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Abstract The currently available anti-HIV-1 therapeutics is highly beneficial to

infected patients. However, clinical failures occur as a result of the ability of HIV-1

to rapidly mutate. One approach to overcome drug resistance is to target HIV-1

proteins that are highly conserved among phylogenetically distant viral strains and

currently not targeted by available therapies. In this respect, the nucleocapsid (NC)

protein, a zinc finger protein, is particularly attractive, as it is highly conserved and

plays a central role in virus replication, mainly by interacting with nucleic acids.

The compelling rationale for considering NC as a viable drug target is illustrated by

the fact that point mutants of this protein lead to noninfectious viruses and by the

inability to select viruses resistant to a first generation of anti-NC drugs. In our

review, we discuss the most relevant properties and functions of NC, as well as

recent developments of small molecules targeting NC. Zinc ejectors show strong

antiviral activity, but are endowed with a low therapeutic index due to their lack of

specificity, which has resulted in toxicity. Currently, they are mainly being inves-

tigated for use as topical microbicides. Greater specificity may be achieved by using

non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of

the zinc fingers or key nucleic acid partners of NC. Within the last few years,

innovative methodologies have been developed to identify NCIs. Though the

antiviral activity of the identified NCIs needs still to be improved, these compounds

strongly support the druggability of NC and pave the way for future structure-based

design and optimization of efficient NCIs.
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Abbreviations

ARDs Antiretroviral drugs

CA Capsid

CC50 Cytotoxic concentration50
DR Drug resistance

EC50 Effective concentration50
HIV Human immunodeficiency virus

IN Integrase

LTR Long terminal repeat

MA Matrix

NCI Nucleocapsid inhibitor

PBS Primer-binding site

PI Protease inhibitor

PPT Polypurine tract

PR Protease

Ψ Packaging element

RT Reverse transcriptase

RTC Reverse transcriptase complex

SP1 Spacer peptide 1

SP2 Spacer peptide 2

TAR Trans-activation response element

Tat Trans-activator of transcription

U5 Unique 5′ sequence

UTR Untranslated region

ZF Zinc finger
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1 Introduction

The clinical implementation of antiretroviral drugs (ARDs) for HIV-infected indi-

viduals resulted in shifting an acute and lethal disease, AIDS, to a clinically

manageable condition. This combined use of ARDs as a therapy is based on small

molecular weight inhibitors targeting either (i) the key viral enzymes required for

HIV-1 replication, namely reverse transcriptase (RT), integrase (IN), and protease

(PR) or, less commonly, (ii) the key proteins that control viral entry into the host

cell. These therapies efficiently lower the systemic viral burden below the detection

limit in the blood and strongly favor long-term survival of HIV-infected patients

despite the persistence of latently infected cellular reservoirs. Nevertheless, emer-

gence and circulation of multidrug-resistant HIV-1 strains are fueled by the high

rates of HIV-1 mutation and recombination, thus emphasizing the continuous need

for novel therapies and innovative strategies to overcome drug resistance (DR)

(Richman 2014).

Resistant and multidrug-resistant HIV-1 strains have been identified in the clinic

for each of commercially available antiretroviral drugs, as well as for most of the

drug combinations. Therefore, defining a suitable combination of antiretroviral

drugs to maintain viral suppression at the individual patient level, as well as

developing novel drug-development strategies with the purpose of providing a cure,

constitutes the current research and clinical efforts worldwide. As a consequence,

there is a strong need for identifying novel antivirals to crucial viral determinants

that are currently not targeted by available therapies. Moreover, to have a global

impact, the antivirals should have a sustained effect on different HIV-1 subtypes,

including viruses resistant to RT, PR, and IN inhibitors. In this regard, the nucle-

ocapsid (NC) protein is an ideal target due to its strikingly high conservation among

all viral clades and its necessary involvement in a succession of key steps of the

viral life cycle (Fig. 1). The present review will focus on the biological role and

structure–function relationships of NC in the viral life cycle, as well as on the

pharmacological strategies that have been recently published identifying novel,

active small molecules against NC (Breuer et al. 2012; Goudreau et al. 2013; Mori

et al. 2012; Shvadchak et al. 2009). It should be noted that there are numerous

reviews focusing on retroviral NC proteins (Darlix et al. 2011; Levin et al. 2010;

Mirambeau et al. 2010; Rein et al. 2011), with current, state-of-the-art findings

being reported after each International Retroviral Nucleocapsid Conference (http://

www.ncsymposium2013.org).

The past 20 years of research on NC revealed this protein to play a central role in

virus replication (Fig. 1) and to be highly conserved in diverse HIV-1 subtypes and

drug-resistant viruses (Fig. 2). As a component of the Gag structural polyprotein

precursor, the corresponding NC domain (GagNC) selects, dimerizes, and packages

the genomic RNA during virus assembly. Then, GagNC–RNA interactions favor

transactions with (i) the cellular ESCRT complex to direct viral budding and (ii) the

viral protease to direct the viral maturation that includes the processing and mat-

uration of NC, needed for the proper condensation of the ribonucleoprotein
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architecture. The 55 amino acid mature form of NC (NCp7) exerts architectural and

chaperone activities on HIV-1 RNA and DNA in the virion and during reverse

transcription. This is done in a close partnership with the cellular tRNALys3 for

reverse transcription initiation and with a set of viral RNA/DNA sites and RT itself

for the subsequent steps leading to the faithful synthesis of the complete viral DNA,

properly embedded within the preintegration complex. Directed mutagenesis in NC

zinc fingers has been shown to affect these steps, including viral assembly/budding

(Dussupt et al. 2011; Grigorov et al. 2007) and the spatiotemporal coordination of

reverse transcription (Didierlaurent et al. 2008), leading to fully noninfectious

viruses. These results on NCp7 mutations imply that an NCp7 inhibitor should

impede the HIV-1 replicative cycle at its early and late steps, with GagNC being a

highly relevant target in addition to the mature protein NCp7 (Breuer et al. 2012).

Accordingly, a highly selective inhibition of the interaction of NCp7 and Gag-

NC with their nucleic acid (NA) partners should lead to a potent antiretroviral

activity, in synergy with common ARDs, and greatly enhance the genetic barrier for

resistance. In this context, through the pleiotropic functions of NCp7 in the whole

Fig. 1 Role of the nucleocapsid protein in the HIV-1 life cycle. The mature NC protein (NCp7) is

thought to assist RT in converting the single-strand genomic RNA into the double-stranded

proviral DNA flanked by two long terminal repeats and to chaperone the IN-mediated integration

of the proviral DNA into the host genome. As a part of the Gag polyprotein, the NC domain

selectively recognizes, dimerizes, and packages the full-length genomic RNA during viral

assembly. In the inner core of the viral particle, approximately 1500 NCp7 molecules are bound to

the dimeric RNA genome. IN integrase; MA matrix; NC nucleocapsid protein; PR protease; RT

reverse transcriptase
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viral life cycle, these NC inhibitors will offer the new possibility to affect the

assembly, and budding steps, that have not been targeted so far, in addition to the

viral steps already targeted by other ARDs.

Fig. 2 NCp7 sequence is highly conserved across different HIV-1 subtypes as well as in viral

isolates obtained from antiretroviral naïve and treated individuals. Top panel, antiretroviral

treatment naïve NCp7 consensus sequences from B (594 sequences) and non-B subtypes (4938

sequences) as well as the HXB2 molecular clone (GenBank accession number K03455), which is

often considered as a representative subtype B virus, are shown (http://www.hiv.lanl.gov/content/

sequence/HIV/REVIEWS/HXB2.htm). Bottom panel, antiretroviral NCp7 consensus sequences

from B (7351 sequences), and non-B subtypes (14,286 sequences), as well as the B subtype

representative molecular clone HXB2. Gray circles on amino acids indicate non-conservative

amino acid substitution, such as charged to hydrophobic, whereas gray blocks indicate conser-

vative amino acid changes. The nucleocapsid variability index reflects the variability of the amino

acid changes at each position of NC, the higher the number the more amino acid variability. Black

lines are the B subtype sequences, whereas the gray dashed lines are the non-B subtypes. Viral

sequence information was obtained from the Los Alamos database (http://www.hiv.lanl.gov/

content/index). The nucleocapsid variability index is a modification from the conservation index

(Li et al. 2013)
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2 Structure and Zinc-binding Properties

of the Nucleocapsid Protein

NCp7 is a basic protein of only 55 amino acids that is characterized by two strictly

conserved CCHC zinc fingers (ZFs), flanked by small domains rich in basic resi-

dues (Fig. 3). The ZFs chelate zinc ions with high affinity (1013–1014 M−1) through

three Cys and a His residues (Mely et al. 1996). The zinc-binding mechanism of

NCp7 and notably of its distal ZF motif was investigated in depth (Bombarda et al.

2001, 2002, 2005, 2007; Mely et al. 1996). Binding of Zn2+ to the unfolded distal

ZF was found to be initiated through the deprotonated Cys36 and His44 residues,

resulting in a partly folded intermediate that subsequently converts into the final

stable complex through deprotonation of the Cys39 and Cys49 residues and

intramolecular substitution of coordinated water molecules. The two zinc-bound

ZFs exhibit similar folding patterns (Morellet et al. 1992, 1994; Summers et al.

1992), while the linker between the two ZFs appears responsible for their spatial

proximity (Lee et al. 1998; Mely et al. 1994; Morellet et al. 1994; Ramboarina et al.

2002). Importantly, the folding of the ZFs allows the formation on their top of a

hydrophobic plateau that includes the hydrophobic residues of the proximal (Val13,

Phe16, Thr24, and Ala25) and the distal (Trp37, Gln45, and Met46) ZFs (Fig. 3a,

b). This hydrophobic plateau plays a key role in NCp7 functions, since noncon-

servative single point mutations in this plateau were found to lead to noninfectious

Fig. 3 Amino acid sequence and 3D structure of the nucleocapsid protein. a NCp7 sequence

showing the amino terminus, cysteine, and histidine amino acids that coordinate Zn and the Val13,

Phe16, Thr24 Ala25, Trp37, Gln45, and Met46 amino acids (black boxes) that form the

hydrophobic plateau. b 3D structure of NCp7/SL2 complex. On binding to SL2, the N-terminal

domain folds into a helix. The Phe16 and Trp37 of the NCp7 hydrophobic plateau, which interact

with the guanosine residues of SL2 loop through hydrogen bonding, are highlighted. The structure

is from the PDB (1F6U)
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viruses (Demene et al. 1994; Dorfman et al. 1993; Wu et al. 2013). Similarly, single

point mutations of the zinc-binding residues cause also a complete loss of virus

infectivity (Aldovini et al. 1990; Dorfman et al. 1993; Gorelick et al. 1990). These

mutations do not prevent the binding of Zn2+ (Bombarda et al. 2002, 2005), but

rather lead to an inappropriate folding of the mutated ZFs, so that formation of the

hydrophobic plateau is prevented (Stote et al. 2004). This plateau is pivotal for the

binding of NCp7 to NAs, through its multiple contacts with the NA bases and

backbone (Amarasinghe et al. 2000; Bourbigot et al. 2008; De Guzman et al. 1998;

Morellet et al. 1998; Spriggs et al. 2008). Among the residues of the plateau, the

Trp37 residue is especially important as it conservatively stacks with exposed

guanosines in all the 3D structures of NCp7/oligonucleotide complexes that have

been solved (Fig. 3b). Another key feature of NCp7 is its high plasticity, which is

required to adapt to the sequence and structure variability of its NA targets (Darlix

et al. 2011; Godet et al. 2013).

In line with the importance of NC for viral function, the requirement to maintain

a ZF-binding structure, and ability to interact with NAs, the amino acid sequence is

highly conserved across B and non-B subtypes and in viral isolates from treated

patients [Fig. 2 and (Darlix et al. 2011; Godet et al. 2012)]. When the variation

indexes of NCp7 sequences are scrutinized (Fig. 2), it appears that the key residues

Val13, Phe16, Thr24, Ala25, Trp37, Gln45, and Met46 of the hydrophobic plateau

are invariant (Amarasinghe et al. 2000; Bazzi et al. 2011, 2012; Bourbigot et al.

2008; De Guzman et al. 1998; Morellet et al. 1998; Spriggs et al. 2008). Moreover,

in most mutated sequences, the NCp7 consensus amino acids exchange with an

amino acid of a similar profile. This strong requirement for amino acid conservation

to maintain the structural integrity for function appears to provide few mutational

options to escape inhibitors targeted against NC.

3 The Nucleocapsid Protein is Necessary for a Large

Spectrum of Viral Activities

Once the HIV-1 Gag polyprotein has been translated from the viral unspliced

mRNA at the polyribosomes, the Gag is transported via host-cell proteins and

interacts with genomic RNA (gRNA) through its NC domain, Fig. 4 [for a review,

see (Muriaux and Darlix 2010; Thomas and Gorelick 2008; Waheed and Freed

2012)]. To initiate viral assembly, few GagNC copies efficiently bind gRNA at

specific loci within the Psi (Ψ) region, allowing a selective capture of HIV-1 gRNA

in a dimeric form from the pool of spliced viral and cellular RNAs (Jouvenet et al.

2011; Kutluay and Bieniasz 2010; Kuzembayeva et al. 2014; Nikolaitchik et al.

2013). An optimized interaction of the NC hydrophobic pocket with the GXG-

containing stem-loop sequences (SL1, SL2, and SL3) of the ψ-element has been

proposed as a key feature for selectivity (Lu et al. 2011). After this nucleation,

nonspecific GagNC–RNA interactions serve to load Gag and Gag-Pol on gRNA in
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cooperation with interactions directed by the other critical domains of Gag, CA-SP1

for Gag–Gag interactions andMA for Gag–membrane interactions (Datta et al. 2011;

Kutluay and Bieniasz 2010;Munro et al. 2014). Deletion or mutations of NC strongly

impede proper viral assembly (Ott et al. 2009). Moreover, GagNC also traps tRN-

ALys3 and its cognate tRNA synthetase, and promotes the annealing of tRNALys3

with the the primer-binding site (PBS) of the HIV-1 gRNA (Guo et al. 2009).

GagNC–actin interactions in relation to actin dynamics likely modify the local

curvature of the membrane (Kerviel et al. 2013; Schiralli Lester et al. 2013; Wilk

et al. 1999), in order to allow the formation of the budding particle. The cellular

ESCRT machinery is recruited to allow the release of the budding particle (Van

Engelenburg et al. 2014). GagNC is engaged in this recruitment by interacting with

Alix-containing Bro1 domain in cooperation with the neighboring Gagp6 domain

that binds to the Alix-V domain (Dussupt et al. 2009; Popov et al. 2008). Moreover,

it has been proposed that NC–Bro1 interactions depend on RNA in the cell

Fig. 4 Assembly and budding of HIV-1 particles. Early and specific recognition of viral RNA (1)

by Gag binding at the ψ RNA region, which ensures viral RNA dimerization. The Gag-vRNA

complexes, free Gag, and Gag-Pol proteins migrate (2) through the cytoplasm toward the plasma

membrane. The N-terminal MA domain of Gag binds to the cellular membrane (3) while the C-

terminal NC domain projects into the cytoplasm and binds viral RNA. Gag and Gag-Pol units

aggregate though MA-lipid, Gag-Gag, and NC/RNA interactions. Other components are loaded

onto Gag, one of them being the tRNALys3 required to prime DNA synthesis. RNA scaffolding,

growth of the Gag network, presumably GagNC–actin interactions, and finally ESCRT recruitment

(4 and 5) mediate membrane curvature and the final budding of the particle (6)

Nucleocapsid Protein: A Desirable Target for Future Therapies … 61



(Sette et al. 2012). Similar to GagNC-Bro1 interaction, GagNC interacts with

Tsg101 in the ESCRT I complex to support budding, which in turn, maintains

gRNA integrity for packaging by preventing premature reverse transcription

assembly due to budding defects (Chamontin et al. 2015).

During virus maturation (Fig. 5), the NC domain is released from Gag under the

first wave of proteolysis leading to the transient species NCp15 (Mirambeau et al.

2010). Subsequent proteolytic cleavage at its C-terminus during two consecutive

steps results in the liberation of the p6 protein, leading to NCp9, followed by

cleavage and release of the C-terminal 16 amino acid peptide, called SP2, leading to

the final product, NCp7. NCp15 processing appears strongly activated by NC–RNA

Fig. 5 Nucleocapsid maturation Gag processing is sequential and ordered. The first PR to be self-

processed from Gag-Pol is thought to direct the sequential Gag and Gag-Pol proteolytic events that

will ultimately convert the immature virion into the mature particle (a–e). PR self-activation and

cleavage from Gag-Pol is driven by the proper alignment of HIV-1 Gag-Pol precursors within the

immature particle. The different protein species generated during the steps of Gag processing are

indicated. PR cleavage of Gag initially occurs between SP1 and NC leading to the first NC

intermediate form, NCp15 (partial cleavage product containing NC/SP2/p6), cleavage then results

in NCp9 (partial cleavage product containing NC/SP2), and finally to the fully processed form,

NCp7. The self-assembly properties of CA and NC, after removal of SP1, SP2 and p6, allow

assembly of the viral core. Furthermore, SP1-NC cleavage by PR separates the MA-CA from the

nucleocapsid complex formed between RNA, NCp15, RT, and IN. Processing of NCp15 by PR

into NCp9 leads to a NC/RNA condensed aggregate, in which NCp9 is finally processed into

NCp7, allowing the reverse transcription complex to form and be primed for function within the

confines of the capsid cone

62 M. Mori et al.



interactions, which drives the condensation within the viral core (de Marco et al.

2012; Mirambeau et al. 2007; Sheng and Erickson-Viitanen 1994).

In the early steps of HIV-1 replication, the mature NCp7 protein is thought to

assist RT in converting the single-stranded gRNA into a double-stranded proviral

DNA (Fig. 6) (Darlix et al. 2007; Hu and Hughes 2012; Levin et al. 2010; Lyonnais

et al. 2013; Thomas et al. 2008). As a first step, NCp7 directs the annealing of the

tRNALys3 primer with the PBS (Sleiman et al. 2012; Tisne et al. 2004). In addi-

tion, NCp7 chaperones the first strand transfer by annealing cTAR DNA with TAR

RNA allowing RT to resume the minus-strand DNA elongation step (Darlix et al.

2011). Moreover, NCp7 ensures the fidelity of plus-strand DNA priming at the two

polypurine tracts (PPT) by blocking mispriming by non-PPT RNAs and by

removing the 5′-terminal fragments annealed to minus-strand DNA (Hergott et al.

2013). In order for RT to perform the plus-strand synthesis after its pausing, NCp7

must chaperone the second strand transfer (i) by facilitating the RT–RNaseH

removal of primer tRNALys3 from the 5´-end of minus-strand DNA, and (ii) by

promoting the annealing of the PBS DNA copy at the 3´-end of plus-strand DNA

Fig. 6 Reverse transcription a Reverse transcription initiation from the tRNALys3 primer at the PBS

site. b Synthesis of minus-strand DNA and RNA digestion. c minus-strand transfer by cTAR-TAR

hybridation and RT elongation. d minus-strand DNA synthesis, with RNAse-H activity releasing the

3′PPT. e Release of the cPPT upon minus-strand DNA synthesis and plus-strand synthesis from the 3′

PPT. f Removal of tRNALys3 upon plus-strand synthesis and plus-strand synthesis starting from the

cPPT. g plus-strand transfer by base pairing of the minus-strand PBS and plus-strand PBS sequences,

elongation of the plus-strand strand DNA. h and i Synthesis of plus-strand DNA, with strand

displacement of the U5 extremity. j Termination of plus-strand synthesis with LTR duplication and

strand displacement to generate the central DNA flap. The two NA ends are in close proximity

throughout reverse transcription. RNA fragments released by the RNaseH activity of RT are shown as

dashed points behind RT along the elongating plus-strand DNA template. NC assists RT all along the

process
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with the complementary PBS at the 3´-end of minus-strand DNA (Darlix et al.

2011). NCp7 also increases RT processivity during reverse transcription, including

at the termination steps where DNA synthesis coupled with strand displacement is

necessary for long terminal repeat (LTR) duplication and the generation of the

DNA central flap (Grohmann et al. 2008; Hameau et al. 2001). Finally, NCp7 is

thought to play a possible role during integration by stimulating LTR DNA inte-

gration by IN (Buckman et al. 2003; Carteau et al. 1997; Poljak et al. 2003; Thomas

and Gorelick 2008).

4 The Nucleocapsid Protein Interacts with Self

and Host-cell Proteins

The viral proteins RT (Druillennec et al. 1999; Lener et al. 1998), Vif (Bouyac et al.

1997), Vpr (de Rocquigny et al. 1997; Li et al. 1996), and Tat (Boudier et al. 2010)

have been proposed to interact with NC. In the case of Vif, GagNC is likely the

main target, while the main partner of RT is NCp7. Within Gag, the NC domain is

also suspected to interact with its neighboring domain, p6. GagNC has also been

shown to interact with cellular factors such as the actin cytoskeleton (Liu et al.

1999), the dsRNA-binding protein Staufen (Chatel-Chaix et al. 2007, 2008), the

IGF-II mRNA-binding protein 1 (Zhou et al. 2008), the cellular ATP-binding

protein ABCE1 (also termed HP68) (Lingappa et al. 2006), and Alix (Popov et al.

2008). These protein–protein interactions, notably with Alix, are thought to par-

ticipate in HIV-1 assembly and budding. Moreover, most of these cellular proteins

are packaged into viral particles (Alce and Popik 2004; Mouland et al. 2000; Ott

et al. 1996; Zhou et al. 2008). In the case of Alix, a ternary complex has been

recently proposed to form between GagNC, RNA, and the Bro domain of Alix,

suggesting that GagNC–RNA interactions could be useful to recruit cellular pro-

teins (Sette et al. 2012).

5 The Nucleocapsid Protein is Key for HIV-1 Nucleic Acids

Regulation

NCp7 binds both specifically and nonspecifically to a large panel of NA sequences

of sufficient length (5–8 nt.), with a reverse binding polarity between RNA and

ssDNA [for a review, see (Darlix et al. 2011)]. The binding constants can vary by

several orders of magnitude depending on the nature, the sequence, and the folding

of the interacting sequences (Fisher et al. 1998; Vuilleumier et al. 1999), so that

NCp7 can exert different functions, depending on the respective concentrations of

the protein and the NA sequences. As a consequence of its basic character and its

millimolar range concentration in the virus, NCp7 molecules can likely coat the
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complete gRNA (Chen et al. 2009a, b; Chertova et al. 2006), ensuring its protection

against cellular nucleases (Krishnamoorthy et al. 2003). NCp7 also exhibits

sequence-specific binding properties to defined single-stranded sequences. These

specific and strong binding properties notably play a critical role in the recognition

by the NC domain of Gag of the Ψ-encapsidation signal of the gRNA, enabling its

specific recognition and selection among a large excess of cellular RNAs during

virus assembly (Aldovini and Young 1990; Cimarelli and Darlix 2002; Lever et al.

1989; Muriaux and Darlix 2010; Muriaux et al. 2004).

Through its binding to NA, NCp7 exerts a role as a NA chaperone, which allows

the protein to direct the rearrangement of NAs into their most stable conformation,

and to promote the annealing of complementary sequences (Godet and Mely 2010;

Levin et al. 2005; Rein et al. 1998). These NA chaperone properties rely on the

ability of NCp7 to transiently destabilize the NA secondary structure (Azoulay et al.

2003; Beltz et al. 2003, 2004; Bernacchi et al. 2002; Cosa et al. 2006; Egele et al.

2004; Godet et al. 2011, 2013; Liu et al. 2005; Williams et al. 2001). This desta-

bilization is mainly mediated by the hydrophobic region located on the top of the

folded ZFs and strongly depends on the NA stability and structure, suggesting a co-

evolutionary relationship between NCp7 and its NA targets (Beltz et al. 2003, 2005;

Godet et al. 2011, 2013; Hergott et al. 2013). Guanosine is the pivotal nucleoside to

be trapped (Grohman et al. 2013). This destabilization is further accompanied by

the exposure and freezing of the local mobility of the bases where NCp7 is bound

(Avilov et al. 2008; Bourbigot et al. 2008; Godet et al. 2011, 2013), a feature which

is thought to be critical for the recognition of the complementary oligonucleotide

sequence in the annealing reaction. A second major component of the NCp7

chaperone properties relies on its ability to promote the rapid annealing of com-

plementary NA sequences (Darlix et al. 1993; Godet et al. 2006; Hargittai et al.

2004; Liu et al. 2007; Ramalanjaona et al. 2007; Vo et al. 2006, 2009; You and

McHenry 1994). This component mainly depends on the N-terminal basic domain

and its NA aggregation properties, which provide the highly dynamic macromo-

lecular context to favor efficient strand exchange (Mirambeau et al. 2006; Stoylov

et al. 1997). The ZFs and the hydrophobic plateau are also instrumental in the

annealing reaction, by promoting specific pathways which are notably required to

faithfully and specifically chaperone the two obligatory strand transfers, during

reverse transcription (Godet et al. 2011, 2013). Effective strand annealing activity is

further correlated with NCp7’s ability to rapidly bind and dissociate from NAs.

Indeed, NC variants with slow on/off rates are poorly efficient in rearranging NAs,

even though they are still capable of promoting aggregation of NAs (Cruceanu et al.

2006a, b; Stewart-Maynard et al. 2008). Comparison of the various forms of NC

further revealed that Gag is a less efficient NA chaperone than NCp7 (Cruceanu

et al. 2006a, b) and that NCp15 appears much weaker for NA aggregation com-

pared to NCp9 and NCp7 (Mirambeau et al. 2006, 2007; Wang et al. 2014).
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6 Zinc Ejectors as Nucleocapsid Protein Inhibitors

Due to their key involvement at many critical points in the HIV-1 replication cycle

and their strong conservation among HIV-1 strains, the ZFs of NCp7 were naturally

selected as the primary target for the development of inhibitors. To properly exert

their functions, the ZFs of NC crucially rely on the binding of zinc atoms that are

required to fold them into their highly constrained structures. As a consequence,

molecules able to eject the zinc atoms from the fingers were naturally developed as

the first NC inhibitors. As anticipated, these molecules were found to induce NC

unfolding as well as a full loss of HIV-1 infectivity.

Since the development of the first zinc ejectors in 1993 (Rice et al. 1993), a

number of different classes of compounds were designed [for a review, see (de

Rocquigny et al. 2008; Goldschmidt et al. 2010; Musah 2004; Turpin et al. 2008)].

Most of these compounds exhibited strong antiviral activity and elicited little viral

resistance, clearly underlining the relevance of NC as an appropriate target for an

antiviral therapy. Unfortunately, these compounds appeared also quite toxic, so that

their use for systemic administration was prevented. Currently, efforts are underway

to use them as topical microbicides, in order to prevent HIV-1 transmission.

6.1 Zinc Ejectors: Structure and Mechanism of Action

Various classes of compounds able to alter the coordination of the strongly bound

zinc ions to NC and subsequently cause Zn ejection were developed. Figure 7

shows several illustrative examples of these compounds, which include 3-nitro-

sobenzamide (NOBA) as a representative of C-nitroso-compounds (Rice et al.

1993), 2,2′-dithiobisbenzamide disulfides (DIBA) (Rice et al. 1996), cyclic 2,2′-

dithiobisbenzamide (SRR-SB3) (Witvrouw et al. 1997), benzisothiazolones (Loo

et al. 1996), dithiaheterocyclic molecules such as 1,2-dithiane-4,5-diol-1,1-dioxide

(Rice et al. 1997a, b), pyridinioalkanoyl thioesters (PATE) (Turpin et al. 1999), S-

acyl-2-mercaptobenzamide thioesters (SAMT) (Jenkins et al. 2005), azodicarbon-

amide (ADA) as a α-carbonyl azoic compound (Vandevelde et al. 1996), trans-

chlorobispyridine (9-ethylguanine) platinum(II) (Anzellotti et al. 2006; Quintal

et al. 2011), and the most recently identified N,N′-bis(4-ethoxycarbonyl-1,2,3-

thiadiazol-5-yl)benzene-1,2-diamine (NV038) (Pannecouque et al. 2010) and 2-

methyl-3-phenyl-2H-[1,2,4]thiazol-5-yideneamine (WDO-217) (Vercruysse et al.

2012).

The mechanism of action of several of these compounds was carefully investi-

gated to identify the NC chemical groups targeted by these compounds and the

sequence of chemical reactions that results in zinc ejection. The mechanisms of

inactivation of NC ZFs by these compounds can be classified into three main

groups: (i) electrophilic attack of the zinc fingers, (ii) zinc ejection through che-

lation, and (iii) covalent binding of the Cys residues by Pt.
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In both ZFs, the nucleophilic cysteine thiolates appear as the primary targets for

electrophilic attack. Though both fingers contain the same CysX2CysX4HisX4Cys

motif, zinc ejectors were found to preferentially react with the distal finger motif.

Computational studies (Loo et al. 1996; Maynard and Covell 2001) indicated that

this increased reactivity was at least partly related to the better accessibility of the

Cys residues in this finger. Electrophilic attack may be accompanied by either

formation of intra- or inter-molecular disulfide bonds or acylation of cysteine and

then lysine residues. The oxidative mechanism leading to disulfide bonds was
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observed for compounds of the NOBA and DIBA families (Loo et al. 1996; Yu

et al. 1995). For instance, when NCp7 was incubated with NOBA, three inter-

molecular disulfide bonds, Cys15-Cys18, Cys28-Cys36, and Cys39-Cys49, formed

(Yu et al. 1995). Similarly, DIBA was found to initiate the formation of intra- and

inter-molecular disulfide bonds by preferentially attacking Cys36 and Cys49 resi-

dues (Loo et al. 1996). Formation of three disulfide bridges was also observed with

the recently discovered WDO-217 compound, though in this case, the preferential

sites of attack were not identified (Vercruysse et al. 2012). An acylation mechanism

is observed with PATEs and SAMTs. It involves the nucleophilic attack by a zinc-

coordinated cysteine of the carbonyl carbon of the inhibitor. This results in the

covalent modification of the cysteine sulfur via an acyl transfer mechanism. Sub-

sequently, additional acyl transfer reactions occur with other cysteine and lysine

residues of NCp7 that will further decrease the affinity for zinc and finally lead to

zinc ejection. Cys36 and Cys49 are the primary targets of PATEs, while Cys36 is

the primary target of SAMT analogs (Basrur et al. 2000; Miller Jenkins et al. 2007).

The preferential susceptibility of the Cys49 residue to electrophilic attack is likely

related to its rather high pKa value in the zinc-bound protein, which confers it a role

of a switch in the dissociation of zinc (Bombarda et al. 2002).

A different mechanism was inferred for NV038. Indeed, based on its structure,

this compound is likely unable to allow acyl transfer or thiol-disulfide interchange.

In fact, molecular modeling suggests that NV038 may act as a zinc chelator that

binds one zinc ion through the two carbonyl oxygens of its ester groups (Panne-

couque et al. 2010).

The third mode of action is represented by platinum nucleobase compounds that

act through a two-step mechanism (Anzellotti et al. 2006; Quintal et al. 2011). They

first recognize the Trp37 residue of NCp7 through π–π stacking and then form a Zn-

S–Pt covalent bond, which results in zinc ejection. As for electrophilic zinc ejectors,

the primary target of platinum nucleobase compounds is Cys49 in the C-terminal

zinc finger.

6.2 Antiviral Activity In Vitro

The antiviral activity of zinc ejectors was tested on HIV-1 infected cells (Table 1).

To comparatively evaluate their activity as well as their cellular toxicity, their EC50

(concentration of inhibitor required for 50 % inhibition of viral replication), CC50

(concentration that kills 50 % of cells), therapeutic index, and in vivo stability were

determined. NOBA exhibited potent anti-HIV-1 activity (Rice et al. 1993), but also

high cellular toxicity, which prevented its further use (Huang et al. 1998). DIBA-1,

dithiane, PATE-45, and SAMT-19 were found to be highly active as well, but

showed far less cytotoxicity, so that their therapeutic indexes were ≥30. ADA,

NV038, and platinum nucleobases were found to be somewhat less active. Finally,

WDO-217 showed strong activity, but had a rather low therapeutic index, which

makes it useful for topical applications. Most of these compounds were shown to be
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active in both acutely and chronically HIV-1-infected cells, as well as on cell-free

HIV-1 virions (Rice et al. 1995; Srivastava et al. 2004; Turpin et al. 1999;

Vercruysse et al. 2012). Moreover, these compounds were also active against HIV-

2 and SIV strains (Huang et al. 1998; Pannecouque et al. 2010; Srivastava et al.

2004; Vercruysse et al. 2012), as well as against drug-resistant HIV-1 strains,

including clinical HIV-1 isolates (Pannecouque et al. 2010; Turpin et al. 1996;

Vercruysse et al. 2012). The potent, long-term activity against a large spectrum of

HIV-1 strains is a hallmark of zinc ejectors that is consistent with the high con-

servation of NCp7 (Darlix et al. 2011) and the inability to generate viruses resistant

to zinc ejectors (Huang et al. 1998). This lack of resistance generation clearly

underscores the high potential of NC inhibitors to obtain a sustained inhibition of

HIV-1 replication.

The activity of zinc ejectors is related to their ability to decrease the affinity

of NCp7 for its target nucleic acids, as for example the ψ RNA sequence (Huang

et al. 1998; Jenkins et al. 2005; Tummino et al. 1996). This effect depends on the

concentration of the zinc ejector and on the order of addition of the partners. While

SAMTs and PATEs were able to strongly inhibit RNA binding when preincubated

with NCp7, they exhibit nearly no effect on metal coordination and RNA binding

when they were added to preformed NCp7-RNA complexes. Likely, RNA protects

the zinc-coordinating residues of NCp7 from the inhibitors (Chertova et al. 1998; de

Rocquigny et al. 2008; Jenkins et al. 2005). Noticeably, WDO-217 appears quite

unique in this respect, as it was found to efficiently eject zinc ions from NCp7, even

in complexes with nucleic acids (Vercruysse et al. 2012). In addition, WDO-217

was observed to change the binding mode of NCp7 to oligonucleotides, but with no

dramatic change in the binding constant. As the result of their reaction with NCp7,

zinc ejectors were found to affect reverse transcription (Morcock et al. 2005;

Table 1 Antiviral activity and cytotoxicity of zinc ejectors

Compound EC50 (µM) CC50 (µM) Therapeutic

index

References

NOBA ND 10.6 − Huang et al. (1998)

DIBA-1 2.3 >200 >87 Huang et al. (1998), Rice

et al. (1995)

Dithiane 6.6 184 30 Huang et al. (1998)

ADA 38 >200 >5 Huang et al. (1998), Rice

et al. (1997a, b)

PATE-45 6.2 >316 >51 Turpin et al. (1999)

SAMT-19 2.9 461 160 Srivastava et al. (2004)

NV038 17 >300 >17 Pannecouque et al. (2010)

WDO-217 7.9 72 9 Vercruysse et al. (2012)

[SP-4-2]-[PtCl(NH3)

(quin)(9-EtGH)]

41.9 >200 >4.75 Sartori et al. (2000)

EC50, 50 % effective concentration (concentration of inhibitor for 50 % inhibition of viral

replication); CC50, 50 % cytotoxic concentration (concentration of inhibitor that kills 50 % of

cells), Therapeutic index = CC50/EC50. ND, not determined
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Pannecouque et al. 2010; Rice et al. 1995; Rice and Turpin 1996; Sharmeen et al.

2001), likely by altering the nucleic acid chaperone properties of NCp7 (Panne-

couque et al. 2010; Vercruysse et al. 2012) that critically depend on the binding of

zinc (Avilov et al. 2008; Beltz et al. 2005; Bernacchi et al. 2002; Godet et al. 2011).

In addition, zinc ejectors affect also the late steps of the viral life cycle, since DIBAs

and PATEs (Turpin et al. 1996, 1999), SRR-SB3 (Mahmood et al. 1998) and

SAMTs (Miller Jenkins et al. 2010), but not WDO-217 (Vercruysse et al. 2012),

were found to induce accumulation of aggregated and unprocessed Gag polypro-

teins (Turpin et al. 1996, 1999) that lead to the release of noninfectious virus

particles. This aggregation is likely due to intermolecular bridging of the NC

domains of neighbor Gag polyproteins. Zinc ejectors also fully inactivate cell-free

HIV-1 virions, by promoting NCp7 oligomerization (Rice et al. 1995) or acylation

(Basrur et al. 2000; Jenkins et al. 2005). Furthermore, WDO-217 was found to

relieve the protection of the viral RNA from the NCp7 proteins in cell-free virions,

through a still unknown mechanism (Vercruysse et al. 2012). Finally, zinc ejectors

were also shown to inhibit HIV-1 transmission from infected cells to uninfected

ones (Srivastava et al. 2004; Vercruysse et al. 2012).

Cytotoxicity of zinc ejectors is likely related to their limited selectivity for NCp7

over zinc finger-containing host proteins, such as poly(ADP-ribose) polymerase

(PARP) (with two CCHC zinc fingers), SP1 (with three CCHH-type Zn fingers),

and GATA-1 (with two CCCC-type Zn fingers). For instance, NOBA shows only

poor selectivity for NCp7, as it inhibits the enzymatic activity of PARP and blocks

GATA-1 binding to their target DNA sequences (Huang et al. 1998). On the

contrary, DIBA, ADA, and dithiane did not show any significant reactivity on either

PARP or SP1 and GATA-1, which may likely explain their lower cytotoxicity

(Huang et al. 1998). Likewise, the poorly cytotoxic PATE compounds did not show

any reactivity on SP1 (Turpin et al. 1999). Finally, SAMTs did not react with

CCHH zinc finger proteins and RING-like zinc-binding domains, but showed some

reactivity toward Friend of GATA-1 (FOG-1) and GATA-1 (Jenkins et al. 2006).

6.3 Evaluation of Zinc Ejectors for Therapeutic Applications

Due to their potent antiviral activity in vitro, several attempts were made to evaluate

the potential therapeutic use of zinc ejectors in vivo. To our knowledge, only two

zinc ejectors, namely ADA and benzisothiazolone, were tested in clinical studies.

Due to its toxicity, assays with the second compound were rapidly stopped (Turpin

2003). Preclinical tolerance assays showed that oral doses of 1.5 g ADA daily for

1 month were well tolerated, with no evidence of adverse effects (Vandevelde et al.

1996). Then, ADA was administrated three times daily during 3 months in addition

to other antiviral therapy to fifteen individuals with advanced AIDS within a Phase

I/II clinical trial. Unfortunately, serious nephrotoxicity as well as glucose
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intolerance appeared during the treatment, a serious enough event so that several

patients dropped out of the clinical trial (Goebel et al. 2001). Moreover, ADA

showed only a modest efficacy, as evidenced by an increase in T cell CD4+ counts

and a reduction in the viral load in less than half of the treated patients (Goebel et al.

2001). On a more positive note, no ADA resistant virus could be isolated from

ADA-treated patients. Unfortunately, the clinical trial was not conclusive, most

likely since ADA is clearly not the most efficient antiviral compound in vitro

(Table 1) and shows a number of off-target effects, such as inhibition of lymphocyte

cytokine production (Rice et al. 1997a, b; Tassignon et al. 1999) and ribonucleotide

reductase activity (Fagny et al. 2002). The systemic activity of zinc ejectors was

also tested with SAMT compounds on an HIV-1 transgenic mouse model (Schito

et al. 2003). These compounds reduced by 2–3 logs the infectivity of viruses

expressed from the spleen cells of the transgenic mice and had no effect on immune

cell cytokine production. Furthermore, sub-dermal delivery of a SAMT lead

compound in cynomolgus macaques infected with SIV/DeltaB670 virus lowered

the levels of infectious virus in peripheral blood mononuclear cells, but did not

affect the virus load (Schito et al. 2006). Importantly, the SAMT lead compound

was well tolerated and did not alter liver, kidney, or immunologic function of the

treated monkeys. Though these data suggest that SAMT compounds may be safe in

a primate model, it still remains to be demonstrated whether, due to their limited

selectivity, zinc ejectors could be reasonably used as a long-term systemic thera-

peutics in patients.

Due to their potent activity and potential safety concerns, the application of zinc

ejectors as topical microbicides appears more promising. The proof of concept for

this application was demonstrated with SAMTs, which were shown to prevent HIV

transmission from infected cells to uninfected cells, with EC50 values below 0.1 µM

(Srivastava et al. 2004). Later, SAMTs were shown in the cervical explant model to

inhibit the infection of target cells in the explant tissue and the dissemination of the

infection by immune cells migrating out of the explant (Wallace et al. 2009).

Interestingly, no virus infectivity was observed up to one week after SAMTs

removal. Moreover, SAMTs antiviral activity was retained in both synthetic cer-

vical mucous and human seminal plasma. Finally, the SAMT compounds were

shown to induce no significant histology changes and irritation in the rabbit vaginal

irritation model (Tien et al. 2005; Wallace et al. 2009). The SAMTs were further

evaluated in rhesus macaques to determine their ability to prevent vaginal trans-

mission of the simian-human immunodeficiency virus (SHIV) (Wallace et al. 2009).

The monkeys were treated vaginally with 1 % SAMT in hydroxyethylcellulose

universal placebo gel 20 min prior to challenge with a mixed CXCR4-tropic and

CCR5-tropic SHIV virus inoculum (Wallace et al. 2009). Five out of six macaques

were protected from infection, while only one infected animal expressed the CCR5-

tropic SHIV. These findings strongly support the use of SAMTs as potential topical

microbicides to prevent HIV transmission. Since WDO-217 at low micromolar

concentrations was recently shown to inactivate HIV-1 captured by DC-SIGN-

expressing cells and prevent their transmission to CD4+ T lymphocytes (Vercruysse
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et al. 2012), it is anticipated that WDO-217 may also be a valuable candidate for the

development of topical microbicide formulations.

In conclusion, zinc ejectors show potent antiviral activity against a large spec-

trum of HIV-1 strains, without eliciting resistance. However, their limited selec-

tivity raises toxicity concerns, limiting this class of NC inhibitors to microbicide

formulations. Alternatively, due to their ability to inactivate HIV-1 efficiently

without compromising viral surface antigens, they may have promise for use in

vaccine strategies (Arthur et al. 1998; Chertova et al. 1998, 2006).

7 Inhibitors Targeting Nucleocapsid Protein Interaction

with Nucleic Acids

In addition to zinc ejectors, a number of non-covalent NC inhibitors (NCIs) were

identified during the past decade and used both as tools to increase our under-

standing of the biological and pathological functions of NC, as well as hit/lead

candidates for the development of potential innovative antiretroviral therapeutics.

However, the discovery of NCIs that demonstrate potent antiretroviral activity

in vitro and in vivo still remains a considerable challenge. Indeed, only a few of the

NCIs disclosed to date were found to inhibit HIV-1 replication in cell-based anti-

retroviral assays and none reached yet the preclinical phases of pharmaceutical

evaluation. Since non-covalent NCIs are thought to show a greater specificity than

zinc ejectors, and thus be presumably less toxic, these properties may well be

superior for clinical translation, which makes this class of NCIs a desirable phar-

maceutical goal. Since pioneering studies on the discovery and preliminary char-

acterization of non-covalent NCIs have been reviewed recently (de Rocquigny et al.

2008; Goldschmidt et al. 2010; Mori et al. 2011a, b), we will mainly focus on novel

strategies undertaken since 2009 that have identified small molecules endowed with

two different mechanisms of action: (i) non-covalent NCIs binding to NC and (ii)

non-covalent NCIs binding to nucleic acid partners of NC.

7.1 Non-covalent NCIs Binding to the Nucleocapsid Protein

A report by Shvadchak and colleagues had a major impact on the establishment of

small molecule search strategies for NCIs (Shvadchak et al. 2009). The authors

developed a high-throughput screening (HTS) assay to identify small molecules

that inhibit the NCp7 chaperone activity and notably the NCp7-promoted desta-

bilization of nucleic acid secondary structure (Shvadchak et al. 2009). The assay

was based on the use of cTAR DNA labeled at its 3′ and 5′ ends with a fluorophore

(Rh6G) and a fluorescence quencher (DABCYL), respectively. The addition of the

12–55 amino acid fragment of NC [NC(12–55)] provoked a partial melting of
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cTAR DNA, which was easily monitored as an increase of fluorescence with respect

to cTAR alone. Positive small molecule hits that compete with the binding of NC

(12–55) to the cDNA TAR halt the melting of the labeled cTAR and restored Rh6G

fluorescence. This assay was developed to be highly specific and was validated by

screening a custom library of about 4800 chemical substances (Shvadchak et al.

2009). Five low molecular weight fragments were identified as inhibitors of the NC

chaperone activity, A10, CO7, EO3, HO2, and HO4 (Fig. 8), showing Ki values in

the micromolar range. Further analyses suggested that these NCI fragments com-

pete with cTAR for binding to NC(12–55), representing therefore the first example

of NCIs targeting NC chaperone activity, as well as valuable compound starting

points for further chemical optimization.

In an attempt to provide structural hints on the binding of these fragments to NC,

an in-depth molecular modeling study was performed by Mori and colleagues (Mori

et al. 2011a, b). NCI fragments were docked toward two computationally refined

structures of NCp7 (Mori et al. 2010), showing that these molecules may prefer-

entially bind to the Trp37 residue on the ZF hydrophobic platform (Fig. 3). The

good correlation between experimental and theoretical findings corroborated the

reliability of the computational model, thus paving the way for possible structure-

based drug design approaches.

The HTS assay methodology, discussed above, was also used to characterize a

methylated oligoribonucleotide NCI (Avilov et al. 2012; Grigorov et al. 2011).

Although modified oligoribonucleotides may be considered at the boundary

between small molecules and biomolecules, the findings of this study have sig-

nificantly contributed to the understanding of the molecular basis of NC inhibition

and theoretical design of NCIs. Based on the evidence that NCp7 chaperones

reverse transcription, methylated oligoribonucleotides (mODNs) mimicking the

long terminal repeat end sequences of proviral DNA were synthesized and evalu-

ated in vitro and ex vivo. Inhibition of the NCp7 chaperone activity was monitored

through the fluorescence of the Rh6G-5′-cTAR-3′-Dabcyl DNA sequence

(Shvadchak et al. 2009). Further tests revealed that mODN-11, having the sequence

Fig. 8 Chemical structures of the five fragment NCIs identified from HTS targeting NC

chaperone activity (Shvadchak et al. 2009)
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2′-O-Me-(GGUUUUUGUGU-NH2), was the most potent oligoribonucleotide

among the test set, inhibiting HIV-1 replication in MT4 cells at sub-nanomolar

concentrations (IC50 = 0.3 nM) and also showing low cytotoxicity (CC50 = 7.7

−13.4 µM). Time of addition experiments further revealed that mODN-11 inhibited

HIV-1 replication with the same time frame as the reverse transcriptase (RT)

inhibitor AZT, thus suggesting that the reverse transcription complex may be the

target of the oligoribonucleotide. In fact, AZT and mODN-11 provided a syner-

gistic inhibition of HIV-1 replication, further reinforcing the hypothesis, already

verified in vitro, that mODN-11 targets NCp7 and that NCp7 is an indispensable

partner of RT. The mechanism of action of mODNs was further investigated by

isothermal titration calorimetry and fluorescence-based techniques and compared to

unmodified oligoribonucleotides (Avilov et al. 2012). Interestingly, this study

showed that mODNs bearing repeats of GU or GT pairs tightly bind to NCp7

through nonelectrostatic interactions and compete with NAs for the binding to the

NCp7 hydrophobic pocket, suggesting that the mODNs may impair the RT-directed

viral DNA synthesis by sequestering NCp7 molecules.

Based on these results, one may speculate that the methylation of the GU- or

GT-rich oligoribonucleotides improves their lipophilicity and, therefore, their

affinity for the small hydrophobic pocket of NCp7. Indeed, although NCp7 is a

highly basic protein that interacts with NAs by means of electrostatic interactions,

hydrophobicity appears as a key feature for potent and effective NCIs. In agreement

with the several studies that emphasized the crucial role of NCp7 aromatic residues

Trp37 and Phe16, the ideal NCI should be able to compete for the binding of NAs

by interacting with the NCp7 hydrophobic platform. Consistent with this hypoth-

esis, in recent medicinal chemistry-oriented studies, a number of NCIs endowed

with hydrophobic/aromatic groups have been discovered by means of different

techniques, including virtual screening and HTS. Moreover, the three-dimensional

structure of NCp7 in complex with a NCI confirmed the key role of the aromatic

residues in the interaction. Highlights of these studies are reported below.

Botta’s group studied the structure and potential druggability of NCp7 by means

of molecular dynamics simulations (MD) and molecular modeling studies per-

formed on two nuclear magnetic resonance (NMR) structures of NCp7 in complex

with oligonucleotides (Mori et al. 2010, 2011a, b). The aim of these theoretical

studies was the understanding of NCp7 flexibility and the subsequent identification

of pharmacophoric hot spots for small molecules able to compete with NAs for

binding sites on the NCp7. Outcomes of these studies were then incorporated in a

virtual screening protocol, which was used to identify possible NCp7 binders

among the Asinex database (about 390,000 chemical compounds) (Mori et al.

2012). Ten virtual hits endowed with significant chemical diversity were selected

and tested in vitro for their ability to bind to NC(11–55) and inhibit HIV-1 repli-

cation in infected cells. Preliminary binding affinity measurements identified two

small molecules, namely 6 and 8 (Fig. 9), that are able to interact with NC(11–55)

without promoting zinc ejection, which is an essential requisite for non-covalent

NCIs. Moreover, biophysical studies with NC(11–55) labeled with fluorescent

amino acid analogs at different positions suggested that 6 binds tighter than 8 and
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that these NCI hits may bind in proximity to the hydrophobic pocket of NC(11–55),

as predicted by molecular modeling. The binding affinity of 6 was estimated within

the micromolar range (5.6 ± 0.9 µM). Though the strong intrinsic fluorescences of 6

and 8 seriously limited the possibility to perform functional tests on NC(11–55)

in vitro, antiretroviral assays on P4.R5 MAGI cells showed that 6 inhibited HIV-1

replication with an IC50 of about 2 µM, which is consistent with its binding affinity

to NC(11–55). Overall, this work provided the first example of small molecules

with non-covalent NCI activity in HIV-1 infected cells discovered by using com-

putational methods.

In 2012, a new HTS assay to search for NCIs interacting with the NC was

developed at the Scripps Research Institute (Breuer et al. 2012). The assay con-

sisted of a two-step screen, with the first screen based on fluorescence polarization

to identify small molecules able to disrupt the interaction between NC and DNA.

Next, positive hits from the first assay were screened by differential scanning

fluorimetry for hits that bound to NC. Similar in concept of Shvadchak and co-

workers in the use of a DNA tracer (Shvadchak et al. 2009), the first screen relied

on a fluorescently labeled stem-loop-2 (SL2) DNA tracer that bound to the p2-NC

protein. The displacement of the p2-NC–SL2 DNA interaction by small molecules

was monitored by changes in fluorescence polarization. To identify compounds

from the first screen that bound directly to p2-NC and disrupt SL2 DNA binding,

differential scanning fluorimetry was utilized in the second screen to identify which

compounds altered p2-NC melting temperature as the result of compound binding

over that of p2-NC only. The two-step assay was used to screen a drug-like subset

of the Maybridge Library collection consisting of 14,400 small molecules. Five

compounds (CMPD-1, CMPD-5, CMPD-8, CMPD-9, and CMPD-10) as shown in

Fig. 10 were selected by fluorescence polarization and differential scanning fluo-

rimetry for their ability to disrupt p2-NC–SL2 DNA interaction via p2-NC binding.

Notably, these NCIs were found to have Ki in the nanomolar range and their ability

to disrupt the p2-NC–SL2 DNA interaction was further verified in vitro by an

electrophoretic mobility shift assay (EMSA) with p2-NC. Of these five compounds

three, CMPD-5, CMPD-9 and CMPD-10, were found to have significant cell

cytotoxic effects at 0.1 and 1 µM, whereas CMPD-1 and CMPD-8 were not

Fig. 9 Chemical structure of

the NCIs identified by means

of virtual screening (Mori

et al. 2012)
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cytotoxic and found to have anti-HIV-1 activity with EC50s of 3.5 and 0.32 µM,

respectively, ex vivo, in CD4 T cells. The mode of action of the NCIs appears to be

inhibition at later stages of HIV replication.

Overall, the study provided a new HTS for identifying NCIs with a specific

mechanism of action, which was exemplified by the identification of two low

molecular weight NCIs with modest antiretroviral activity in ex vivo cell assays.

These compounds provide a starting point from which to rationally optimize their

NCI efficacy through directed medicinal chemistry effort. Notably, CMPD-8 shares

a significant pharmacophoric similarity with EO3 and HO2 fragments previously

identified (Shvadchak et al. 2009), thus suggesting that this molecular scaffold may

be highly promising for the development of effective NCIs.

The optimization of the above-discussed NCIs for increased antiviral efficacy is

hampered by the lack of structural details on their respective adducts with NCp7.

This could be partially attributed to the high flexibility of NCp7, which makes it not

suitable for high-throughput techniques such as X-ray crystallography. To this

point, all published structures of NCp7 to date have been solved by NMR

Fig. 10 Chemical structure of the five highly active NCIs identified by a two-step HTS (Breuer

et al. 2012)

Fig. 11 Chemical structure of the NCIs discovered by the capsid assembly assay. The complex

between 3 and the NC has been characterized by NMR spectroscopy (Goudreau et al. 2013)
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spectroscopy. Although the conformation of NCp7 in complex with a small

hydrophobic NCI was unknown at the time of these works, molecular modeling

studies have generally assumed that NCp7 in complex with a small hydrophobic

NCI may be similar to the conformation adopted in binding to NAs.

Recently, the three-dimensional structure of the non-covalent adduct between

NCp7 and NCI has been solved by means of NMR spectroscopy by Goudreau and

co-workers from the Boehringer Ingelheim Ltd Company (Canada) (Goudreau et al.

2013). Although the initial hit (1—Fig. 11) was uncovered through an assembly

assay screen for identification of HIV-1 capsid (CA) inhibitors, analysis of the

mechanism of action revealed that the molecule binds to the full-length NC and

competes with NA binding. Rational optimization provided two additional NCIs, 2

and 3 (Fig. 11), endowed with a sub-micromolar affinity for NCp7, as shown by

isothermal titration calorimetry.

The use of 13C- and 15N-double-labeled NCp7 allowed the NMR-based char-

acterization at high resolution of its adduct with 3 (PDB ID: 2M3Z—Fig. 12). This

solution structure showed that 3 binds preferentially within the hydrophobic pocket

of NCp7 performing a π–π stacking interaction with the side chain of Trp37, thus

behaving as a mimetic of the guanosine nucleobase of NC nucleic acid partners.

Moreover, this class of NCIs likely forms a 2:1 complex with the protein, with a

second NCI molecule binding in a non-covalent manner to NCp7, and connecting

the hydrophobic pocket with the N-terminal region (Fig. 12a). Moreover, although

Fig. 12 NMR structure of the complex between NCp7 and the NCI 3 (2:1 stoichiometry)

(Goudreau et al. 2013). a NCp7 is shown as a transparent surface, the NCI as sticks, and Zn ions

are showed as spheres. The best NMR model included in PDB ID:2M3Z is shown.

b Superimposition of the best 10 NMR models of PDB ID: 2M3Z. Residues contacted by the

NCI conserve their position in all models, whereas most of residues not involved in binding to the

NCI are highly flexible
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the NCp7 is highly flexible, residues that interact with, or are proximal to the NCI,

were observed to be rigid, whereas residues not involved in binding to the NCI keep

their intrinsic flexibility (Fig. 12b). Comparison with other NMR structure of

NCp7/nucleic acid complexes finally confirmed that the protein is able to adopt a

conformation that is highly dependent upon the chemical nature of the binding

partner. This conformation of NCp7 in complex with a small molecule has been

recently used in the rational design in silico of AN3 (Fig. 13), a 2-amino-4-phe-

nylthiazole NCI that has been optimized starting from the A10 fragment disclosed

by Shvadchak et al. (2009), and has been characterized by biophysical methods,

such as mass spectrometry, fluorescence spectroscopy, and NMR, as well as by

antiretroviral assays in infected cells. Interestingly, AN3 proved to be an efficient

non-toxic and non-zinc-ejecting NCI, binding to the NCp7 hydrophobic platform

and providing antiretroviral activity in cells (Mori et al. 2014).

In summary, these reports provide both an important step forward bettering the

understanding of the molecular basis for NC inhibition by small molecules as well

as strongly supporting the druggability of NCp7. Moreover, the high-resolution

details of NCp7 in complex with a guanosine mimicking NCI may be used for

future structure-based design and optimization of more efficient and drug-like NCIs.

7.2 Non-covalent NCIs Binding to Nucleic Acid Partners

of the Nucleocapsid Protein

In the attempt to identify non-covalent NCIs, another strategy is to design small

molecules that bind to the NA partners of NC, in order to prevent the interaction

between NC and NAs or to disrupt the already formed complexes. As a proof of

concept, in 2009, Turner and colleagues used a series of non-covalent molecular

probes to investigate the structural features involved in the NC-mediated dimer-

ization of HIV-1 genomic RNA (Turner et al. 2009). To this end, the authors used

general intercalators, minor groove binders, mixed-mode intercalator/groove

binders, and multifunctional polycationic aminoglycosides that, notably, have

shown to not bind NC. The polycationic aminoglycosides were found to prevent the

Fig. 13 Chemical structure of AN3, a 2-amino-4phenylthiazole NCI active in infected cells, and

designed by rational optimization in silico of A10 (Mori et al. 2014; Shvadchak et al. 2009)
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NC chaperone activity by binding to specific sites of the RNA stem loop 1 (SL1)

mostly by mimicking the RNA-binding properties of the NC through electrostatic

interactions, whereas all other molecules reduced the efficiency of NC-mediated

isomerization by stabilizing double-stranded RNA structures. Although these

studies were performed with molecular probes that are rather far from being con-

sidered as candidate therapeutics, these findings point out that inhibition of NC

chaperone activity in vitro could be accomplished using small molecules binding to

nucleic acids partners of NC, an important precedent.

While searching for small molecules that would inhibit NC-mediated SL1 dimer

maturation, Chung and collaborators identified an activator of the SL1 dimer

maturation (KA-AMC—Fig. 14) (Chung et al. 2008) that, together with three

chemical derivatives (RR-AMC, R-AMC and R-MHQ—Fig. 14), was further

studied by means of NMR, fluorescence emission, and molecular modeling studies

(Chung et al. 2010). These three small molecules share a modified coumarine ring

connected to either basic amino acids or dipeptides, which mimics the multiple

interaction sites of NC for SL1 binding. Structure–activity relationship (SAR)

studies further highlighted the role of the coumarine oxygen in accepting H-bonds

from nucleobases, as its replacement with a NH (hydroxyquinoline R-MHQ) pro-

voked a 3-fold decrease of activity. With respect to the amino acidic portion, the

positive charge was found to be crucial for mimicking NC, allowing a strong

interaction with SL1. Indeed, RR-AMC provided the tightest binding affinity, also

suggesting that H-bond interactions may be relevant to stabilize the complex of the

small molecule with SL1. Although the anti-NC and anti-HIV activities of these

molecules have not yet been evaluated in ex vivo cell culture, the SAR data pro-

vided in the report should allow for the rational design of NCIs which can bind

SL1. This is an important target as SL1 is required for the HIV-1 replication cycle,

namely at the RNA dimer maturation and packaging stage.

Baranger and co-workers performed a docking-based virtual screening of the

NCI diversity set library in searching for small molecules that may bind to the stem-

loop-3 RNA (SL3) of the HIV-1 packaging element Ψ (Warui and Baranger 2009).

The binding affinity of virtual hits toward SL3 was monitored using fluorescence,

Fig. 14 Chemical structure of coumarine derivatives binding to the SL1 RNA (Chung et al. 2010)
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isothermal titration calorimetry, UV-melting, circular dichroism, and footprinting

techniques. Nine molecules, endowed with scaffolds that have not been previously

shown to bind RNA, demonstrated micromolar affinity for SL3, with compounds 5

and 9 (Fig. 15) showing the highest affinity. Compound 9 also showed selectivity

for SL3 over double- and single-stranded RNA sequences as well as SL2 and SL4.

Analysis of the mechanism of action further suggested that 5 and 9 bind the stem

region of SL3 without intercalating into the RNA bases. One positive outcome of

this study was to pave the way for further medicinal chemistry effort to identify

more potent SL3 binders. More recently, the same research group performed

another virtual screening using the Chembridge database (about 700,000 small

molecules), flanked by a HTS of a representative collection of the same database

(about 150,000 molecules) (Warui and Baranger 2012). Although different hits

were selected, both methods led to the identification of small molecules able to bind

to SL3. From the sixteen positive hits identified with micromolar affinity, two

molecules, namely 7 and 17, showed high selectivity for SL3 with respect to single-

and double-stranded RNA sequences (Fig. 15). Noticeably, only molecules 1, 3, 4,

and 8 (Fig. 15), identified by the computational protocol, were able to disrupt the

Fig. 15 Chemical structure of small molecules binding to SL3 RNA discovered by virtual

screening and HTS (Warui and Baranger 2009, 2012)
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NC-SL3 complex with Kis between 20 and 200 µM, thus behaving as NCIs in vitro.

The antiviral activity of these compounds needs still to be determined, to validate

their mechanism of action, and to demonstrate their suitability as potential candi-

date therapeutics.

Unlike the approaches which have focused on the discovery of small molecule

binding to the RNA stem-loop sequences, the research group of Gatto recently

reported on the discovery and characterization of a NCI binding to the TAR

sequence (Sosic et al. 2013). Starting from the anthraquinone derivative 1 (Fig. 16)

that was already shown to intercalate between bases and locate its charged side

chains in the grooves of NAs, the authors rationally designed and synthesized a

number of chemical derivatives by increasing the distance between the positively

charged side chain and the anthraquinone core. Among synthesized compounds,

two molecules, 5f and 5g (Fig. 16), were found to bind TAR and, to a lesser extent,

its complementary sequence cTAR, with higher affinity than other molecules and

the reference compound 1. SAR analysis highlighted a linear correlation between

TAR-binding affinity and the distance between the anthraquinone core and the

positive charge of the side chain, with an optimum distance represented by the

ornithine side chain (5g). Moreover, 5f and 5g appeared to be potent inhibitors of

the NC-mediated helix destabilization of both TAR and cTAR (IC50 < 10 µM), as

well as the NC-mediated TAR/cTAR annealing (IC50 = 44.1 and 21.9 µM,

respectively). However, antiretroviral assays performed at 100 µM showed no HIV-

1 inhibition detectable ex vivo or cell uptake of these NCIs, suggesting that charged

anthraquinones are endowed with limited cell permeation. Nevertheless, these

molecules represent a valid example of NCIs showing anti-NC activity in vitro,

which may be further optimized as effective antiretroviral agents.

Fig. 16 Chemical structure

of NCIs binders of TAR and

cTAR 5f and 5g rationally

designed starting from

molecule 1 (Sosic et al. 2013)
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8 Concluding Remarks

We have provided evidence that novel screening methodologies and chemical

libraries have resulted in the identification of novel compounds that show inhibitory

activity against GagNC/NCp7 (NCIs). Protease inhibitors (PIs) are very effective

and demonstrate highly cooperative dose-response curves, which can be explained

by the capacity of these inhibitors to independently affect multiple discrete steps in

the viral life cycle, such as entry, RT, and post-reverse transcription steps (Rabi

et al. 2013). In a parallel capacity to PIs, and as we have discussed in our review,

NCIs have the potential to affect multiple discrete viral pathways, similar to PIs. We

propose that NCIs will have similar properties to PIs in regard to demonstrating

highly cooperative dose-response curves. Most importantly, and in contrast to

protease, NCIs should not tolerate mutational changes without considerable loss of

function. Therefore, the apparent strong genetic barrier necessary for NCI resistance

and the fact that NCIs inhibit a viral protein with multiple key functions throughout

the HIV-1 life cycle strongly supports the continued research on identifying and

optimizing NCIs as well as investigations into their antiviral mechanisms.
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