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Breast cancer is the most common cancer among women. The effectiveness of treatment depends on early detection of
the disease. Computer-aided diagnosis plays an increasingly important role in this field. Particularly, digital pathology has
recently become of interest to a growing number of scientists. This work reports on advances in computer-aided breast
cancer diagnosis based on the analysis of cytological images of fine needle biopsies. The task at hand is to classify those as
either benign or malignant. We propose a robust segmentation procedure giving satisfactory nuclei separation even when
they are densely clustered in the image. Firstly, we determine centers of the nuclei using conditional erosion. The erosion
is performed on a binary mask obtained with the use of adaptive thresholding in grayscale and clustering in a color space.
Then, we use the multi-label fast marching algorithm initialized with the centers to obtain the final segmentation. A set of
84 features extracted from the nuclei is used in the classification by three different classifiers. The approach was tested on
450 microscopic images of fine needle biopsies obtained from patients of the Regional Hospital in Zielona Góra, Poland.
The classification accuracy presented in this paper reaches 100%, which shows that a medical decision support system
based on our method would provide accurate diagnostic information.
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1. Introduction

According to the International Agency for Research on
Cancer and the National Cancer Registry in Poland, bre-
ast cancer is the most common cancer among women. In
2008, there were 1,384,155 diagnosed cases of breast can-
cer and 458,503 deaths caused by the disease worldwi-
de (Ferlay et al., 2010; Bray et al., 2012). In 2010, there
were 15,784 diagnosed cases among Polish women, and
5,226 resulted in death (National Cancer Registry in Po-
land, 2012). There has also been an increase in the inci-
dence of breast cancer by 3–4% a year since the 1980s.
The effectiveness of treatment largely depends on timely
detection of the disease.

An important and often used diagnostic method is the
so-called triple-test, which is based on three medical exa-
minations and is used to achieve high confidence in the
diagnosis. The triple-test includes self examination (pal-
pation), mammography or ultrasonography imaging, and
Fine Needle Biopsy (FNB) (Underwood, 1987). FNB is
an examination that consists in obtaining material directly
from the tumor. The collected material is then examined
under a microscope to determine the prevalence of can-

cer cells. This approach requires extensive knowledge and
experience of the cytologist responsible for the diagno-
sis. Automatic morphometric diagnosis can help make the
results objective and assist inexperienced specialists. It al-
so allows screening on a large scale where only difficult
and uncertain cases would require further examination by
the specialist. Along with the development of advanced
vision systems and computer science, quantitative cytopa-
thology has become a useful method for detection of dise-
ases, infections as well as many other disorders (Gurcan
et al., 2009; Śmietański et al., 2010; Hassan et al., 2010).

Recently a large amount of studies has been con-
ducted on computer-aided breast cancer diagnosis based
on mammography, ultrasonography and microwave ima-
ging (Moon et al., 2011; Mohanty et al., 2013; Cheng
et al., 2010; Moghbel and Mashohor, 2013; Verma et al.,
2010; Li et al., 2013; Xu et al., 2012; Ganesan et al., 2013;
Grzegorczyk et al., 2012; Kirshin et al., 2013; Nikolo-
va, 2011). Some of the proposed solutions have been suc-
cessfully used in hospitals and research centers (Birdwell
et al., 2005; Butler et al., 2004; Cupples et al., 2004; Dean
and Ilvento, 2006; Destounis et al., 2004; Doi, 2005; Gi-
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ger, 2004; Morton et al., 2006; Eadie et al., 2012; Alva-
rez Menendez et al., 2010). Computer-aided diagnosis ba-
sed on cytological images has not been explored so deeply
yet. However, in recent years, there has been observed an
increased interest in this area (Fabregue et al., 2011; Fa-
takdawala et al., 2010; Basavanhally et al., 2013; Gian-
santi et al., 2010; Bandyopadhyay et al., 2010; Lopez
et al., 2009; Christel et al., 2011; Fuchsa and Buhman-
na, 2011).

Many researchers have studied the segmentation of
cytological images of breast tumors, proposed new featu-
res or tested the classification algorithms (Muniandy and
Stanslas, 2008; Yasmeen et al., 2013; Mat-Isa et al., 2007;
Cruz-Ramirez et al., 2009; Ubeyli, 2007; Polat and Gu-
nes, 2007; Jeleń et al., 2010; Niwas et al., 2013; Malek
et al., 2009; Xiong et al., 2005). However, a few of these
researchers have tested the efficiency of their methodolo-
gy in a comprehensive computerized breast cancer classi-
fication system. Jeleń et al. (2010) presented an approach
based on the level set segmentation method. Classifica-
tion efficiency was tested on 110 (44 malignant, 66 be-
nign) images with results reaching 82.6%. Niwas et al.
(2013) presented a method based on the analysis of nuclei
texture using a wavelet transform. Classification efficien-
cy with the k-nearest neighbor algorithm on 645 (311 ma-
lignant, 334 benign) images reached 93.9%. Another ap-
proach was presented by Malek et al. (2009). They used
active contours to segment nuclei and classified 200 (80
malignant, 120 benign) images using the fuzzy c-means
algorithm, achieving 95% efficiency. Breast cancer dia-
gnosis was also discussed by Xiong et al. (2005). Partial
least squares regression was used to classify 699 (241 ma-
lignant, 458 benign) images, yielding 96.57% efficiency.
However, the authors did not describe the segmentation
method used to extract nuclei.

This paper presents recent progress in the develop-
ment of a comprehensive fully automatic breast cancer
diagnostic system based on analysis of cytological ima-
ges of FNB material. The task at hand is to classify a case
as benign or malignant. This is done by using morpho-
metric, textural and topological features of nuclei isolated
from microscopic images of the tumor.

In previous work we used a segmentation method ba-
sed on the combination of adaptive thresholding in gray-
scale and clustering in the color space (Filipczuk et al.,
2011a; 2011b; Kowal et al., 2011b). Although this appro-
ach gives satisfactory results, it leaves room for improve-
ment. The main disadvantage of the previous method is
that it can generate a large number of objects containing
two or more nuclei merged together. This happens when
nuclei form dense three-dimensional clusters and overlap
each other. To overcome this problem, we propose a new
robust segmentation procedure. The binary image obta-
ined using adaptive thresholding and clustering is condi-
tionally eroded. As a result, centers of the nuclei are deter-

mined and used to initialize the multi-label fast marching
algorithm. While relatively rarely mentioned in the lite-
rature, the algorithm gives highly satisfactory results for
segmentation of cytological images.

From the selected nuclei, we extract a set of 84 fe-
atures which are then tested by three different classifiers.
The system scheme is presented in Fig. 1. The entire ap-
proach was tested on real medical images obtained from
patients of the Regional Hospital in Zielona Góra, Poland.
As shown later in this paper, the classification accuracy
reached 100%. The results demonstrate that a computeri-
zed medical diagnosis system based on our method would
be effective and can provide valuable, accurate diagnostic
information.

images

pre-processing segmentation feature extraction classification

Fig. 1. Scheme of the system.

The paper is divided into five sections. Section 1 pre-
sents an introduction into breast cancer diagnosis. Section
2 describes the acquisition process of the medical ima-
ges used for testing. Segmentation, feature extraction and
classification are described in Section 3. Section 4 shows
the experimental results obtained by the proposed method.
The paper ends with conclusions.

2. Material

All methods presented in this work were tested on real
medical data. For this purpose, 450 images were collec-
ted from 50 patients (25 benign and 25 malignant). Each
patient is represented by 9 images. The number of images
was recommended by the specialists from the hospital and
allows correct diagnosis by a pathologist.

The cytological material was obtained by FNB from
patients of the Regional Hospital in Zielona Góra, Po-
land. Biopsies without aspiration were performed under
the control of an ultrasonograph with a 0.5 mm diameter
needle. Smears from the material were fixed in spray fixa-
tive (Cellfix by Shandon) and dyed with hematoxylin and
eosin (H&E). The time between preparation of smears and
their preservation in fixative never exceeded 3 seconds.
All cancers were histologically confirmed and all patients
with the benign disease were either biopsied or followed
for a year.

The images were recorded by a Sony CCD Iris co-
lor video camera mounted atop an Axiophot microsco-
pe. The slides were projected into the camera with 160×
objective and 2.5× ocular, giving together an enlarge-
ment of 400×. Images are BMP files, 704×576 pixels,
8 bit/channel RGB.
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A properly prepared slide contains cells from the tu-
mor and sometimes other cells, i.e., red blood cells or fat
cells. Differentiation of malignant and benign cells is ba-
sed on several important characteristics associated with
cell nuclei and cytoplasm. Pathologists usually pay gre-
at attention to the size, shape and distribution of the nuc-
lei, distribution of the chromatin in the nucleus and ratio
of the area of cytoplasm to the area of the nucleus. Can-
cerous cells usually have a larger and irregular nuclei, in
contrast to the smaller and uniform nuclei in benign cells.
Furthermore, cancerous cells tend to break up during sme-
ar preparation and therefore have a tendency to form a
three dimensional structure called nests or to spread out
on the whole slide. Benign cells are usually strong enough
not to tear while a physician is performing smear and they
usually form single-layered structures. Chromatin in can-
cerous cells frequently forms lumps, while in benign cells
chromatin is usually homogenous. Unfortunately, classifi-
cation of malignant and benign cells is a very difficult task
and requires a lot of experience because all these differen-
ces do not always occur at the same time and are usual-
ly very subtle. Therefore, the pathologist usually needs to
investigate several areas of the slide in order to deliver a
diagnosis.

Automated classification of tumor malignancy requ-
ires isolating relevant nuclei from the rest of the image.
In the literature, many different approaches already have
been proposed to extract cells or nuclei from microsco-
pe images (Al-Kofahi et al., 2010; Clocksin, 2003; Clop-
pet and Boucher, 2008; Krawczyk et al., 2012; Jeleń
et al., 2010; Kowal and Korbicz, 2010; Marciniak et al.,
2005; Obuchowicz et al., 2008; Gocławski et al., 2012).
Unfortunately, reliable cell or nuclei segmentation is a
challenging task. The appearance and the quality of the
slide strongly depends on the experience of the person
who prepared it. Distribution of the cells on the slide is
random and can be completely different on the consecu-
tive slides. Cells often cluster and overlap together, their
boundaries are not clear and their interiors are not uniform
(Fig. 2(a)). Moreover, attempts to generalize segmentation
approaches proposed in the literature usually fail becau-
se such methods work correctly only for specific images.
Slides from various sources may vary significantly depen-
ding on the method of smear preparation. In order to deal
with these problems, an automatic segmentation procedu-
re that integrates results of image segmentation from dif-
ferent methods is proposed.

3. Methodology

3.1. Preprocessing. In the process of image acquisi-
tion, the light emitted by the source passes through the
glass of preparation, the specimen itself, the microscope
optics, and is finally converted into digital form by a CCD
sensor. Each of these steps causes distortion. Therefore,

the images need to be preprocessed to obtain the best ma-
terial for further analysis.

In the images from the data set presented in Section 2
there are four main types of distortion that can be remo-
ved in the image enhancement step. First, a CCD camera
causes the presence of noise. Although barely visible in
the original images, the noise is intensified when incre-
asing the contrast later in the preprocessing step and may
cause artifacts in the segmentation process. In order to re-
duce the noise, the images are filtered using a Gaussian
low-pass filer (Nixon and Aguado, 2012):

hg(x, y) = exp
(
− (x2 + y2)

2σ2

)
, (1)

where σ = 0.85 was chosen experimentally, and the mask
size is 3 × 3. The filter is scaled so that the sum of all its
elements equals one:

hgn(x, y) =
hg(x, y)∑

x

∑
y hg

. (2)

Then, the images are sharpened with the following shar-
pening filter:

hs =

⎡
⎣

0 −1 0
−1 5 −1

0 −1 0

⎤
⎦ . (3)

The convolution is conducted for each channel of the RGB
color space separately.

Another image defect requiring removal is a vignette,
caused by microscope optics. In order to determine the
shape and strength of the vignette, a blank slide Iblank

was prepared as a reference. The correction is applied to
the images as follows:

I ′ = I + I(1 − Imask), (4)

where Imask is a mask representing a decrease in bright-
ness for each pixel and is given as

Imask =
Iblank

max(Iblank)
. (5)

At this point the images are cropped to the size of
696 × 568 (4 pixels from each side) to remove the frame
and other artifacts that might be observed on the boarders
of the images. Finally, as the images have low contrast due
to the lighting conditions and CCD sensor quality, histo-
gram stretching (Nixon and Aguado, 2012) is applied.

Let Hinput and Linput be the highest and lowest gray
levels of image I , respectively, and Houtput and Loutput

be the highest and lowest gray levels of the range of in-
terest, which is the maximum range possible to obtain
having a given bit resolution. In the proposed approach,
when the images are 24 bit RGB (8 bit per channel), and
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each channel is processed separately, then Houtput = 255
and Loutput = 0. The input gray levels are transformed
according to

I ′x,y =
Houtput − Loutput

Hinput − Linput
(Ix,y−Linput)+Loutput. (6)

Using the actual highest and lowest gray levels of the input
image I as the parameters Hinput and Linput not always
gives satisfactory results due to outliers in the histogram.
Instead, values that specify the top Hθ% and the bottom
Lθ% of all pixel intensities can be applied. In the proposed
approach, the parameters equal Hθ = 1% and Lθ = 1%.

3.2. Nuclei segmentation. To cope with the nuclei seg-
mentation, a two-step segmentation procedure is propo-
sed. In the first step, a hybrid method based on adaptive
thresholding, k-means clustering and conditional erosion
is used to discover centers of nuclei. In the second step, the
multi-label fast marching algorithm initialized with the di-
scovered centers is used to extract individual nuclei.

The whole procedure starts from converting the ori-
ginal image I to the binary image BW with nuclei region
highlighted. The binary image BW is the result of ima-
ge processing using adaptive thresholding and k-means
clustering. Adaptive thresholding is applied to distingu-
ish all dark objects (nuclei, cytoplasm, erythrocytes) from
bright background. The image is segmented into two sub-
sets, Gdark and Gbright (Sezgin and Sankur, 2003):

Gbright = {gi,j : gi,j > ti,j},
Gdark = {gi,j : gi,j ≤ ti,j},

(7)

where gi,j is the pixel luminance value and the threshold
ti,j is calculated adaptively for subsequent pixels of the
image using the averaging filter

ti,j =
1

m2

n∑
k=−n

n∑
l=−n

gi+k,j+l, (8)

with m as the size of the filter window (an odd integer)
and n = (m − 1)/2. Unknown values outside the bounds
of the image are assumed to equal the nearest image bo-
undary value.

Another processing is necessary to distinguish nuc-
lei from the rest of the dark objects. This task is realized
using k-means clustering (Lloyd, 1982). In the case consi-
dered, three clusters are defined. The clusters correspond
to nuclei, erythrocytes and cytoplasm. The clustering pro-
cedure is carried out in the RGB color space on the subset
of pixels Gdark.

The clustering procedure of the k-means algorithm is
based on minimizing the within-cluster sum of squares:

J =
Nx∑
i=1

Ny∑
j=1

K∑
k=1

μi,j,kD2
i,j,k, (9)

where Nx and Ny define the size of the analyzed image,
μi,j,k is a function specifying whether the (i, j)-th pixel
belongs to the k-th cluster, D2

i,j,k is the squared Euclidean
distance measure,

D2
i,j,k = (ci,j − vk)T (ci,j − vk), (10)

where ci,j ∈ R
3 is a vector of the coordinates of the (i, j)-

th pixel in the RGB space and vk ∈ R
3 is a vector of the

coordinates of the k-th cluster center in the RGB space.
The algorithm iteratively changes pixel assignments ba-
sed on the distance to the nearest mean (cluster center)
and updates the cluster centers to match the proper means
of clusters (Hartigan and Wong, 2001). Finally, pixels are
distributed into three clusters. The cluster corresponding
to the nuclei is determined based on the fact that nuclei
are the darkest objects in the image. Next, pixels that be-
long to the nuclei cluster are used to construct binary ima-
ge BW . It marks regions in the image where the nuclei
are located. At the end of image processing all objects to-
uching the image border are removed. It can be observed
that at this stage of image segmentation some nuclei are
properly segmented but there is also a lot of nuclei that
are stuck together (Fig. 2(b)). For this reason, further pro-
cessing is necessary to separate the clustered nuclei.

A key stage of the proposed segmentation procedure
is to correctly mark nuclei centers to seed the fast mar-
ching algorithm. The method is based on the concept of
conditional erosion (Yang et al., 2006). The procedure as-
sumes that the erosion is conducted as long as the size
of the processed nucleus is large enough. Two masks for
erosion operation are designed. They can be referred to as
fine and coarse erosion structuring elements. Coarse ero-
sion tends to preserve the actual shape but reduces the size
of clustered nuclei. This can make the nucleus disappear
because of huge reduction in the size. On the other hand,
the fine erosion mask is less likely to make the nucleus
disappear, but it will lead to loss of the original shape.

The erosion operation of the binary image I by the
structuring element B is defined by

I � B̌ = {x ∈ R
2 | (B + x) ⊂ I}, (11)

where B̌ is a reflection of set B. Conditional erosion is ap-
plied to binary image BW obtained in the previous step
of segmentation. The threshold T1 for the coarse structu-
ring element Bc and the threshold T2 for the fine struc-
turing element Bf are chosen experimentally (T1 = 350,
T2 = 50). Next, nuclei are iteratively eroded using the co-
arse element until the size of all objects is smaller than T1.
Finally, erosion with the fine element is applied iteratively
to the results obtained during coarse processing. Structu-
ring elements Bc and Bf are designed according to the
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shape of the nuclei, which is similar to an ellipse:

Bc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

Bf =

⎡
⎣

0 1 0
1 1 1
0 1 0

⎤
⎦ . (13)

The means of objects that have survived conditional ero-
sion become initial seeds used by fast marching to seg-
ment individual nuclei (Fig. 2(c)).

The fast marching method is a special case of the
level set approach for monotonically advancing fronts.
It was introduced by Sethian (1996) and can be used to
extract complex shapes from 2D and 3D images. In our
work it is used to split clustered nuclei. The algorithm
starts with the initial front Γ0. Next, the front Γ evaluates
with speed F (x, y) in the normal direction, where F is
always either positive or negative. The front passes thro-
ugh a point (x, y) at the time T (x, y). Under this formu-
lation, arrival time function T (x, y) satisfies the Eikonal
equation:

|∇T |F = 1. (14)

In order to solve the equation, the gradient |∇T | is esti-
mated using the upwind entropy-satisfying scheme. By li-
miting our discussion to a two-dimensional grid, we must
solve the following quadratic equation:

1
F 2

i,j

= max
(
max(d−x

i,j T, 0),−min(d+x
i,j T, 0)

)2

+ max
(
max(d−y

i,j T, 0),−min(d+y
i,j T, 0)

)2
, (15)

where
d±ijT = 1

h (Ti±1,j − Ti,j),

d±ijT = 1
h (Ti,j±1 − Ti,j),

(16)

and h is the grid step. If the quadratic equation yields more
than one solution, the greatest is chosen.

The basic idea of the fast marching procedure is to
propagate the front from smaller values of T to larger
ones. The algorithm constructs the narrow band around
the initial front and next marches this band forward, fre-
eze the values of existing points and brings new ones into
the narrow band (Malladi and Sethian, 1996). The proce-
dure is repeated until the narrow band is empty. The beha-
vior of the front is driven by the speed function F . It must
be designed in such a way that the front stops exactly at
the boundary of the nuclei. We decided to use the speed
function based on the image local gradient:

F = exp
(
−α|∇(Hσ ∗ I)|

)
, (17)

where α is a weighting factor, I is the original image and
Hσ is a Gaussian smoothing operator.

Standard fast marching is well suited to foreground-
background segmentation. Nevertheless, our application
must deal with multiple objects. It was realized by using
multi-label fast marching (Sifakis and Tziritas, 2001; Steć,
2005). The number of labels is determined by the number
of nuclei detected by conditional erosion. Fast marching
is initiated by the seeds corresponding to nuclei centers.
Each seed is associated with the unique label (segment).
Propagation speed is the same for all labels. The algorithm
maintains a single narrow band which contains trial points
from all segments. Further steps are similar to the standard
algorithm because a single trial point is marched forward
during the single iteration. The algorithm can handle this
since it can propagate fronts of any topology. A new la-
bel for the trial point is inherited from the segment that
propagates at the current algorithm iteration. In order to
prevent “leakages” of the nuclei segments into backgro-
und and to reduce computational costs, all points classi-
fied as background by adaptive thresholding and k-means
are excluded from fast marching propagation.

The final result of segmentation is recorded as matrix
L which stores labels of pixels coming from the image I .
Each nucleus has its own unique integer label ωi given by
the fast marching procedure. The pixels labeled ω1 ma-
ke up the first nucleus, the pixels labeled ω2 make up the
second nucleus, and so on (Fig. 2(d)). The pixels labeled
with zero are the background. Matrix L can be directly
used to compute the features of nuclei.

3.3. Feature extraction. For each isolated nucleus, 28
features are extracted. Then, for each image, the mean,
median and standard deviation are determined, giving a
total number of 84 features.

The features chosen reflect the observations of cy-
tologists and can be divided into three groups. The first
group is related to the size and shape of the nuclei. This is
represented by the following features:

• Area: the actual number of pixels of the nucleus,

• Perimeter: the distance between each adjoining pair
of pixels around the border of the nucleus,

• Eccentricity: the scalar that specifies the ratio of the
distance between the foci of the ellipse that has the
same second moments as the segmented nucleus and
its major axis length,

• Major Axis Length: the length of the major axis of the
ellipse that has the same normalized second central
moments as the nucleus,

• Minor Axis Length: the length of the minor axis of the
ellipse that has the same normalized second central
moments as the nucleus.
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(a)

(b)

(c)

(d)

Fig. 2. Input images, final and intermediate results of the proposed segmentation procedure: input images (a), results of nuclei region
detection (b), results of conditional erosion (c), results of fast marching (d).

The second group of features is related to the distri-
bution of nuclei in the image. Healthy tissue usually form
single-layered structures while cancerous cells tends to

break up, which increases the probability of encountering
separated nuclei. To express this relation, we use features
representing the distance to the centroid of all nuclei, and
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the distance to k-nearest nuclei:

• Distance to Centroid of All Nuclei (dist. to all): the
distance between the geometric center of the nucleus
and centroid of all nuclei,

• Distance to c-Nearest Nuclei (dist. to cNN): the sum
of distances between the geometric center of the nuc-
leus and geometric centers of c-nearest nuclei; after
conducting experiments with different values of c,
we decided to set this parameter to 1,

The last group of features is related to the distribution
of chromatin in the nuclei. This is represented with textu-
re features based on the Gray-Level Co-occurrence Matrix
(GLCM) (Haralick et al., 1973) and the Gray-Level Run-
Length Matrix (GLRLM) (Tang, 1998), as well as the me-
an and variance of pixel values in each RGB channel.

First four textural features are based on the GLCM.
The N × N matrix P , where N is the number of gray
levels, is defined over an image to be the distribution of
co-occurring values of pixels at a given offset. In other
words, each element of P specifies the number of times
a pixel with gray-level value i occurs shifted by a given
distance to a pixel with the value j. Here, we calculate
the mean of four GLCM features determined for offsets
corresponding to 0◦, 45◦, 90◦ and 135◦ using eight gray-
levels. In the following, p is the normalized co-occurrence
matrix:

• Contrast: the intensity contrast between a pixel and
its neighbor over the whole image:

contrast =
N∑

i,j=1

|i − j|p(i, j), (18)

• Correlation: the correlation of a pixel to its neighbor
over the whole image:

correlation =
N∑

i,j=1

(i − μi)(j − μj)p(i, j)
σiσj

, (19)

• Energy (in the literature also known as uniformity):
the sum of squared elements in the GLCM:

energy =
N∑

i,j=1

p(i, j)2, (20)

• Homogeneity: the closeness of the distribution of ele-
ments in the GLCM to the GLCM diagonal:

homogeneity =
N∑

i,j=1

p(i, j)
1 + |i − j|. (21)

The next eleven textural features are based on the
gray-level run length matrix. The N ×M matrix p, where
N is the number of gray levels and M is the maximum
run length, is defined for a given image as the number of
runs with pixels of gray level i and run length j. Similarly
as in the GLCM, we compute run length matrices for 0◦,
45◦, 90◦ and 135◦ using eight gray-levels:

• Short Run Emphasis (SRE):

SRE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)
j2

, (22)

• Long Run Emphasis (LRE):

LRE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)j2, (23)

• Gray-Level Nonuniformity (GLN):

GLN =
1
nr

M∑
i=1

⎛
⎝

N∑
j=1

p(i, j)

⎞
⎠

2

, (24)

• Run Length Nonuniformity (RLN):

RLN =
1
nr

N∑
j=1

(
M∑
i=1

p(i, j)

)2

, (25)

• Run Percentage (RP):

RP =
nr

np
, (26)

where nr is the total number of runs and np is the
number of pixels in the image,

• Low Gray-level Run Emphasis (LGRE):

LGRE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)
i2

, (27)

• High Gray-level Run Emphasis (HGRE):

HGRE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)i2, (28)

• Short Run Low Gray-level Emphasis (SRLGE):

SRLGE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)
i2j2

, (29)



26 M. Kowal and P. Filipczuk

• Short Run High Gray-level Emphasis (SRHGE):

SRHGE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)i2

j2
, (30)

• Long Run Low Gray-level Emphasis (LRLGE):

LRLGE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)j2

i2
, (31)

• Long Run High Gray-level Emphasis (LRHGE):

LRHGE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)i2j2. (32)

Finally, the last six features are

• Mean R Value, Mean G Value, Mean B Value: the me-
an value of pixels of the nucleus in the channel R, G
and B, respectively,

• Variance of R Value, Variance of G Value, Variance
of B Value: the variance of pixel values of the nucleus
in the channel R, G and B, respectively.

After the features are extracted and the statistics for
the images determined, all input variables are standardi-
zed as follows:

zi =
xi − μi

σi
, (33)

where μi is the mean value and σi is the standard deviation
of the feature i.

3.4. Classification. For classification we use three
classifiers (Bishop, 2006; Duda et al., 2001): k-Nearest
Neighbor (kNN) (Cover and Hart, 1967) using k = 5,
Decision Tree (DT) (Breiman et al., 1984), and Support
Vector Machine (SVM) (Cortes and Vapnik, 1995) using a
third-order polynomial kernel. The parameters were cho-
sen experimentally (e.g., to determine the optimal k for
the kNN, we performed tests for k = 1, 2, . . . , 24, 25 and
chose one that gave the best result).

Classification performance was evaluated with the
n-fold cross-validation procedure (Devijver and Kittler,
1982). There were 50 folds (the number of patients), and
each fold consisted of 9 images that belong to a single
patient. Two measures of the classification accuracy were
defined:

• patient accuracy: the percentage ratio of successful-
ly diagnosed cases (patients) to the total number of
cases,

• image accuracy: the percentage ratio of successfully
classified images to the total number of images,

All of the images were classified individually to de-
termine image accuracy. Patient accuracy was acquired by
means of majority voting for all of the classifier outcomes
related to a given patient. For example, if at least 5 of 9
images were benign, then the final diagnosis was benign.
Based on the majority voting results, patient accuracy was
determined for each classification algorithm. Majority vo-
ting imitates a diagnostic procedure used by the patholo-
gists who need to analyze few fragments of the slide to de-
liver the final diagnosis. More reliable results came from
such an approach because the decision was made after a
series of images had been processed rather than only a
single image.

A suboptimal set of features was determined using
a sequential forward selection algorithm. The procedure
starts from the classifier which does not have any input
variables. Then, the set of input variables is recursively
expanded. The variable that most increases the accuracy
of the classifier is added to the suboptimal subset. The
complete procedure is repeated until no improvement can
be detected. To evaluate a single set of input variables, the
whole n-fold cross validation procedure must be carried
out. The competing sets are compared in terms of the ima-
ge classification accuracy. The set determined by forward
selection was then used to specify the maximum classifi-
cation accuracy.

4. Experimental results

The system was tested with 450 real medical images (see
Section 2). The nuclei were segmented using the method
described in Section 3.2. Then, for each image, 84 features
were extracted as in Section 3.3. The classification accu-
racy was tested using three different classification algori-
thms and the n-fold cross-validation technique (Devijver
and Kittler, 1982). The images belonging to the same pa-
tient were never at the same time in the training and the
testing set. The diagnosis for patients was determined by
majority voting as described in Section 3.4.

To investigate the discriminative power of the featu-
res, image accuracy was calculated for each single feature
using the kNN classifier. Results of this study are presen-
ted in the Table 1. For 6 features, image accuracy was over
80%, for 36 features, image accuracy was in the range of
60%–80%, and for 42 features, image accuracy was be-
low 60%. In the second study, sequential forward selec-
tion described in Section 3.4 was employed to find the
suboptimal set of features. The procedure chose 9 featu-
res for the kNN classifier (median of mean G value, stan-
dard deviation GLRLM SRHGE, median GLRLM SRL-
GE, area mean, standard deviation of variance of B value,
mean of mean B value, median of dist. to all, median of
minor axis length, mean GLRLM GLN), 5 features for the
SVM classifier (mean GLRLM SRLGE, mean GLRLM
SRHGE, mean dist. to cNN, standard deviation of GLCM
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homogeneity, median of mean R value) and 3 features for
the DT classifier (mean of GLRLM SRLGE, median of
GLRLM SRE, mean of eccentricity). As shown in Table 2,
each classifier gave 100% classification accuracy for pa-
tients. This means that all patients were diagnosed cor-
rectly. However, we observed differences in the accuracy
for individual images. The best result was obtained using
kNN (99.33%) while the worst was obtained using the DT
(91.56%).

In the previous studies, we adopted different clu-
stering methods and adaptive thresholding to segment
the nuclei (Filipczuk et al., 2011b; 2011a; Kowal et al.,
2011a; 2011b). Unfortunately, all of these segmentation
approaches share a major drawback. They could not sepa-
rate closely spaced nuclei and this leaded to a distortion of
the features that described the nuclei. In the current study,
the segmentation method has been modified to deal with
the mentioned problem. Visual inspection of the segmen-
tation results show that the proposed approach copes well
with closely spaced and overlapping nuclei (Fig. 2(d)).
Most of the clumped and clustered nuclei are correctly
separated, resulting in a reduction of a distortion of the
features. Furthermore, we expanded the set of features by
the adoption of texture features of the nuclei. The impro-
vements applied resulted in image classification accuracy
increased by 7%–8% compared with the authors’ former
studies.

5. Conclusions

Breast cancer diagnosis using cytological images is a very
difficult challenge. The content of such images is highly
complex and its analysis in an automated way is difficult.
However, we succeeded in developing a computer-aided
diagnosis algorithm that can classify fine-needle biopsies
as benign or malignant with high accuracy and provide
valuable information for a medical specialist.

Experiments carried out on real medical data proved
that conditional erosion is a very useful tool for detec-
ting nuclei centers even when the nuclei are clustered. We
expected that the fast marching method initiated by these
centers would be able to correctly separate such difficult
structures of nuclei. This was confirmed for a vast majo-
rity of cases. The method improved classification results
compared with our previous works when nuclei separation
step was not used.

An interesting extension of the proposed segmenta-
tion method can be application of a more sophisticated
clustering method (Boryczka, 2009). Future work will al-
so be focused at improving the system by developing more
sophisticated methods for feature selection and classifica-
tion (Woźniak and Krawczyk, 2012; Boryczka and Ko-
zak, 2010). Moreover, we plan to enlarge the set of test
images.

Table 1. Classification accuracy for individual images determi-
ned for all 84 individual features (mean, median and
standard deviation (STD) calculated for all 28 nuclei
features, see Section 3.3). The classification was per-
formed using the kNN. All values are expressed as a
percentage (%).

Feature Mean Median STD

area 63.11 59.78 58.44
perimeter 70.22 69.11 47.56
eccentricity 51.78 48.89 47.78
major axis length 66.44 64.89 45.78
minor axis length 62.67 61.56 64.89
dist. to all 74.89 72.22 69.11
dist. to cNN 75.11 75.11 70.44
GLCM contrast 58.00 60.67 52.89
GLCM correlation 60.44 59.78 61.56
GLCM homogeneity 54.89 56.89 60.44
GLCM energy 55.78 53.78 70.89
GLRLM SRE 68.67 69.11 76.22
GLRLM LRE 73.78 69.78 38.67
GLRLM GLN 57.78 61.78 56.00
GLRLM RLN 52.22 57.78 47.11
GLRLM PR 59.33 53.11 54.44
GLRLM LGRE 53.11 54.22 60.89
GLRLM HGRE 50.67 57.11 51.56
GLRLM SRLGE 84.89 81.78 83.11
GLRLM SRHGE 63.78 54.22 75.11
GLRLM LRLGE 58.67 58.22 72.89
GLRLM LRHGE 54.89 56.67 50.00
mean R value 59.78 63.33 48.67
mean G value 80.00 85.11 50.00
mean B value 79.78 82.00 55.33
variance of R value 53.78 58.22 48.00
variance of G value 62.44 63.11 58.67
variance of B value 70.89 66.44 79.78

Table 2. Classification results for suboptimal subsets of featu-
res.

kNN DT SVM

accuracy (patients) 100% 100% 100%
accuracy (images) 99.33% 91.56% 97.56%
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Śmietański, J., Tadeusiewicz, R. and Łuczyńska, E. (2010). Te-
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