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Abstract

Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional
differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear
and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the
pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a
119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA
significantly increases the association of the host region with the nucleolus, and their degree of association correlates
strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous
contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites
and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can
significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization
in mammals.
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Introduction

The organization of DNA within mammalian nuclei is

considered nonrandom [1]. A number of characteristics have

been proposed to influence the position of a gene or chromosomal

region within the nucleus, including gene density and transcrip-

tional activity [2]. However, the parameters that drive nuclear

organization are likely complex and remain largely enigmatic.

Significant proportions of mammalian genomes are comprised of

noncoding, repetitive elements, many of which are derived from

RNA polymerase III (pol III) transcripts. An increasing number of

examples have suggested diverse roles for repetitive elements in

modulating transcription of neighboring protein-coding genes

transcribed by RNA polymerase II (pol II) [3,4,5,6]. In yeast,

binding sites for the pol III transcription factor complex, TFIIIC,

play a significant role in chromatin structure and nuclear

organization: tRNA genes and tRNA-like sequences function as

chromatin barriers to prevent the spread of heterochromatin,

while in other contexts these elements cluster together often at the

nuclear and nucleolar peripheries [7,8]. This latter phenomenon

typically results in silencing of nearby pol II-transcribed genes [9].

Moreover, just as pol II genes are thought to cluster in

transcription ‘factories’ [10], active pol III also forms distinct foci

in mammalian nuclei that contain a number of active pol III genes

[11]. Since most pol III transcribed genes, including those of

repetitive elements, carry internal promoters, they could confer

intrinsic structural and regulatory properties to the surround-

ing genomic sequence upon insertion. Given their widespread

and nonuniform distribution in mammalian genomes through

repetitive elements, pol III promoters may have significant

influence on chromatin structure. Furthermore, binding sites for

pol III transcription factors within these elements may be under

positive selection if beneficial for host genome fitness. To test these

hypotheses, we focused on 5S rRNA genes (Figure 1A), which

have long been known to possess unique qualities with regard to

chromatin structure. We use a number of complimentary

approaches to demonstrate that ectopic 5S rDNA sequence can

mediate nucleolar association of a genomic region, with significant

effects on local transcription. We also provide evidence that this

mechanism may be active in endogenous contexts in the mouse

genome: psuedogenes that are derived from 5S rDNA show

preferential conservation of internal transcription factor binding

sites can be bound by TFIIIC and localize to the nucleolar

periphery.

Results

A well-known nucleosome positioning sequence, 5S rDNA

genes (endogenously present as multi-copy arrays in most

eukaryotic genomes) have been observed to form large chromatin

loops in Xenopus and mammalian systems [12,13]. In agreement

with observations in other eukaryotes, and recently published

descriptions of chromatin associated with nucleoli in human cells

[14,15,16], we found the mouse 5S rDNA gene array (located on

the distal end of chromosome 8) associated with the nucleolar

periphery in ,40% of mouse embryonic stem (ES) cells (Figure

S1A). If localization to the nucleolar periphery is an intrinsic

quality of the 5S rRNA genes, then de novo insertion of these
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sequences into new genomic contexts should recapitulate this

phenomenon. To study the effect of 5S rDNA sequence on sub-

nuclear localization, we generated ES cell lines with stable,

multicopy insertions of a reporter construct containing a single 5S

rRNA gene (Tg5S) (Figure 1B). To determine whether transgenes

with 5S sequence would be found at the nucleolar periphery, we

then assessed localization of the stable transgenes by DNA FISH

with a probe for the vector backbone relative to immunofluore-

sence against Nucleolin, a marker for the nucleolus [17]. In

support of our hypothesis, we observed significantly more frequent

localization to the nucleolar periphery of Tg5S (75%) compared

with empty vector controls (Tg0, 31%, p=861024, Figure 1C,

Figure S1B–S1D). Strikingly, several lines showed nearly consti-

tutive association of the Tg5S signal with the nucleolus. This was

not simply a reflection of copy number, as this pattern of

localization was observed in both high- and low-copy Tg5S lines

(Figure S1E, R2=0.087). Furthermore, association of Tg5S was

higher than that of the 5S rDNA array (,40%). This could be due

to a dominant localization pattern imparted by Tg5S even at low

copy, or additional forces acting to constrain localization of the

endogenous 5S rDNA locus. We observed very little co-

localization of Tg5S arrays and the 5S rDNA cluster (,1%, data

not shown), demonstrating that these loci do not occupy the same

compartment in the nucleoplasm. However, we found that the

structural and functional integrity of the nucleolus was essential for

localization through 5S rDNA. Reorganization of nucleolar

components, through pharmocological inhibition of RNA poly-

merase I activity, resulted in a significant decrease of both Tg5S

and 5S rDNA association with the nucleolus (Figure S2).

The nucleolar periphery has typically been thought of as a

transcriptionally quiescent compartment, often associated with

examples of constitutive [18,19,20] and facultative [21,22,23]

heterochromatin. To study the effects of nucleolar association

through the 5S rDNA mechanism on pol II transcription, we

quantified mRNA levels of a reporter gene present on the vector:

the Thymidine kinase (Tk) gene driven by the mouse Pgk1 promoter

(Figure 1B). Tk mRNA levels, when normalized for copy number,

are significantly decreased in Tg5S lines compared with Tg0 lines

(4.6862.22 and 8.0961.55 arbitrary units, respectively;

p=661023, Figure 1D, Figure S3). Interestingly, Tk mRNA

levels show a strong negative correlation with nucleolar associa-

tion: lines with the most frequent association had the lowest

normalized expression (Figure 1E, R2=0.664). This relationship

suggests that perinucleolar targeting of transgenes via the 5S

rDNA sequence has inhibitory effects on pol II transcription.

The efficiency of nucleolar localization and transcriptional

repression observed by Tg5S may be related to its ability to recruit

the pol III transcriptional machinery. In yeast, the regulatory

capacity of tRNA and tRNA-like sequences is dependent upon the

TFIIIC complex [14]. To determine whether the TFIIIC complex

is associated with transgene-5S rDNA, we used chromatin

immunoprecipitation (ChIP) for a subunit of TFIIIC, TFIIIC65.

We observed significant levels of TFIIIC65 association with

transgene-5S rDNA, relative to the negative control (the Ascl2

promoter), in three of four Tg5S lines analyzed (Figure 2A).

However, TFIIIC65 enrichment showed no clear correlation with

localization (Figure 2B), Tk mRNA levels (Figure 2C), or copy

number (Figure 2D). These data suggest that while the TFIIIC

complex may participate in the localization and transcriptional

attenuation we have observed for the 5S transgenes, levels of

TFIIIC65 alone are not sufficient to explain these phenomena.

To determine whether specific histone modifications character-

ize the presence of a 5S rDNA, we surveyed the distribution of

several modifications at various positions within the transgenes

(Figure 3A). We analyzed one mark of active chromatin

(H3K4me2, Figure 3B, Figure S4A), one mark of constitutive

heterochromatin (H3K9me3, Figure 3C, Figure S4B), and two

marks of facultative heterochromatin (H3K9me2 and H3K27me3,

Figure 3D, 3E, Figure S4C, S4D), in four Tg5S and two Tg0 cell

lines. As expected, cell lines with higher expression of Tk

(Figure 3F) had increased levels of H3K4me2 at the Tk gene.

Intriguingly, all Tg5S lines were characterized by high levels of

H3K9me3 near the 5S rDNA, rather than the Tk gene body or

promoter. Both patterns were evident irrespective of TFIIIC65

enrichment to the transgene-5S rDNA (Figure 3F). These

observations suggest an association between the 5S rDNA

sequence and the H3K9me3 modification.

The frequent nucleolar association of 5S rDNA-containing

transgenes suggests the capacity to direct localization of a genomic

region to the nucleolar periphery. However, this observation may

also reflect preferential integration of Tg5S into a chromosomal

region neighboring the nucleolus in the parental cells, rather than

a change in localization. To discriminate between these possibil-

ities, we identified the insertion site for several Tg5S ES lines. We

mapped the transgene insertion in Tg5S#9 to the pseudoautoso-

mal region (PAR) of the X chromosome [24] (Figure S5A). Since

these ES cells are XY, we used the X-chromosome PAR of a line

without a transgene insertion in this region as a control (Tg5S#6)

to assess localization changes relative to a homolgous, wild-type

chromosome. The PAR with the transgene insertion was more

frequently associated with the nucleolus (61%) than a wild-type

PAR (43%, p=261023, Figure 4A, 4B). Although nucleolar

association of the wt PAR was similar to that of the 5S rDNA locus

(39%), this frequency increased significantly upon Tg5S insertion.

Tg5S line #6 (Tg5S#6), contains an integration in the first

intron of the silent RAR-related orphan receptor beta (Rorb) gene (Figure

S5B). The allele containing the transgene array was discernable by

DNA FISH and always overlapped with the genomic probe

(Figure 4C). Nucleolar association was measured for both the wild

type allele (wt allele) and the allele containing the Tg5S insertion

(tg allele). As a control, we measured localization of the Rorb alleles

in Tg5S#9, which does not have an insertion in this region. We

Author Summary

Eukaryotic genomes are compartmentalized within nuclei
such that physiological events, including transcription and
DNA replication, can efficiently occur. The mechanisms
that regulate this organization represent an exciting, and
equally enigmatic, subject of research. In mammals, the
identification of elements that influence these associations
has been impeded by the complex nature of the genomes.
Here, we report the identification and characterization of
such an element. We demonstrate that the integration of a
5S rDNA gene, a 119 base pair noncoding RNA transcribed
by RNA polymerase III, into a new genomic location can
significantly influence the association of the host region
with the nucleolus. This positioning has drastic, inhibitory
effects on the transcription of a neighboring protein
coding gene transcribed by RNA polymerase II, demon-
strating a functional relationship between localization and
gene expression. We also provide data that suggest this
may be an endogenous phenomenon, through a class of
repetitive sequences derived from 5S rDNA. Together, our
data not only demonstrate a structural role for 5S rDNA
but also suggest that nuclear organization of mammalian
genomes may be strongly influenced by repetitive
sequences.

Gene Regulation through Nucleolar Association
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detected significantly more DNA FISH signals for the tg allele

associated with or internal to the nucleolus (68%) than for the wt

allele (52%) in Tg5S#6 (Figure 4D, p=0.01), or either allele in the

control cell line (43%, p=461024). The localization frequency of

the wt allele in the Tg5S#6 was not significantly different from the

alleles in the control line (p=0.5). Interestingly, wt Rorb alleles

were associated with the nucleolus significantly more frequently

than the 5S rDNA locus (chi-squared test, p=561029). Together,

our observations from two independent insertion events, in two

very different genomic contexts, demonstrate that ectopic 5S

rDNA can influence the position of a locus.

Since localization by a Tg5S was associated with decreased

transcriptional output of the Tk reporter gene, we hypothesized

that the transgene insertion into the Rorb locus may similarly affect

transcription of this gene. Rorb is not expressed in undifferentiated

ES cells, therefore we differentiated the line with the Tg5S

insertion in the Rorb gene (Tg5S#6) along with Tg5S#9, where

the transgene insertion is not at the Rorb locus. Although activation

of Rorb was variable between biological replicates, in each case

Rorb expression was significantly reduced in Tg5S#6 (Figure 4E).

Intriguingly, average Rorb expression in Tg5S#6 was 60% of that

in Tg5S#9, suggesting that the presence of Tg5S at the Rorb locus

has detrimental effects on its transcriptional activation.

The mouse genome contains .110 5S rDNA genes annotated

outside the array on chromosome 8 (NCBI m37 mouse assembly,

Table S1, Figure S6A). However, these elements show low overall

sequence conservation and no predicted structural similarity to

bona fide 5S rDNA, and are therefore unlikely to be functional

components of the large ribosomal subunit (Figure S6B, S6C).

Despite acquiring numerous mutations, a high proportion of these

Figure 1. 5S rDNA transgenes show preferential association with the nucleolus and decreased transcription of a reporter gene. A.
Schematic of 5S rRNA gene structure showing the sequence of the highly conserved A and C boxes. B. Schematic of the transgene used in this study
with position of 5S rRNA sequence relative to NeoR selectable marker and Tk reporter gene. C. Summary of nucleolar associations for transgenes with
5S rDNA (Tg5S, n=9) or empty-vector transgenes (Tg0, n= 6). D. Tk mRNA levels normalized for copy number. For (C) and (D), black bars represent
averages for each category. Significance determined by two-tailed t-test. E. Copy-number normalized Tk mRNA levels (y-axis) plotted against
frequency of nucleolar association.
doi:10.1371/journal.pgen.1002468.g001
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5S pseudogenes retain perfect, or near-perfect, internal transcrip-

tion factor binding sites (Figure 1A). This conservation correlates

poorly with overall similarity of the 5S pseudogenes to the 5S

rDNA consensus (R2=0.113, Figure 5A), suggesting this is not

simply due to recent insertion events, but rather indicative of

differential selective pressure within the psuedogene. We found a

subset 5S pseudogene loci associated with the nucleolus in E14 ES

cells at a frequency comprable to that of the 5S rDNA locus

(Figure 5B, Figure S7), further supporting a positional effect for

this sequence. TFIIIC association with pseudogenes was not well

correlated with localization: by ChIP, we observed high levels of

TFIIIC65 enrichment at only one of two pseudogene loci

frequently associated with the nucleolus (Figure 5C). Therefore,

if nucleolar association of these regions is mediated through 5S

pseudogenes, then it may not require stable association of the

TFIIIC complex, or perhaps involve altogether different mecha-

nisms. Irrespective of the putative trans-factor, frequent nucleolar

association of 5S pseudogenes further support a previously

uncharacterized role for for these sequences as organizational

cis-elements in the mammalian genome.

Discussion

The relationship between the organization of chromatin within

the nucleus and the regulation of individual genes has become an

intensely studied subject. However, the complex nature of

Figure 2. TFIIIC complex association and histone modifications at 5S rDNA transgenes. A. ChIP for the TFIIIC component, TFIIIC65, shows
significant association with endogenous and transgene-5S rDNA (Tg5S rDNA). In all cases except Tg5S#5, p,0.05 (two tailed t-test), relative to the
negative control, the Ascl2 promoter. Relationship between TFIIIC65 enrichment and nucleolar association (B), Tk mRNA levels (C), and Tg5S copy
number (D).
doi:10.1371/journal.pgen.1002468.g002

Gene Regulation through Nucleolar Association
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mammalian genomes has largely confounded efforts to understand

the nature of this relationship. Several reports have catalogued the

DNA and chromatin associated with the nuclear lamina and

nucleolar periphery [15,16,25]. These findings have identified

common characteristics of each domain, yet the basis for their

presence at these compartments has remained less clear. Other

studies have utilized fusion proteins to artificially tether lacO arrays

to the nuclear lamina and other nuclear bodies [26,27,28].

Conversely, we have identified an endogenous sequence element,

utilizing native nuclear machinery, that is capable of influencing

subnuclear position. While transgenes with binding sites for the

vertebrate insulator protein CTCF [29] have been shown to

associate with nucleoli in a CTCF-dependent manner [30], it is

not known how frequently endogenous CTCF sites recapitulate

this phenomenon. Our data demonstrate that 5S rDNA sequence

can confer a positional bias in localization, and correlates with an

attentuation of nearby pol II transcription (summarized in

Figure 6). Importantly, the localization of 5S rDNA pseudogenes

to the nucleolar periphery suggest this event is not limited to

ectopic transgene integrations. Biased conservation of transcrip-

tion factor binding sites within 5S pseudogenes implies a functional

role in their endogenous contexts. We propose that the internal

transcription factor sites of 5S rDNA represents a novel, cis- acting

influence of nuclear position in mammals. This hypothesis is

supported by the observed enrichment of 5S rDNA sequences in

nucleolar-associated chromatin of human cells [15,16].

Recently, genome-wide maps of pol III and associated

transcription factor binding in human cells have suggested

structural roles reminiscent of what has been observed in yeast.

These studies identified a number of ‘‘extra-TFIIIC’’ (ETC) loci,

TFIIIC-bound regions not associated with a pol III complex or

transcription unit [31,32]. However, unlike the ETC loci of yeast,

which are associated with silencing of nearby pol II-driven

promoters, human ETC loci are correlated with active pol II

genes. In contrast, we observed high levels of the repressive

H3K9me3 modification surrounding the 5S rDNA sequence.

Thus the functional properties of ETC loci appear to be distinct

from the repressive effect on pol II transcription that we have

observed for 5S rDNA. Importantly, this demonstrates that

presence of the TFIIIC complex alone is not sufficient to explain

the effect on neighboring pol II transcription, suggesting additional

or alternative factors. For example, TFIIIC recruitment to 5S

rDNA first requires the binding of the TFIIIA, which specifically

recognizes the A and C boxes. Alternatively, the strong

Figure 3. Schematic of the transgene. A. Schematic of the transgene showing the four regions analyzed for histone modifications, along with
their base-pair position relative to the 59 end of the transgene. We determined enrichment of H3K4me2 (B), H3K9me3 (C), H3K9me2 (D), and
H3K27me3 (E) in four Tg5S lines (black circles) and two control Tg0 lines (white circles). Each heatmap illustrates the relative enrichment of that
modification at each position in each line. For comparison, heatmaps of TkmRNA levels, nucleolar localization, TFIIIC65 enrichment, and copy number
for each line are shown in (F). ND, not determined.
doi:10.1371/journal.pgen.1002468.g003
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Figure 4. Nucleolar association of a genomic region increases upon integration of 5S rDNA transgenes. A–A0. DNA FISH in Tg5S line#9
(Tg5S#9) for transgene (red, A), and PAR (green, A9), along with IF for Nucleolin (blue). In A0, the arrowhead indicates the allele with transgene
integration, the asterisk indicates the wild-type allele. B. Nucleolar association of PARs with Tg5S integration in Tg5S#9 (n=39), and a wild-type X
chromosome PAR in line Tg5S#6 (n=61). C. DNA FISH showing Tg5S integration in the Rorb locus on chromosome 19 in Tg5S#6 (C–C0). D.
Localization of Rorb alleles with (+TG, n=82) and without (WT, n= 75) Tg5S integrations in Tg5S#6, and the cumulative localization of both alleles in
a control line (Tg5S#9, n=62). For analysis, deconvolved Z-stacks were rendered as 3-dimensional models; for illustration, each image is a Z-stack
projection (see Methods Summary). Statistical significance was determined by chi-squared test. Scale bars are 2 mm. E. Rorb expression in
differentiated Tg5S#6 and Tg5S#9. Each pair represents a biological replicate of retinoic-acid induced differentiation. Statistical significance was
determined by t-test; p-values are shown above each replicate.
doi:10.1371/journal.pgen.1002468.g004

Gene Regulation through Nucleolar Association

PLoS Genetics | www.plosgenetics.org 6 January 2012 | Volume 8 | Issue 1 | e1002468



nucleosome positioning properties of 5S rDNA may play a role in

its localization and repressive effects on neighboring pol II

transcription.

Collectively, these observations suggest broad and diverse roles

for pol III genes and derived sequences in the organization of

chromatin within the mammalian nucleus. Because of their

number, pol III promoters may exert a stronger influence on

structural organization than pol II-directed gene activity. As pol

III activity is coupled with differentiation and cellular metabolism,

association of pol III and transcription factors with elements such

as the 5S pseudgoenes we have described, may provide the basis

for global organizational and structural changes within the nucleus

in response to external stimuli [33].

Materials and Methods

Cell Culture
E14 ES cells were cultured under standard conditions. To

generate stable lines, ES cells were transfected with 1 mg of

linearized plasmid using lipofectamine (Invitrogen) and selected in

the presence of G418 for 14 days. We verified stable neomycin

resistance for most lines by culturing with G418 and noted no

increased levels of cell death. To induce differentiation, 26105 ES

cells were plated on 60 mm2 dishes without LIF and in the

presence of 0.1 mM retinoic acid (Sigma) then cultured for 8 days,

with passaging to maintain low cell density. For immunofluore-

sence and DNA FISH, cells were plated at low density and grown

on coverslips 18–24 hours. Coverslips were permeabilized with

cytoskeletal (CSK) buffer (100 mM NaCl, 300 mM sucrose, 3 mM

MgCl2, and 10 mM PIPES pH 6.8), then fixed in 4% parafor-

maldehyde (PFA, Electron Microscopy Sciences) for 10 minutes at

room temperature, washed twice for 5 minutes in 16 PBS

(Cellgro), then stored in 75% ethanol at 4uC. Coverslips were

re-hydrated with several washes of 16 PBS prior to DNA FISH

experiments.

Plasmid Construction
To generate Tg5S, the 5S rDNA sequence (a gift of B.Solner-

Webb, Johns-Hopkins University) was cloned into a vector that

contains the neomycin resistance gene under the control of the

HSV promoter, and the Thymidine kinase gene under the control of
the mouse Pgk1 promoter (a gift of D.Ciavatta, University of North

Carolina). Tg0 was the vector without the 5S rDNA insert.

RNA Isolation and RT–PCR
RNA was isolated from cultured cells with Trizol reagent

(Invitrogen), DNAsed (RQ1 DNAse, Promega) and 500 ng of total

RNA was used for each reaction. Samples were reverse

transcribed using random-hexamer primers, with Superscript II

Reverse Transcriptase (Invitrogen). Primers are listed in Table S2.

Tk mRNA levels were first normalized to Gapdh levels. Real-time

quantitative PCR was carried out on 25 ng of cDNA, in triplicate

for each gene, on an ABI 3700 (Applied Biosystems), using the Fast

SYBR Green Master Mix (Applied Biosystems). Data was

analyzed in Microsoft Excel (Microsoft), and is shown as the

log2-transformation of RNA levels relative to copy number.

Statistical significance was determined by two-tailed t-test.

Integration Site Identification
Transgene integration sites were determined using one of two

approaches. The Tg5S#6 insertion site was identified using the

TAIL PCR protocol, with degenerate primers as described [34].

The insertion site for Tg5S#9 was identified using inverse-PCR.

Briefly, 1 mg of DNA was digested with XbaI, then ligated

Figure 5. 5S rDNA pseudogenes with conserved internal
binding sites are associated with the nucleolus and bound by
TFIIIC. A. Conservation within the A and C boxes (y-axis) relative to
overall conservation of 5S pseudogenes (x-axis) in the mouse genome.
Each diamond represents a single peudogene. B. Nucleolar association
of pseudogenes; pseudogenes are labeled by their location in the
genome as chromosome:megabase (5:134, n= 59; 7:30, n= 51; 8:48,
n= 35; 11:74, n=32). Single focal sections were analyzed, and scored if
at least one signal was internal or peripheral to the nucleolus. C.
TFIIIC65 enrichment at 5S pseudogenes in E14 ES cells. Data are
represented as fold enrichment of 5S pseudogene relative to
enrichment of the negative control, the Ascl2 promoter, in the TFIIIC65
ChIP.
doi:10.1371/journal.pgen.1002468.g005

Gene Regulation through Nucleolar Association
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overnight with T4 ligase (NEB) at 2 ng/ml. DNA was concentrated

by ethanol precipitation, and 50 ng of the ligation was used in a

nested PCR reaction. PCR products were purified from an

agarose gel using a QIAGEN gel extraction kit (QIAGEN) and

quantified on a QUBIT flourometer (QIAGEN). PCR products

were directly sequenced and analyzed by BLAST searches to the

reference assembly of the mouse genome. Each insertion was

confirmed by PCR. Primers are listed in Table S2. sequence. Each

vector was linearized with XhoI (NEB) prior to lipofection.

Immunofluoresence (IF) and DNA FISH
Coverslips were rehydrated in 16 PBS, before blocking in

10 mg/ml IgG-free BSA (Jackson Immunochemical) and 0.2%

Tween-20 (Fisher) for 20–30 minutes at room temperature.

Rabbit anti-Nucleolin (Bethyl Laboritories, A300-711A) was

added at 1:400 dilution into blocking buffer and incubated

overnight at 4uC. Coverslips were then washed with 16PBS, and

incubated with biotinylated goat-anti-rabbit antibody, diluted in

blocking buffer at 1:400, for 2–3 hours at room temperature.

Following washes with 16PBS, cells were post-fixed with 2% PFA

for 3 minutes at room temperature, washed extensively with 16

PBS, then treated with 0.01 mg/ml pepsin (Sigma) diluted in pre-

warmed 0.01 N HCl for 5 minutes, and then washed extensively

with 16PBS. Following a dehydration series in ethanol, DNA was

denatured in 70% formamide (Ameresco) and 26 SSC (Cellgro)

for 10–20 minutes at 85uC. After several washes with cold 26

SSC, cells were incubated with prehybridized DNA FISH probes

(see below) overnight at 37uC. Coverslips were washed twice with

50% formamide and 26SSC, twice with 26SSC (one wash had

100 ng/ml DAPI added), once with 16 SSC. To detect

biotinylated secondary antibodies, coverslips were then washed

once with 46SSC for 5 minutes, incubated for 20–30 minutes in

Streptavidin-647 (Invitrogen) in 2 mg/ml BSA and 46 SSC,

followed by 5 minute washes of 46 SSC, 46 SSC with 0.5%

Tween-20 (Fisher), and 46 SSC. All washes and incubations for

biotin detection were carried out at 37uC.

Figure 6. Summary of localization by 5S rDNA and transgenes and model for gene regulation by 5S pseudogenes. A. The 5S rRNA
gene array (located on chromosome 8) is associated with the nucleolus in ,40% of ES cells. B. 5S rDNA integrated at ectopic positions as transgenes
are frequently associated with the nucleolar periphery (Tg5S; 5S rDNA is represented by the red line). Furthermore, integration of Tg5S increases
nucleolar association of the host locus (purple line). Control vectors (Tg0) do not show this preferential association. This positioning likely depends on
trans-factors (orange circle), potentially RNA pol III transcription factors. C. Transcription of a pol II-driven reporter gene (blue line) is reduced from
Tg5S lines relative to vectors lacking the 5S rDNA sequence. The repressive effect observed in Tg5S lines strongly correlates with nucleolar association
frequency. D. We observed that a subset of 5S pseudogenes (olive lines) are also associated with the nucleolus. Based on our results, we hypothesize
that nucleolar association of a pseudogene would reflect a repressive effect on transcription of nearby protein coding genes (blue lines), through the
same mechanism as Tg5S.
doi:10.1371/journal.pgen.1002468.g006
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FISH probes
In addition to the vector backbone, the following BAC and

fosmid probes were used in this study: BACs: 5:134 (RP24-

193L24), 7:30 (RP23-151J21), 8:126 (RP24-372G15), 10:27

(RP24-213F23), 11:74 (RP23174M12), Mid1 (RP24-229F18);

and fosmids: 6:112 (G135P69622C7), 8:48 (G135P60371F8,

G135P60172E7), 19:19 (G135P64778C12), PAR (G135P601180-

H2) (all clones were acquired from CHORI BPRC). BACs and

fosmids were isolated by a standard alkaline lysis protocol.

Approximately 25 ng of DNA was labeled with BioPrime DNA

labeling kit (Invitrogen), using FITC-conjugated dUTP (Roche),

Cy3- or Cy5-conjugated dCTP (GE Healthcare), and stored in

70% ethanol at 220uC. To prepare FISH probes for hybridiza-

tion, probes were precipitated with mouse Cot-1 DNA (Invitro-

gen), yeast tRNA (Invitrogen), and Salmon Sperm DNA

(Invitrogen). After washes with 75% and 100% ethanol, probes

were air-dried and denatured for 10 minutes in 50–100 ml of

100% formamide at 85uC. An equal volume of 26 hybridization

buffer (25% dextran sulfate/46SSC) was then added, and probes

were pre-hybridized for 60 to 90 minutes at 37uC. Probes were

stored at 220uC until use.

Microscopy and Image Analysis
IF-DNA FISH was carried out as described in Methods. For

transgene-nucleolus association, cells were visualized on Leica

DMLB fluorescent microscope (Leica), captured on a Retiga

2000R Fast camera (Qimaging), using QCapture software

(Qimaging), and merged with Adobe Photoshop (Adobe). DNA

FISH signals were considered ‘nucleolar associated’ if the FISH

signals were in contact with, or within, the Nucleolin signal. For

determining nucleolar association of 5S rDNA, pseudogenes, and

genomic loci with transgene insertions, Z-stacks of each channel

were taken on a Ziess AxioImager M2 microscope, deconvolved

using the Axiovision software package (Zeiss), then rendered in 3-

dimensions using the ZEN Light Edition 2009 software (Zeiss).

Signals were considered ‘internal’, if the center of the FISH signal

was internal to the Nucleolin signal; ‘peripheral’ if the pixels of the

FISH and Nucleolin signals were overlapping, but the center of the

FISH signal was outside; and ‘not associated’ if there was visible

distance between the DNA FISH signal and the outside of the

Nucleolin-labeled nucleolus. Statistical significance was deter-

mined by chi-squared.

Copy Number Determination
Copy number was determined by quantitative PCR to

determine the number of Neo gene copies relative to an

endogenous locus (the Ascl2 promoter), then normalized to a

genomic DNA sample containing 1 copy of Neo for each diploid

genome. Primers are listed in Table S2.

Chromatin Immunoprecipitation (ChIP)
ES cells were trypsinized, counted, resuspended at 107 cells/ml

and fixed with 1% formaldehyde. After quenching with 0.125 M

glycine, cells were pelleted, washed once with cold 16PBS,

pelleted again and used for ChIP or frozen at 280uC. Protease

inhibitors (Sigma) and PMSF (Sigma) were added to all steps until

washing steps. For GTF3C5 and pseudogenes, ChIP was

performed as described [35]. To measure histone modificiations

or GTF3C5 association with transgenes, cell pellets were

resuspended in solution L1 (50 mM HEPES-KOH, pH 7.5,

140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40,

0.25% Triton X-100) at 107 cells/ml, mixed at 15 minutes and

gently pelleted at 4uC. Cell pellet was resuspended in solution L2

(10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA,

0.5 mM EGTA) at 107 cells/ml, mixed at 15 minutes and gently

pelleted at 4uC. Cells were lysed in solution L3 (10 mM Tris-HCl,

pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-

Deoxycholate, 0.5% N-lauroylsarcosine) for 10 minutes at 4uC.

Chromatin was sheared by sonication to generate fragments 2–

600 bp. Before immunoprecipitation, 1/10th of each sample was

removed as ‘input’. 5 mg of Antibody (rabbit anti-GTF3C5, A301-

242A, Bethyl Laboratories; rabbit anti-H3K4me2, 07-030 Milli-

pore; mouse anti-H3K9me2, ab1220, Abcam; rabbit anti-

H3K9me3, ab8898, Abcam; or mouse anti-H3L27me3, ab6002,

Abcam) or normal rabbit sera (Abcam) was conjugated to protein

A/G beads in 0.5%BSA/16PBS overnight at 4uC on a nutating

platform. Chromatin was incubated with bead-conjugated primary

antibody overnight at 4uC with gentle mixing. For GTF3C5 ChIP,

beads were then washed for 5 minutes at 4uC with gentle mixing,

using the following solutions: Low Salt Buffer (0.1% SDS, 1%

Triton X-100, 2 mM EDTA, 20 mM Tris, 150 mM NaCl), twice;

High Salt Buffer(0.1% SDS, 1% Triton X-100, 2 mM EDTA,

20 mM Tris, 500 mM NaCl), once; LiCl buffer (1 mM EDTA,

10 mM Tris, 250 mM LiCl, 1% NP-40, 1% Na-Deoxycholate),

twice; and TE (10 mM Tris, 1 mM EDTA), twice. For histone

modifications, beads were washed 4 times with RIPA buffer, and

once with TE containing 50 mM NaCl. Chromatin was eluted

from beads with 2, 15-minute washes at 65uC using freshly

prepared Elution Buffer (1% SDS/0.1 M NaHCO3). To isolate

DNA, 5 M NaCl was added to pooled eluates or input chromatin

to a final concentration of 0.2 M, and incubated for at least

4 hours at 65uC, then treated with 30 mg of Proteinase K (Roche)

for 2 hours at 55uC. After addition of 10 mg linear acrylamide as a

carrier (Ambion), DNA was extracted with 25:24:1 phenol:cholo-

form:isoamyl alcohol (Sigma), precipitated with 100% ethanol,

and resuspended in nuclease-free ddH20 (Promega). For psuedo-

genes, three replicates of quantitative PCR were carried out on an

ABI 3700 (Applied Biosystems), using the Fast SYBR Green

Master Mix (Applied Biosystems). For transgene and 5S rDNA

enrichment, 2–5 replicates were performed on Bio-Rad CDX96

instrument, a using SsoFast EvaGreen Supermix (Bio-Rad). PCR

primers are listed in Table S2. Data are displayed as enrichment of

amplicon relative to a negative control region in each ChIP. Data

was analyzed in Microsoft Excel (Microsoft); statistical significance

was determined by two-tailed t-test.

Supporting Information

Figure S1 A. Combined Immunofluoresence (IF)-DNA FISH

images showing localization of the 5S rRNA gene arrays in mouse

ES cells. At least one allele was associated with the nucleolar

periphery in ,40% of nuclei. Examples of Tg5S nucleolar

association (B) or no association (C). D. Nucleolar association of

each individual Tg5S and Tg0 ES cell line. (n) is indicated below

each line number. E. Relationship between association frequency

(Y-axis) and copy number (X-axis). Scale bar is 2 mm.

(TIF)

Figure S2 Pharmacological inhibition of RNA polymerase I (pol

I) activity results in nucleolar reorganization and a decrease in 5S

rDNA and Tg5S nucleolar association. ES lines were treated with

a low dose of Actinomycin D (ActD; 20 ng/ml) for 2 hours prior

to fixation to inhibit Pol I elongation. Note that ActD treatment

results in redistribution of the pol I transcription factor UBF1

(green) from intranucleolar foci (A) into focal concentrations at the

nucleolar periphery (B, white arrow), and restructuring of nucleoli

into a more spherical morphology. We measured the size of ActD-

treated nucleoli to be 51% smaller than untreated nucleoli. C.

Gene Regulation through Nucleolar Association
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Localization of 5S rDNA (n= 112) and Tg5S after ActD treatment

(Tg5S#5, n= 30; Tg5S#6, n = 48; Tg5S#9, n= 50). To

normalize for changes in nucleolar size, we calculated the

‘expected’ localization as the frequency of association in untreated

cells by the relative nucleolar size in ActD treated cells. Statistical

significance was determined by comparing the expected frequency

to the observed frequency by chi-squared; N.S., not significant.

(TIF)

Figure S3 Normalized Tk shown for each individual line. Each

technical replicate is shown as a different symbol.

(TIF)

Figure S4 Quantification of histone modification enrichment

over transgenes for (A) H3K4me2, (B) H3K9me3, (C) H3K9me2,

and (D) H3K27me3. Values are represented as fold-enrichment

relative with a negative control region lacking that modification.

Also shown is a schematic of the transgene with positions of

regions assayed. 2–3 replicates of each reaction were performed

for each point.

(TIF)

Figure S5 A. PCR assays to genotype PAR insertion in

Tg5S#9; Tg5S#2 was used as a negative control. B. PCR assay

to genotype insertion of the transgene into Rorb allele in Tg5S#6;

Tg5S#4 is shown as a negative control.

(TIF)

Figure S6 A. Distribution of 5S rDNA as annotated by in

Ensembl (NCBIM37) (red dots). Perfect A and C boxes are shown

as blue dots; note that a number of perfect A/C boxes are found

outside of annotated 5S rDNA. The 5S rDNA array is located

near the telomere of chromosome 8 (bold). Since the structure of

5S rRNA is highly conserved, we hypothesized that if the single

genes were truly 5S rRNA, then they should form the expected

structure. Using a folding algorithm (mfold, http://mfold.rna.

albany.edu [36]), we predicted structure for all single 5S rDNA

genes, and found that none had a structure resembling 5S rRNA,

or thermodynamic stability (2DG), suggesting these elements are

likely to be pseudogenes. Predicted 5S rRNA structure is shown in

(B), while the structure of the most thermostable of 5S pseudogenes

in (C).

(TIF)

Figure S7 Nucleolar association of 5S rDNA (n=83) and

pseudogenes: 6:112 (n=49), 8:48 (n=61), and 10:27 (n=21).

Pseudogenes are labeled by their location in the genome as

chromosome:megabase. For analysis, deconvolved Z-stacks were

rendered as 3-dimensional models(see Methods). Frequency for

localization of 8:48 was comprable to analysis of single focal planes

(see Figure 5B; 33% peripheral, 6% internal).

(TIF)

Table S1 Mouse 5S Pseudogenes. Positional information of 5S

rDNA psuedogenes in the mouse genome (based on the NCBI

m37 mouse assembly). Also included are the percent identity of the

A and C boxes, as well as the entire sequence, to the 5S rDNA

consensus.

(DOC)

Table S2 PCR primers used in this study.

(DOC)
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