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1 Introduction

The question of asymptotic behavior of hadronic scattering amplitude at high energy has
been actively studied over many decades. It is well understood by now that at high enough
energy the fast growth of the scattering amplitude slows down and that the physical phe-
nomenon that is responsible for it, is the saturation of partons in hadronic wave function.
The quantitative description of this saturation however is a difficult question. We believe
that the appropriate framework is the so called Reggeon Field Theory (RFT) where the
effective degrees of freedom are scattering amplitude and the evolution parameter is the log-
arithm of energy (rapidity) [1–34]. Currently we know how to construct the evolution of the
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amplitudes and the hadronic wave function appropriate for the situation when one of the
colliding hadrons may be dense, but the other one remains dilute at the energy of interest.

Once the energy grows even further so that both hadrons have to be considered dense
nontrivial modification of the current theory is necessary. This also pertains to collision of
heavy ions at lower energies, where the partonic density is large already at get go. Much
thought has gone into attempting to extend the current theory to this regime [35–50], but
a consistent description of the dense regime is still wanting.

Although a proper QCD derivation of the high energy RFT is not available, there
are several constraints on the eventual form of this theory that follow from fundamental
unitarity requirements. In particular, the effective theory should be s-channel unitary and
t-channel unitary.

The t-channel unitarity condition can be formulated in different ways. One way of
putting it is the requirement that the scattering amplitude does not depend on the frame
in which the scattering is described. Mathematically this is equivalent to the property of
self-duality of the RFT [58]. This property is built in the BFKL evolution [1–4] which is
appropriate for the scattering of two dilute objects. It is however lacking in the BK or
JIMWLK equations [33, 34, 51–57], which describe the scattering of a dilute object on a
dense one. Recently we have proposed a generalization of JIMWLK evolution which does
preserve the t-channel unitarity [59, 60].

The s-channel unitarity has only been discussed recently in this context. It does not
have a simple mathematical formulation, but physically is equivalent to the requirement
that RFT is derivable from a fundamental unitary quantum field theory. The s-channel
unitarity turns out to be a difficult constraint to satisfy. Neither BFKL nor JIMWLK
evolution satisfy it fully, and it has not been established so far in any of the putative
generalizations [59].

An interesting question to ask is whether imposing the two unitarity conditions is
restrictive enough to determine the RFT completely. Or perhaps better to say, what addi-
tional guidance about RFT one can obtain from physical considerations beyond unitarity.

While the quantitative theory of course should be derived directly from QCD, over the
years we have found simple toy models to be quite illuminating. Thus much work in early
days was done on models with zero transverse dimensions in an attempt to understand
general features of Pomeron interactions [8, 9, 61–73]. Later similar zero dimensional
models have been studied as a good playground to explore general features which must
be present in the effective high energy theory of QCD. These universal features include
t-channel unitarity and s-channel unitarity. Recently we have suggested a simple zero
dimensional model which satisfies both unitarity conditions [74].

In this paper we further study zero dimensional case. In section 2 we discuss the
relation of the model of [74] with a t-channel unitary model introduced in [23] and later
in [75] and studied in detail in [71]. We show that the two models lead to identical evolution
equations for the dipole probabilities, and are therefore equivalent. Below we will refer
to this model UTM — unitary toy model. We also show that the generating function
frequently introduced in the framework of dipole evolution, in the RFT formulation of the
same theory plays the role of the Schroedinger wave function.
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In section 3 we point out that the RFT formulation is rather flexible and allows to
generalize the model in question in a way that preserves the correct unitarity properties.
The new physical ingredient that enters this generalization is the observation that in one
step of the evolution the emission does not have to be limited to just one gluon. In fact
we argue that in the high energy dense regime one should expect emission of any number
of gluons with appropriate probabilities. While in the dilute limit the emission of the
additional gluons is suppressed by powers of the coupling constant, thus corresponding
to NLO corrections to the emission kernel, this is not the case in the asymptotic dense
regime. We construct explicitly an RFT Hamiltonian (below referred to as UTMM), which
implements such an evolution and study some of its properties. In particular we observe
that it leads to a much wider distribution of dipoles in the wave function at high energy
compared to the original toy model. In both sections 2 and 3 we study the saturation
effects in the parton cascades which are not included in the JIMWLK(BK) approach. The
effect of saturation are physically the same as summation of the BFKL Pomeron loops,
albeit the language we use in this paper is different. This problem has not been solved in
QCD, hence the experience with the exact solvable simplified models could be useful.

Sections 2 and 3 focus on dipole evolution of a single dipole taken as initial condition.
In section 4 we explore the effect of initial conditions on the probability distribution. In
particular we solve for the probability distributions in UTM and UTMM but for m dipoles
in the wave function as initial condition. We show that, as expected, increasing m shifts
the asymptotic regime to lower rapidities. In particular if the initial number of dipoles is
very large m ∼ 1/γ, where γ it the dipole-dipole scattering amplitude, the BK regime is
absent in the evolution and the saturation regime dominates from the get go.

Finally section 5 is devoted to discussion of several qualitative features of the models
we consider.

2 The unitary toy model (UTM)

2.1 The RFT formulation

In [74] we have discussed the zero dimensional toy model defined as an RFT. Mathemat-
ically the setup is the following. The projectile and target states of RFT are defined by
the action of (projectile and target) dipole operators d and d̄ on the left and right vacua
respectively. The general RFT “wave function” of the target at rapidity Y T has the form

|ΨT 〉Y T =
∑
n

P Tn (Y T )d̄n|0〉 (2.1)

where P Tn (Y T ) are probabilities to have n dipoles in the target state, P Tn ≥ 0,
∑
n P

T
n = 1.

Similarly for the projectile the most general state is

〈ΨP | =
∑
m

PPm(Y P )〈0|dm (2.2)

Note that although we refer to the above objects as “wave functions”, those are not
wave functions of any quantum theory, but rather “wave functions” of RFT. As such their
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physical meaning is different from the usual Schroedinger wave functions. In particular
the coefficients in their expansion in the dipole basis are themselves physical probabili-
ties, rather than amplitudes whose squares yield probabilities in the standard quantum
mechanical setting.

In terms of these objects the scattering amplitude is calculated as

s = 〈ΨP (d)|ΨT (d̄)〉 (2.3)

To calculate the overlap we use the algebra of the dipole operators

dd̄ = e−γ d̄d; (2.4)

and the properties of the right and left “vacua”

d|0〉 = 0; 〈0|d̄ = 0 (2.5)

The constant e−γ has the meaning of a dipole-dipole scattering matrix. In the following we
assume the scattering to be weak, so that in the natural counting in powers of the coupling
constant γ ∼ α2

s. This is consistent with the scattering amplitude of two dipoles in QCD.
With the assumption that γ is small, and will freely use e−γ ≈ 1− γ whenever convenient.

Note that the algebra of d and d̄ can be represented explicitly on functions of d̄ by1

d = exp{−γd̄ ∂
∂d̄
} (2.6)

As a consequence
〈0|dmd̄n|0〉 = e−γmn (2.7)

and
s(Y ) =

∑
m,n

e−γmnPPm(Y0)P Tn (Y − Y0) ≡
∑
m,n

σmnPPm(Y0)P Tn (Y − Y0) (2.8)

with σ = e−γ . In this expression the total rapidity (logarithm of energy) of the scattering
process is Y , while Y0 defines the frame in which the calculation (observation) is performed.
The physical amplitude of course should be independent of Y0 and depend on Y only.

The energy evolution of the scattering amplitude is given by the evolution equation
generated by an RFT Hamiltonian according to

s(Y ) = 〈ΨP (d)|e−HY |ΨT (d̄)〉 (2.9)

where H is an operator function of d and d̄.
The unitarized toy model (UTM) of [74] is defined by the Hamiltonian

HUTM = −∆
γ
P̄P (2.10)

1We have used the symbol of partial derivative in order to avoid confusion between the differential d
and the dipole operator d.
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where the Pomeron operators are related to dipoles as

P = 1− d; P̄ = 1− d̄. (2.11)

The Hamiltonian generates the evolution of the RFT wave function. For a n dipole
target state evolved by an infinitesimal rapidity δY

e−HUTM δY |n)〉 ≈
(

1− δY ∆
γ

[
1− e−γn

])
|n〉+ δY

∆
γ

[
1− e−γn

]
|n+ 1〉 (2.12)

The constant ∆ which determines the probability to emit a dipole in one step of the
evolution is a model parameter. In terms of the counting of powers of the coupling constant
we will set it to be of order ∆ ∼ αs, which is consistent with QCD. Thus our two model
parameters are both small, and γ ∼ ∆2.

The evolution eq. (2.12) has several important properties. First, it is s-channel unitary.
This is obvious since a step in the evolution generates a new dipole state with positive
probability. It is also t-channel unitary, as can be seen by explicit derivation of the evolution
of a target state, which turns out to be identical to eq. (2.12), [74]. The t-channel unitarity
is assured by the self duality of the Hamiltonian. i.e. invariance under the transformation
d→ d̄ accompanied by the exchange of order of the factors d and d̄, which we will refer to
as transposition. Explicitly, the duality transformation is

H(d, d̄)→ HT (d̄, d) (2.13)

Finally, another important point is that the probability of emission of an extra dipole for
large n does not depend on n, since 1 − e−γn → 1 for n � 1/γ. Thus although for small
n (small rapidity) the number of dipoles grows exponentially, at large n the growth is
much slower. This feature of saturation is what we expect from the saturation in QCD as
well. At large rapidity the cross section is dominated by configurations with large n. Thus
the probability to emit an extra dipole is constant and the evolution becomes similar to
a random walk in the dipole number space. In this sense the evolution saturates at high
energy. We will observe this property explicitly below.

The quantum evolution can be cast in the form of the Schroedinger equation of the
RFT. Let us define the target RFT wave function in the d̄ representation(an identical
discussion holds for the projectile), i.e.

|Ψ〉 = Z(d̄)|0〉 (2.14)

The proper normalization of the RFT wave function is not given by the usual integral
condition as for a Schroedinger wave function, but rather by

Z(1) = 1 (2.15)

The Schroedinger equation for Z is derived by acting with the Hamiltonian eq. (2.10) while
utilizing the algebra eq. (2.4) and eq. (2.6):

∂

∂Y
ZUTM
Y (u) = −∆

γ
(1− u)

(
1− e−γu

∂
∂u

)
ZUTM
Y (u) = ∆

γ
(u− 1)

(
ZUTM
Y (u)− ZUTM

Y

(
e−γ u

))
(2.16)
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Note that Z is precisely the probability generating function as it is frequently de-
fined in the framework of similar reaction-diffusion models. The standard definition of the
generating function is

ZY (u) ≡
∑
n

Pn(Y )un (2.17)

so that
Pn(Y ) = 1

n!
∂n

∂un
Z(Y )|u=0 (2.18)

Comparing this definition with eq. (2.14) and using eq. (2.1) we see that the two functions
are indeed identical.

We note that sometimes rather than calculating probabilities PUTM
n it is more useful

to calculate factorial moments of the probability distribution defined as

Mk ≡ 〈n(n− 1) . . . (n− k+ 1)〉 ≡
∞∑
n=0

n(n− 1) . . . (n− k+ 1)Pn =
∞∑
n=0

n!
(n− k)! Pn (2.19)

These moments can be calculated from the generating function Z as

Mk = ∂k

∂uk
Z(u)|u=1 (2.20)

which is equivalent to the representation

ZY (u) = 1 +
∞∑
k=1

1
k!Mk(Y )(u− 1)k (2.21)

2.2 The frame invariant formulation

An alternative approach to defining dipole models of this type was discussed a while ago
in [23], and later in [75] and [71]. The starting point of these works is explicit invariance
of the evolution equation for probabilities Pn under the change of Lorentz frame.

One starts with the eq. (2.8) and requires that the evolution of the probabilities is such
that the expression for the s-matrix does not depend on the frame in which it is calculated,
i.e. on the value of Y0. If in addition one assumes that only one dipole is emitted in one
step of the evolution, i.e.

d

dY
Pn(Y ) = fnPn(Y ) + gnPn−1(Y ) (2.22)

one finds that the only solution compatible with the dilute limit is

dPUTM
n (Y )
dY

= −∆
γ

(
1 − e−γn

)
PUTM
n (Y ) + ∆

γ

(
1 − e−γ(n−1)

)
PUTM
n−1 (Y ) (2.23)

Both models, eq. (2.10) and eq. (2.23) describe the evolution of the same system — an
ensemble of dipoles (colorless “partons”). In fact, although it was not realized in [74], the
two are equivalent. To see this we should recast the evolution of the RFT wave function
in terms of the evolution of probabilities. Starting with eq. (2.12) and reinterpreting it as
evolution of probabilities we indeed immediately obtain eq. (2.23). Another way to see this
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equivalence is to start with the probability evolution eq. (2.23) and derive the evolution
of the generating function defined as eq. (2.17). This equation is identical with eq. (2.16)
which again demonstrates that the two models are identical.

It is interesting to understand the main properties of the probability distribution as it
evolves from lower to higher rapidities. We will do that in the rest of this section. We note
that some of these results have already appeared before, e.g. in [71]. We present them here
for completeness, as well as to set up the stage for generalizing the model in the next section.

2.3 The BFKL-BK limit

When one of the colliding objects is dilute, the model above reduces to the zero dimensional
BK model. For dilute target, for example the scattering amplitude of each projectile dipole
is small, and one can formally expand d in power series in γ

d ≈ 1− γd̄ ∂
∂d̄

(2.24)

The Hamiltonian then becomes

HBK = ∆
[
d̄2 − d̄

] ∂
∂d̄

(2.25)

which is precisely the BK Hamiltonian.
Analysis of this limit is quite straightforward if we restrict ourselves to the properties

of the dilute object. As was explained in [74], the BK Hamiltonian violates s-channel
unitarity if applied to the wave function of the dense projectile, and we are not going to
consider this case. On the other hand when evolving the state of the dilute target the
BK evolution of the wave function is equivalent to the BFKL cascade. With this in mind
we will allow ourselves to refer to the resulting probability distribution interchangeably as
either BK or BFKL.

First off, it is easy to see that the Schoedinger equation becomes

∂

∂Y
ZBKY (u) = −∆u (1− u) ∂

∂ u
ZBKY (u) (2.26)

This is easily solved noting that it can be rewritten in a simple way as[
∂

∂Y
− ∂

∂t

]
ZBK = 0 (2.27)

where
t = 1

∆ ln 1− u
u

(2.28)

Thus for any initial condition ZBK0 (u) the solution is

ZBKY (u) = ZBK0

(
u

u(1− e∆Y ) + e∆Y

)
(2.29)

The most common case considered in the literature is when at initial energy the target
contains one single dipole, ZBK0 = u. In this and the next section we will concentrate on
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solutions that correspond to this initial condition. We will consider the case of multiple
dipoles at initial rapidity in section 4.

For a single dipole initial condition the solution at rapidity Y is

ZBKY (u; 1) = u

u(1− e∆Y ) + e∆Y (2.30)

Using this generating function it is easy to see that (here the index (1) indicates the number
of dipoles at initial rapidity)

MBK
1(1)(Y ) ≡ N(Y ) = e∆Y (2.31)

and
PBKn(1)(Y ) = 1

N(Y )− 1

(
1− 1

N(Y )

)n
(2.32)

The higher factorial moments for this distribution have a simple structure:

MBK
k(1) (Y ) = k!N(Y ) (N(Y ) − 1)k−1 (2.33)

At high energy where e∆Y � 1 these become

PBKn(1)(Y )→ 1
N(Y )e

− n
N(Y ) ; MBK

k(1)(Y )→ k!Nk(Y ) (2.34)

2.4 The UTM probability distribution

We now turn to the probability distribution in UTM beyond the BFKL-BK limit. Various
properties of UTM were studied in depth in [71]. We mention that the equation for prob-
abilities can be explicitly solved. In particular for the initial condition of a single dipole
P1(0) = 1; Pn 6=1(0) = 0 the solution is

PUTM
1 (Y ) = e−ω1Y ;

PUTM
n>1 (Y ) =

∮
dω

2πi e
ω Y 1

ωn

n∏
k=1

ωk
ω + ωk

=
n−1∏
j=1

ωj

n∑
i=1

n∏
k 6=i,k=1

1
ωk − ωi

e−ωiY (2.35)

with
ωn = ∆

γ
[1− e−γn] (2.36)

Although these formulae are explicit, they do not give one directly an understanding of the
properties of the distribution. To get a better idea about the importance of the saturation
corrections we first consider the limit of very large energy.

2.4.1 The asymptotic distribution at Y →∞

To find the behavior of the probabilities at high energy we note that for large Y we expect
ZY (e−γu) � ZY (u), since on average the number of dipoles is expected to be large,
which means that high powers of u are most important in the generating function. Thus
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to find the large Y asymptotics we can drop the second term in the Schroedinger equation
eq. (2.16). The resulting equation is simple

∂

∂Y
ZUTM
Y (u) = ∆

γ
(u− 1)ZUTM

Y (u) (2.37)

and yields the asymptotic solution

Zasymp
Y (u) = e

∆
γ

(u−1) (Y−Y0)
ZY0(u) (2.38)

Here Y0 is the rapidity starting from which we can use the asymptotic equation, and the
function ZY0(u) is determined by the initial condition and the evolution up to the rapidity
Y0. For very large rapidity Y � Y0 the exact value of Y0 does not matter. Likewise the ini-
tial condition should not significantly affect the properties of the distribution. Formally we
assume that the function ZY0(u) describes states with relatively small number of particles.
It therefore is dominated by small powers of u and is a relatively smooth function which
can be approximated by a constant. The normalization eq. (2.15) then sets this constant
to unity. Thus the asymptotic generating function can be approximated by

Zasymp UTM
Y (u) ≈ e

∆
γ

(u−1)Y (2.39)

Calculating the probabilities we find the Poisson distribution:

P asymp UTM
n = PPDn (N) = Nn(Y )

n! e−N(Y ) (2.40)

with the average multiplicity

N(Y ) = ∆
γ
Y (2.41)

This distribution can also be directly obtained from the general solution of eq. (2.35)
replacing ωn → ∆

γ which is appropriate for n large such that nγ � 1.
The factorial moments for the Poisson distribution are

MPD
k (Y ) = Nk(Y ) (2.42)

We note that the properties of this probability distribution are significantly different
from that in the BFKL cascade. The average number of dipole grows only linearly with
rapidity rather than exponentially. This is a direct consequence of saturation of the emission
amplitudes in eq. (2.12) at large n. As noted above, the probability for emission of an
extra dipole at large rapidity is a constant and does not depend on the number of dipoles
already present in the wave function. As a result the evolution is similar to random walk
and the average number of dipoles grows only linearly in rapidity. For BK evolution, where
the emission probability is proportional to the number of dipoles present, the growth is
exponential as reflected in eq. (2.31). Another important difference is that the distribution
eq. (2.40) unlike eq. (2.34) does not obey KNO scaling [76–78] and decreases much faster
at large values of n > N(Y ) compared to PBK .
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2.4.2 The UTM parton cascade at “intermediate” n

The Poisson distribution derived above is valid at asymptotically large energy. What about
the intermediate region, where the number of particles is large enough so that the BK limit
is not valid, but the energy is still not asymptotically large? We probe this regime assuming
that PUTM

n is a smooth function of n, i.e. we replace PUTM
n−1 (Y ) in eq. (2.23) by

PUTM
n−1 (Y ) = PUTM

n (Y ) − ∂PUTM
n (Y )
∂n

(2.43)

which assumes ∂2PUTM
n (Y )
∂n2 � ∂PUTM

n (Y )
∂n . This assumption will have to be checked a

posteriori given the solution. In this approximation eq. (2.23) takes the form

∂PUTM
n (Y )
∂Y

= −∆
γ

((
1− e−γ

)
e−(n−1)γ PUTM

n (Y ) +
(
1− e−(n−1)γ

) ∂PUTM
n (Y )
∂n

)
(2.44)

We write the solution in the form PUTM
n (Y ) = P̂n P̃n (Y ), where P̂n is a particular

solution of the equation:

(
1− e−γ

)
e−(n−1)γ P̂n +

(
1− e−(n−1)γ

) ∂P̂n
∂n

= 0. (2.45)

This is solved by2

P̂n = exp
(
−1− exp (−γ)

γ
ln
(
1− e−(n−1)γ

))
≈ 1(

1− e−(n−1)γ) . (2.46)

The equation for P̃n(Y ) then becomes:

∂P̃n(Y )
∂Y

= −∆
γ

(
1− e−(n−1)γ

) ∂P̃n(Y )
∂n

. (2.47)

The general solution of eq. (2.47) is an arbitrary function of (∆Y + f(n)) with f(n)
satisfying:

d f(n)
dn

= − γ

1− e−(n−1) γ (2.48)

or
f(n) = − ln

(
e(n−1) γ − 1

)
(2.49)

Hence

PUTM
n (Y ) = 1(

1− e−(n−1)γ)F
(
ζ(Y, n)

)
(2.50)

where we have defined

ζ(Y, n) = −∆Y + ln
(
e(n−1)γ − 1

γ

)
. (2.51)

2We approximate exp{−γ} ≈ 1− γ.
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Figure 1. Figure 1-a: the KNO function Ψ
(
z = n

N

)
= NPn for the BFKL cascade (eq. (2.32))

and the UTM cascade (eq. (2.52a)). Here N is the average multiplicity for the corresponding
distribution, which is taken as N=6 in the figure. Figure 1-b shows that the KNO scaling for UTM
is only approximate and the actual multiplicity distributions has more complex dependence on the
mean multiplicity.

To find the function F that corresponds to a particular initial condition we need to match
it to the solution of BK equation at small nγ calculated with the same initial condition.
For the evolved single dipole matching with the solution of eq. (2.34) we obtain

PUTM
n(1) (Y ) = γ(

1− e−(n−1)γ) exp
(
− eζ(Y,n) + ζ(Y, n)

)
(2.52a)

nγ<1−−−→ e−∆Y e−ne
−∆Y (2.52b)

In figure 1 we compare Pn of the BFKL cascade (eq. (2.32)) and of the UTM cascade with
saturation given by eq. (2.52a).

To determine the range of validity of this calculation we consider

∂PUTM
n(1)
∂n

=
[
γ−e−∆Y+(n−1)γ

]
PUTM
n(1) ;

∂2PUTM
n(1)

∂n2 =
[
−γe−∆Y+(n−1)γ+

[
γ−e−∆Y+(n−1)γ

]2]
PUTM
n(1)

(2.53)
First, we note that at high enough rapidity, Y > 1

∆ ln 1
γ the probability distribution has a

maximum at
nmax − 1 = ∆

γ
Y − 1

γ
ln 1
γ

(2.54)

Second, we see that for any fixed n at large enough Y we have d2Pn
dn2 � dPn

dn and therefore our
approximation is valid. Moreover in the vicinity of the maximum n ∼ nmax the calculation
is valid at any rapidity. As is clear from eq. (2.53), parametrically the range of validity of
the present approximation is given by

n− 1 < ∆
γ
Y (2.55)

One can write down an approximate expression for the average multiplicity in the distri-
bution PUTM

n(1) . Approximating the sum over n by the integral while calculating N(Y ) we
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UTM cascade

BFKL cascade

Asymptotic UTM cascade

20 40 60 80 100
1
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100

1000

Y

N
(Y
)

Figure 2. The mean multiplicity N(Y ) (see eq. (2.56)) versus Y (solid curve). The mean multi-
plicity of the BFKL cascade is equal to exp (∆Y ), the asymptotic multiplicity for the UTM cascade
(see eq. (2.40)) is taken as Nasymp(Y ) = ∆

γ Y . ∆ = 0.2 and γ = 0.01.

find
N(Y ) ≡M1(Y ) ≈ 1

γ
e

1
γ
e−∆Y

Γ
(

0, 1
γ
e−∆Y

)
(2.56)

where Γ(x, z) is an (upper) incomplete Γ-function [79].
From eq. (2.56) one can see that N(Y ) reduces to the BFKL cascade value N(Y ) →

exp (∆Y ) for small Y . On the other hand for large Y such that e−∆Y � γ eq. (2.56)
yields N(Y ) → ∆

γ Y −
1
γ ln 1

γ consistent with the value of nmax found in eq. (2.54). Inter-
estingly this result for the average multiplicity is also consistent with the asymptotic limit
of eq. (2.40), even though for very large Y our formal discussion above indicates that the
range of validity of the approximation eq. (2.43) is limited by eq. (2.55).

In figure 2 we plot the dependence of the mean multiplicity N on rapidity for a single
dipole initial condition, which demonstrates the above features. In figure 3 we plot the
“history” of the distribution corresponding to the single dipole initial condition, starting
with the BK evolution through the intermediate regime and into asymptotic rapidities.

3 Generalizing UTM

The UTM satisfies the physical requirements of s- and t-channel unitarity, and also provides
for saturation of emission probability at very high energies. Nevertheless it is quite clear
that it is incomplete as far as the description of scattering of dense objects is concerned.
The main culprit here is the fact, that only a single dipole is emitted in this model in one
step of the evolution. This is obvious from the Mueller-Salam derivation as well as from
the evolution equation for the RFT states (eq. (2.12)).
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Figure 3. Pn(Y ) versus n at different Y with the single dipole initial condition. ∆ = 0.2, γ = 0.01

When the system is dense there is no reason why the number of dipoles emitted in one
step of the evolution should be limited to one. Recall that the probability per unit rapidity
for emission of a single dipole is of order ∆n as long as n ≤ 1/γ. Thus if the number of
dipoles is large enough, i.e. n ≥ 1/∆ we expect that there is a sizable probability to emit
extra dipoles, since the dipole emissions are in the first approximation independent in this
range of n. Note that parametrically ∆ ∼ αs while γ ∼ α2

s thus we expect multiple dipole
emissions to become important parametrically earlier than the saturation corrections. For
n in the saturation regime, i.e. n ≥ 1/γ the probability density (per unit rapidity) of
emission of a single dipole is actually very large ∼ 1/αs and multiple emissions in the wave
function should be ubiquitous.

We note that in QCD at higher orders in perturbation theory the BFKL evolution
indeed allows emission of more than one gluon, e.g. at NLO two gluons can be emitted.
We will now discuss how multiple dipole emissions can be included in the toy model.

3.1 Emission of two gluons per one step of evolution

Our goal now is to include multiple dipole emissions without violating the s- and t-channel
unitarity properties of the toy model. The Hamiltonian RFT formalism turns out to be a
very convenient tool for this purpose. First, we already know that the t-channel unitarity
is equivalent to the symmetry of the Hamiltonian under the transformation H(P, P̄ ) →
HT (P̄ , P ). The t-channel unitarity is therefore very easy to implement. The s-channel
unitarity is slightly less transparent, but with a little trial and error we can find many
s-channel unitary evolutions. This becomes particularly simple if we consider adding to
HUTM operators which are only (normal ordered) powers of P̄P .

Consider the following simple perturbation on the Hamiltonian

δHλ = λ

(∆
γ

)2
: (P̄P )2 :≡ λ

(∆
γ

)2
P̄ 2P 2 (3.1)

where λ is a number of order unity. The counting of the powers of αs here is such that
for small n we recover the NLO BFKL order of magnitude of the two gluon emission. The
column here denotes the normal ordered operator, meaning that all factors of P have to be
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placed to the right of the factors of P̄ . The t-channel unitarity is clearly preserved by δHλ.
With this additional term in the Hamiltonian, the evolution equation for Pn takes the form:

∂P λn (Y )
∂ Y

= ∆
γ

[
−
((

1−e−γn
)
− λ∆

γ

(
1−e−γn

)2)
P λn (Y ) (3.2)

+
((

1−e−γ(n−1)
)
− λ∆

γ

(
1−e−γ(n−1)

)2
)
P λn−1(Y ) + λ

∆
γ

(
1−e−γ(n−2)

)2
P λn−2(Y )

]

For λ ∼ O(1) > 0 the probabilities of emission of one and two dipoles are obviously positive,
and the total probability is conserved, thus this evolution is s-channel unitary.

The RFT Schroedinger equation for the generating function now becomes

∂ZλY (u)
∂Y

= ∆
γ

[
(u−1)

(
Zλ− e−γu

∂
∂u Zλ

)
+λ

∆
γ

(1−u)2
(
Zλ−2e−γu

∂
∂u Zλ+e−2γu ∂

∂u Zλ
)]
(3.3)

Just like for UTM, we can study the high energy asymptotics of the solution. Formally
for γu ∂

∂u � 1 we obtain the equation for the asymptotic generating function as:

∂ ZλasympY (u)
∂ Y

= ∆
γ

(
(u − 1) + λ

∆
γ

(1 − u)2
)
ZλasympY (u) (3.4)

with the solution (here, as in the previous section we take the large Y limit and approximate
the initial wave function at Y0 by a constant):

ZλasympY (u) = exp
(

∆
γ

(
(u − 1) + λ

∆
γ

(1 − u)2
)
Y

)
(3.5)

From this equation we can derive P λn ,

P λn =
∮
e

∆
γ

(
(u− 1) + λ∆

γ
(1−u)2

)
Y

un+1 du = 1
n!

 dn

d un
e

∆
γ

(
(u− 1) + λ∆

γ
(1−u)2

)
Y


u=0

(3.6)

The contour of integration in eq. (3.6) is the circle around u = 0. Now Pn does not follow
the Poisson distribution anymore. Instead the distribution of dipoles has two independent
factorial moments: M1 = 〈n〉 and M2 = 〈n(n− 1)〉:

Mλ
1 = ∂

∂u
Zλ(u)|u=1 = ∆

γ
Y ; Mλ

2 = ∂2

∂u2Z
λ(u)|u=1 =

(∆
γ

)2
[Y 2 + 2λY ] (3.7)

Clearly the additional term in the Hamiltonian modifies the asymptotic particle distribu-
tion. At first sight it may seem that at asymptotically large rapidities these corrections
are small. Recall that the asymptotic solution is expected to be valid at such rapidities at
which 〈n〉 � 1/γ, which gives Y � 1/∆. At these rapidities, although the magnitude of
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the correction to the second moment is large: δM2 ∼ ∆/γ2 ∼ 1/α3, the relative correction
is small δM2/M2 ∼ αs. However factorial moments are not a very convenient measure
of the shape of the distribution. If we want to get a better idea about the width of the
distribution, for example we should not compare the second factorial moments but rather
the variances σ2 =< n2 > − < n >2. Here we find

σ2
UTM

Y→∞−−−−→ ∆
γ
Y ; σ2

λ
Y→∞−−−−→

[
2λ∆2

γ2 + ∆
γ

]
Y ; (3.8)

It is now obvious that for non-vanishing positive λ, allowing emission of the second gluon
renders the asymptotic distribution much wider σ2

λ/σ
2
UTM ∼ 1/αs. Negative values of λ

are not physical since they lead to negative probabilities and thereby s-channel unitarity
violation, as is obvious from (3.2).

3.2 Emission of infinite number of gluons in one step of evolution

At high density it is not realistic to think that in one step of evolution a system of par-
tons emits only one or two dipoles. Rather one expects that any number of gluons can be
emitted with probabilities that scale as pn ∼ ∆n (modulo the saturation corrections). The
exact values of these probabilities of course have to be determined by the underlying quan-
tum field theory. Unfortunately in the toy world we do not have an underlying QFT, and
the appropriate toy RFT cannot be strictly derived. Nevertheless one can make a simple
reasonable assumption that leads to a definite form of RFT. Let us assume that the dipoles
in one step of evolution are emitted independently of each other. This is certainly what one
expects if the dipole density in the wave function is large enough but the saturation correc-
tions are still unimportant. In the language of RFT Hamiltonian a single dipole emission is
represented by the operator −∆

γ PP̄ . Given that the dipoles are indistinguishable bosons,
the independent emission of n dipoles is represented by the operator 1

n!(−
∆
γ PP̄ )n. Since

any number of emissions n ≥ 1 is allowed, we are lead to consider the RFT Hamiltonian

HUTMM = :
(
e
−∆
γ
P P̄ − 1

)
: (3.9)

where the additional M in the subscript stands for “Multiple Emissions”. This Hamiltonian
is also normal ordered so that all operators P appear to the right of all the operators P̄ in
every order in the Taylor expansion of the exponential. HUTMM reproduces UTM in the
limit when ∆

γ P̄P is small, and contains eq. (3.1) with λ = 1/2 as the first correction to
UTM. It is obviously t-channel unitary.

When acting on an m-dipole state it yields:

HUTMM |m〉 =
[
e
−∆
γ

(1−e−γm)(1−d) − 1
]
|m〉 (3.10)

=
[
e
−∆
γ

(1−e−γm) − 1
]
|m〉+ e

−∆
γ

(1−e−γm)
∞∑
k=1

1
k!

[∆
γ

(1− e−γm)
]k
|m+ k〉

This evolution of an m dipole state is clearly s-channel unitary as well.
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Eq. (3.10) is equivalent to the equations for probabilities

dPUTMM
n

dY
=
[
e
−∆
γ

(1−e−γn) − 1
]
PUTMM
n +

∞∑
k=1

1
k!e
−∆
γ

(1−e−γ(n−k))
[∆
γ

(1− e−γ(n−k))
]k
PUTMM
n−k

(3.11)
The Schroedinger equation for this model is

dZUTMM
Y (u)
dY

=:
[
e
−∆
γ

(1−u)(1−e−γu
∂
∂u ) − 1

]
: ZUTMM

Y (u) (3.12)

where the normal ordering now refers to ordering of factors (1− u) and u ∂
∂u .

The evolution eq. (3.10) has three distinct regimes. If the initial state contains a small
number of dipoles, m� 1/∆, multiple emissions initially are unimportant and the cascade
reduces to the BFKL-BK cascade. At higher rapidities where the typical dipole numbers
are large but not “extremely large”, 1/∆ < m < 1/γ one can still neglect the saturation
corrections, as 1− e−γn ≈ γn, but multiple emissions have to be taken into account. And
finally for asymptotically large rapidities where the properties of the wave function are
dominated by very large dipole number configurations n > 1/γ one has to include both
multiple emissions and the saturation corrections. If one starts the evolution with a single
dipole state, these regimes will successively appear as the rapidity is increased. On the
other hand if initially the number of dipoles is already very large (the “large nucleus”
case), the system enters the saturated regime right away. We will discuss this situation in
the next section. In this section we study the probability distribution which arises in the
multiple emission regime without and with saturation corrections.

3.2.1 Multiple emissions without saturation ( 1
∆ < n < 1

γ
)

Let us first consider the regime where the rapidity is large enough so that multiple emissions
are important, but is still too small for the saturation corrections to kick in. In terms of
the dipole number n this is the regime where the bulk properties of the wave function are
determined by 1

∆ < n < 1
γ . The corresponding rapidity range will be given at the end

of this section. In this regime we expect UTMM to differ significantly from UTM. On the
other hand at these rapidities the properties of the UTM distribution are the same as those
of BFKL cascade, as discussed in the previous section. In this section we will thus compare
the properties of UTMM cascade with those of BFKL, which equivalently can be thought
of as a comparison between the UTMM and UTM cascades.

For small γn using 1− e−γn ≈ nγ the evolution equation for probabilities becomes

dPUTMM
n

dY
=
[
e−∆n − 1

]
PUTMM
n +

∞∑
k=1

1
k!e
−∆(n−k) [∆(n− k)]k PUTMM

n−k

= −PUTMM
n +

∞∑
k=0

1
k!e
−∆(n−k) [∆(n− k)]k PUTMM

n−k (3.13)

We note that this equation is consistent with normalization of probability, as summing
eq. (3.13) over n we find that d

dY

∑
n P

UTMM
n = 0.

– 16 –



J
H
E
P
0
5
(
2
0
2
2
)
0
1
9

The Schroedinger equation in this limit becomes

dZUTMM
Y (u)
dY

=:
[
e−∆(1−u)u ∂

∂u − 1
]

: ZUTMM
Y (u) (3.14)

Just like in the BK limit, the no-saturation limit of UTMM is not sensitive to the value of γ
— the only constant that enters here is the emission probability ∆. To study the properties
of the resulting probability distribution, we rewrite eq. (3.13) as evolution equation for the
factorial moments. Let us start with the mean multiplicity MUTMM

1 . Eq. (3.13) takes the
form

dMUTMM
1
dY

= −MUTMM
1 +

∞∑
k=0,n=1

(
n− k + k

) 1
k!e
−∆(n−k) [∆(n− k)]k PUTMM

n−k

= −MUTMM
1 + ∆MUTMM

1 + MUTMM
1 = ∆MUTMM

1 (3.15)

We consider the initial conditions corresponding to a single dipole initial state MUTMM
k (Y =

0) = δk1. With this initial condition the solution is

MUTMM
1 (Y ) = e∆Y (3.16)

Interestingly the mean multiplicity turns out to be the same as for BK distribution (see
eq. (2.32)). For MUTMM

2 we have

dMUTMM
2
dY

= −MUTMM
2 +

∞∑
k=0,l=1

(
(k + l)2 − (k + l)

) 1
k!e
−∆(l) [∆(l)]k PUTMM

l (3.17)

= −MUTMM
2 + MUTMM

2 +
(
2 ∆ + ∆2

)
(MUTMM

2 +MUTMM
1 )

=
(
2 ∆ + ∆2

)
(MUTMM

2 + MUTMM
1 )

For a single dipole initial condition the solution for MUTMM
2 :

MUTMM
2 (Y ) = (2 + ∆)

(∆ + 1)

(
e(2+∆)∆Y − e∆Y

)
(3.18)

For MUTMM
3 the equation is:

dMUTMM
3
dY

= −MUTMM
2 +

∞∑
k=0,l=1

(
(k+ l)3−3(k+ l)2 +2(k+ l)

) 1
k!e
−∆(l) [∆(l)]kPUTMM

l

= −MUTMM
3 +MUTMM

3 +
(
(1 + ∆)3−1)

)
(MUTMM

3 + 3MUTMM
2 +MUTMM

1 )
−3∆(MUTMM

2 +MUTMM
1 ) (3.19)

=
(
(1 + ∆)3−1)

)
MUTMM

3 + 3∆(1+∆)(2 + ∆)MUTMM
2 + ∆2 (3+∆)MUTMM

1

with the solution

MUTMM
3 =

e∆Y ((∆+1)(∆(2∆+9)+12)−3(∆+2)3e∆(∆+1)Y +(∆+4)(∆(∆+3)+3)e∆(∆+1)(∆+2)Y )
(∆+1)2(∆+2)

(3.20)
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Considering ∆ � 1 we can simplify eq. (3.18) and eq. (3.20) (we do not neglect corrections
due to nonvanishing ∆ in the exponent, but only in the prefactors):

MUTMM
2 (Y ) = 2!

(
e((1+∆)2−1)Y − e∆Y

)
;

MUTMM
3 (Y ) = 3!

(
e((1+∆)3−1)Y − 2 e((1+∆)2−1)Y + e∆Y

)
(3.21)

For ∆2Y � 1 we see that MUTMM
2 ≈ 2MUTMM

1

(
(MUTMM

1 )1+∆ − 1
)

and the sec-
ond moment of UTMM is very close to that of the BK multiplicity distributions of
eq. (2.32). The same holds for the third moment (neglecting ∆ in the exponent)
MUTMM

3 ≈ 3!MUTMM
1 (MUTMM

1 − 1)2. At much larger rapidities ∆2Y > 1 the difference
between the moments in UTMM and BK is significant, and the above expressions for both
MUTMM

2 and MUTMM
3 are much larger than in the BK limit. However we should keep in

mind that the above expressions for MUTMM
k are representative of the UTMM only for

MUTMM
1 < 1/γ, which translates into Y < 1

∆ ln 1
γ . For rapidities Y � 1/∆2 ∼ 1/γ the

saturation corrections take over and the actual distribution is not described faithfully by
the solution to eq. (3.13). Thus rapidities Y ∼ 1

∆2 are strictly speaking outside the range
of validity of our present approximation.

Thus for rapidities that we may consider, the expressions in eqs. (3.18), (3.21) are
(up to perturbative corrections) the same as in the BFKL -BK regime. This at the first
glance looks strange, since the UTM allows emissions of multiple dipoles in one step of
the evolution. The reason we do not get on average more dipoles in the wave function,
as well as nearly identical second and third moments of the distribution, is because the
exponential form of the Hamiltonian includes a kind of “unitarization corrections”, i.e.
since many dipoles are allowed to be emitted, the probability of emission of a single dipole
is smaller than in the BK model (at the same value of parameter ∆). Nevertheless even
in the allowed region we expect the distribution to differ significantly from BK. Indeed,
examining higher moments we see that this is the case. Let us consider only the leading
term in the k-th moment, i.e. the term with the fastest growth in rapidity. For this term
it is easy to write the general expression ( see appendix A)

MUTMM
k (Y ) ∝ e((1+∆)k−1)Y (3.22)

Consider high moments, so that k = K
∆ . For very small ∆ we have (1 + ∆)

1
∆ ≈ e, and thus

MUTMM
k (Y ) ∝ e(eK−1)Y (3.23)

while for the same k the leading behavior in the BK model is

MBK
k ∝ eKY (3.24)

Thus for large k the moments differ already in the leading order term with

MUTMM
k �MBK

k (3.25)
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Figure 4. Mk versus Y . The green curves describe the exact solution to eq. (3.20) for the UTMM
cascade and eq. (A.4), while the red ones correspond to the BFKL multiplicity distributions of
eq. (2.33). ∆ = 0.2.

We conclude that, just like expected the probability distribution is significantly wider in
the “multiple emission” regime of UTMM compared to BFKL-BK cascade. In figure 4 we
plot the third and sixth moments for illustration and indeed see that while M3 in both
cascades is very similar at intermediate rapidities, M6 is significantly larger in UTMM.

In principle, once the factorial moments are given, one can reconstruct the probability
distribution. In the present case this turns out to be tricky since the moments grow very
fast at large k and one is faced with a necessity to sum an asymptotic series. In appendix A
we discuss a way to resolve this issue and give a derivation of the (approximate) probability
distribution. The result is

PUTMM
n (Y ) = e−Y

∞∑
j=0

Y j

j! P
j
n with P jn = 1

Nj

(
1 + 1

Nj

)−n
(3.26)

where Nj = (1 + ∆)j .
In figure 5 we show the values of PUTMM

n from eq. (3.26) versus n at different values
of Y . Figure 5-a shows that in the region of small n the UTMM multiplicity distribution is
close to BFKL cascade but at large n the deviation is rather large. This is consistent with
our discussion of high factorial moments. Figure 5-b shows that although UTMM cascade
strictly speaking violates KNO scaling, these violations are not large in practice.

Finally we note that we can estimate the range of rapidities in which the evolution is
dominated by multiple emissions, but saturation is still not important. The relevant con-
dition in terms of the average mulitplicity is 1/∆ < MUTMM

1 < 1/γ, which given eq. (3.16)
in terms of rapidity translates into 1

∆ ln 1
∆ < Y < 1

∆ ln 1
γ .

3.2.2 The S-matrix for single and multiple gluon emissions

Although our main focus in this paper is in the probability distributions, it is interesting
to see how allowing multiple emission affects more directly measurable physical quantities.
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Figure 5. Figure 5-a: Pn(Y ) versus n at fixed values of Y from eq. (3.26). Figure 5-b: the KNO
function Ψ (z) = NPz N where N is the mean multiplicity. ∆ = 0.2. BFKL cascade denotes the
distribution of eq. (2.32).

The S-matrix can be calculated using (2.8) [23]. For UTM in the kinematic regime
under consideration we can use the probabilities given in eq. (2.34)

S(Y ) =
∞∑

n,m=0
e−mnγ PBFKL

n (Y0)PBFKL
m (Y − Y0) (3.27)

=
∫ ∞

0

dn

n
du e−γ u

1
N(Y0)N(Y − Y0) exp

(
− n

N(Y0) −
u

nN(Y − Y0)

)

= −
e

1
γN(Y )Ei

(
− 1
N(Y )γ

)
γN(Y )

where Ei(z) is the exponential integral: Ei(z) = −E1(z) =
z∫
−∞

eξ

ξ dξ.

For the total cross section we have3

σtot = 2A(Y ) = 2 (1 − S(Y )) (3.28)

We can also estimate the inelastic cross section, using the approach of [23]

σin = 1 −
∑
n,m

e−2mnγ Pn(Y0)Pm(Y − Y0) (3.29)

In general the inelastic cross section defined in eq. (3.29) is not independent of frame,
i.e. depends on Y0 [23]. However for the probability distribution eq. (2.34) we find an
Y0-independent result

σin = A (Y, γ → 2γ) = 1 +
e

1
2 γN(Y )Ei

(
− 1

2 γ N(Y )

)
2 γN(Y ) (3.30)

3This is a slight abuse of language, as in the toy model there is no transverse dimension, and thus no
cross section. The quantities we calculate in this subsection are dimensionless, and are simply proportional
to the appropriate probabilities. We will nevertheless refer to them as cross sections using the higher
dimensional analogy.
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Figure 6. The inclusive observable in UTM and UTMM versus Y. ∆ = 0.2 and γ = 0.01.

With σtot and σin we can estimate the cross section for diffraction production ( σdiff ):

σdiff = σtot − σin (3.31)

With this definition σdiff includes the elastic cross section. The cross section for diffractive
dissociation is obtained by subtracting for σdiff the elastic cross section

σdd = σdiff − (A(Y ))2 (3.32)

For UTMM, replacing Pn in eq. (3.27) by eq. (3.26) we obtain

SUTMM(Y ) =
∑
n,m

e−mnγ PUTMM
n (Y0)PUTMM

m (Y − Y0) (3.33)

= e−Y
∑
j1

∑
j2

Y j1
0 (Y − Y0)j2

j1! j2!

∫ ∞
0

dn

n
du e−γ u

1
Nj1Nj2

exp
(
− n

Nj1
− u

nNj2

)

= − e−Y
∑
j

Y j

(j)!
e

1
γNj Ei

(
− 1
γ Nj

)
γ Nj

Using eq. (3.33) in eqs. (3.28)–(3.32) we obtain the physical observables in the UTMM.
In figure 6 and figure 7 we plot the various cross sections for the two models (UTM and

UTMM). The kinematic region where saturation corrections are not important extends only
up to rapidity Ymax = 1

∆ ln 1
γ . denoted by the vertical line on the graphs. We nevertheless

plot the curves up to higher rapidities to illustrate an interesting point that indeed around
Ymax the various quantities exhibit qualitative change of behavior. The differences between
the two models follow the expected trend. The total cross section in UTMM is higher than
in UTM, since it has larger probability to have higher number of dipoles. The cross section
for diffractive dissociation on the other hand is lower in UTMM, consistent with the fact
that it involves subtraction of the square of elastic amplitude, which is sensitive to the
fluctuation in the dipole number. In fact one can see from the graphs that among the
quantities we calculated, σdd is the best discriminator betweem UTM and UTMM.
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Figure 7. The cross section of diffraction dissociation σdd = σdiff −σel from eq. (3.31), for UTM
and UTMM versus Y. ∆ = 0.2 and γ = 0.01.

3.2.3 Multiple emissions with saturation — large Y asymptotics (n � 1
γ
)

For very large n the term exp(− γn) � 1 can be neglected and equations for Pn take the
form:

dPUTMM
n (Y )
d Y

=
(
e
−∆
γ − 1

)
PUTMM
n (Y ) + e

−∆
γ

∞∑
k=1

1
k!

(∆
γ

)k
PUTMM
n−k (Y ) (3.34)

and the asymptotic form of the RFT Schroedinger equation is:

dZUTMM
asymp (Y )
d y

=
(
e

∆
γ

(u−1) − 1
)
ZUTMM

asymp (Y ) (3.35)

This has an obvious solution:

ZUTMM
asymp = exp

((
e

∆
γ

(u−1) − 1
)
Y

)
(3.36)

where, as before we have neglected a possible slow varying prefactor ZY0(u) arising from
initial condition. These equations describe the asymptotics of the distribution in UTMM
at very large Y .

The factorial moments are obtained using eq. (3.6) and the asymptotic solution of
eq. (3.36). For the first three factorial moments we then obtain

MUTMM
1 = ∆

γ
Y ; MUTMM

2 = ∆2

γ2 Y
2+ ∆2

γ2 Y ; MUTMM
3 = ∆3

γ3 Y
3 +3 ∆3

γ3 Y
2 + ∆3

γ3 Y (3.37)

One can write the moments in the following explicit form

MUTMM
k =

(∆
γ
t
d

d t

)k
e(t−1)Y |t=1 (3.38)

with
t ≡ exp

(∆
γ

(u− 1)
)

(3.39)
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Similar representation for the probabilities is

PUTMM
n (Y ) = 1

n!

(∆
γ
t
d

d t

)n
e(t−1)Y |

t=e−
∆
γ

(3.40)

Another representation can be obtained expanding the exponent et Y :

PUTMM
n (Y ) = 1

n!

(∆
γ
t
d

d t

)n
e(t−1)Y |

t=e−
∆
γ

= 1
n! e

−Y
(∆
γ
t
d

d t

)n ∞∑
k=0

(Y t)k

k! |t=e−∆
γ

= 1
n! e

−Y
∞∑
k=0

1
k!

(∆
γ
k

)n (
Y e
−∆
γ

)k
(3.41)

An interesting question is what is the range of k that contributes to the sum in
eq. (3.41). For large rapidity we expect that the most important values of n are large,
and k for these n is also large. For large k we can estimate the range by replacing the sum
with the integral over k and finding the maximum of the integrand. The equation for the
saddle point, kSP has the form:

dΨ
dk
|k=kSP = 0 with Ψ = n

(
ln
(∆
γ

)
+ ln (k)

)
− k

(
ln
(
k

Y

)
− 1

)
; n

kSP
− ln kSP

Y
= 0;

(3.42)
where Y = Y exp

(
−∆
γ

)
. The approximate solution for kSP is

kSP = n

ln
(
n
Y

) (3.43)

Note that e−
∆
γ is an exponentially small number, thus for reasonable values of Y we have

Y � 1. Hence kSP � n and the ratio between the two decreases for large n.
It is tempting to estimate the sum in eq. (3.41) by the method of steepest descent,

however it turns out that the maximum in k is very broad and the steepest descent method
is not applicable. Nevertheless eq. (3.42) gives a good estimate of the important range of
k. Limiting summation over k in eq. (3.41) by kmax, we find that kmax = 2kSP gives a very
good agreement with the exact sum (see figure 8).

We plot the distribution given by eq. (3.41) in figure 8 and compare it to the Poisson
distribution eq. (2.40) with the same mean value. This latter distribution as discussed
previously, is the asymtotic distribution in UTM. Clearly the distribution of eq. (3.41) is
much broader. On the other hand figure 8-c illustrates that eq. (3.41) is well approximated
by the normal distribution (ND) with the mean value < n >= ∆

γ Y and variance σ2 =(
∆2

γ2 + ∆
γ

)
Y as suggested by eq. (3.37),

PNDn = 1√
2π σ2

exp
(
−(n− < n >)2

2σ2

)
(3.44)

Figure 8-d demonstrates that an equally good approximation is provided by the negative
binomial distribution

PNBDn =

(
r

N+r

)r (
N
N+r

)n
Γ(n+ r)

n!Γ(r) (3.45)
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Figure 8. Multiplicity distributions for two values of Y . The exact Pn denote the distribution
of eq. (3.41), the approximate Pn are the multiplicity distributions in which we sum over k from
k = 0 up to kmax = 2kSP . PD is the Poisson distribution of eq. (2.40). ND and NBD (see text)
denote the normal and negative binomial distributions. ∆

γ is taken to be equal to 20. δy denotes
the amount of evolution from the initial rapidity Y0 to Y , see eq. (2.38).

with the mean value N = MUTMM
1 and parameter r = M2

1
M2−M2

1
= Y . In fact PNBD

reproduces the first and the second terms in all MUTMM
k of eq. (3.37)., viz: MUTMM

k =
Nk

(
1 + k(k−1)

2
1
Y + O

(
1
Y 2

))
.

As expected therefore, allowing multiple dipole emissions results in a qualitatively
different, and much broader distribution. This is true both at intermediate rapidities,
where the saturation is unimportant, and also at asymptotically large energies where the
saturation effects play crucial role. Interestingly, in both regimes the average number of
dipoles at a given rapidity is the same in UTM and UTMM, and it is the shape of the
distribution that discriminates decisively between the two models.

4 “Nuclei” and evolution: the m-dipole initial condition

In this paper our primary interest is in the regime where multiple emissions in the evolution
are important. For an initial condition of a single dipole this regime is achieved only at large
rapidities. It is interesting to consider how the situation changes if our initial condition
itself contains multiple dipoles. Such an initial condition is a proxy to a “nucleus” in the
toy world. We expect naturally, that in this case the asymptotic regime in the evolution
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will be achieved at much lower rapidities. In this section we repeat the analysis of the
evolution for the initial condition of exactly m dipoles at initial rapidity. In terms of the
initial probability distribution this means

Pn(m)(Y = 0) = δnm (4.1)

while in terms of factorial moments:

Mk(m)(Y = 0) = m!
(m− k)! ; k ≤ m; Mk(m)(Y = 0) = 0; k > m (4.2)

or in terms of the wave function
Z0(u) = um (4.3)

4.1 Many dipoles evolved with BK

For the BK evolution the solution for the m-dipole initial condition is easy to find. Using
eq. (2.29) and eq. (4.3) we find

ZBKY (u;m) =
[

u

u(1− e∆Y ) + e∆Y

]m
. (4.4)

With this generating function the probabilities are found to be

PBKn(m)(Y ) = Cn−1
m−1e

−m∆Y
[
1− e−∆Y

]n−m
. (4.5)

The binomial coefficient Cn−1
m−1 here is simply the number of ways to put n identical objects

into m boxes without leaving a single box empty.
The first moment is also easily calculated

MBK
1(m) ≡ N(m)(Y ) = me∆Y (4.6)

while for the k-th moment we get

MBK
k(m) = k!ek∆Y

m∑
l=1

Cml C
k−1
l−1

[
1− e−∆Y

]k−l
= k! e∆ k Y mT k−1

2F1

(
1− k, 1−m; 2; 1

T

)
(4.7)

where T = 1 − exp (−∆Y ) = 1 − m
N(m)

. For large rapidities

PBKn(m)(Y ) ∆Y � 1−−−−−→ (n− 1)!
(n−m)! (m− 1)!

(
m

N(m)(Y )

)m
exp

[
−m(n−m)
N(m)(Y )

]
n�m; e∆Y�m−−−−−−−−−−→ m

(m− 1)!
1

N(m)(Y )

(
mn

N(m)(Y )

)m−1

exp
[
− mn

N(m)(Y )

]
(4.8a)

MBK
k(m)

e∆Y�m−−−−−→
(
N(m)(Y )

m

)k (m+ k − 1)!
(m− 1)! (4.8b)

We note that for m = 1 the probability distribution at high energy satisfies the KNO
scaling. For m > 1 this is strictly speaking not true, however at high enough energy where
exp{∆Y } � m and only large values of n � m matter for the bulk properties of the
distribution the KNO scaling is restored as is clear from eq. (4.8a). Nevertheless even at
high energies the initial number of dipoles m appears as a parameter in the KNO function.
In particular the KNO function drops faster at large values of the argument for large m.
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4.2 m-dipoles in UTM at intermediate rapidities

The initial condition determines matching of the solution of UTM with the BK regime.
Matching eq. (2.50) with eq. (4.8a) at small Y we obtain

PUTM
n(m) (Y ) = 1

(m− 1)!
γ(

1− e−(n−1)γ) exp
(
− eζ(Y,n) + mζ(Y, n)

)

= 1
(m− 1)!e

−∆Y +γ(n−1) exp
(
− eζ(Y,n) + (m − 1)ζ(Y, n)

)
; (4.9)

This qualitatively is rather similar to the solution for m = 1. In fact the sensitivity to the
value of m is weaker in this regime than for the BFKL cascade.

The value of n at which the probability eq. (4.9) is maximal is determined with good
accuracy from the relation

ζ(Y, n) = ln(m) (4.10)

or from vanishing of the derivative

∂PUTM
n(m)
∂n

=
[
γ

[
1 + m− 1

1− e−(n−1)γ

]
− e−∆Y+(n−1)γ

]
PUTM
n(m); (4.11)

Taking m as a number which is parametrically not large m � 1/γ, we find that at large
rapidity the maximum of the probability distribution is at

n(m)
max − 1 ≈ ∆

γ
Y − 1

γ
ln 1
mγ

(4.12)

This relation clearly exhibits effects of saturation: the value of n(m)
max grows only logarithmi-

cally with m, whereas if we were to continue the BFKL cascade to these values of rapidity,
the position of the maximum would be linear in m.

For the mean multiplicity we find

N(m)(Y )≡MUTM
1(m)(Y ) (4.13)

≈ 1
(m−1)!

(
− d

dα

)m−1
eαγ e−∆Y

αγ

(
Γ
(

0, α
γ
e−∆Y

)
+(m−1)γ e−

α
γ
e∆Y exp((m−1)γ)

)∣∣∣∣∣
α=1

At small Y , the multiplicity N(m)(Y ) from eq. (4.13) tends to the BFKL cascade
value me∆Y . At large Y eq. (4.13) asymptotically gives N(m)(Y ) → ∆

γ Y −
1
γ ln 1

γ . To
reproduce the weak logarithmic dependence on m of eq. (4.12) one would need to keep sub
asymptotic terms in the expansion of the incomplete gamma function. At very large Y
these corrections are unimportant and we recover the same m-independent asymptotics as
given by Zasymp

Y (u) eq. (2.38).

4.3 UTM at asymptotically large rapidities

If m is not large parametrically, the exact value of m is not very important for the prob-
ability distribution in the saturation regime. The onset of the saturation regime is a little
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earlier than for m = 1, as follows from eq. (4.12), but the distribution itself is practically
the same. However if m is very large, i.e. m ∼ 1/γ the saturation corrections in the evolu-
tion kick in right away. In this case there is no BK or intermediate regime in the evolution
and already at low rapidity one can approximate the evolution by eq. (2.37). The solution
at arbitrary rapidity then has the form

ZUTMY (m) (u) = e
∆
γ

(u−1)Y
um (4.14)

The ensuing dipole distribution is Poisson shifted by the initial number of dipoles

P (m)
n (Y ) =

(∆
γ Y )(n−m)

(n−m)! e
−∆
γ
Y (4.15)

The mean multiplicity in this cascade

N(m) = ∆
γ
Y +m (4.16)

The influence of the initial number of dipoles m is illustrated by figure 9 where we
plot the value of N(m). In this figure the two limiting cases are also shown: the value of
N(m) for the BFKL cascade N(m) = m exp (∆Y ), and eq. (4.12), which gives the maximum
probability in the saturation region. It is clear from this figure that the transitional region of
Y between the BFKL cascade and the asymptotic multiplicity distribution in the saturation
region for the UTM cascade shrinks for large m. The values of m that are shown in figure 9,
were chosen having in mind m = 3 for the “proton”, and m = 3A1/3 for a “nucleus” of
atomic number A.

4.4 UTMM — multiple emissions without saturation

We can now repeat the analysis for UTMM. Eq. (A.4) and eq. (A.9) give the factorial
moments and Pn for single dipole initial condition. For the m-dipole case, eq. (3.13) gives
PUTMM
n<m = 0. PUTMM

m and MUTMM
1 are easily determined from this equation, and from

eq. (3.15):

PUTMM
n<m (Y ) = 0; PUTMM

n=m (Y ) = e−∆Y ; MUTMM
1 (m) (Y ) = m e∆Y . (4.17)

The next two moments are determined from eq. (3.17) and eq. (3.19) as:

MUTMM
2 (m) (Y ) = m

(2 + ∆)
(∆ + 1)

(
e(2+∆)∆Y − e∆Y

)
+ m (m− 1) e(2+∆)∆Y

∆� 1−−−−→ 2m
(
e∆2 Y − e∆1 Y

)
+ m (m − 1) e∆2 Y (4.18)

MUTMM
3 (m) (Y ) = 6 e∆3 Y

∫ Y

0
dY ′ e−∆3 Y ′M2

(
Y ′
)

+ m (m − 1) (m − 2) e∆3 Y

= 3!m
(
e∆3 Y − 2 e∆2 Y + e∆Y

)
+ 3!m (m − 1)

(
e∆3 Y − e∆2 Y

)
+m (m − 1) (m − 2) e∆3 Y (4.19)
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Figure 9. The value of N(m) from eq. (4.13) versus Y . In red it is shown the value for the BFKL
cascade (see eq. (4.6)) while in blue the values of nmax from eq. (4.12) are indicated.

where, as before ∆k = (1 + ∆)k − 1. For MUTMM
4 (m) we get:

MUTMM
4(m) (Y ) = 12e∆4Y

∫ Y

0
dY ′e−∆4Y ′M3

(
Y ′
)
+m(m−1)(m−2)(m−3)e∆4Y

= 4!m
(
e∆4Y−3e∆3Y +3e∆2,Y−e∆1Y

)
+m(m−1)4!32

(
e∆4Y−2e∆3Y +e∆2Y

)

+4!12m(m−1)(m−2)
(
e∆4Y−e∆3Y

)
+m(m−1)(m−2)(m−3)e∆4Y (4.20)

These expressions look rather complicated. However at large rapidities the coefficient of
the leading exponent in the k-th moment is easy to determine. We note that at small
Y the solution should reduce to that of the BFKL cascade, since multiple emissions are
unimportant for small Y . Since the structure of the moments in both regimes is a linear
combination of exponentials, when setting ∆k = k∆, the moments for UTMM without
saturation should reduce to the BFKL moments. This allows us to calculate the combina-
torial factor in MUTMM

k(m) by using the result of the BFKL cascade eq. (4.8b):

MUTMM
k(m) ≈

(m + k − 1)!
(m − 1)! e∆kY . (4.21)

One can check directly that this reproduces the coefficient of the highest exponent in
eq. (4.18), eq. (4.19) and eq. (4.20). Using this expression for the moments we can write
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Figure 10. Figure 10-a: Pn from eq. (4.24) (UTMM cascade) versus n at different values of m.
Figure 10-b: Pn for the UTM cascade. ∆ = 0.2, γ = 0.01.

the generating function as

ZUTMM
Y (u;m) = 1 +

∞∑
k=1

(m + k − 1)!
(m − 1)! k! (u− 1)k e∆k Y . (4.22)

We now expand this equation with respect to (1 + ∆)k Y :

ZUTMM
Y (u;m) = e−Y

∞∑
j=0

∞∑
k=0

(m+ k − 1)!
(m− 1)! k!

(1 + ∆)k j Y j

j! (u− 1)k

= e−Y
∞∑
j=0

Y j

j!

(
1

1− (1 + ∆)j (u− 1)

)m
(4.23)

Reexpanding this in powers of un, we obtain the following representation for the probability
distribution PUTMM

n (Y ):

PUTMM
n (Y ) = e−Y

∞∑
j=0

Y j

j! P
j
n with P jn = (m + n − 1)!

(m − 1)!n!

(
1

(Nj + 1)m

(
1 + 1

Nj

)−n)
(4.24)

where Nj = (1 + ∆)j .
The multiplicity distribution for eq. (4.24) is plotted in figure 10 at different values of

m for Y = 10.

4.5 UTMM with saturation

Finally, when m is large the large Y of UTMM is modified similarly to UTM. In particular
the generating function of eq. (3.36) is modified as

ZUTMM
asymp = exp

((
e

∆
γ

(u−1) − 1
)
Y

)
um (4.25)

and the probability distribution is shifted by m

PUTMM
n(m) (Y ) = PUTMM

n−m(1) (Y ). (4.26)
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5 Discussion

This paper has one central point. For large number of partons in hadronic wave function,
rapidity evolution should not be limited by emission of a single parton in one step. Instead
many partons can be independently emitted. Here in the framework of a toy model in zero
transverse dimensions we have implemented this idea by constructing an evolution which
describes independent emission of multiple partons (dipoles). This evolution by construc-
tion preserves t-channel and s-channel unitarity. It incorporates saturation dynamics, and
reduces to the known simpler models whenever multiple emissions are unimportant. The
model has two parameters: the dipole emission probability ∆, and dipole-dipole elastic
scattering amplitude γ. Within the model itself these parameters are independent, but
when projected on QCD we expect ∆ ∼ αs and γ ∼ α2

s.
In this sense this is an appropriate evolution to be applied for scattering of dense

objects, unlike the models of similar type considered so far. We have studied various
aspects of probability distributions generated by this evolution from two type of initial
conditions: a single dipole and multiple dipoles. An interesting feature of the model
worth noting is that the regime where multiple scatterings are important precedes the
onset of saturation corrections. Parametrically, as long as the average number of dipole
is small N < 1/∆ ∼ 1/αs, the single dipole emission dominates the evolution and the
probability distribution is that of the BFKL cascade. For intermediate values of N such
that 1/∆ < N < 1/γ saturation effects are still unimportant, but multiple dipole emissions
are dominant. Finally at very large rapidities where N > 1/γ both, multiple emissions and
saturation corrections determine the asymptotic dipole distribution.

There are significant differences between the asymptotic behavior of multiplicity dis-
tributions in the model that allows only emission of a single dipole (UTM) and that with
multiple dipole emission (UTMM). The main qualitative difference as illustrated on fig-
ure 8, is that the distribution in UTMM is significantly wider, and is well approximated by
the normal distribution whereas in UTM the asymptotic distribution is of the Poisson type.
One can understand this feature directly from the asymptotic form of the generating func-
tion Z. Interestingly, in both models the asymptotic distribution can be written in the form

ZY (u) = (z(u))Y (5.1)

with

zUTM (u) = e
∆
γ

(u−1)
zUTMM (u) = e

[
e

∆
γ (u−1) − 1

]
=
∞∑
k=0

1
k! (zUTM − 1)k (5.2)

Our discussion in the previous section makes it clear that taking a power m of a
distribution function is equivalent to considering a state that evolves into m independent
cascades, so that the final probability distribution is that of m cascades. From this point
of view the rapidity Y in eq. (5.1) plays the role of the number of independent cascades
in the asymptotic distribution.

It is therefore natural to interpret the asymptotic probability distribution in the fol-
lowing way. At pre asymptotic rapidities Y < Yasymp an initial state evolves into some
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fundamental distribution, or cascade z. Starting from Yasymp the asymptotic evolution
takes over, which amounts simply to multiplication of the number of these independent
fundamental cascades at a constant rate. At any rapidity Y � Yasymp the number of
such fundamental cascades is m ≈ Y . Different evolution dynamics correspond to different
properties of the fundamental cascade z eq. (5.2). In UTM zUTM is a Poisson distribution
with average dipole number 〈n〉 = ∆

γ . A composition of Y independent Poisson distri-
butions gives again a Poisson distribution with the additive mean value N(Y ) = 〈n〉Y ,
which is precisely what we have seen in section 2. On the other hand in UTMM, since
the pre asymptotic evolution is dominated by multiple dipole emission, the fundamental
distribution zUTMM is not a Poisson, but rather a weighted sum of Poisson distributions
with averages which are multiples of 〈n〉. A large number of such cascades is not a Poisson
distribution anymore. On the other hand we expect that a composition of a large num-
ber of identical distributions must lead to a normal distribution, which explains why the
distribution on figure 8 is so close to a normal distribution.

In general we saw that including the saturation effects changes the shape of the dis-
tribution significantly. In particular while the BK distribution at large Y satisfies KNO
scaling, the asymptotic UTM distribution does not. The KNO property is interesting in
relation to the recent discussions of parton entropy pioneered in ref. [80]. It was noted
in [80] that at large average multiplicities N the entropy of the BFKL cascade behaves as

S = lnN. (5.3)

Such behavior can be interpreted in terms of a large number of partonic micro-states having
equal probabilities. The proton then is thought of as composed of an exponentially large
(in rapidity) number N of micro-states that occur with equal and small probabilities 1/N .
More generally one can see that any probability distribution that follows KNO scaling
Pn = 1

NΨ
(
n
N

)
, yields logarithmic entropy

S = −
∑
n

Pn lnPn ≈ −
∫
dn

N
Ψ
(
n

N

)[
− lnN + ln Ψ

(
n

N

)]
= ln(aN) (5.4)

where a is a rapidity independent constant. Strictly speaking, of course not any KNO-type
distribution corresponds to equally populated micro states, but physically the situation is
not too different. As N grows, KNO scaling means that more and more states (wider range
of n’s) get populated, if not exactly equally at least according to some fixed probability
ratio determined by the KNO function Ψ. This is the origin of the logarithmic term in the
entropy.

In this paper we demonstrated that both the cascade with saturation, and a possibility
to emit many partons lead to violations of KNO scaling. It would be interesting to see to
what extent this also leads to violation of eq. (5.3). We can answer this question for asymp-
totic rapidities. Both in UTM and UTMM at very large rapidities the distribution is well
approximated by normal distribution with σ2 ∝ N . Estimate similar to eq. (5.4) then gives

S = ln aσ = 1
2 lnN + const (5.5)
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Figure 11. Comparison between multiplicity distributions in UTM and UTMM cascade with the
negative binomial distributions which have the same M1 and M2 as the cascades. At the plots, Pn
are multiplied by 5 for Y=20, to fit the scale. ∆ = 0.2, γ = 0.01.

This differs from eq. (5.3) by a factor of two, which reflects the difference scaling property
of the distribution with N .

The second point we want to stress is that at intermediate rapidities the distribution
with saturation is poorly described by the negative binomial distribution of eq. (3.45),
see figure 11. Within the CGC approach the multiplicity distribution was calculated in
the MV model, the so called “glittering glasma”[81, 82]. This leads to NBD in which the
average number of partons and parameter r are determined by the first and the second
factorial moments. Both UTM and UTMM are far from NBD at intermediate rapidities,
although interestingly in the asymptotic regime the UTMM cascade is quantitatively not
very different from NBD figure 8-d.

We believe the main point of this paper is valid beyond the toy model and generalizes
to high energy scattering in QCD as well. The BK regime in QCD should not transition
directly into the saturation regime as far as the evolution of the wave function is concerned.
Rather the saturation should be preceded by the rapidity range where multiple gluon emis-
sions in the evolution play prominent role. The study of this new regime is an interesting
problem which should start by the derivation of the generalization of the BK Hamiltonian.
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A Factorial moments and probabilities in UTMM

Here we derive the approximate result for the factorial moments of the distribution which
generalizes eq. (3.21).

UsingMUTMM
k = dk

d uk
ZUTMM
Y (u)|u=1 and the Schroedinger equation eq. (3.14) we obtain

the equation for the factorial moments

dMUTMM
k (Y )
dY

= d

dY

dk

duk
ZUTMM
Y (u)|u=1 =

(
dk

duk

∞∑
n=1

∆n (u−1)n
(
u
d

du

)n
ZUTMM
Y (u)

)∣∣∣∣∣
u=1

=
(
dk

duk

k∑
n=1

∆n (u−1)n
(
u
d

du

)n
ZUTMM
Y (u)

)∣∣∣∣∣
u=1

(A.1)

With some arduous algebra the right hand side of this equation can be rewritten in terms
of the moments MUTMM

m . This expression is a linear function of all MUTMM
j with j ≤ k. We

know however that at small ∆ and large rapidity the higher moments are exponentially
larger than the lower ones. Thus at high rapidity we do not need to keep all the terms
in the r.h.s. The largest term is the one that is proportional to MUTMM

k . Keeping only
this term would give us a homogeneous equation for MUTMM

k , and although we would be
able to determine the largest term at high Y , we would not be able to impose the correct
initial condition. We therefore also keep the next largest term which contributes to the non
homogeneous term in eq. (A.1). We will however disregard perturbative in ∆ corrections
to the prefactors in the exponentials. This makes it possible to simplify eq. (A.1) by
substituting u d

du →
d
du in all but n = 1 terms

dMUTMM
k (Y )
d Y

≈
(
dk

duk

(
∆ (u− 1)u d

du
+

k∑
n=2

∆n (u− 1)n
(
d

du

)n)
ZUTMM
Y (t)

) ∣∣∣∣∣
u=1

= ∆kM
UTMM
k (Y ) + ∆ k(k − 1)MUTMM

k−1 (Y ) (A.2)

where ∆k = (1+∆)k − 1. The solution to eq. (A.2) with a single dipole initial condition is:

MUTMM
k (Y ) = ∆ k(k − 1) e∆k Y

Y∫
0

dY ′MUTMM
k−1

(
Y ′
)
e−∆k Y

′ (A.3)

Note, that eq. (A.3) determines MUTMM
k for k ≥ 2 while for MUTMM

1 we have the solution
of eq. (3.16).

Inspired by eq. (3.18) and eq. (3.21) we make the induction hypothesis, that MUTMM
j

for j ≤ k − 1 has the form:

MUTMM
j (Y ) = j!

( j−1∑
l=0

(−1)l (j − 1)!
(j − 1− l)! l!e

∆j−l Y

)
(A.4)
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Substituting this into eq. (A.3) we now prove eq. (A.4) for MUTMM
k (Y ). Substitution of

eq. (A.4) into eq. (A.3) yields:

MUTMM
k (Y ) = k!

((
k−2∑
l=0

(−1)l(k − 1)!
(k − 2− l)! l!

∆
∆k −∆l+1

)
︸ ︷︷ ︸

= 1

e∆k Y

+
k−2∑
l=0

(−1)k−l(k − 1)!
(k − 2− l)! l!

∆
∆k −∆l+1

e∆k−l,Y

)
(A.5a)

≈ k!
(
k−1∑
l=0

(−1)l (k − 1)!
(k − 1− l)! l!e

∆k−l Y

)
(A.5b)

To obtain the second line we have used ∆k −∆l ≈ (k − l)∆ and changed the summation
index from l to l + 1. Within our approximation we are allowed to use the small ∆ limit
in the prefactor of each exponent on the right hand side of eq. (A.5b) while keeping the
complete expression for ∆k in the exponent. We now see that eq. (A.5b) coincides with
eq. (A.4). Bearing in mind eqs. (3.15)–(3.21), we conclude that eq. (A.4) is valid for all k.

We next derive approximate expressions for probabilities at large rapidity Y . Using
eq. (A.4) we can calculate the generating function ZUTMM(u), since

ZUTMM
Y (u) = 1 +

∞∑
k=1

MUTMM
k (Y )
k! (u − 1)k (A.6)

We take the simplified expression at large Y : MUTMM
k = k! e∆k Y (see eq. (A.5b)). Then

ZUTMM
Y (u) = 1 +

∞∑
k=1

e∆k Y (u− 1)k (A.7)

Since ∆k = (1 + ∆)k − 1, the series of eq. (A.7) is divergent. To sum such an asymptotic
series we need to invent analytical function, which has the same series. We suggest the
following procedure: plugging in eq. (A.7) ∆k we can expand with respect to parameter
(1 + ∆)k Y : viz.:

ZUTMM
Y (u) = e−Y

∞∑
j=0

∞∑
k=0

(1 + ∆)k j Y j

j! (u− 1)k = e−Y
∞∑
j=0

Y j

j!
1

1− (1 + ∆)j (u− 1)
(A.8)

Expending eq. (A.8) with respect to un, we obtain the following expression for PUTMM
n (Y ):

PUTMM
n (Y ) = e−Y

∞∑
j=0

Y j

j! P
j
n with P jn = 1

Nj

(
1 + 1

Nj

)−n
Nj>1,n>1
−−−−−−→ 1

Nj
exp

(
− n

Nj

)
(A.9)

where Nj = (1 + ∆)j .
Since we have made some approximations, it is instructive to check that eq. (A.9) leads

to the factorial moments MUTMM
k

Y � 1−−−→< |nk| >= k! exp (∆k Y ), reproducing eq. (A.7).
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