily be employed to
perform other linear coding schemes operating in the Galois
field, such as Reed-Solomon codes.

III. OVERVIEW OF GPU COMPUTING

AND NETWORK CODING

Modern GPUs have gradually evolved from specialized
engines operating on fixed pixels and vertex data types, into
programmable parallel processors with enormous computing
power [11]. NVIDIA’s Tesla GPU architecture is employed in
a wide range of professional and consumer GPU products, and
is the first such GPU architecture. On the Tesla architecture,
it is possible to develop high-performance parallel computing
applications in the C language, using the Compute Unified
Device Architecture (CUDA) programming model and devel-
opment tools [12].

Our performance evaluation in this paper uses the main-
stream NVIDIA GeForce 8800 GT GPU with112 cores, which
is supported by the CUDA platform. Our cross-platform im-
plementation inNuclei, however, can be used on any CUDA-
supported GPU, ranging from the high-end GeForce GTX 280
with 240 computing cores, to the mobile GeForce 8600M GT,
with 32 cores.

A. The Tesla Architecture and CUDA

The Tesla GPU architecture is based on a scalable array of
Scalar Processors (SPs). These SPs are grouped into groups of
8, calledStreaming Multiprocessors (SMs), and share a number
of resources, includingregistersandshared memory[13]. On
the 8800 GT, for example, there are112 SPs grouped into14
SMs, as shown in Fig. 1. Threads too are grouped intothread
blocks, which allow threads of each block to share data and
synchronize among themselves. Each thread block is assigned
to a SM and runs on its SPs. After a thread block terminates,
new blocks are launched on the vacated SM. The GPU process
finally finishes when all thread blocks terminate.

Graphics board

GeForce 8800 GT Thread blocks

SM13
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers(8KB

)

SM2
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers(8KB

)

SM1
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers(8KB

)

SM0
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers

(8192)

Graphics memory

(512 MB DDR3)

Block0 Block1

Block3

....Block4

Block2

thread warp0

thread warp1

......

t+3t+2t+1t

????????

Thread Block4

North bridge

System memory

(2 GB DDR2-800)

 PCIe2 x16

8 GB/s

57.6 GB/s

6.4 GB/s

cpu

5

cpu

6

cpu

7

cpu

8

Proc. 2

cpu

1

cpu

2

cpu

3

cpu

4

Proc. 1

Fig. 1. The architecture of our Mac Pro testbed with the NVIDIA GeForce
8800 GT GPU. The Mac Pro comes with two2.8 GHz Quad-Core Intel Xeon
processors,2 GB memory, and12 MB cache per processor.

Each SM manages and executes concurrent threads (of one
or more thread blocks) in hardware with zero scheduling
overhead. Every32 threads of a thread block are grouped
together in athread warp, running in a synchronized manner
with each other, executing the same instruction in a SIMT
(Single Instruction, Multiple Thread) fashion. Since there are
no more than8 SPs in a SM, the32 threads of a thread warp
are scheduled eight at a time in4 cycles. As the example in
Fig. 1 shows, the first8-thread group ofwarp0 of the 4th

thread block is currently executed at cyclet. Each of the next
8-thread group ofwarp0 will execute in the next3 cycles.
However, threads ofwarp1 are not ready to be scheduled,
e.g.,because of a pending memory access.

Since each SP is deeply pipelined, read-after-write depen-
dencies can occur often. Similarly, a memory access causes a
thread warp to stall for the next few hundred cycles till the
data arrives. The beauty of the Tesla architecture comes from
the fact that, as soon as it detects a thread of a thread warp
can not proceed, it can switch to another ready warp with zero
scheduling overhead [13]. As a result, it is essential to have
as many thread as possible so the SPs can execute from other
thread warps till the stalled one can be rescheduled. The large
thread count, together with the support for many outstanding
load requests, helps to hide memory load latency [12].

Comparing to the CPU, the GPU dedicates its die area to
a higher number of processing cores. SPs are designed to
be simple in-order engines without branch prediction, register
renaming, multiple pipelines and many other more advanced
but standard features found on modern CPUs. The good news
is that, with wider and faster memory interfaces, the GPU
has a much higher memory bandwidth at its disposal than the
CPU. For example, the DDR3 memory found in the 8800 GT
has a peak performance of57.6 GB/s, compared to a meager
6.4 GB/s of our Mac Pro server based on dual Quad-core 2.8
GHz Intel Xeon CPUs, with its DDR2-800 memory. Further,
with a 16-lane bidirectional PCI Express 2.0 interface bus
between GPU and CPU, a8 GB/s bidirectional data rate gives
us abundant bandwidth to move data around between the GPU
and system memory, with almost no cost for the size of data
we cope with to perform network coding.

A CUDA-enabled program, written in C, consists of the
host codethat runs on the CPU, and adevice codethat
runs on the GPU. When the CPU invokes a GPUkernel (the
device code analogous to an application process), the CUDA
driver programs the GPU to launch a large number of threads.
The host code is compiled by a regular C/C++ compiler.
The device code is compiled by NVIDIA’s own compiler,
generating an assembly language output in a format called
Parallel Thread eXecution (PTX). PTX is a “virtual” language,
and is not specific to a particular GPU product. However,
most of its instructions have machine instruction equivalents
in the current CUDA GPUs. Either the PTX intermediate
representation or, if the target GPU is known at compile time,
the final generated code calledcubin are embedded in the
final application executable. When an application executes,
the CUDA runtime generates the machine code, if needed,
and loads it to the GPU through the device driver.

B. Random Network Coding

With random linear codes, data to be disseminated is divided
into n blocks[b1, b2, . . . , bn]T , where each blockbi has a fixed
number of bytesk (referred to as the block size). To code a
new coded blockxj , a node first independently and randomly
chooses a set of coding coefficients[cj1, cj2, · · · , cjn] in
GF(28), one for each received block (or each original block
on the data source). It then produces one coded blockxj of
k bytes:

xj =

n∑

i=1

cji · bi (1)

A node decodes as soon as it has receivedn linearly
independent coded blocksx = [x1, x2, . . . , xn]T . It first forms
a n × n coefficient matrixC, using the coefficients of each
block bi. Each row in C corresponds to the coefficients
of one coded block. It then recovers the original blocks
b = [b1, b2, . . . , bn]T as:

b = C
−1

x (2)

In this equation, it first needs to compute the inverse ofC,
using Gaussian elimination. It then needs to multiplyC

−1 and
x, which takesn2 · k multiplications of two bytes in GF(28).
The inversion ofC is only possible when its rows are linearly
independent,i.e., C is full rank.

GF(28) operations are routinely used in random linear codes
within tight loops. Since addition in GF(28) is simply an XOR
operation, it is important to optimize the implementation of
multiplication on GF(28). A baseline implementation can take
advantage of the widely-used fast GF multiplication through
logarithm and exponential tables, similar to the traditional
multiplication of large numbers. Fig. 2 shows a C function
that multiplies using three table references, wherelog and
exp reflect GF(28) logarithmic and exponential tables. Such a
baseline implementation requires three memory reads and one
addition for each multiplication.

byte table_gf_multiply(byte x, byte y)
{

if (x == 0 || y == 0)
return 0;

return exp[log[x] + log[y]];
}

Fig. 2. Table-based multiplication in GF(28): baseline implementation.

A network node does not have to wait for alln linearly
independent coded blocks before decoding begins. It can
instead start to decode as soon as the first coded block is
received, and then progressively decode coded blocks as they
arrive over the network using Gauss-Jordan elimination.

IV. N UCLEI: GPU-ACCELERATEDNETWORK CODING

In this section, we present challenges and solutions in-
volved in the design ofNuclei, our implementation of GPU-
accelerated network coding.

A. Random Network Coding: Performance Bottleneck

Random network coding suffers from a major performance
bottleneck. Byte-length multiplication in GF(28) is a costly
operation due to three memory accesses whenlog/exp tables
are used, and it is performed in tight loops over rows of coef-
ficients and coded blocks, each ofn andk bytes, respectively.
To address this bottleneck, we first proposed in [7] to revisit
the basics by performing the multiplication on-the-fly using a
loop-based approach in Rijndael’s finite field, rather than using
traditional log/exp tables. Although loop-based multiplication
takes longer to perform (up to8 iterations), it lends itself better
to a parallel implementation that takes advantage of vector
instructions in order to operate on wider chunks of elements
from a matrix row at the same time. The loop-based equivalent
of the table-based multiplication in Fig. 2 is shown in Fig. 3.

byte loop_gf_multiply_byte(byte factor, byte data)
{

byte result = 0; (1)
bool overflowing; (2)
while (factor != 0) { (3)

if ((factor & 1) != 0) (4)
result = result ˆ data; (5)

overflowing = data & 0x80; (6)
data = data << 1; (7)
// irreducible polynomial: xˆ8+xˆ4+xˆ3+xˆ2+1
if (overflowing == true) (8)

data = data ˆ 0x1d; (9)
factor = factor >> 1; (10)

}
return result; (11)

}

Fig. 3. Loop-based byte-length multiplication in GF(28).

With such a loop-based approach, we were able to take
advantage of SIMD (Single Instruction, Multiple Data) vector
instruction sets to perform GF(28) multiplication on16 byte-
long units of each row, rather than single-byte units [7].
Rather than using vector instructions provided by the CPU,
is it possible to use the GPU and still achieve accelerated
multiplication using such a loop-based approach? At first
glance, it is a daunting challenge due to the lack of SIMD
instructions and wide execution units on the GPU.

B. Loop-based GF(28) Multiplication on the GPU

Unlike modern CPU cores with128-bit registers and exe-
cution units, current CUDA-enabled GPUs have plain 32-bit
registers and execution units. Nevertheless, they have more
than a hundred processing cores (e.g., 112 SPs for the 8800
GT) that run in parallel.

To take full advantage of the available32-bit arithmetic
units in the GPU, we rewrite byte-length multiplication as

loop_gf_multiply_word to multiply a one-byte coef-
ficient with a 4-byte word. This is not a straightforward
task, however. Both Intel SSE2 and PowerPC AltiVec SIMD
instructions include special instructions that allow arithmetic
and comparison operations on individual bytes of16-byte
registers in parallel. With no similar instruction available on
the GPU, we have to emulate such byte-long operations on 4-
byte words. The main issues involved are the following:(1) To
left-shift individual bytes ofdata word without affecting the
neighboring bytes (statement (7) in Fig. 3);(2) To determine
the “overflow” status by examining the top bit of individual
bytes of the32-bit data word (statement (6));(3) To apply
the irreducible polynomial byte0x1d to each byte of the
data word based on the “overflow” states (statements (8) and
(9)). We use a series ofif/else conditions, byte extractions,
bitwise operations and bit shifts to address these issues. Even
with our best effort to minimize the code complexity, the
compiled code results in no fewer than16 cubin instructions
on the 8800 GT.

To evaluate the computational performance of our loop-
based GF-multiplication, we have designed a benchmark that
entails an encoding process that producesc = 7168 coded
blocks of size2048 bytes each, where each coded block is a
linear combination of1024 blocks,i.e.,(n = 1024, k = 2048).
To detach the benchmark from the memory performance of
the GPU, we create input coefficients and rows of data on
the fly, rather than loading them from graphics memory. To
evaluate the worst-case scenario, we consistently use0xff
as coefficients to make sure that the loop always iterates for
the maximum8 times. Our benchmark is implemented by
launching7168 GPU threads and assigning the computation
of each coded block to its own thread. Since a core in the
GPU has a 32-bit execution unit, each GPU thread executes
loop_gf_multiply_word for n·k/4 times, and the entire
benchmark executes the function for a total of(c·n·k/4) times.

The execution of the benchmark takes2509 ms (millisec-
onds) to complete, which shows a much better performance
than byte-length GF-multiplication, which takes7186 ms to
complete.

C. Further Optimizations of Word-length GF-multiplication

In a CUDA kernel, all32 threads of athread warpexe-
cute the same instruction in a synchronized manner. When
reaching anif/else condition, even if only a single thread
takes one path against the others, the overall warp execu-
tion time will be delayed as ifboth paths are executed.
When generating the word-length polynomial mask pattern in
our loop_gf_multiply_word implementation, with each
byte having0x1d if individual bytes of thedata word is
about to overflow, we resorted to a series of conditions. It
is apparent that, to further improve performance, we need to
avoid these conditions as much as possible.

As shown in statements (5), (6), and (7a) of Fig. 4, we can
generate the polynomial mask pattern by shifting the overflow
state of bits to the first bit of each byte and then multiply the
entire word by0x1d . With this improvement, the number of
cubin instructions decreases from16 to 14, and our benchmark
now takes2373 ms, a5.7% improvement of performance.

word loop_gf_multiply_word(byte factor, word data)
{

word PrimPolyMask, result = 0; (1)
while (factor != 0) { (2)

if ((factor & 1) != 0) (3)
result = result ˆ data; (4)

// creating the irreducible polynomial mask
PrimPolyMask = data & 0x80808080; (5)
PrimPolyMask = PrimPolyMask >> 7; (6)

(7a) PrimPolyMask = PrimPolyMask ∗ 0x1d;

(7b)

8

<

:

PrimPolyMask = __mul24(PrimPolyMask, 0x1d);
if (data &0x80000000)

PrimPolyMask = PrimPolyMask + 0x1d000000;

// clear top-bit of bytes before shift
data = data & 0x7f7f7f7f; (8)
data = data << 1; (9)

data = data ˆ PrimPolyMask; (10)
factor = factor >> 1; (11)

}

return result; (12)

}

Fig. 4. Loop-based GF(28) word-length multiplication for a CUDA-enabled
GPU.

Since current CUDA-enabled GPUs do not have native32-
bit multiplication, the compiler translates the multiplication
of statement (7a) to4 instructions using24-bit multiplication
and shifting. However, we can rewrite statement (7a) as (7b)
to take advantage of the24-bit multiplication directly. Now
the compiled code is reduced to12 cubin instructions and the
benchmark executes in2067 ms.

At a final attempt of our optimization effort, we sidestep the
compiler and optimize the PTX virtual assembly file directly.
This approach successfully removes anothercubin instruction,
now down to11 instructions, which improves the benchmark’s
execution time to1905 ms, a32% improvement over our initial
implementation. This is a very interesting result, since a “back-
of-the-envelope” calculation suggests that the total computing
power of all 112 cores on the 8800 GT is almost used to
the best possible. The number of cycles taken by executing a
single loop_gf_multiply_word can be derived as:

Cycles
GF−mul

= total cycles/ total computed words

= (time · cores· freq)/(c · n · k/4)

= (1.905 · 112 · 1.5 GHz)/(7168 · 1024 · 2048/4)

= 85.16 cycles

Since our benchmark fixed the number of loop iterations
to 8, each iteration takes10.65 cycles. At first glance, it
seems surprising that the result is less than the execution time
required for11 instructions. A closer examination reveals that
the conditional addition in statement (7b) executes once every
other time, resulting in an effective10.5 cycles in an ideal
execution.

Although both CUDA and PTX virtual instructions sup-
port 64-bit data types, aGF-multiply implementation for
double-worddata can not achieve better performance. This is
due to the fact that the current CUDA-enabled GPUs have32-
bit integer engines, and64-bit operations are emulated through
a series of 32-bit operations.

D. CPU vs. GPU: Estimating the Computing Power

Having our highly optimized GPU-based implementation
of GF-multiply , we are now ready to compare its perfor-
mance against a SIMD-accelerated CPU-based implementa-
tion [7]. Our corresponding benchmark for the CPU,(c =

TABLE I
CPU VS. GPU: THEORETICAL COMPUTING PERFORMANCE

Mac Pro 8-core Intel 8800 GT
f : core freq. (GHz) 2.8 1.5
n: number of cores 8 112
w: multiply data width (bytes) 16 4
ic: instruction count/iteration 12 11
Per core superscalar factor 3 1
cc1: cycle count/iteration 12/3 = 4 11
Est. throughput (cycles/inst.) 7 · 0.33 + 5 · 0.5 = 0.40 1
cc2: cycle count/iteration 12/(1/0.4) = 4.8 11
cc3: cycle count/iteration 5 10.5

Performance CPU

GPU

fCPU

fGPU

· nCPU

nGPU

· wCPU

wGPU

· ccGPU

ccCPU

7168, n = 1024, k = 2048), divides each source block of
k bytes into 8 partitions, each processed by a dedicated
thread, one per CPU core on our 8-core Mac Pro server. The
benchmark finishes execution in1672 ms, reflecting that the
8-core Mac Pro system outperforms the112-core 8800 GT
with a 13.9% margin.

As Table I shows, this is not a surprising result after
comparing a number of performance metrics of the CPU with
those of the GPU. In our comparison, we can observe that
each GPU core is an in-order processing unit with a single
Arithmetic Logic Unit (ALU), while each CPU core has three
ALUs, each capable of processing a SSE2 instruction in any
cycle [14]. This dramatically offsets the higher number of GPU
cores, despite the fact that GPU cores run at almost half of
the CPU speed. In our first estimate, we assume a coarse
throughput advantage of3 (equal to the superscalar factor)
for CPU cores. The performance advantage of CPU-based
over GPU-based implementations,PerformanceCPU

GPU

, can be
computed through estimating the cycle count per iteration.
We now progress through three alternative estimates of cycle
count per iteration, from coarser to finer granularities. The
first estimatecc1 results in a performance advantage of1.47,
where the CPU is faster. Our second estimate,cc2, takes
a closer examination into CPU instructions and comes up
with an average throughput based on individual instructions,
which results in a performance advantage of1.22. Our final
refinement considers the data dependency of instructions in
the CPU-based implementation, and results in a performance
advantage of1.12, quite close to our measurement results.

This confirms our measurement results that the8-core Intel
Xeon system is expected to have a higher computing power
compared to the112-core 8800 GT. However, as we shall soon
see in the next section, memory performance will substantially
affect the performance of a CPU-based implementation.

E. Many-core Network Encoding on the GPU
The process of random network encoding essentially con-

sists of a matrix multiplication in the GF domain, and can be
considered as aembarrassingly parallelcomputation problem,
where a parallel implementation is possible with little or no
communication and synchronization among threads. Without
considering memory access to source blocks and coefficients,
the performance of network encoding is only limited by the
hardware’s computational power, since the encoding process
of multiple coded blocks — and even different section of a
coded block — can proceed in parallel by using a large number
of threads.

We now complete the picture by considering memory access
in a complete process of network encoding. As we shall see,
achieving a high speedup can not be taken for granted and
requires careful task partitioning.

1) Partitioning for many-core network encoding: Our
synthetic benchmark does not consider memory access. In
CUDA, GPUs can only access their graphics memory, so the
coefficients and source blocks have to be transferred from the
host to the graphics memory first. Similarly, encoding results
residing in the graphics memory need to be transferred back to
system memory. With8 GB/s on the PCI Express 2.0 interface,
transfer times to and from graphics memory are negligible.

We use the same(c = 7168, n = 1024, k = 2048) setup
for our new benchmark with memory access. To ensure a fair
comparison with previous tests, we fill the coefficient matrix
with all 0xff to ensure a maximum load. The encoding
benchmark on the GPU now takes5306 ms, reflecting a
substantial increase from1905 ms, suggesting poor memory
performance.

After attempting other alternatives, we have settled on a
partitioning mechanism with a much finer granularity, with
each GPU thread encoding only a “single word” of the coded
block, rather than a full block. With careful assignments of
words to threads of each warp, we can now take advantage
of memory coalescing [13], so most memory accesses of a
thread warp fall next to each other, significantly reducing the
number of memory accesses by the memory controller on
the GPU. With such fine-granularity partitioning,512 × 7168
threads have been launched, much higher than the original
7168 threads. However, unlike CPU threads, GPU threads
are very lightweight as GPUs are designed to switch to new
threads seamlessly in hardware, in order to hide memory
latency. Using this new partitioning scheme, our encoding
process now takes3016 ms, a 76% improvement over our
original coarse partitioning.

Our next measure towards further optimization reads coef-
ficients in 4-byte chunks, rather than byte by byte, and then
caches them for use in the next four multiplications. This
reduces read requests for coefficients to1/4 of the original
approach, and the execution time is reduced to2098 ms, now
over 2.5 times better than our original partitioning.

On the8-core Mac Pro, the same network encoding bench-
mark takes2250 ms, which implies that the GPU performance
defeats 8-core CPUs when memory access is considered.
reflecting the GPU’s better ability to hide memory access
latency. While the CPU-based implementation suffers35% due
to memory access, the GPU performance only degrades10%.
This clearly demonstrates the GPU’s superior ability to hide
memory access latency, due to seamless hardware switching
across a large number of threads.

Finally, we use actual random coefficients instead of0xff .
The CPU takes2157 ms, while the GPU, being constrained by
computation and not memory access, decreases significantly
to 1751 ms, showing a23% advantage over the CPU. All
considered, the GPU performs23% better than the 8-core CPU
with memory access.

2) Mixed CPU-GPU network encoding: When even better
performance is required, both CPU and GPU can perform

network encoding in parallel. There are two main approaches
for task partitioning between CPU and GPU, both having
fundamentally the same computation load. Either one divides
the working set by partitioning each source block into two
(e.g.,half each), and assigns each partition to CPU and GPU;
or one assigns the encoding tasks of some coded blocks
entirely to the GPU, and the remainder to the CPU.

We choose to set up the same(c = 7168, n = 1024, k =
2048) experiment based on the second approach. First, we
divide a generation of7168 coded blocks evenly between
the 8-core CPU and GPU,3584 coded blocks by each. The
encoding process takes1094 ms, reflecting a speedup of1.99
over a similar CPU only execution. Since the GPU has a better
encoding performance, we may consider increasing the GPU’s
share of coded blocks. Assigning54% of coded blocks to the
GPU improves the encoding performance to1000 ms, a2.17
speedup.

3) Generating random coefficients in the GPU: So far, our
GPU-based encoding implementation uses random coefficients
generated by the CPU, and transferred to the graphics memory
before the start of the encoding process. Although neither
the process of generating random coefficients nor the transfer
times take a long time to execute, migrating the task of
generating random coefficients to the GPU makes the design
simpler, as it fully detaches the CPU from the encoding
process. In this case, the application using network coding
simply requests the GPU for a number of coded blocks.

Our GPU-based random number generation runs hundreds
of generators in parallel, each generating the random sequence
for a coded block through a random seed. It takes no longer
than 1.61 ms for 7168 × 1024 random coefficients, which is
ten times faster than using the CPU.

F. Many-core Network Decoding on the GPU
The decoding process has a higher computational complex-

ity than encoding, as Gauss-Jordan elimination involvesn2

row operations on coefficient rows of lengthn and coded
blocks of lengthk. Compared to encoding, this leads to a
reduced coding performance in general. However, the more
critical challenge is the smaller degree of parallelization in
the decoding process. Gauss-Jordan elimination requires the
decoding of each coded block to start only after the decoding
of the previous coded blocks is finished. This implies that the
decoding process, unlike the encoding process, lends itself to
parallelization onlywithin the decoding of the current coded
block, and notacrossa number of coded blocks.

Such a lesser degree of parallelization limits the perfor-
mance gain of GPU-based decoding much more than the CPU-
based implementation, since the GPU needs to run thousands
of threads to be able to achieve its peak performance. In
addition, threaded decoding of each coded block requires at
least one synchronization point, which makes the decoding
process acoarse-grainedparallel program.

We have tested a number of GPU-based decoding schemes
and their performance for the(c = 1024, n = 1024, k = 2048)
setup. Not surprisingly, our best-performing scheme only
achieves82% of the CPU-based decoding implementation at
this setup, as presented in the following.

1) GPU-based decoding with CPU assistance: In a pro-
gressive decoding application scenario, we receive each coded
block along with its associated coefficients and decode it
partially. After receiving and decoding then-th coded block,
the decoding process completes and alln source blocks are
recovered if no linear dependence has been encountered. In
our first scheme, for every new coded block, we partition the
aggregaten + k coefficients and data —i.e., a row of the
aggregate[C|x] matrix from Eq. (2) — such that each 4-byte
word of the aggregate data is assigned to a thread, leading to
a total of (n + k)/4 threads.

Each thread reduces the leading coefficients of the new
coded block through a number of linear combinations. How-
ever, it can not do further work as a global search for the first
non-zero coefficient has now become necessary. Since CUDA’s
synchronization construct only works for threads within a
single thread block, and not among all GPU threads, we
are forced to perform this synchronization at the CPU side.
This effectively breaks the decoding process into two GPU
kernel processes. After finding the first non-zero coefficient
at the CPU side, we launch another GPU kernel to perform
the remainder of the decoding operations for the current
block, with each GPU thread performing a series of linear
combinations for a 4-byte column of the aggregate[C|x].

Although this scheme perfectly divides each aggregate row
among threads, it suffers from launching an extra GPU kernel
to perform synchronization at the CPU side. The decoding per-
formance of1024 coded blocks with a(n = 1024, k = 2048)
setup achieves82% of the CPU-based performance (2484 ms
against2031 ms).

2) Full GPU-based decoding: In an attempt to avoid CPU-
assisted synchronization and the extra GPU kernel call, we
divide the data portion of the coded block among all thread
blocks, but give each thread block its own private copy of
the coefficient row. We can now use CUDA’s synchronization
construct within each thread block to perform the search
for the first non-zero coefficient. However, we do not wish
to consume an excessive amount of computing power on
processing redundant coefficients, so we define a thread block
to be as large as possible, employing only one thread block
per each of the14 SMs of the 8800 GT. This leads to each
thread block effectively decodingn+k/14 bytes of aggregate
data through(n+ k

14)/4 GPU threads, each thread working on
a 4-byte column. Unfortunately, even after applying a number
of data caching optimizations in the per-SM shared memory,
the GPU-only decoding is not able to perform better than6073
ms, lagging far behind our CPU-assisted decoding approach.

So far, in both of our GPU-based and CPU-based schemes,
we considered progressive decoding in a sense that each coded
block is decoded individually,i.e., right after receiving the
block from network, ending up with a total ofn GPU kernel
or CPU calls. From a measurement point of view, this implies
that we have to synchronize all execution threads, either CPU
or GPU, right after the decoding of each new coded block
finishes. For many practical application scenarios,e.g., (n =
128, k = 4096), the complete decoding ofn coded blocks
takes only around10−20 ms. This suggests that we can buffer
then coded blocks from the network, and then start decoding.

Such a decoding approach helps both CPU-based and GPU-
based decoding. First, more of the internal structures (used
across the decoding of several coded blocks) can remain in
the cache. Second, the threads can be executed longer without
being interrupted as individual coded blocks are decoded.
With such an approach, the performance of the GPU-based
implementation improves to2175 ms, but our 8-threaded
CPU-based scheme also performs better, now at1688 ms,
with GPU-based decoding achieving only78% of the CPU
performance.

V. PERFORMANCEEVALUATION

In this section, we evaluate the performance ofNuclei,
our design and implementation of GPU-accelerated many-core
network coding. We use fully dense coding matrices with non-
zero coefficients in our evaluation. The performance will be
even higher with sparser matrices.

A. Coding Bandwidth

As we evaluate the performance ofNuclei, we have tested
a range of128 bytes to16 KB per block, with128, 256 and
512 blocks. When compared to our baseline SIMD-accelerated
CPU-based implementation with8 threads (one per CPU core),
the coding bandwidth ofNuclei, in MB per second, is shown
in Fig. 5. The encoding (decoding) bandwidth should be
interpreted as the total number of bytes that are produced (or
decoded) per second.

Fig. 5(a) shows that GPU encoding inNuclei achieves its
peak performance across almost all coding settings. We are
able to make a number of observations from these results. As
the number of blocksn doubles from128 to 256 and again to
512, the encoding bandwidth halves first from66.9 MB/s down
to 33.8 MB/s, and again to16.8 MB/s. This is due to the fact
that generating a coded word requiresn GF multiplications.
For 128 blocks, the encoding of each word requires reading
128 words of source data and writing one word of coded data,
in addition to the reading of coefficients. As such, our coding
bandwidth of66.9 MB/s results in a memory access rate of
10.8 GB/s, which is far below the57.6 GB/s theoretical limit.

These results have confirmed that our encoding performance
is only limited by the computation limits of the 8800 GT.
For a number of executed instructions to achieve an encoding
bandwidth of66.9 MB/s at 128 blocks, it is equivalent to an
instruction rate of151 GIPS (Giga instructions per second),
which is 90% of the advertised theoretical limits of504
GFLOPS (i.e., 168 GIPS). This represents a surprisingly high
performance level, confirming that our partitioning scheme
performed very well in hiding the memory latency. It also
confirms that the GPU can execute concurrent threadswith
zero scheduling overheadin hardware as claimed, and can
perfectly hide register read-after-write latencies when asuffi-
cient number of parallel threads exists within each SM. Since
the GPU is only limited by its computation power, its peak
performance has been achieved across all(n, k) settings. In
comparison, the CPU-based encoding performance follows the
same trend as discussed in [7], but at higher coding rates due
to more CPU cores. As the block size increases, the CPU

(a) Encoding (b) Decoding

block size (bytes)

b
a
n
d
w

id
th

 (
M

B
y
te

s
/s

e
c
)

GPU (n = 128)

Mac Pro (n = 128)

GPU (n = 256)

Mac Pro (n = 256)

GPU (n = 512)

Mac Pro (n = 512)

66.9 MB/s

33.6 MB/s

16.8 MB/s

47 MB/s

50

40

30

20

10

b
a
n
d
w

id
th

 (
M

B
y
te

s
/s

e
c
)

50

40

30

20

10

60

70

128 256 512 1024 2048 4096 8192 16384128 256 512 1024 2048 4096 8192 16384

Fig. 5. Coding bandwidth of GPU-based and CPU-based (8-threaded with SIMD acceleration) for the(a) encoding; and(b) decoding processes.

cache performance has improved, leading to better memory
performance and higher encoding rates.

With respect to decoding, the decoding performance shown
in Fig. 5(b) is generally lower with both the GPU and the CPU,
because each coded block has to be decoded serially. The CPU
performs better than the GPU across the board, especially at
smaller block sizes, since the GPU does not have sufficient
data (smallk/14) to launch a sufficient number of threads
to achieve an acceptable performance gain, and the CPU’s
computation power is not affected by the block size, unlike
its memory performance. On the GPU, as an example atk =
128, each of the14 SMs decodes onlyk/14 = 9.14 bytes
of data on average. Atn = 128, the decoding time remains
around31 ms even if we increase the block size from128
to 2048 bytes, because latencies of the computation pipeline
and memory accesses can not be hidden when there is so little
useful computation to be performed. Ask increases, though
the CPU’s performance has improved due to a higherk/n
ratio and improved memory performance, the GPU has quickly
caught up as soon as it has sufficient data to process and to
launch a sufficient number of threads.

B. Network Coding with Both GPU and CPU

In order to evaluate the maximum achievable performance,
we now explore the limits of encoding bandwidth when we
employ both the CPU and GPU in parallel. We partition the
encoding process by generatingα portion of the required
coded blocks by GPU, and the remainder of the coded blocks
by CPU. Because the coding performance of GPU and CPU
are not equal, and with the GPU outperforming CPU, we
need to configureα optimally. Fig. 6 shows our results. A
peak encoding bandwidth of116.7 MB/s has been achieved at
n = 128, which can offer sufficient packet payload to saturate
the Gigabit Ethernet interface at servers.

C. Revisiting Table-Based Network Coding

We have mainly focused on loop-based GF-multiplication
on the GPU so far in this paper. A table-based implementation
creates thelog/exp tables once at the host side and transfers
them to the graphics memory. To achieve higher performance
as these tables are heavily accessed, the GPU threads can be
better designed by first loading the tables from the graphics
memory into theshared memory, effectively using it as a
managed L1 cache. Afterwards, each GPU thread performs

byte-by-word GF-multiplication, similar to our loop-based
approach. Still, our experiments have shown that such a
fine-tuned design performs30% worse than our loop-based
approach.

It is, however, possible to optimize table-based GF-
multiplication further, which is explored in details in ourongo-
ing work. The basic idea is the following. In our partitioning,
each GPU thread, which calculates a word-length worth of a
coded block, accesses a full coefficient row ofC and a full
column of original blocksb. However, many other threads use
the same row and column in their own coding processes that
leads to many redundant conversions to thelog domain. By
first preprocessingC andb and transferring them fully to the
log domain, the number of table accesses can be effectively
reduced by2/3. Our new optimized table-based encoding
can improve the performance by25% over the loop-based
approach, as demonstrated in Fig. 7.

Finally, we have also discovered that the performance of op-
timized table-based GF-multiplication can be further improved
by manipulating the tables to more optimally exploit the GPU
hardware of SP cores, and by improving the access pattern to
the shared memory. With these performance improvements, we
are able to achieve encoding rates up to293 MB/second with
n = 128 blocks, in our experiments on the high-end NVIDIA
GeForce GTX 280 GPU. At this performance level, there is no
need to involve the CPU,e.g.,in a combined encoding scheme
with the GPU, to satisfy most real-world performance needs.

0

20

40

60

80

100

120

1024 2048 4096 8192 16384

block size (bytes)

b
a
n
d
w

id
th

 (
M

B
y
te

s
/s

e
c
)

n = 128

n = 256

n = 512

n = 1024

! = 60% ! = 55%

! = 53%

! = 51%

! = 60%

! = 56% ! = 52%
! = 52%

! = 45%

! = 50%

116.7 MB/s

62.3 MB/s

31.6 MB/s

15.9 MB/s

Fig. 6. Encoding bandwidth with the 8-core CPU and the 112-core 8800
GT GPU combined.

0

10

20

30

40

50

60

70

80

90

128 256 512 1024 2048 4096 8192 16384

block size (bytes)

b
a
n
d
w

id
th

 (
M

B
y
te

s
/s

e
c
) n = 128

n = 256

n = 512

83.9 MB/s

41.5 MB/s

21 MB/s

Fig. 7. Encoding bandwidth of the optimized table-based approach on the
8800 GT GPU.

This result certainly does not imply that the loop-based
encoding on GPU should be written off altogether. The next
generations of CUDA GPUs will likely increase their integer
arithmetic units to 64 bits which potentially can double the
performance of loop-based GF-multiplication. In contrast, it is
less likely to observe a substantial performance improvement
of the shared memory on GPU SMs in the future.

D. Feasibility of using Network Coding on Streaming Servers

As we have just shown, the performance ofNucleimakes it
feasible for it to be deployed in high-performance streaming
servers using network coding, with hundreds of clients served
concurrently. As an example, consider the scenario of using
a media segment size of512 KB, with 128 blocks of 4
KB each, corresponding to a(n = 128, k = 4096) setting.
With a streaming rate of768 Kbps that is typical for high
quality video streams, each segment contains content that lasts
5.33 seconds, which is an acceptable buffering delay on the
client side. WithNuclei operating at this setting, the coding
bandwidth is sufficiently high to serve up to870 clients with
the mainstream 8800 GT GPU alone. In addition, when a
media segment is ready to be encoded and served, it can be
transferred and stored in the graphics memory on the GPU.
Even with the modest memory capacity of512 MB on the
8800 GT, hundreds of such segments can be accommodated.

The layout of segments and buffers in both graphics and
system memory are shown in Fig. 8. The GPU keeps two
other buffers to manage random seeds and their associated
random coefficients. Coded blocks are directly loaded from the
graphics memory as they are produced. The only involvement

System memory

Graphics memory

Source video

segments

(N segments

512KB each)

Segi-(N-1)

Segi-1

Segi-2

Segi

.......

Random

seeds

Random

coefficients

n = 128

c =

2048

4 bytes

Coded blocks

buffer

k=4096

c =

2048

seed coded block

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

4 bytes

seed coded block payloadheader

Segi

packet buffer

Segi-(N-1)

packet buffer.......

Segi-1

packet buffer

PCIe

GeForce 8800 GT Thread blocks

SM
13
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers

(8KB)

SM
2
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers

(8KB)

SM
1
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers

(8KB)

SM
0
SP SP

SP SP

SP SP

SP SP

Shared memory

(16KB)

Registers

(8KB)

Block0 Block1

Block3

....Block4

Block2

thread warp0

thread warp1

......

t+3t+2t+1t

????????

Thread Block4

GeForce

8800 GT streaming

algorithm

CPU

network

Fig. 8. GPU-accelerated network coding in a dedicated streaming server.

of the server CPU in network coding is to transfer new source
segments to the GPU for encoding, to request a number of
coded blocks from a particular segment in the GPU, and when
they are ready, transfer them back to its buffers in the system
memory. As such, the CPUs are relieved to perform other
CPU-intensive tasks, such as media encoding.

VI. CONCLUSION

This paper presentsNuclei, a high-performance design and
implementation of many-core network coding using GPUs.
Nuclei is able to achieve90% of the advertised theoretical
limits (504 GFLOPS) of the NVIDIA GeForce 8800 GT,
across a wide range of network coding configurations. We
have provided an in-depth comparison of GPU-accelerated
network coding against a CPU-based implementation. We have
shown that many-core GPUs can be deployed as an attractive
alternative solution to multi-core servers, by offering a higher
encoding performance level at a much lower cost. Further-
more, multi-core CPUs and many-core GPUs can be used
to perform network coding simultaneously, which achieves a
level of coding performance sufficient to saturate a Gigabit
Ethernet interface and to serve in media streaming servers.
With a much better memory performance than CPUs and a
rapidly increasing number of cores, GPUs are very promising
to bring network coding to reality.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Trans. on Information Theory, vol. 46, July 2000.

[2] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp.
782–795, October 2003.

[3] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network Coding: An
Instant Primer,” ACM SIGCOMM Computer Communication Review,
vol. 36, January 2006.

[4] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc. of
Allerton Conference on Comm., Control, and Computing, October 2003.

[5] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” inProc. of IEEE INFOCOM 2005, March 2005.

[6] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting,” inProc. of
International Symposium on Information Theory (ISIT 2003), 2003.

[7] H. Shojania and B. Li, “Parallelized Network Coding WithHardware
Acceleration,” inProc. of the 15th IEEE International Workshop on
Quality of Service (IWQoS), Chicago, IL, June 20-22 2007.

[8] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive View of
a Live Network Coding P2P System,” inACM Internet Measurement
Conference (IMC 2006), 2006.

[9] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient Erasure Correcting Codes,”IEEE Trans. Info. Theory, vol.
47, no. 2, pp. 569–584, February 2001.

[10] P. Maymounkov, N. Harvey, and D. Lun, “Methods for Efficient
Network Coding,” in Proc. of 44th Annual Allerton Conference on
Communication, Control, and Computing, September 2006.

[11] E. Lindholm and J. Nickollset al., “NVIDIA Tesla: A Unified Graphics
and Computing Architecture,” inIEEE MICRO, March-April 2008.

[12] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,”ACM Queue, vol. 6, no. 2, 2008.

[13] NVIDIA Corporation, NVIDIA CUDA: Programming Guide, Version
2.0, July 2008.

[14] Intel Corporation,Intel 64 and IA-32 Architecture Software Developer’s
Manual, Volume 1: Basic Architecture, April 2008.

