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Abstract

A k–nucleus of a normal rational curve in PG(n, F ) is the inter-
section over all k–dimensional osculating subspaces of the curve (k ∈
{−1, 0, . . . , n− 1}). It is well known that for characteristic zero all nuclei
are empty. In case of characteristic p > 0 and #F ≥ n the number of
non–zero digits in the representation of n+1 in base p equals the number
of distinct nuclei. An explicit formula for the dimensions of k–nuclei is
given for #F ≥ k + 1.

1 Introduction

Non–zero characteristic of the (commutative) ground field F heavily influences
the geometric properties of Veronese varieties and, in particular, normal rational
curves. Best known is probably the fact that in case of characteristic two all
tangents of a conic are concurrent. This has lead to the concept of a nucleus.
However, it seems that there are essentially distinct definitions. Some authors
use the term “nucleus” to denote a point which completes a normal rational
curve to a maximal arc (F a finite field of even order), others use the same term
for the intersection of all osculating hyperplanes of a Veronese variety.

In the present paper we restrict ourselves to the discussion of normal rational
curves in n–dimensional projective spaces over F . It turns out that in the
ambient space of a normal rational curve there is a family of distinguished
subspaces which will be called k–nuclei. Their definition is natural: A k–nucleus
is the intersection over all k–dimensional osculating subspaces of the curve. The
two types of nuclei mentioned above are just particular examples fitting into this
general concept.

Our major result is a formula expressing the dimension of the k–nucleus of a
normal rational curve in n–dimensional projective space for characteristic p > 0.
For k = n − 1 such a formula has been established by H. Timmermann [16,
4.15]; cf. also [15]. Other results on nuclei are due to H. Brauner [1, 10.4.10],
D.G. Glynn [3, 49–50], A. Herzer [8], H. Karzel [12], J.A. Thas [14], and
J.A. Thas – J.W.P. Hirschfeld [11, 25.1].

∗Research supported by the Austrian National Science Fund (FWF), project P–12353–
MAT.
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It turns out that the geometric properties of a k–nucleus are closely related
to binomial coefficients that vanish modulo p and, on the other hand, to the
representations of the integers n, n + 1, and k in base p. The zero entries of
Pascal’s triangle modulo p fall into various classes. The corresponding partition
gives rise to three functions (T,Φ,Σ) which form the backbone of our considera-
tions. All this is discussed in Section 2 and then applied to geometry in Section
3.

Throughout this paper it will be assumed that the ground field has suffi-
ciently many elements. Otherwise, our results on nuclei would become even
more complicated, because one has to take into account that the elements of F
are satisfying non–trivial polynomial identities.

2 On Pascal’s Triangle modulo p

Throughout this section p denotes some fixed prime.
The representation of a non–negative integer n ∈ N := {0, 1, 2, . . .} in base

p has the form

n =

∞
∑

λ=0

nλp
λ =: 〈nλ〉

with only finitely many digits nλ ∈ {0, 1, . . . , p − 1} different from 0. The
following is well–known; cf., among others, [2, 364]:

LEMMA 1 (Lucas) Let 〈nλ〉 and 〈jλ〉 be the representations of non–negative
integers n and j in base p. Then

(

n

j

)

≡
∞
∏

λ=0

(

nλ

jλ

)

(mod p).

Since we are mainly interested in binomial coefficients that vanish modulo p, we
adopt the following definition:

DEFINITION 1 Given a prime p then define a half order on N as follows:

〈jλ〉 � 〈nλ〉 :⇔ jλ ≤ nλ for all λ ∈ N.

Thus we have
(

n

j

)

≡ 0 (mod p) ⇐⇒ j 6� n.

In the sequel the (infinite) Pascal triangle modulo p will be denoted by ∆. In
addition, we introduce an (infinite) Pascal square modulo p written as . Its
(n, j)–entry is given by

(

n
j

)

modulo p, where n and j are non–negative integers.
So the numbering of rows and columns will always start with the index 0.
Clearly, is an infinite lower triangular matrix

= ∆∇,

where each entry of ∇ is zero.
Moreover, let i be the submatrix of that is formed by the rows and

columns 0, 1, . . . , pi − 1 with i ∈ N. All entries of i that are above the main

2



diagonal give rise to a triangle ∇i, the remaining part of the matrix is a subtri-
angle of Pascal’s triangle modulo p which will be written as ∆i. Observe that
the baseline of ∆i has pi entries, whereas the top line of ∇i is formed by pi − 1
entries. So ∇0 is empty.

For example, let p = 3 and consider the triangle ∆3:

1
1 1

1 2 1
1 0 0 1

1 1 0 1 1
1 2 1 1 2 1

1 0 0 2 0 0 1
1 1 0 2 2 0 1 1

1 2 1 2 1 2 1 2 1
1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 1
1 2 1 0 0 0 0 0 0 1 2 1

1 0 0 1 0 0 0 0 0 1 0 0 1
1 1 0 1 1 0 0 0 0 1 1 0 1 1

1 2 1 1 2 1 0 0 0 1 2 1 1 2 1
1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 1

1 1 0 2 2 0 1 1 0 1 1 0 2 2 0 1 1
1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1

1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 1

1 2 1 0 0 0 0 0 0 2 1 2 0 0 0 0 0 0 1 2 1
1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 0 0 0 1 0 0 1

1 1 0 1 1 0 0 0 0 2 2 0 2 2 0 0 0 0 1 1 0 1 1
1 2 1 1 2 1 0 0 0 2 1 2 2 1 2 0 0 0 1 2 1 1 2 1

1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1 0 0 2 0 0 1
1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1 0 2 2 0 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

It is easily seen from Lemma 1 that each triangle ∆i+1 (i ≥ 0) has the
following form, with products taken modulo p:

(

0
0

)

∆i

(

1
0

)

∆i ∇i
(

1
1

)

∆i

(

2
0

)

∆i ∇i
(

2
1

)

∆i ∇i
(

2
2

)

∆i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(

p−1
0

)

∆i ∇i . . . ∇i
(

p−1
p−1

)

∆i

The binomial coefficients on the left hand side of the ∆i’s are exactly the entries
of ∆1. None of them is congruent 0 modulo p. If i ≥ 2, then each subtriangle
(

n
j

)

∆i from above can be decomposed into subtriangles proportional to ∆i−1 and

non–empty subtriangles ∇i−1, and so on. See also, among others, [9, 91–92] or
[13, Theorem 1].

Thus we get a partition of the zero entries of Pascal’s triangle modulo p into
maximal subtriangles ∇i (i ∈ N

+). If we add the infinite triangle ∇, then a
partition of the zero entries of Pascal’s square modulo p is obtained. We get a
coarser partition, by gluing together all triangles ∇i of same size to one class.
A formal definition of this partition is as follows:

DEFINITION 2 Let p be a prime. A pair (n, j) = (〈nλ〉, 〈jλ〉) of non–
negative integers with j 6� n and

L := max{λ ∈ N | jλ > nλ} ∈ N

is in class i, if
i = inf{λ | λ > L, jλ < nλ} ∈ N

+ ∪ {∞}.

If we are given a fixed n ∈ N, then i(n) denotes the set of all elements j ∈ N

with (n, j) ∈ i.
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In the definition above the maximum L exists, since j 6� n. The infimum i is
well–defined by the usual convention inf ∅ := ∞. It is easily seen that for each
i ∈ N

+ ∪ {∞} the set i is non–empty, whence we actually have a partition.
A pair (n, j) is in ∞ if, and only if, j > n. The conditions, in terms of digits,

for (n, j) to be in i 6= ∞ are as follows:

jλ ≤ p− 1 for all λ ∈ {0, 1, . . . , L− 1}
jL > nL for one L ∈ {0, 1, . . . , i− 1}
jλ = nλ for all λ ∈ {L+ 1, L+ 2, . . . , i− 1}
ji < ni

jλ ≤ nλ for all λ ∈ {i+ 1, i+ 2, . . .}























(1)

In fact, the first line of (1) could be omitted. It simply says that there is no
restriction on the digits j0, j1, . . . , jL−1.

The essential properties of the classes i and the sets i(n) are described in the
following Lemmas. We start with a “horizontal” result by counting the number
of elements of class i 6= ∞ belonging to a fixed row n of Pascal’s square modulo
p.

LEMMA 2 Given n = 〈nλ〉 ∈ N and i ∈ N
+ then

Φ(i, n) := #i(n) =
(

pi − 1−
i−1
∑

µ=0

nµp
µ
)

· ni ·
∞
∏

λ=i+1

(nλ + 1). (2)

Proof. We just have to count how the digits of j = 〈jλ〉 can be chosen so that
(1) holds true. If we fix one L < i, then there are

pL · (p− 1− nL) · 1
i−L−1 · ni ·

∞
∏

λ=i+1

(nλ + 1)

possibilities for j; the factors in the formula above are corresponding to
(j0, j1, . . . , jL−1), jL, (jL+1, jL+2, . . . , ji−1), ji, and the remaining digits jλ, re-
spectively. Summing up gives then

Φ(i, n) =
(

i−1
∑

L=0

pL(p− 1− nL)
)

· ni ·
∞
∏

λ=i+1

(nλ + 1)

=
(

pi − 1−
i−1
∑

L=0

nLp
L
)

· ni ·
∞
∏

λ=i+1

(nλ + 1),

as required. �

Note that Φ(i, n) remains undefined for i = 0 and i = ∞.
As an immediate consequence of Lemma 2 we obtain that

Φ(i, n) = 0 ⇐⇒ ni = 0 or ni−1 = . . . = n1 = n0 = p− 1, (3)

where i ∈ N
+. This result may be reformulated as follows:

4



LEMMA 3 Let n = 〈nλ〉 ∈ N, i ∈ N
+, and put

n+ 1 =: b = 〈bλ〉, M := min{λ | bλ 6= 0}. (4)

Then

Φ(i, n) = #i(n) = 0 ⇐⇒

{

bi−1 = 0 if i ∈ {1, 2, . . . ,M},
bi = 0 if i ∈ {M + 1,M + 2, . . .}.

(5)

Proof. We infer from the definition of M that

b = 〈. . . , bM+1, bM , 0, . . . , 0〉 and n = 〈. . . , nM+1, nM , p− 1, . . . , p− 1〉.

Therefore, bM = nM + 1, 0 ≤ nM < p− 1, and

bλ = nλ for all λ ∈ {M + 1,M + 2, . . .}. (6)

So, by (3), the assertion holds true. �

The major advantage of formula (5) is that one has only to look at the non–zero
digit bM and the zero–digits of b in order to decide whether a set i(n) is empty
or not.

Next we investigate a “vertical” property of a class i 6= ∞:

LEMMA 4 Let n ∈ N, i ∈ N
+, j ∈ i(n), and put

T := n−
i−1
∑

λ=0

nλp
λ. (7)

Then j � T − 1 and j ∈ i(x) for all x ∈ {T, T + 1, . . . , n}.

Proof. We adopt the notations of (1). If x runs from n down to

n−
L
∑

λ=0

nλp
λ = 〈. . . , ni+1, ni, . . . , nL+1, 0, . . . , 0〉, (8)

then clearly j ∈ i(x) by (1).
If ni−1 = . . . = nL+2 = nL+1 = 0, then we are finished, as

T − 1 = n− 1−
L
∑

λ=0

nλp
λ = 〈. . . , ni+1, ni − 1, p− 1, . . . , p− 1〉

and j � T − 1.
Otherwise, put L′ := min{λ ∈ {L+1, L+2, . . . , i−1} | nλ 6= 0}. Subtracting

1 from both sides of (8) gives

n′ := n− 1−
L
∑

λ=0

nλp
λ = 〈. . . , ni+1, ni, . . . , nL′ − 1, p− 1, . . . , p− 1〉.

By jL′ = nL′ , we obtain jL′ > nL′ − 1, whence j ∈ i(n′). If T ′ is defined
according to (7) by replacing n with n′, then T ′ = T .
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So, if we proceed with n′ and j as above, then the required result follows
after a finite number of steps. �

With the settings of the previous Lemma put T =: 〈Tλ〉. Then j ∈ i(T ) implies
ji < Ti = ni and jλ ≤ Tλ = nλ for all λ ∈ {i+ 1, i+ 2, . . .}. Hence

Y := j −
i−1
∑

λ=0

jλp
λ = 〈. . . , ji+1, ji, 0, . . . , 0〉 � T

and
Y + pi = 〈. . . , ji+1, ji + 1, 0, . . . , 0〉 � T,

whereas {Y + 1, Y + 2, . . . , Y + pi − 1} ⊂ i(T ). By the well known recurrence
(

r
s

)

+
(

r
s+1

)

=
(

r+1
s+1

)

, it follows that line T of Pascal’s triangle modulo p is the

top line of a subtriangle ∇i which is surrounded by non–zero entries. Observe
that the number T does not depend on the choice of j ∈ i(n).

From here the following is easily seen: Given an i ∈ N
+ and n, j ∈ N then

(n, j) ∈ i if, and only if, the (n, j)–entry of Pascal’s square modulo p is in one
maximal subtriangle ∇i. The class ∞ corresponds to the infinite triangle ∇ of
Pascal’s square modulo p.

Obviously, the definition of T in (7) still makes sense if n, i ∈ N are arbitrary.
However, as in Lemma 3, we change from n to n + 1 =: b, as we prefer to use
(5) rather than (3) when characterizing non–empty sets i(n). So we put

T (R, b) := b−
R−1
∑

λ=0

bλp
λ for all R ∈ N ∪ {∞}. (9)

We read off from (4) and (5) that the “top line function” T (R, b) satisfies

0 = T (∞, b) ≤ . . . ≤ T (M + 2, b) ≤ T (M + 1, b) < T (M, b) = . . . = T (0, b) = b.

(10)
In fact, if R ∈ N is chosen sufficiently large, then T (R, b) = 0.

For each non–empty set i(n) 6= ∞ it follows from (5) that i > M . So, by
(6), the number T (i, b) coincides with the corresponding bound (7). Moreover,
we have

T (i, b)− 1 = 〈. . . , ni+1, ni − 1, p− 1, . . . , p− 1〉 = max i(n), (11)

since i(n) 6= ∅ implies that at least one of the digits n0, n1, . . . , ni−1 is smaller
than p− 1 and bi = ni > 0. Finally, by (5),

i1(n) 6= ∅ 6= i2(n) and i1 > i2 implies T (i1, b) < T (i2, b). (12)

If i ∈ {1, 2, . . . ,M}, then i(n) = ∅ and T (i, b) = b > n expresses the fact
that line n of Pascal’s triangle modulo p does not meet a subtriangle ∇i. For
i ∈ {M + 1,M + 2, . . .} with i(n) = ∅, formula (5) implies T (i, b) = T (i+ 1, b).

The following result gives the essential information on zero–entries in line n

of Pascal’s triangle modulo p:
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LEMMA 5 Let n ∈ N and i ∈ N
+. Then

Σ(i, n) :=

∞
∑

η=i

Φ(η, n)

= #
(

i(n) ∪ (i + 1)(n) ∪ . . .
)

(13)

= n+ 1−
(

1 +
i−1
∑

µ=0

nµp
µ
)

∞
∏

λ=i

(nλ + 1).

Proof. (a) We are going to determine all integers j = 〈jλ〉 such that j � n.
Clearly, each digit jλ can be chosen in exactly nλ+1 ways to meet this condition.
Hence there are

∞
∏

λ=0

(nλ + 1) = n+ 1− Σ(1, n) (14)

such elements and (13) holds true for i = 1. In fact, (14) is well known; cf., e.g.,
[9, 98].

(b) Suppose that (13) has been established for i ≥ 1. We infer from (2) and
(13) that

Σ(i+ 1, n) = Σ(i, n)− Φ(i, n)

= n+ 1−
(

1 +

i−1
∑

ξ=0

nξp
ξ
)

∞
∏

ν=i

(nν + 1)

−
(

pi − 1−
i−1
∑

µ=0

nµp
µ
)

ni

∞
∏

λ=i+1

(nλ + 1)

= n+ 1−
(

1 +
i

∑

ξ=0

nξp
ξ
)

∞
∏

ν=i+1

(nν + 1)

which completes the proof. �

Formula (13) has the nice property that with increasing i one digit after another
moves from the product on the right to the sum on the left where it is then
multiplied with the corresponding power of p.

3 Nuclei

Let PG(n, F ) be the n–dimensional projective space on Fn+1, where n ≥ 2 and
F is a (commutative) field.

Each normal rational curve (NRC) is projectively equivalent to the NRC

Γ := {F (1, t, . . . , tn) | t ∈ F ∪ {∞}}. (15)

Note that t = ∞ yields the point F (0, . . . , 0, 1). The subsequent exposition
follows [5] and uses the non–iterative derivation of polynomials due toH. Hasse,
F.K. Schmidt, and O. Teichmüller; cf., e.g., [4] or [10, 1.3].
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The column vectors of the matrix

Ct :=





















(

0
0

)

0 0 . . . 0
(

1
0

)

t
(

1
1

)

0 . . . 0
(

2
0

)

t2
(

2
1

)

t
(

2
2

)

. . . 0
...

. . .
...

(

n
0

)

tn
(

n
1

)

tn−1
(

n
2

)

tn−2 . . .
(

n
n

)





















(16)

with t ∈ F are (from the left to the right) written as ct, c
′

t, . . . , c
(n−1)
t , c

(n)
t and

yield the derivative points of the parametric representation (15). Moreover, we

put c
(k)
∞ := (δ0,n−k, . . . , δn,n−k). The osculating k–subspace (k ∈ {−1, 0, . . . , n−

1}) of Γ at the point Fct is

span {Fct, F c′t, . . . , F c
(k)
t } =: S

(k)
t Γ.

All osculating subspaces at Fct form a chain with dimS
(k)
t Γ = k.

We infer from C−1
t = C−t that the osculating subspace S

(k)
t Γ (t ∈ F ) equals

the set of all points F (x0, . . . , xn) satisfying the following linear system:

(

k+1
0

)

(−t)k+1x0 +
(

k+1
1

)

(−t)kx1 + . . .+
(

k+1
k+1

)

xk+1 = 0
(

k+2
0

)

(−t)k+2x0 +
(

k+2
1

)

(−t)k+1x1 + . . . +
(

k+2
k+2

)

xk+2 = 0
...

. . .
...

(

n
0

)

(−t)nx0 +
(

n
1

)

(−t)n−1x1 + . . . +
(

n
n

)

xn = 0



























(17)

On the other hand, S(k)
∞

Γ is given by the linear system

x0 = x1 = . . . = xn−k−1 = 0. (18)

REMARK 1 Each semilinear bijection τ ∈ ΓL(2, F ) acts on the NRC (15) in
a well–known way: A point Fct with t = t1t

−1
0 , (t0, t1) ∈ F 2 \ {(0, 0)} goes over

to Fct̃, where t̃ := t̃1t̃
−1
0 and (t̃0, t̃1) := τ(t0, t1). This bijection of Γ extends to

an automorphic collineation of Γ that preserves all osculating subspaces. Thus
a collineation group G(n−1) isomorphic to PΓL(2, F ) is obtained.

In fact, the NRC (15) gives rise to a family G(k) (k ∈ {0, 1, . . . , n − 1}) of
collineation groups of PG(n, F ) as follows: G(k) is defined by the property that
the system of all osculating r–subspaces with r ≤ k remains invariant.

Hence G(0) is the group of all collineations fixing Γ, as a set of points. If
#F ≥ n + 2 or n = 2, then G(0) = G(n−1). Otherwise, there are automorphic
collineations of the NRC that do not preserve all osculating subspaces, whence
the concept of osculating subspaces depends on the parametric representation
of the NRC rather than on the points of the NRC [6], [7, 2.4].

Instead of a parametric representation one could also use a generating map
in order to define osculating subspaces. This point of view has been adopted
in [5] and [7]. Cf. also [8] for further remarks on the phenomena arising for a
“small” ground field.
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In all results of the present paper a NRC Γ is understood as a set of points
endowed with a fixed parametric representation which arises from (15) by ap-
plying a projective collineation.

DEFINITION 3 The k–nucleusN (k)Γ (k ∈ {−1, 0, . . . , n−1}) of a normal ra-
tional curve Γ in PG(n, F ) is the intersection over all its osculating k–subspaces.

The nuclei of a NRC Γ yield an ascending chain

∅ = N (−1)Γ = N (0)Γ = . . . = N (r)Γ ⊂ . . . ⊂ N (n−1)Γ
(

r := ⌊
n− 1

2
⌋
)

, (19)

because Sk
0Γ ∩ Sk

∞
Γ = ∅ = N (k)Γ for all k ∈ {−1, 0, . . . , r}.

In the following result nuclei of a NRC are linked with binomial coefficients
that vanish modulo the characteristic of F .

THEOREM 1 If F has at least k+1 elements, then the nucleus N (k)Γ of the
normal rational curve (15) equals the subspace Q spanned by those base points
Pj of the standard frame of reference, where j ∈ {0, 1, . . . , n} is subject to

(

k + 1

j

)

≡

(

k + 2

j

)

≡ . . . ≡

(

n

j

)

≡ 0 (mod charF ). (20)

Proof. (a) Let F (x0, x1, . . . , xn) be a point of N (k)Γ. By (18) and #F ≥ k+ 1,
every left hand side term in (17) is a zero–polynomial in t. Hence xj 6= 0 implies
(20), whence the point belongs to Q.

(b) Suppose that (20) holds true for some j. As
(

r−1
s

)

≡
(

r
s

)

≡ 0

(mod charF ) implies
(

r−1
s−1

)

≡ 0 (mod charF ), it follows that

(

k + 1

j − l

)

≡

(

k + 2

j − l

)

≡ . . . ≡

(

n− l

j − l

)

≡ 0 (mod charF )

for all l ∈ {0, 1, . . . , n− k − 1}. So j > n− k − 1.
(c) Let F (x0, x1, . . . , xn) be a point in Q. By (b), x0 = x1 = . . . = xn−k−1 =

0 in accordance with (18). If xj 6= 0, then (20) shows that (x0, x1, . . . , xn) is
also a solution of (17) for all t ∈ F . So the point lies in N (k)Γ. �

By Theorem 1, charF = 0 implies N (n−1)Γ = ∅, whence here the nuclei of a
NRC cannot deserve interest. Thus we assume in the remaining part of this
section that

charF =: p > 0,

n =: 〈nλ〉 (in base p),

n+ 1 =: b =: 〈bλ〉 (in base p).

We shall frequently use the “top line function” T (R, b) together with the “car-
dinality functions” Φ(i, n) and Σ(i, n) that have been defined in Section 2.

THEOREM 2 Let Γ be a normal rational curve in PG(n, F ). If k is an integer
satisfying #F ≥ k + 1 and

T (R, b) = b−
R−1
∑

µ=0

bµp
µ ≤ k + 1 < b−

Q−1
∑

λ=0

bλp
λ = T (Q, b) (21)

9



with at most one bλ 6= 0 for λ ∈ {Q,Q+ 1, . . . , R− 1}, then the k–nucleus of Γ
has dimension

dimN (k)Γ = n−
(

1 +

R−1
∑

µ=0

nµp
µ
)

∞
∏

λ=R

(nλ + 1) = Σ(R, n)− 1. (22)

Proof. There is exactly one N ∈ {Q,Q+ 1, . . . , R− 1} with bN 6= 0, because of
the strict inequality in (21). Consequently,

T (R, b) = T (R− 1, b) = . . . = T (N + 1, b) < T (N, b) = . . . = T (Q, b). (23)

By Theorem 1, dimN (k)Γ+1 is equal to the number of elements j ∈ {0, 1, . . . , n}
with property (20). If we are given an integer i ≥ 1, then the conditions

i(n) 6= ∅ and T (i, b) ≤ k + 1 (24)

together are equivalent to the existence of an element j ∈ i(n) satisfying (20).
By Lemma 4, if (20) holds for at least one j ∈ i(n), then it is true for all elements
of i(n). There are three possibilities:

For 1 ≤ i ≤ N we read off from (10), (23), and (21) that k + 1 < T (Q, b) =
T (N, b) ≤ T (i, b) which contradicts (24).

For N + 1 ≤ i ≤ R− 1 we obtain i(n) = ∅ by virtue of (5). Hence (24) does
not hold true.

Given an i ≥ R then T (i, b) ≤ T (R, b) ≤ k+1 by (10) and (21). So the class
i yields exactly Φ(i, n) ≥ 0 distinct solutions of (20).

Thus the number of elements j which satisfy (20) is given by

∞
∑

i=R

Φ(i, n) = Σ(R, n).

This completes the proof. �

Next we establish an easy formula for the number of distinct nuclei:

THEOREM 3 Let Γ be a normal rational curve in PG(n, F ) and assume that
F has at least n elements. Then the number d of non–zero digits in the rep-
resentation of b = n + 1 in base p is equal to the number of distict nuclei of
Γ.

Proof. Let N1 < N2 < . . . < Nd be the positions of the non–zero digits of b in
base p. From (10) and (12), 0 = T (Nd + 1, b) < T (Nd, b),

T (Nα+1, b) = T (Nα + 1, b) < T (Nα, b) for all α ∈ {d− 1, d− 2, . . . , 1},

and T (N1, b) = b. Thus we obtain d distinct “consecutive” inequalities

T (Nα + 1, b) ≤ k + 1 < T (Nα, b) (α ∈ {d, d− 1, . . . , 1}). (25)

So each k ∈ {−1, 0, . . . , n− 1} is a solution of one and only one inequality (25).
It is immediate from (5) and (13) that

0 = Σ(Nd + 1, n) < Σ(Nd−1 + 1, n) < . . . < Σ(N1 + 1, n),
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whence distinct inequalities (25) correspond to distinct dimensions of nuclei. �

There is always at least one inequality (25). Put

J := Nd = max{λ | bλ 6= 0}.

It follows from (25), with α := d, and (22) that

N (k)Γ = ∅ for all k ∈ {−1, 0, . . . bJp
J − 2} (#F ≥ k + 1). (26)

This improves the bound given in formula (19).
The number k := n − 1 is a solution of the inequality (25) obtained for

α := 1. As before, let

M := N1 = min{λ | bλ 6= 0}.

By (5), Σ(1, n) = Σ(2, n) = . . . = Σ(M + 1, n). Now (14) implies that (22) can
be rewritten as

dimN (n−1)Γ = n−
∞
∏

λ=0

(nλ + 1) (#F ≥ n). (27)

Cf. [16, 4.15].

REMARK 2 The following example illustrates Theorems 2 and 3: Let p = 3,
n = 305 = 〈1, 0, 2, 0, 2, 2〉, and assume that the ground field F has at least n

elements. Then b = 306 = 〈1, 0, 2, 1, 0, 0〉 and we get the following table for
dimN (k)Γ:

〈0, 0, 0, 0, 0, 0〉 = 0 ≤ k + 1 < 243 = 〈1, 0, 0, 0, 0, 0〉 =⇒ dimN (k)Γ = −1

〈1, 0, 0, 0, 0, 0〉 = 243 ≤ k + 1 < 297 = 〈1, 0, 2, 0, 0, 0〉 =⇒ dimN (k)Γ = 179
〈1, 0, 2, 0, 0, 0〉 = 297 ≤ k + 1 < 306 = 〈1, 0, 2, 1, 0, 0〉 =⇒ dimN (k)Γ = 251

REMARK 3 The NRC Γ admits a groupG(n−1) of collineations preserving all
osculating subspaces; see Remark 1. The group G(n−1) acts 3–fold transitively
on Γ. All nuclei and the entire space are G(n−1)–invariant subspaces. However,
there may be other G(n−1)–invariant subspaces:

Suppose that p = 2, n = 4, and #F ≥ 4. By (16), we have

Ct =













1 0 0 0 0
t 1 0 0 0
t2 0 1 0 0
t3 t2 t 1 0
t4 0 0 0 1













with t ∈ F . The bottom line of the matrix shows that dimN (3)Γ = 2, whereas
all other nuclei are empty. Obviously, all derivative points Fc′t (t ∈ F ∪ {∞})
are on the line joining the base points P1 and P3. There is a unique transversal
line for three skew lines spanning PG(4, F ). The tangents of Γ at Fc0, Fc1,
and Fc∞ are mutually skew and spanning the entire space. Hence there is
no line other than P1P3 that is meeting all tangents of Γ. Therefore, the line
P1P3 ⊂ N (3)Γ is G(n−1)–invariant.
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REMARK 4 Let R > Q ≥ 0 be integers with

bR 6= 0 = bR−1 = . . . = bQ+1 6= bQ

and put

k := T (R, b)− 1 = 〈. . . , nR+1, nR − 1, p− 1, . . . , p− 1〉.

So k is a minimal solution of the inequality (21). By assuming #F ≥ k + 1,
Theorem 2 shows that N (k)Γ is a non–empty nucleus. We aim at characterizing
the osculating k–subspaces of Γ among the k–dimensional subspaces passing
through N (k)Γ.

Theorem 1 describes a basis of N (k)Γ. By (11) and (12), the greatest index
j of a base point Pj appearing in that basis is T (R, b)−1 = k, whence k ∈ R(n).
We define

U := max{j ∈ N | j < k and j � n} = 〈. . . , nR+1, nR − 1, nR−1, . . . , n0〉.

The osculating U–subspace S
(U)
0 Γ at P0 is spanned by the base points

P0, P1, . . . , PU so that

S
(U)
0 Γ ∨ N (k)Γ = S

(k)
0 Γ.

Here the minimality of k is essential. By virtue of the collineation group G(n−1),
this property carries over from P0 = Fc0 to all points of Γ. Therefore, for our
specific choice of k, the following holds true:

A k–dimensional subspace through N (k)Γ is an osculating subspace of Γ if,
and only if, it contains an osculating U–subspace of Γ.

In particular, for n = p = 2 and k = 1 this is well known. Here U = 0
and a characterization of the tangents of a conic Γ among the lines through the
nucleus N (1)Γ is obtained. Cf. also [8, Satz 2].

REMARK 5 Let #F ≥ k. IfN (k)Γ consists of one point only, then necessarily
Φ(i, n) = 1 for some i ∈ N

+. Thus all factors in (2) are equal to 1 which is
easily seen to be equivalent to

n = 2pi − 2. (28)

Conversely, (28) implies b = n+1 < pi+1 so that Σ(i+1, n) = 0 by (5). Hence,
Φ(i, n) = Σ(i, n) = 1, as required. Thus (28) implies that there is a point off
the NRC which is fixed by all collineations of the group G(n−1). This point is
the base point Ppi−1. Cf. also [14] and [3, 49–50].
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