
SlAM J .  A P P I .  MATH. 
Vol. 26, No 3, May 1974 

NUCLEOLUSES OF COMPOUND SIMPLE GAMES* 

NIMROD MEGIDDOt 

Absh.act. The nucleolus is a unique solut~on concept for a cooperative game. It belongs to the 
kernel of the game. Given m games over disjoint sets of players and an m-player game, one defines a 
compound game over the union of the nt disjoint sets. These m games are the components and the i above twplayer game is called the quotlent. 

The nucleolus of the compound game is a combination of the nucleoluses of the components. i.e.. 
the payoffs In the components are proportional to the payoffs in the compound. The combinat~on 

i depends on the quotlent game and on the two highest levels of excesses with respect to the nucleoluses 
of the components. This combination is the solution of a problem of the same nature as that of the 

I nucleolus. 

1 
1. Introduction. The nucleolus of a cooperative game was defined by D. 

I Schmeidler in [lo]. It is a solution concept for a characteristic function game 
which consists of a unique point. As a point of the kernel of the game (see [2]) 
the nucleolus reflects strength relations between players and symmetry properties 
of the characteristic function. 

Compound simple games were defined by L. S. Shapley in [I I]. Shapley 
proved in [12], [13], [14] (also proved by G. Owen in [9]) that von Neumann- 
Morgenstern solutions of the component games compose in a natural manner 
which results in a solution of the compound game. Kernels have a very similar 
property (see [ 5 ] ) .  

The nucleolus of the product of simple games was characterized in [4]. In 
most of the cases (when the maximum excesses with respect to the nucleoluses 
of the component games are distinct) the nucleolus of the product coincides with 
the nucleolus of the component the maximum excess of which is the least. In this 
case the players in the other components get zero. When the maximum excesses 
in the components are not distinct the nucleolus ofthe product is a convex combina- 
tion of the components' nucleoluses. 

In this paper we generalize the results of [4]. A compound simple game is a 
tensor composition (see [9]) with simple components. In view of the results 
presented here, the computation of the nucleolus of a decomposable game (with 
simple components) is easier than that of a prime one. It is equivalent to the 
computation of the components' nucleoluses plus a similar computation in the 
quotient game. 

I , 2. Definitions. A charucteristic function game is a pair r = (N;  u)  where 
I N = j 1, . . . , n )  is a nonempty finite set (whose elements are the players) and u  

is a real-valued function defined over the subsets of N (the coalitions in the game). 

-1 A simple game is a characteristic function game l- = (N ;  u )  where for every 
S c N either v(S) = 1 or v(S) = 0. Those coalitions that have a unit value are 
called winning coalitions. The set of the winning coalitions is denoted by H and 
the game is represented also by = ( N ;  % ). We always assume N E % . A game 
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That means 

(3.4) e(S,, V) 2 . . . 2 e(S2,, v), 

(3.5) e(Tl, y) l . . . 2 e(T2n, y). 

Let i, (1  5 i, 5 2") be the first index of unequal excesses : 

(3.61 e(Sio, V) < 4T0 ,  Y), 

(3.7) i < io * e(S,, V) = e(T,, y). 

We shall prove that for every i < i,, 

(3.8) e(Si , v) = e(Si, y) . 

First, 

(3.9) @,, - 1 , V) > e(S,,, V )  

(otherwise (3.5) and (3.7) contradict (3.6)). Let i* (1 5 i* 5 2") be defined by 

(3.10) e(Si*, V )  f 6 ,  Y )  

and 

Without loss of generality we assume that for every i > i*, 

(3.12) e(S,., V) = e(S,, v) * e(Si*, y) 2 e(Si, y) 

and for every i < i * ,  Si = T .  It can be easily seen that i* i,. We sha.11 prove that 
i* - - 1 , .  . Suppose 

(3.1 3) i* < i,. 

Statements (3.7), (3.10) and (3.1 3) imply 

Statements (3.9) and (3.13) imply 

(3.1 5) e(Sit, v) > e(S,,, v ) .  

There exists c > 0 such that the imputation z = (1 - c)v + ~y satislies for every 
i > i* (see (3.12)) 

e(Si*, z )  = (1 - c)e(Si*, v) + ee(Si*, y) 

= e(Si, z )  

Also, (3.1 1) implies 

and (3.14) implies 
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Statements (3.16H3.18) imply that B(z) precedes 0 ( v )  in the lexicographical 
order on R2" in contradiction to the assumption that v is the nucleolus. Thus, 
i* = i ,  and (3.8) is proved. Relation (3.1) follows from (3.6) and (3.8). 

The nucleolus was defined to be an imputation whose excesses vector is a 
lexicographical minimum. In order to characterize the nucleolus of a compound 
game we would like to define here a general lexicographical problem. 

PROBLEM 3.2. Given a set of m affine functionals over R". 

we denote by a ( x )  an m-tuple whose components are the numbers u,(x) ,  
; = 1 , . . .  , m, arranged in decreasing order. Given a convex polytope X c Rn, 
our problem is to find x, E X such that u(xo )  is minimal in the lexicographical 
order on R m  in the set ja(x) : x E X 1 . 

Rernark 3.3. One possible way to solve an n-dimensional lexicographical 
problem with m functionals is by solving at most min (m, n )  linear problems 
(see [I]). The first one is: Minimize t subject to the constraints 

Suppose X ,  is the set of the solutions to the kth problem and A ,  is the set of indices 
i such that a i ( x )  is not constant in X, .  The ( k  + 1)th problem is: Minimize t subject 
to 

(3.22) a i (x )  5 t ,  ~ E A , ,  

(3.23)  EX,. 

In view of this method, a lexicographical problem may be simplified as 
follows. Denote 

Suppose a,(, is a linear combination of a,, , . . . , U i p  and 

a,,(x) 5 min {u,,(x) : j = 1,  . . . , p) 

for every x E X. Then a,, may be omitted without affecting the solution. Our 
last claim follows from the fact that, throughout the computation, in every problem, 
k, either a&) is constant in X ,  or the constraint a,,(x) 5 t may be omitted (see 
(3.25)). 

DEFINITION 3.4. Let .Y' c 2" be any collection of coalitions in a game 
r = ( N ; V ) .  

(i) The nuclrolus with respect to  9 is defined to be the set of the solutions of 
the lexicographical problem over X ( T )  with the functionals e(S,  x ) ,  S E .Y. We 
denote this set by ./l;,(T). 

(ii) .if is called a nucleo-suficient collection if . l.&(T) coincides with the 
nucleolus. b'(T) = .A ;N(T)  of r. That means that throughout the computation of 
the nucleolus, one may be restricted to constraints corresponding to the coalitions 
in 9. 
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LEMMA 3.5. Let I- = ( N ;  v)  be a monotonic game und denote 

(3.26) .H, (r)  = { S  c N : (3  E S)  (v(S \ { i } )  < v (S ) ) ) ,  

(3.27) .#,(I-) = { S  c N : ( V T  c S)(IS \ TI 2 2 * v ( T )  < v (S ) ) ) ,  

Then .&(T) is a nucleo-sufficient collection in T. 
Proof: A coalition S has property I if there are S 1 ,  . . . , S, E .&(I') such that 

Si c S, z?(Si) = v(S) ,  i = 1, . . . , k, and the characteristic vector of S, f ,  is a linear 
combination of the characteristic vectors zSz of S i ,  i = 1, . . . , k. We shall prove 
that every coalition S has property I. This is certainly true for the I-player 
coalitions (see (3.29)). Let S consist of more than one player and assume, by in- 
duction, that every T 5 S has property I .  If S E &(I-) then S has property I ,  so let 
us assume that S $ .#(T). If S 6 &',(r), then for every i E S, 

and X S  is a linear combination of the vectors xS\('), i E S (recall that there are at 
least two players in S ) .  

If S $ &,(I-) then there exist i , j  E S (i # j) such that 

Also, X S  is a linear combination of XS\'ii, XS\{Ji and XS\'i9j\ Thus, there always exist 
coalitions S ,  , . . . , S, such that Si c S, v(Si) = v(S),  Si has property I, i = 1, . . . , k, 
and is a linear combination of xS1, . . . , x S k .  It follows that S has property I. In 
view of Remark 3.3, since every coalition S has property I ,  it follows that d ( T )  is a 
nucleo-sufficient collection in T. 

LEMMA 3.6. Let r = ( N ;  % ') be u monotonic simple gume with no veto pluyers 
and denote 

Then % * is u nucleo-suficient collection. 
Proof. It is easily verified that 

Using arguments similar to those of Lemma 3.5, we can prove that 

(3.34) ~ ~ ( r )  = 4ir*(r) 

(see Definition 3.4). Since d ( T )  = U Y4 **, i t  is sufficient to prove that .II is a 1;) 
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nucleo-sufficient collection, i.e., 

For every player i there is a winning coalition S such that i $ S. Also, S U {if is 
winning because of the monotonicity. If { i )  is not winning, then for every x E X ( r ) ,  

Moreover, x{'' is a linear combination of xS and XSu(i' and therefore e ( { i ) ,  x )  may 
be omitted throughout the computation of the nucleolus (see Remark 3.3). Thus, 
(3.35) is proved. 

4. The nucleolus of a simple committee-game. In this section we prove that 
the nucleolus of a simple committee-game is the barycentric projection of the 
nucleolus of the grand game on this committee. Thus, strength relations between 
the members of the committee, as reflected in the nucleolus, are the same in the 
committee-game and in the grand game. 

We shall use the notation 

(4.1) 9 ( x )  = {a i :a i (x )  2 aj(x),B = 1 ,  . . .  , m ) ,  x E X ,  

when dealing with Problem 3.2. 
LEMMA 4.1. If' x E X 1 ( r )  (using the notation of Remark 3.3 in the problem of 

computing the nucleolus), where = ( N :  L I )  is a monotonic game, then for every 
i E N there is S E 9 ( x )  such that i E S.  

Proof: The proof is immediate in case x i  = 0. If x i  > 0 and' i # U { S  : S E 9 ( x ) ) ,  
then 0 4 9 ( x ) ( N  4 @ x ) ,  e ( 0 ,  x )  = e (N ,  x ) ) .  For E > 0 small enough we can define 
an imputation y, 

such that for every S E G'(x), 

and 

This 1s a contradiction to our assumption that x E X l ( T ) .  
LEMMA 4.2. Let = ( N ;  v )  be a rrzonotonic game and Tc = ( C ;  Yk;) a simple 

comrn~ttee-game of r. I f  x E X 1(1-), then there exists S E 9 ( x )  such that S C E %c. 
Proof. The proof is ~mmediate if x(C)  = 0. If I E C and x ,  > 0, let S E 9 ( x )  such 

t h a t i ~ S ( s e e L e m m a 4 , 1 ) . I f S  n C$%, , then  

and, thus, S 4 g(x)-a contradiction ! 

We consider 9 ( X )  also as a set of coalitions; no confusion may be caused since there is a one-to- 
one correspondence between coalitions and their excesses. 
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DEFINITION 4.3. Given a monotonic game r = (N ;  v), a simple committee- 
game rc = (C; q;) and an imputation x such that x(C) # 0, we denote 

1 
- m a x { v ( C U T ) - x ( T ) : T c N \ C )  i f B ~ % , ,  

(4.6) w'"'(B) = 

max {v(T) - x(T) : T c N \C) ifB$W;. 

We call rp) = (C ; w'")) the modification of Tc with respect to x. We shall show that 
this modification, which does not depend on xi for i E C (but depends on x(C)), 
does not affect the nucleolus of the committee-game if x E X l ( r ) .  We use the 
notation e',"'(S, y), etc. when these expressions refer to the game rp ) .  

Let us denote 

(4.7) o(T) = min {O,(x) : x E X(r ) ) ,  

for any B E  %; and 

for any B $ %,. 
LEMMA 4.4. Let r = ( N ;  v) be a monotonic game and r, = (C; V,) a simple 

committee-game of r. If x E X l(r) such that x(C) # 0, then 

(4.10) 4 r c  (4 > = w(x) o 

(see Definition 4.3 and (4.7134.9)). 
Proof. First, it follows from Definition 4.3 that 

(4.1 1) w y  2 1 

(if T = N\C, then v(T U C) - x(T) = x(C)). Let Y E  X(Tc) such that 

min {y(B) : B E ~ G }  = 1 - o(Tc) 

and let 2 E X ( r )  such that 

It follows from Lemma 4.2 that 

Q1(Z) = max (e(S, 2 ) : s  c N, S fl C E %;) 

= max {v(C U T) - x(T) : T c N \C) 

- x(C) . min {y(B) : B E %,) 

Since x(C). w t )  is also an excess with respect to 2 (see Definition 4.3) it follows that 

Since for every z  E X(rC),  

(4.15) min ( z ( B ) :  B E Wk) S 1 - o(r,), 
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it follows from (4.14H4.15) that 

(4.16) 8',-'(z) = max {ev'(S, z) : S E 7%c J 

so that 

(4.17) a(TF)) = \v(:) - (1 - a(l-0) 2 w p ' .  
Remark 4.5. Since o(T,) < I it follows from (4.14) that 

(4.18) w ( ~ )  1 > ,+,g). 

Thus, the winning coalitions in T, have (in the modified committee-game) a value 
which is still greater than that of the losing coalitions. Moreover, it also follows that 

(4.19) ~(r',")) 2 g(rc). 
LEMMA 4.6. Let r = ( N ;  c) be u monotonic gunw und let T, = (C;  f4,) be u 

simple committee-gume with no veto players. Under these conditions, for ecery 
i E C there is S E Y4& such that i $ S and S E 2',"'(y) ,for ecery y E X ,(Iy',"'). 

Proof: (a) Suppose, per absurdum, that i E C and y E X ,(I-?)) such that for 
every S E fb;, S E C&(Cx)(y) implies i E S. Since i is not a veto player, there exists 
So E $c such that i $ So. Thus, So $5$'(y) and, therefore, for every 

s H;. n C ~ O ~ ) ,  

(4.20) e',")(S, y) > e',")(S,, y) . 

It thus follows that for every S E 7%; fl 9(Cx'(y) there i s i  $ S ( j  # i) such that yj > 0. 
Let E be such that 0 < E < min jyj:j # i ,  yj # 0 )  and define y* by 

I y, - c if1 # i a n d j ,  # 0 ,  

(4.2 1 ) J ~ T  = 0 if y, = 0 ,  

I - y*(N\[ij)  i f /  = i. 

It follows that for every S 6 9FX)(y), 

(4.22) ey'(S, y*) < eF'(S. y )  . 

If E is small enough, then $4, n 9',"'(y*) c Yb, fl Lic,"'(y) in  contradiction to the 
assumption that j E X ,(r:')). We have proved that for every I E C and y E X,(r:") 
there is S E Y%( fl f/F1(j)  such that r E S. 

(b) The existence of S was proved for every y E X,(Tp'). Particularly, that is 
true for every y In the set 

It can be inferred from Lemma 3.1 that y E XT and z E X I  imply V',"'(y) c 'l',"'(z) 
and, therefore, S E %?'(z) for every z E X ,(r',")). 

LEMMA 4.7. Let = (N ; v) be a monotonicgame and let r, = (C ; 7%;) be u simple 
committee-game. l f ' x  E X l ( r )  is such that x(C) > 0 then the nucleolus o f r ,  coincides 
with the nucleolus of' r',"' with respect to X(Tc). 

Proof: (a) If there are veto players in T,, then o(F,) = 0 and (4.14) implies 
wy' - 1 2 wg'. Thus, for every y E X(r,) and S E ' U i ,  ey'(S, y )  2 wg) and the 
respective lexicographical problems differ by a constant. 
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(b) Assume that there are no veto players in T,. According to Definition 4.3 

and (3.29), .&(TF') = ?A(T,) = U Y4 ,*. It can be seen that 

to the nucleolus of l-',"I (see Lemma 3.5). Suppose {i) $ W, and S E Wi  is such that 
i $ S and y E X l ( r F ) )  implies S E IlrF'(y) (see Lemma 4.6). Under these conditions, 
for every j. E X l ( r F ) )  (according to Lemmas 4.4 and 4.6) 

Since %(i' = ZSu(i' - x ~ ,  it follows, in view of (4.24), that the constraint eF)({i),jl) 5 t 
may be omitted from the problem of the nucleolus of T',") (see Remark 3.3). The 
collection fb ',* is thus nucleo-sufficient in T',"'. That implies that the nuclei problems 
in the games r',") and TC have the same solution. 

THEOREM 4.8. Let T = ( N ;  v) be a monotonic game and let Tc = (C;  %,) be a 
simple committee-game of I-. If' v is the nucleolus of' r and v(C) # 0, then BCv is the 
nucleolus qf' r,. 

Proof: The nucleolus belongs to the kernel. In a simple game with veto players 
the nucleolus is the unique point in the kernel [3, Thm. 4.11. Thus, if there are veto 
players in T,, then our theorem follows from the compounding theorem with 
respect to the kernel (see [5,  Thm. 6.11). 

Let us assume that T, is free of veto players. Let vC denote the nucleolus of T,. ; 
it is the nucleolus of Tv) too (Lemma 4.7). Let .uc = B,v and suppose, per 
absurdum, that s' # vC. Let 

(4.26) Hp'(xc) = (ep)(T1 , x'), . . . , ey)(~,~'I, xC)). 

Let i, be defined by 

(4.27) e?'(Sio, vC) < e?'(TT;, , x'), 

Without loss of generality we assume that 

(see Lemma 3.1). Define an imputation y by 

For every B c C, 

1 
(4.3 1) ep)(B, vC) = - max (r(B U T, v )  : T c N'\C),  

v(C) 

1 
(4.32) e',"'(B, xC) = -max {e(B U T, y): T c N\\C) 

v(C) 
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Let R,  , R, c N'\C be coalitions such that 

(4.34) e(R2 U C ,  v) - max {e(T U C, v): T c N'\C). 

If Sio $ I, we denote Sio U R,  by S*, and if Sio E W;, Sio U R2 is denoted by S* 
For every R c N'\C and i, if Si E %,, then 

and if Si $ Wc, then 

Particularly (see Definition 4.3 and (4.33)44.34)), 

(4.37) e(S* , y) = v(C) . ep)(Si,, vC) . 

Therefore, for every i 2 i, and R c N\C,  

(4.38) e(S*, Y) 2 e(Si U R ,  Y).  

Analogously, if IT;, $ $4, denote T* = To U R ,  and if 17;, E #& denote T* = IT;, 
U R,. For every i 2 i, and R c N'\C, 

(4.39) e(T*, v) = v ( C ) . ~ p ' ( T , , x ~ )  2 ~ ( 7 ;  U R,xC).  

It follows from (4.27), (4.37) and (4.39) that 

(4.40) e(S*, y) < e(T*, v).  

Also, (4.28H4.29) imply for every i < i, and R c N\C, 

(4.41) e(Si U R, y) = e(T U R, v). 

It can be verified that (4.38)-(4.41) mean that 8(y) precedes Q(v) in the lexico- 
graphical order on R," in contradiction to our assumption that v is the nucleolus 
of l-. 

Example 4.9. The nucleolus oj'the sum of two simple games. Let ri = (Ni;  W1), 
i = l ,2,  be two monotonic simple games such that N,  n N, = @. The sum 
r, @ r, is defined to be the game I- = (N;  W )  where N = N, U N, and 
W = { S C N : S ~ N , E % ' ~ O ~ S ~ N , E % ' ~ ] . T ~ ~ ~ ~ O ~ U C ~ ~ , O ~ , = ( N ; W )  
where YV' = {S c N :  S' n N, E -,W1 and S f l  N, E I%.,) was investigated and its 
nucleolus was characterized in [4]. Let r = ( N ;  YV) be the sum r = I-, @ T,. 
We shall prove that for every x E X,(T), 

(4.42) max {e(S,x):S€ = m a x { e ( S , x ) : S ~  #"$.  

Suppose, per absurdum, that for example, 

(4.43) max { e ( ~ ,  x) :  S E W 1 )  > max {e(S, x):S E W-,}. 

Thus, 
B,(x) = max j e ( S , x ) : S ~  W).  

(4.44) = m a x [ m a x ( e ( S , x ) : ~  n N l ~ W 1 ) , m a x { e ( S , x ) : S  n N,E W 2 ) ]  

(cont.) 
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= max {e(S, x ) : S  E Y4").  

If x ( N l )  # 0  let x' = B,,x and if x ( N l )  = 0  let x 1  be any point in X l ( I - , ) .  Also, 
let x 2  = BN2x  (it follows from (4.43) that x ( N 2 )  # 0 ) .  Regard xi,  i = 1,2 ,  as an 
imputation in r by means of adding zeros for the players who do not belong to Ni .  
Thus, 

(4.45) x  = x ( N 1 ) x 1  + x ( N , ) x ~ .  

There is e > 0  such that the imputation 

satisfies (4.43) and, consequently, (4.44). Since for every y E X , ( T , ) ,  

(4.47) min { ~ ( S ) : S E  % " }  > 0 

it follows that 

in contradiction to our assumption that x  E X l ( r ) .  Thus, (4.42) is proved. Let 
v', i = 1,2, denote the nucleolus of T i .  According to Theorem 4.8 the nucleolus of 
r has the form 

where 0  5 a 5 I. It follows from (4.42) that 

e min { v l ( S ) : S s  % '} 
a = -- 

min {v ' ( s ) :s  E%")  + min {v2(S) :S  E ~ - 2 ) ~  

(4.50) 
1 - Q i ( v l )  

This means that the computation of the nucleolus is equivalent to the computation 
of the nucleoluses of the summands. The coefficient cr is a by-product of this 
computation. 

5. The nucleolus of a compound game. According to the preceding section the 
nucleolus of a simple committee-game is the barycentric projection of the nucleolus 
of the grand game on that committee. In a compound game with simple com- 
ponents the set of players, N ,  is a union of disjoint committees. Thus, the nucleolus 
of the compound game is a convex combination of the nucleoluses of the compon- 
ent games (the nucleolus of a component game is changed to an imputation in the 
grand game by adding zeros). This combination depends only on the two highest 
levels of excesses in the components' nucleoluses. It is a solution of a lexico- 
graphical problem. 

Let T  be a monotonic compound game, T  = T O I T , ,  . .  . , r,], where Ti 
= ( N , ;  q " ) ,  i = 1, . . . , m, are simple games over pairwise disjoint sets and' 
T o = ( M ; u ) , M =  { I , . . . , m }  . Let videnote the nucleolus of T i , i =  l , . . . , r n ,  
and let v  denote the nucleolus of r. According to Theorem 4.8 there are ai 2 0, 
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i = 1, . . . , m, such that 1 tli = u ( M )  = v ( N )  and 

By the *-notation an imputation in a committee-game is changed to an imputation 
in the grand game (by adding zeros). The problem is to compute the coefficients 
a,, i = 1, . . . , m. For every component game Ti, i = 1, . . . , m, let us denote the 
payoffs to the winning coalitions, in the nucleolus vi, by 

The payoffs to the losing coalitions will be denoted by 

(5.3) 0 = < A(;) < . . . < ~ ( i )  
1 1  ' 

For every T c M denote 

J ( T )  = { j  = ( j , ,  . . .  , j , ) : ( V i ~  T)(O 5 ji 2 k,) 
(5.4) 

( V i  $ T)(O 5 ji 2 l i )} .  

For every T c M and ,j E J ( T )  let be an affine functional such that for every 
B E X ( ~ O ) >  

(5.5) a ( T : j ) ( p )  = u ( T )  - x w!'pi - x i ! )p i .  
ieT i$l' 

ASSERTION 5.1. The combination a = ( a , ,  . . .  , am)(see (5.1)) is the solution of' 
the lexicogruphical problem with the functionals a(T;j) ( T  c M ,  j~ J ( T ) )  and the 
polytope X(T,) .  

The proof follows from the fact that for every ,4 E X ( T O )  the values u ' ~ : J ' ( / ~ )  
are the excesses with respect to the imputation P , v l *  + . . . + bmvm*. 

The number of functionals in the above problem can be decreased con- 
siderably. First, let us denote for every T c M ,  

ASSERTION 5.2. The set { ~ ( ~ ; j ) :  T c M ,  j E J , ( T ) }  is suficient (in the sense of 
Dejinition 3.4) to the lexicographical problewl presented in Assertion 5.1. 

Proof. For every T c M and j E J ( T )  denote 

Let e,, k = 1, . . . , m, denote the m-tuple in which (e,)i = 6,; (Kronecker delta). 
Since (0,  e l ,  e,, . . . , em} is an affine basis of Rm it follows that the linear functional 
b(T;j)  is an affine combination of b(T;O) and b(T:ek', k = 1, . . . , m. For every k such 
that j, = 0 the coefficient of b(T;'k) in this combination must be equal to zero. Thus, 
for every T c M and j E J(T)  the functional b(T;J) is a linear combination of b(T:O) 
and b(T:'k), k = 1 ,  . . . , m, j, # 0.  Moreover, for every /3 E X(T,) ,  

That implies that the set of functionals a(T:i) such that j E J , ( T )  suffices. 
Remark 5.3. If there are veto players in T i ,  then there is only one level of payoffs 

to winning coalitions in the nucleolus of T i .  Thus, k,  = 0 ,  o$) = 1 and for every 
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j~ J , (T )  (where i~ T),  j i  = 0. We shall show that it can also be assumed (i.e., 
J , (T)  may be reduced furthermore) that for every i, if there are no veto players in 
Ti and if i $ T then for e v e r y j ~  J1(T),, j i  = 0. 

We denote 

J*(T) = { j E J , ( T )  : For every k E T such that there are veto players 

(5.91 in T,,j, = 0, and for every k $ T such that there 
are no veto players in T,, j, = 0) .  

ASSERTION 5.4. The set (dT; j ) :  T c M , j E J*(T)) is suficient to the solution of' 
the lexicographical problewl presented in Assertion 5.1. 

Proyf It can be easily verified that at the first stage of the solution (see Remark 
3.3) it is sufficient to use only the functionals of the form To see that, note that 
for every j E J (T)  and /3 E X(T,), 

Suppose k $ T c M and T, is a game with no veto players. Let p E X I .  According 
to Lemma 4.1 there exists T* c M such that k E T* and T* E 9 ( B )  (see (4.1)). Let 
1 E N ,  be a player such that v'; = i?). Since 1 is not a veto player, there is B E  -IFk 
such that 1 $ B and B E 9 ( v k )  (see the proof of Lemma 4.6). Clearly, vk(B) = (0;) and 
also vk(B U (1)) = (I):~). The functional may, therefore, be omitted at the 
following stages. The last claim follows from the fact that for every P E X I ,  

and b(T:'k) (see (5.7)) is a linear combination of b'T*:"k), b(T*:O' and b(T;O) (see Remark 
(3.3). 

To conclude, the combination cc which determines the nucleolus is the solution 
of the following problem. 

Problem 5.5. Let To = (M;  u) be an m-player game. Let d = (d l ,  . . . , dm) be 
an n2-tuple of nonnegative integers and let oO and w 1  be two m-tuples such that 
0 < w p < o , !  5 1 , i =  l ; . . ,m.Forevery T c  M a n d p ~ X ( r ~ ) l e t  

For every k E T such that d, = 0 let 

and for every k $ T such that d, # 0 let 

By LITo, wO, o l ,  dl we denote the lexicographical problem with functionals f"T' 
and g'T:k) (where T c M and either k E T and d, = 0, or k 6 T and d, # 0). 

The results are summed in the following theorem. 
THEOREM 5.6. Let T = To[Tl, . . . , Tm] be a monotonic compound game with 

simple components (see (2.1)). Let vi be the nucleolus of' Ti and let di be the number of' 
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veto players in Ti, i = 1, . . . , m. Let 

(5.15) wo = min { vi(B) : B E W'i), i = 1, . . .  , m, 

(5.16) w! = min {vi(B): B E %Q.i,  v'(B) > up), 
i = 1 , . . .  , m , d i = O ,  

(for i such that di # 0 set w! = 1) 

Under these conditions the nucleolus of' T is 

where ci = (a , ,  . . . , urn) is the solution oj'the problem LITO, o O ,  w', dl (Problem 5.5). 
Example 5.7. Let l- = M , [ M ,  @ M , ,  M ,  @ M , ,  M , [ M , ,  M,,  M , ] ]  ( M ,  is 

the 3-person majority game) and let us compute the nucleolus of this 21-player 
game. According to our theorem we find by symmetry considerations that the 
nucleoluses of M ,  63 M , ,  M ,  @ M ,  and M , [ M , ,  M , ,  M , ]  are, respectively, 
I ) (  ) 1 1 1 I 1 1 1 I 1  

, 6 , 6 , 6 , 6 r 6  . A, A,:,;,:,; and (4 ,9 ,9 ,4 ,9 ,9 ,5 ,9 ,9) .  The minimal payoffs to 
winning coalitions (in the nucleoluses in the games are, respectively, 5, S, $. The 
lexicographical problem is solved in one stage and the solution is (+, $, f). Thus, 
the nucleolus of l- is 

Example 5.8. There are two generalizations of(2.1). L. S. Shapley (see [13, p. 401) 
suggested 

(5.19) "(s) = 1 1 ( -  l ) IR\TI~(T).  min {wi(S n Ni):i E R )  
K c M  T c K  

and G. Owen (see [9]) defined 

Our results do not hold for these generalizations. Let T = (N ; v )  be a 3-player game 
such that 412) = v(13) = $, v(123) = 1 and v(S) = 0 for any other S c (1,2,3). 
The nucleolus of r consists of the point (i, 4, a). The nucleolus of the generalized 
product r @ T (using either (5.19) or (5.20)) consists of the point (b, b, i, 6, b,  i ) .  
Obviously, this point cannot be presented as 
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