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We present results on the nucleon axial and induced pseudoscalar form factors using an ensemble of two

degenerate twisted mass clover-improved fermions with mass yielding a pion mass of mπ ¼ 130 MeV.

We evaluate the isovector and the isoscalar, as well as the strange and the charm axial form factors.

The disconnected contributions are evaluated using recently developed methods that include deflation of

the lower eigenstates, allowing us to extract the isoscalar, strange, and charm axial form factors. We find

that the disconnected quark loop contributions are nonzero and particularly large for the induced

pseudoscalar form factor.
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I. INTRODUCTION

Understanding the structure of the nucleon from first

principles constitutes one of the key endeavors of both

nuclear and particle physics. Despite the long history of

experimental activity its structure is not yet fully under-

stood. This includes the portion of its spin carried by quarks

as well as the charge radius of the proton. While electro-

magnetic form factors have been well studied experimen-

tally, the axial form factors are known to less accuracy. An

exception is the nucleon axial charge, which has been

measured from β decays to very high precision. Two

methods have been extensively used to determine the

momentum dependence of the nucleon axial form factor.

The most direct method is using elastic scattering of

neutrinos and protons, typically νμ þ p → μþ þ n [1].

The second method is based on the analysis of charged

pion electroproduction data [2] off the proton, which is

slightly above the pion production threshold. The induced

pseudoscalar form factor Gpðq2Þ is even harder to measure

experimentally. For the case of the induced pseudoscalar

coupling gp, a range of muon capture experiments, as

proposed in Ref. [3], have been carried out for its

determination (see Ref. [4] for a review). The form factor

Gpðq2Þ is less well known and has only been determined

at three values of the momentum transfer from the

longitudinal cross section in pion electroproduction [5].

Lattice QCD presents a rigorous framework for comput-

ing the axial form factors from first principles, in particular

in light of the tremendous progress made in simulating the

theory at near physical values of the quark masses, large

enough volumes, and small enough lattice spacings.

Having simulations using the physical values of the light

quarks eliminates chiral extrapolations, which for the

baryon sector introduced a large systematic uncertainty.

In addition, improved algorithms and novel computer

architectures have enabled the computation of contributions

due to disconnected quark loops, which previously were

mostly neglected.

In this work we present results for the nucleon axial and

induced pseudoscalar form factors from an ensemble

generated with two degenerate quarks with masses fixed

approximately to their physical value [6]. We study both the

isovector and isoscalar combinations as well as the strange

and charm form factors, which receive only disconnected

contributions.

The paper is organized as follows: in Sec. II we introduce

the axial form factors and the nucleon axial matrix element,

and in Sec. III we give details of the lattice action used. In

Sec. IV we explain our setup, the correlation functions

used, and the methods employed to extract the nucleon

matrix elements from the lattice data. The renormalization

process is described in Sec. V, and in Sec. VI we present our

results. Finally, in Sec. VII we conclude.

II. AXIAL FORM FACTORS

To extract the axial and pseudoscalar form factors one

needs to evaluate the nucleon matrix element

hNðp0; s0ÞjAμjNðp; sÞi; ð1Þ

where AμðxÞ ¼ ψ̄ðxÞγμγ5τaψðxÞ is the axial-vector current
with ψðxÞ ¼ ðuðxÞ; dðxÞÞ the doublet of up and down
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quarks, τa is a Pauli matrix acting on flavor components,

and p, s (p0, s0) are the momentum and spin of the initial

(final) nucleon state, N. The nucleon matrix element of the

axial-vector current decomposes into two form factors,

GAðq2Þ and Gpðq2Þ, which are functions of the momentum

transfer squared q2 ¼ ðp0
μ − pμÞ2 ¼ −Q2. In a lattice QCD

computation one performs a Wick rotation to imaginary

time. Working in Euclidean space the nucleon matrix

element of the axial-vector operator can be written in the

continuum as

hNðp0; s0ÞjAμjNðp; sÞi

¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N

ENðp⃗0ÞENðp⃗Þ

s

ūNðp0; s0Þ

×

�

γμGAðQ2Þ − i
Qμ

2mN

GpðQ2Þ
�

γ5uNðp; sÞ; ð2Þ

where uN are nucleon spinors and mN and ENðp⃗Þ are the

nucleon mass and energy at momentum p⃗. In this work, we
consider the isovector and isoscalar as well as strange and

charm combinations,

Aisov
μ ¼ ψ̄ðxÞγμγ5τ3ψðxÞ; Aisos

μ ¼ ψ̄ðxÞγμγ51ψðxÞ;
As
μ ¼ s̄ðxÞγμγ5sðxÞ; and Ac

μ ¼ c̄ðxÞγμγ5cðxÞ: ð3Þ

In the isovector case disconnected contributions cancel in

the isospin limit. For the isoscalar combination both

connected and disconnected contributions enter, while

for the strange and charm form factors we have only

disconnected contributions. In this work the disconnected

contributions are computed for the first time using simu-

lations with a physical value of the pion mass. The

connected and disconnected three-point functions are

represented schematically in Fig. 1.

III. LATTICE ACTION

In this work we use a single gauge ensemble of two

degenerate (Nf ¼ 2) up and down twisted mass quarks

with mass tuned to reproduce approximately the physical

pion mass [6]. The parameters of our calculation are shown

in Table I. The “Iwasaki” improved gauge action is used

[7,8] for the gluonic part. In the fermion sector, the twisted

mass fermion action for a doublet of degenerate quark

flavors [9,10] is employed, including in addition a clover

term [11].

The fermionic action is given by

SF½χ; χ̄; U� ¼ a4
X

x

χ̄ðxÞ
�

DW ½U� þ iμlγ5τ
3

−
1

4
cSWσ

μνF μν½U�
�

χðxÞ; ð4Þ

where DW is the Wilson-Dirac operator, μl is the bare

twisted light quark mass, and − 1
4
cSWσ

μνF μν½U� is the

clover term, with cSW the so-called Sheikoleslami-Wohlert

improvement coefficient. The field strength tensor F μν½U�
is given by [11]

F μν½U� ¼ 1

8
½Pμ;νðxÞ þ Pν;−μðxÞ þ P−μ;−νðxÞ

þ P−ν;μðxÞ − ðH:c:Þ�; ð5Þ

where Pμ;νðxÞ is a fundamental 1 × 1 Wilson plaquette and

σμν ¼ 1
2
½γμ; γν�. We take cSW ¼ 1.57551 from Ref. [13].

The quark fields denoted by χ in Eq. (4) are in the so-called

“twisted basis.” The fields in the “physical basis” denoted

by ψ are obtained at maximal twist by the transformation

FIG. 1. Diagrams for the connected (left) and disconnected (right) three-point functions. The solid lines represent quark

propagators.

TABLE I. Simulation parameters of the ensemble used here.

The nucleon and pion mass and the lattice spacing have been

determined in Ref. [12].

β ¼ 2.1, cSW ¼ 1.57751, a ¼ 0.0938ð3Þ fm, r0=a ¼ 5.32ð5Þ
483 × 96, L ¼ 4.5 fm aμl ¼ 0.0009

mπ ¼ 0.1304ð4Þ GeV
mπL ¼ 2.98ð1Þ
mN ¼ 0.932ð4Þ GeV
mN=mπ ¼ 7.15ð4Þ
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ψðxÞ ¼ 1
ffiffiffi

2
p ð1þ iτ3γ5ÞχðxÞ;

ψðxÞ ¼ χ̄ðxÞ 1
ffiffiffi

2
p ð1þ iτ3γ5Þ: ð6Þ

In this paper, unless otherwise stated, the quark fields will

be understood as “physical fields,” ψ , in particular when we

define the interpolating fields.

Twisted mass fermions (TMF) provide an attractive

formulation for lattice QCD allowing for automatic OðaÞ
improvement, infrared regularization of small eigenvalues,

and fast dynamical simulations [10]. However, the Oða2Þ
lattice artifacts that the twisted mass action exhibits lead to

instabilities in the numerical simulations, particularly at lower

values of the quarkmasses, and influence the phase structure

of the lattice theory [14–16]. The clover term was added in

the TMF action to allow for smaller Oða2Þ breaking effects

between the neutral and charged pions that lead to the stabi-

lization of simulations with light quark masses close to the

physical pionmass retaining at the same time the particularly

significantOðaÞ improvement that the TMF action features.

The reader interested in more details regarding the twisted

mass formulation is referred toRefs. [9,10,17–19] and for the

simulation strategy to Refs. [6,20].

IV. LATTICE EVALUATION OF THE

NUCLEON MATRIX ELEMENTS

In order to extract the nucleon matrix elements, we need

an appropriately defined three-point function and the

nucleon two-point function. To construct these correlation

functions one creates states with the quantum numbers of

the nucleon from the vacuum at some initial time (source)

and annihilates them at a later time (sink). The commonly

used nucleon interpolating field is given by

JðxÞ ¼ ϵabcðua⊺ðxÞCγ5dbðxÞÞucðxÞ; ð7Þ

where C is the charge conjugation matrix. To improve the

overlap of this operator with the ground state we employ

Gaussian smearing [21,22] to the quark fields at the source

and the sink. In addition, we apply APE smearing [23] to

the gauge links entering the hopping matrix in order to

reduce unphysical ultraviolet fluctuations.

The three-point function in momentum space can be

written as

GμðΓν; q⃗; p⃗
0; ts; tins; t0Þ

¼
X

x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗

× Tr½ΓνhJðts; x⃗sÞAμðtins; x⃗insÞJ̄ðt0; x⃗0Þi�e−iðx⃗s−x⃗0Þ·p⃗
0
;

ð8Þ

and the two-point function is given by

CðΓ0; p⃗; ts; t0Þ ¼
X

x⃗s

e−iðx⃗s−x⃗0Þ·p⃗Tr½Γ0hJðts; x⃗sÞJ̄ðt0; x⃗0Þi�;

ð9Þ

where q⃗ ¼ p⃗0 − p⃗ is the momentum transfer. For the two-

point function we use the projector Γ0 ¼ 1
4
ð1þ γ0Þ,

whereas for the three-point function the projector is

Γj ¼ iΓ0γ5γj, j ¼ 1, 2, 3, which permits the extraction

of the axial GAðQ2Þ and the induced pseudoscalar GpðQ2Þ
form factors. The matrix element can be extracted by taking

appropriate combinations of three- and two-point func-

tions. An optimal ratio [24], which cancels unknown

overlap terms and time dependent exponentials is

RμðΓν; p⃗
0; p⃗; ts; tinsÞ

¼ GμðΓν; p⃗
0; p⃗; ts; tinsÞ

CðΓ0; p⃗
0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðΓ0; p⃗; ts − tinsÞCðΓ0; p⃗
0; tinsÞCðΓ0; p⃗

0; tsÞ
CðΓ0; p⃗

0; ts − tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s

;

ð10Þ

where we measure all times relative to the time of the

source; i.e. tins and ts measure the time separation of the

current insertion and the sink, respectively, from the source.

The ratio becomes time independent in the large time limit

yielding a plateau Πμ from where the matrix element of the

ground state is extracted, defined via

RμðΓν; p⃗
0; p⃗; ts; tinsÞ⟶

tins≫1

ts−tins≫1
ΠμðΓν; p⃗

0; p⃗Þ: ð11Þ

In practice, the source-insertion and insertion-sink time

separations cannot be chosen arbitrarily large because the

gauge noise becomes dominant; thus several time separa-

tions must be tested to ensure convergence to the ground

state. It is expected that different matrix elements have

different sensitivities to excited states. In the case of the

scalar operator, it has been shown that source-sink sepa-

rations larger than ts ¼ 1.5 fm are required in order to

damp out sufficiently excited state effects [25]. For the

axial-vector current excited state contamination is found to

be less severe, at least for pion masses larger than physical

ones used in previous calculations [26,27]. In this work we

use three values of ts in the case of the connected

contributions to assess the influence of excited states. As

will be explained, for the case of the disconnected con-

tributions all ts and tins values are available. We also

employ different methods to analyze the ratio of Eq. (10) as

explained below. Identifying a time-independent window in

this ratio and extracting the desired matrix element by

fitting to a constant is referred to as the plateau method. We

seek convergence of the extracted value as we increase ts.
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Instead of using the aforementioned plateau method to

extract the matrix element of the ground state, another

option is to take into account the contribution of the first

excited state. The three-point function can then be

expressed as

Gμðp⃗0; p⃗; ts; tinsÞ ¼ A00ðp⃗0; p⃗Þe−E0ðp⃗0Þðts−tinsÞ−E0ðp⃗Þtins

þ A01ðp⃗0; p⃗Þe−E0ðp⃗0Þðts−tinsÞ−E1ðp⃗Þtins

þ A10ðp⃗0; p⃗Þe−E1ðp⃗0Þðts−tinsÞ−E0ðp⃗Þtins

þ A11ðp⃗0; p⃗Þe−E1ðp⃗0Þðts−tinsÞ−E1ðp⃗Þtins ;

ð12Þ

while the two-point function is

Cðp⃗; tsÞ ¼ c0ðp⃗Þe−E0ðp⃗Þts þ c1ðp⃗Þe−E1ðp⃗Þts : ð13Þ

E0ðp⃗Þ and E1ðp⃗Þ are the energies of the ground state and

first excited state at momentum p⃗, respectively. For non-
zero momentum transfer, fitting to the two- and three-point

functions taking into account the contribution of the first

excited state involves 12 fit parameters, namely A00, A01,

A10, A11, E0ðp⃗0Þ, E0ðp⃗Þ, E1ðp⃗0Þ, E1ðp⃗Þ, c0ðp⃗0Þ, c0ðp⃗Þ,
c1ðp⃗0Þ, and c1ðp⃗Þ. We note that A01 ≠ A10 for nonzero

momentum transfer. The desired nucleon matrix element

M is obtained via

M ¼ A00ðp⃗0; p⃗Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0ðp⃗0Þc0ðp⃗Þ
p : ð14Þ

In what we refer to as the two-state fit method a simulta-

neous fit is performed to the three- and two-point functions

for several values of ts to obtain M. For the connected

three-point function we have three values of ts, namely

ts=a ¼ 10, 12, and 14, while for the disconnected we have

all values since in our approach the loops are computed for

all time slices. We find it practical to use a maximal time

separation ts=a ¼ 18, since beyond this separation the

correlation functions have large errors and do not contribute

to the fit. An alternative technique to study excited state

effects is the summation method [28,29]. Summing over the

insertion time tins of the ratio in Eq. (10) we obtain

Rsum
μ ðΓν; p⃗

0; p⃗; tsÞ≡
X

ts−a

tins¼a

RμðΓν; p⃗
0; p⃗; ts; tinsÞ

¼ Cþ tsMþOðe−ΔtsÞ þ � � � ; ð15Þ

where we omit the source and sink time slices and sum over

the geometric series of exponentials. The constant C is

independent of ts and Δ is the energy gap between the first

excited state and the ground state, while the matrix element

of interest M is extracted from a linear fit to Eq. (15) with

fit parameters C and M. Alternatively, as described in

Ref. [30], one can fit to the finite difference,

dRsum
μ ðΓν; p⃗

0; p⃗; tsÞ

¼ Rsum
μ ðΓν; p⃗

0; p⃗; ts þ dtsÞ − Rsum
μ ðΓν; p⃗

0; p⃗; tsÞ
dts

ð16Þ

of the summation method, which cancels C. We have

checked that the two analyses yield consistent results and

errors for M. In the results we quote for the summation

method here, we use a linear fit to Eq. (15).

We now briefly describe the so-called fixed-sink method

employed to compute the connected contributions to the

three-point functions depicted in Fig. 1. Within this method,

the sink time, momentum, projector, and final and initial

hadron states are fixed, but any insertion time slice and

operator with any momentum transfer is allowed, making it

the most appropriate method for the study of form factors.

An alternative approach is to use stochastic methods to

compute the all-to-all quark propagator from the current

insertion to the sink, which would allow for varying both the

current and the sink parameters. This more versatile

approach, however, introduces stochastic noise that has to

be controlled [31]. Since in this work we are interested in

nucleon form factors, we use the fixed-sink approach for the

connected three-point function, which allows for obtaining

all insertion momenta with practically no additional com-

putational cost. New sets of inversions are needed for each of

the three sink times and each of the three projectors, while

the sink momentum is fixed to zero p⃗ 0 ¼ 0. To increase

further our statistics, we average over 16 randomly selected

source positions per gauge configuration.

The disconnected contribution to the three-point function

requires the computation of the disconnected quark loop

given by

LðfÞðtins; q⃗Þ ¼
X

x⃗ins

Tr½M−1
f ðxins; xinsÞG�eþiq⃗·x⃗ins ð17Þ

correlated with the nucleon two-point function. With

M−1
f we denote the inverse of the twisted mass clover-

improved Dirac matrix for the quark flavor qf and with G a

general γ-structure. For the axial-vector current G ¼ γμγ5.

Equation (17) requires information from the all-to-all

propagator, which is prohibitively expensive to calculate

by the standard inversion of the Dirac matrix. For a typical

lattice size one needs Oð108Þ inversions to compute the

disconnected quark loop exactly. The standard approach to

overcome this difficulty is to use stochastic techniques to

obtain an unbiased estimate for the quark loop at the

expense of introducing stochastic noise [32]. Stochastic

techniques have been employed successfully in recent

studies, including our previous studies as for example in

Refs. [33,34]. For certain flavor and operator combinations,

such as the isoscalar of a flavor doublet of the scalar

operator, the twisted mass formulation has a powerful

advantage. Such an operator transforms into an isovector of
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the pseudoscalar operator in the twisted mass formulation

at maximal twist. For the u- and d-flavor doublet we have

ūuþ d̄d ¼ iχ̄uγ5χu − iχ̄dγ5χd where χu and χd are the two

degenerate light quark fields in the twisted mass basis. The

disconnected quark loop contribution to σπN therefore

becomes [35]

X

x⃗ins

Tr½iγ5M−1
χu
ðxins; xinsÞ − iγ5M

−1
χd
ðxins; xinsÞ�

¼ 2μl

X

y;x⃗ins

Tr½γ5M−1
χu
ðxins; yÞγ5M−1

χd
ðy; xinsÞ�: ð18Þ

In other words a subtraction of propagators is replaced by a

multiplication resulting in increasing the signal-to-noise

ratio from 1=
ffiffiffiffi

V
p

to V=
ffiffiffiffiffiffi

V2
p

due to the appearance of an

effective double sum over the volume. In this form,

stochastic techniques can be employed to obtain the trace

via the so-called one-end trick [36] enabling the accurate

computation of the quark loops at all time insertions tins
[34,37]. This method was applied to compute the light,

strange, and charm σ-terms with good accuracy [25]. In the

case of the axial-vector operator the isoscalar combination

does not result in a subtraction in the twisted basis.

However, we can generalize the one-end trick to convert

the addition of propagators appearing inside a trace into a

multiplication. Namely, one can write

Luþdðtins; q⃗Þ
¼
X

x⃗ins

Tr½ðM−1
χu
ðxins;xinsÞþM−1

χd
ðxins;xinsÞÞG�eþiq⃗·x⃗ins

¼ 2
X

x⃗ins

X

y;y0
Tr½M−1†

χd
ðy0;xinsÞγ5Gγ5DWCðxins;yÞM−1

χd
ðy;y0Þ�

×eþiq⃗·x⃗ins ; ð19Þ

where DWC is the Wilson-Clover operator with bare quark

mass set to its critical value. Introducing the stochastic

noise vectors ξr with the properties

1

Nr

X

r

jξrihξrj ¼ 1þO

�

1
ffiffiffiffiffiffi

Nr

p
�

; ð20Þ

where Nr is the number of stochastic vectors, the solution

vectors ϕr ¼ M−1
u ξr, in Eq. (19) can be written as

Luþdðtins; q⃗Þ

¼ 2

Nr

X

r

X

x⃗ins

X

y

½ϕ†
rðxinsÞγ5Gγ5DWCðxins;yÞϕrðyÞ�eþiq⃗·x⃗ins

þO

�

1
ffiffiffiffiffiffi

Nr

p
�

: ð21Þ

Computing the loop in this way still results in increasing

the signal-to-noise ratio from 1=
ffiffiffiffi

V
p

to V=
ffiffiffiffiffiffi

V2
p

. We refer to

the specific application of the trick as in Eq. (21) as the

generalized one-end trick, applicable in the case of the

axial-vector current where the relative sign between u and d
quarks does not change in the twisted mass basis. As

already pointed out, the one-end trick allows for the

evaluation of the quark loops for all insertion time slices,

enabling us to couple them with two-point functions for any

value of ts and therefore study thoroughly the excited states
behavior.

For computing the strange and charm axial form factors,

we use Osterwalder-Seiler [38] valence strange and charm

quarks with masses tuned to reproduce theΩ− andΛc mass,

respectively. The values we obtain are aμs ¼ 0.0259ð3Þ
and aμc ¼ 0.3319ð15Þ following the procedure described

in Ref. [12]. Since we use Osterwalder-Seiler quarks, we

have the choice to consider doublets with �μ value. We

thus construct the axial-vector current as 1
2
ðf̄þγμγ5fþþ

f̄−γμγ5f
−Þ, where f ¼ s, c and f� refers to �μf, yielding

the same expressions as for the light quark doublets ðu; dÞ
and thus allowing us to apply the generalized one-end trick.

As the pion mass approaches its physical value, the

condition number of the Dirac operator increases; hence the

conjugate gradient (CG) algorithm requires a larger number

of iterations to converge. One can speed up the solver by

calculating the lowest eigenvectors of the Dirac operator

and then using them to precondition the CG algorithm, by

deflating the Dirac operator. In our calculations, we use the

implicitly restarted Lanczos algorithm to calculate the

eigenvectors. We found that deflating 600 eigenvectors

results in a factor of about 20 × speedup for the light quark

masses as shown in Fig. 2. For the light fermion loops we

calculate 2250 stochastic noise vectors per configuration to

FIG. 2. Time in hours needed for the calculation of the

disconnected quark loops as a function of the number of right-

hand sides (RHS). The time includes the buildup of eigen-

vectors. With the red line we show the standard CG without

deflation while with the purple, green, and blue lines we show the

time using deflated CG with 100, 200, and 600 eigenvectors,

respectively.
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high precision (HP), i.e. to a solver precision of 10−9. Note

that no dilution has been employed; therefore one inversion

per noise source is performed.

For the strange and the charm quarks the condition

number of the Dirac operator is significantly smaller, and

thus there is no need for deflation. Instead, we employ the

truncated solver method (TSM) [39] where a large number

of low-precision (LP) noise vectors is used to reduce the

stochastic variance and the bias is corrected by a small

number of HP inversions. The number of iterations for a LP

solve (nLP), as well as the number of low (NLP
r ) and high

(NHP
r ) precision inversions, needs to be tuned in order to

produce an unbiased estimate of the disconnected quark

loop at optimal computational cost. Namely, the variance σ2

can be approximated by [40]

σ2 ∝ 2ð1 − rcÞ þ
NHP

r

NLP
r

; ð22Þ

where rc is the correlation between the targeted observable

computed to high and low precision. A compromise is

necessary that keeps the ratioNHP
r =NLP

r small, while having

rc ≃ 1. For the strange and charm loops used in this work,

we take nLP such that we obtain rc ≃ 0.99. We investigate

the dependence of rc on nLP in the left panel of Fig. 3, for

various values of the twisted mass parameter. One can see

that as μ decreases, a larger number of iterations is needed

to obtain the same value for rc. For aμ ¼ 0.001, which is

very close to our value of aμl ¼ 0.0009, the number of

iterations needed to reach a good correlation is very large,

indicating that the TSM is not efficient for light quark

masses. In the right panel of Fig. 3 we show the number of

iterations needed to have rc ≃ 0.99 for a given bare quark

mass. This figure shows that about ≈100 iterations are

sufficient for the case of the strange quark mass aμs ≃ 0.03,

resulting in a solver precision of≃10−3. With the values of

rc and nLP at hand, we use

NLP
r

NHP
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nHP

2ð1 − rcÞnLP

r

; ð23Þ

from Ref. [39] to determine the ratio NLP
r =NHP

r .

Equation (23) is obtained by requiring minimization of

the stochastic variance for equal cost. For the strange quark

we test that there is no bias by increasing the resulting NHP
r

and observing whether the central value of our observable

changes. For the charm quark, the inverter reaches very

quickly our target rc after Oð10Þ iterations. We therefore

increase nLP to yield rc ≃ 0.999 since this increases min-

imally the total computational cost. This allows us to use a

larger value for the NLP
r =NHP

r ratio for the charm loops.

The statistics used and the parameters used for the TSM

for the strange and the charm quark loops are listed in

Table II, with the disconnected fermion loops calculated for

all time slices. For the connected three-point functions three

source-sink time separations have been analyzed for 16

source positions per gauge configuration, while for the two-

point functions 100 source positions per gauge configura-

tion have been produced in order to accumulate enough

statistics for the disconnected three-point function.

FIG. 3. Left: The correlation between low- and high-precision quark loops for a range of twisted mass values. The dashed line shows

rc ¼ 1. Right: The number of iterations of the low-precision inversions as a function of aμ to yield rc ¼ 0.99.

TABLE II. The statistics of our calculation. Nconf is the number

of gauge configurations analyzed, and Nsrc is the number of

source positions per configuration. For the disconnected con-

tributions, NHP
r is the number of high-precision stochastic vectors

produced, and NLP
r is the number of low-precision vectors used

when employing the TSM.

Connected Disconnected

ts=a Nconf Nsrc Flavor Nconf NHP
r NLP

r Nsrc

10 579 16 Light 2120 2250 � � � 100

12 579 16 Strange 2057 63 1024 100

14 579 16 Charm 2034 5 1250 100
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V. RENORMALIZATION

In order to make a comparison of form factors calculated

from lattice QCD with experimental and phenomenological

results, one must renormalize the lattice results. The

renormalization functions can be calculated perturbatively

as well as nonperturbatively. In this work, we use the

nonperturbatively calculated renormalization functions

[41] where lattice artifacts are computed perturbatively

[42] and subtracted from the nonperturbative results before

taking the continuum limit. The Rome-Southampton

method [43], also known as the RI0MOM scheme, is used

for the calculation of the renormalization functions. Note

that the renormalization function ZA for the axial current is

scheme and scale independent in the chiral limit.

In the case of flavor nonsinglet operators such as the

isovector axial operator, the renormalization functions can

be calculated accurately with a relatively low cost, whereas

the isoscalar combination receives contributions from a

disconnected diagram, leading to a significant increase in

the computational effort. In order to calculate the renorm-

alization functions nonperturbatively, we consider the bare

vertex functions [44]

Gns
G
ðpÞ ¼ a12

V

X

x;y;z

huðxÞūðzÞGdðzÞd̄ðyÞie−ipðx−yÞ;

Gs
G
ðpÞ ¼ a12

V

X

x;y;z

huðxÞūðzÞGuðzÞūðyÞie−ipðx−yÞ; ð24Þ

where Gns
G

and Gs
G
are the nonsinglet and singlet cases,

respectively, V is the lattice volume, and, in our case,

G ¼ γμγ5. We employ the momentum source method which

offers a high statistical accuracy. In particular, statistical

errors are of the order of Oð10−3Þ with Oð10Þ measure-

ments. The amputated vertex function can be derived from

the vertex function as

ΛGðpÞ ¼ ðSðpÞÞ−1GGðpÞðSðpÞÞ−1; ð25Þ

where SðpÞ is the propagator in momentum space. For the

singlet vertex function the disconnected contribution is

amputated using one inverse propagator as the closed quark

loop does not have an open leg.

In the RI0MOM scheme the renormalization functions are

computed by imposing that the amputated vertex function

ΛGðpÞ at large Euclidean scale p2 ¼ μ2 is equal to its tree-

level value in the chiral limit. The renormalization con-

dition is given by

Z−1
q ZGTr½ΛGðpÞΛtree

G
�

¼Tr½Λtree
G

Λ
tree
G

� with

Zq¼−
i

4
Tr

�

1
a
γρ sinðapρÞ

1

a2

P

ρsin
2ðapρÞ

S−1ðpÞ
��

�

�

�

pρ¼μρ

: ð26Þ

The nonsinglet renormalization functions for the ensemble

used in thiswork can be found inRef. [42]. In Fig. 4we show

our results for the axial singlet renormalization function for

three pionmasses and for several initial momenta. As can be

seen, the dependence on the light quarkmass is verymild. In

Fig. 5 we show an example of a chiral extrapolation we

perform at ðapÞ2 ¼ 2, which corroborates that the pionmass

dependence is very weak. In Fig. 4 we also show the

difference between the singlet and the nonsinglet cases for

different pion masses and ðapÞ2. We observe a small but

nonzero difference. The chirally extrapolated values are

shown in Fig. 5, and they are used to perform the continuum

limit. In general, the momentum source method leads to

small statistical errors, and thus a careful investigation of

systematic uncertainties is required. We eliminate the

systematic effect that comes from the asymmetry of our

lattices, such as due to the larger time extent and the

antiperiodic boundary conditions in time, by averaging over

the different components corresponding to the same renorm-

alization function. Furthermore, remaining lattice artifacts

are partially removed by the subtraction of the Oðg2a∞Þ
terms as was done in Refs. [42,45]. However, the largest

systematic error comes from the choice of the momentum

range to use for the extrapolation to ðapÞ2 → 0. To address

this effect we use different intervals for the ðapÞ2 → 0 fit and

obtain the systematic error, shown by the black error bar in

Fig. 5, by taking the largest difference in the values of

the renormalization function extracted from different fit

FIG. 4. The axial singlet renormalization function (left) and the difference between singlet and nonsinglet axial renormalization (right)

as a function of ðapÞ2 for three values of the twisted mass parameter, namely μ ¼ 0.0009 (open green circles), 0.003 (open red squares),

and 0.006 (blue crosses) corresponding to mπ ¼ 130, 241, and 331 MeV, respectively.

NUCLEON AXIAL FORM FACTORS USING Nf ¼ 2 … PHYSICAL REVIEW D 96, 054507 (2017)

054507-7



ranges. We find for the nonsinglet operator that Zns
A ¼

0.7910ð4Þð5Þ, as was originally reported in Ref. [42], while
for the singlet Zs

A ¼ 0.7968ð25Þð91Þ. Because of the large
systematic error Zns

A and Zs
A are compatible.

VI. RESULTS

A. Axial charge

We first examine the extraction of the axial charge of the

nucleon, which is given by gA ≡Gu−d
A ð0Þ. In order to assess

the effect of the excited states we study the ratio of Eq. (10)

for various source-sink time separations. In Figs. 6 and 7

we show the ratio from which we extract the nucleon

isovector axial charges gA and the isoscalar guþd
A including

the disconnected contribution. We also show the corre-

sponding ratios from where gsA and gcA are determined.

In the case of zero momentum transfer the square root of

Eq. (10) reduces to unity, and the matrix element of Eq. (2)

directly yields the axial charge. In Fig. 6 we show the ratio

of Eq. (10) for various values of ts as a function of the

insertion time. The values extracted from the plateau,

summation, and two-state fits are collected in the right

panel of the figure. As can be seen, as ts increases the

plateau value converges to a constant indicating that excited

states become very small. When the plateau value is in

agreement with the value extracted from the two-state fit,

FIG. 5. Left: The axial singlet renormalization function for ðapÞ2 ¼ 2 as a function of m2
π (open circles). The dashed line shows a

linear fit, and the filled blue circle shows the value at the chiral limit. Right: Continuum extrapolation of the axial renormalization

function using a linear fit. The extrapolated value is presented by a filled diamond, and its statistical error is shown with the magenta

error bar, while the systematic due to the fit range is shown with black.

FIG. 6. Left: The ratio from where we extract the values for gA and the connected part of guþd
A . Results for the ratio are presented for

three source-sink time separations, namely ts ¼ 0.94, 1.13, and 1.31 fm shown with the filled red circles, open blue squares, and filled

green triangles, respectively. A fit to the plateau is shown with the dotted line spanning from the initial to the final fit tins and its

corresponding error band. Results extracted from the summation method are shown with the brown dashed line and corresponding error

band, while results using two-state fits are shown with the solid black line spanning the entire horizontal axis and its corresponding error

band. Right: The left column shows the extracted values using the plateau method for ts ¼ 0.94, 1.13, and 1.31 fm. The open red circle

and band shows the plateau value that we take as our final result and its error. The right column shows the values extracted from the

summation method (filled green triangles) and the two-state fits (filled blue squares) as one varies the lowest value of ts, t
low
s , entering in

the fits. Results are slightly shifted to the right for clarity.
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we consider that contributions from excited states are

sufficiently suppressed. We take the plateau value for the

smallest ts where agreement with the two-state fit is

observed as our final value for the matrix element. This

value is always consistent with the result from the sum-

mation method since the statistical error of the latter is

usually larger as compared to the two-state fit. As a

systematic error due to excited states we take the difference

between the plateau value that demonstrates convergence

with ts and that extracted from the two-state fit.

As can be clearly seen from Fig. 7, the disconnected

contributions are nonzero and negative. The value of gsA is

smaller as compared to the disconnected contribution to

guþd
A . gcA, although still negative, has a large error and a

small value, namely jgcAj < 0.005. We note here that the

value of the disconnected contribution to guþd
A extracted

from our previous study [37] using a TMF ensemble

simulated at a pion mass of mπ ¼ 370 MeV is about twice

smaller, namely −0.07ð1Þ, compared to the physical point

value obtained here. Lattice artifacts for nucleon observ-

ables such as the ones calculated here are expected to be

small. A comparison of results for the axial charge from

various lattice actions including Nf ¼ 2, Nf ¼ 2þ 1, and

Nf ¼ 2þ 1þ 1 flavors of quarks, as well as various lattice

spacings and volumes, shows that volume, cutoff, and

strange quark quenching effects are smaller than current

statistical errors [46]. In Fig. 8, we show a comparison of

lattice results for gAs . In particular, we compare results using

Nf ¼ 2 clover fermions at a pion mass of about 300 MeV

clover fermions from Ref. [47] with results using domain

wall valence fermions on Nf ¼ 2þ 1 a-squared tadpole

(asqtad) gauge configurations (hybrid action) from

Ref. [48]. Both Nf ¼ 2 and Nf ¼ 2þ 1 results are

compatible, indicating that strange sea quark effects and

lattice artifacts are small compared with the statistical

FIG. 7. Left: The ratio from where we extract the values for guþd
A disconnected, gsA and gcA. Right: The first column shows the extracted

values using the plateau method from ts ¼ 0.8 fm to ts ¼ 2.0 fm in increments of the lattice spacing a ¼ 0.0938 fm. The notation is the

same as in Fig. 6.

FIG. 8. Comparison of lattice results for gsA. The current study is
shown by the red diamond and the result using Nf ¼ 2þ 1þ 1

twisted mass fermions at heavier than physical pion mass is

shown with the blue square from Ref. [37]. In addition, we

compare to results using Nf ¼ 2þ 1 clover fermions (yellow

circle) from Ref. [49], using Nf ¼ 2 clover fermions (magenta

triangle) from Ref. [47], and using domain wall valence fermions

on asqtad configurations (cyan crosses) from Ref. [48].
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errors. The Nf ¼ 2þ 1 hybrid action result at about

370 MeV is also in agreement with the Nf ¼ 2þ 1þ 1

twisted mass fermion result, which was a high accuracy

computation. Since we do expect charm quark effects to be

negligible, this agreement corroborates between calcula-

tions with different actions that lattice artifacts are indeed

smaller than the current statistical errors.

Our values for the nucleon axial charges are tabulated

in Table III. In the case of gA our result is compatible

with recent results from the lattice [50–55] and slightly

underestimates the experimental value of 1.2723(23) [56].

In the case of guþd
A there is good agreement with the

experimental value of 0.416(18) [56] within the current

statistics.

B. Axial and induced pseudoscalar form factor

For nonzero momentum transfer, both GA and Gp enter

in Eq. (2); namely the large time limit of Eq. (10) is related

to the form factors via

ΠkðΓk; p⃗
0; p⃗Þ ¼ iGpðQ2ÞC

�ðp0
k − pkÞ½ðEðp⃗Þ þmNÞp0

k − ðEðp⃗0Þ þmNÞpk�
8m3

N

�

− iGAðQ2ÞC
�ðEðp⃗0Þ þ Eðp⃗ÞÞmN þm2

N þ 2p0
kpk − p0

ρpρ

4m2
N

�

ð27Þ

in the case where i ¼ k, and

ΠiðΓk; p⃗
0; p⃗Þ ¼ iGpðQ2ÞC

�ðp0
i − piÞ½ðEðp⃗Þ þmNÞp0

k − ðEðp⃗0Þ þmNÞpk�
8m3

N

�

− iGAðQ2ÞC
�

p0
ipk − p0

kpi

4m2
N

�

ð28Þ

for i ≠ k with

C ¼ 2m2
N

Eðp⃗ÞðEðp⃗0Þ þmNÞ
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðp⃗ÞðEðp⃗0Þ þmNÞ
Eðp⃗0ÞðEðp⃗Þ þmNÞ

v

u

u

t : ð29Þ

Since the form factors depend only on the momentum

transfer squared (Q2), while the plateau of Eq. (25) depends

on p⃗0 and p⃗, the extraction of the form factors is over-

constrained. In practice, we form the system

Πiðk; p⃗0; p⃗Þ ¼ Diðk; p⃗0; p⃗ÞFðQ2Þ; ð30Þ

where D is an array of kinematic coefficients according to

Eqs. (27) and (28) and F is the vector F⊺ ¼ ðGA; GpÞ. The
system is solved for F by taking the singular value

decomposition (SVD) of D in order to minimize

χ2 ¼
X

i;k;p⃗0;p⃗∈Q2

�

Diðk; p⃗0; p⃗ÞFðQ2Þ − Πiðk; p⃗0; p⃗Þ
wiðk; p⃗0; p⃗Þ

�

2

ð31Þ

for each Q2, where w is the statistical error of Π.

All results quoted in this paper are computed by first

fitting the ratio RiðΓk; p⃗
0; p⃗; ts; tinsÞ with the plateau, two-

state, or summation method to obtain Πiðk; p⃗0; p⃗Þ and

subsequently minimize Eq. (31) to obtain FðQ2Þ without

a time dependence. In order to demonstrate these plateaus

we carry out an analysis in a different order. Namely we

apply the SVD andminimization of Eq. (31) by inserting the

ratio RiðΓk; p⃗
0; p⃗; ts; tinsÞ instead of Πiðk; p⃗0; p⃗Þ. In Figs. 9

and 10 we show representative examples of our obtained

plateaus for a small momentum transfer, namely for Q2 ¼
0.0753GeV2 and for a higher momentum transfer, namely

Q2 ¼ 0.2848 GeV2. The corresponding results for the form

factors are shown in Figs. 11 and 12 for the samemomentum

transfers as for Figs. 9 and 10.We observe a similar behavior

with respect to the excited states as that forQ2 ¼ 0 shown in

TABLE III. We give the values extracted from the plateau

method for the isovector and isoscalar axial charges and for the

axial charge of the individual quarks. The first error is the

statistical error determined using jackknife, and the second is

the systematic error due to the excited states computed as

the difference in the mean value between the plateau fit

and the two-state fit. The experimental values have been taken

from Ref. [56].

This work Experiment

gA 1.212(33)(22) 1.2723(23)

guþd
A (Conn.) 0.595(28)(1) � � �
guþd
A (Disc.) −0.150ð20Þð19Þ � � �
guþd
A 0.445(34)(19) 0.416(18)

guA 0.827(30)(5) 0.843(12)

gdA −0.380ð15Þð23Þ −0.427ð12Þ
gsA −0.0427ð100Þð93Þ � � �
gcA −0.00338ð188Þð667Þ � � �

C. ALEXANDROU et al. PHYSICAL REVIEW D 96, 054507 (2017)

054507-10



FIG. 9. The ratio for GA (left) and Gp (right) obtained as explained in the text, forQ2 ¼ 0.0753 GeV2. From top to bottom we present

the isovector, connected isoscalar, disconnected isoscalar, strange, and charm contributions. The notation is as in the left panel of Fig. 6.

FIG. 10. The ratio for GA (left) and Gp (right) obtained as explained in the text, for Q2 ¼ 0.2848 GeV2. The notation is as in Fig. 9.
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FIG. 11. Results for GAðQ2Þ (left) and GpðQ2Þ (right) for momentum transfer Q2 ¼ 0.0753 GeV2. From top to bottom we present the

isovector, connected isoscalar, disconnected isoscalar, strange, and charm contributions. The remaining notation is as for the right panel

of Fig. 6.

FIG. 12. Results for GAðQ2Þ (left) and GpðQ2Þ (right) for momentum Q2 ¼ 0.2848 GeV2. The notation is as in Fig. 11.
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Figs. 6 and 7.We thus take the plateau value at ts ¼ 1.31 fm

for both Gu−d
A and Guþd

A as our final values since they are in

good agreement with the two-state and summation fits.

ForGs
A, ts ¼ 1.31 fm is still a reasonable choice, but forGc

A

due to the large statistical uncertainty, ts ¼ 0.94 fm is

enough.

For Gu−d
p and the connected part of Guþd

p we observe

excited state contributions for the two smaller values of ts.
For ts ¼ 1.31 fm the plateau value is in agreement with the

two-state fit, however, indicating partial convergence. For

the disconnected contribution we find better convergence

and we take the value also at ts ¼ 1.31 fm. What is

particularly notable are the large disconnected contribu-

tions to the isoscalar induced pseudoscalar form factor that

are comparable in magnitude to the connected part, but with

opposite sign. This has already been observed in Ref. [57],

which used an ensemble simulated with a pion mass

mπ ¼ 317 MeV. The explanation of such large discon-

nected contributions is that they are needed to cancel the

pion pole of the connected isoscalar form factor in order to

yield the expected η-meson pole mass dependence. Since

the connected isoscalar shows a sharp rise consistent with a

pion pole, the disconnected contributions must also be large

at small Q2 to cancel it. This would be analogous to the

case of the η-meson mass extraction on the lattice, where

disconnected contributions are important since the con-

nected contribution alone of the two-point correlation

function has the mass of the pion as ground state [33].

From Fig. 12 where results are shown for a relatively high

Q2 value, the overall observation is that excited state

contributions tend to be less severe but non-negligible.

This trend continues as we increase Q2 at least for the

connected contributions where statistical uncertainties are

small enough for such an investigation.

In Fig. 13 we show the isovector form factors up toQ2 ¼
1GeV2 extracted from the plateau at the three values of ts
considered, from the two-state and summation methods

[58]. As already noted, for Gu−d
p ðQ2Þ, excited state con-

tributions are notably more severe for small values of Q2,

which tend to decrease its value. Nevertheless, the values

extracted from the plateau at ts ¼ 1.31 fm are in agreement

with the value extracted from the two-state fit for all Q2

values. We thus take the plateau value at ts ¼ 1.31 fm as

our final value for the form factors with a systematic error

the difference between the mean value from fitting the

plateau at ts ¼ 1.31 fm and that extracted from the two-

state fit. This systematic error may be underestimated

for GpðQ2Þ at low Q2 ≤ 0.2 GeV2 where a larger time

separation may be needed to ensure convergence.

Having a determination of the axial form factors, we

proceed to examine their Q2 dependence. As customarily

done in experiment we fit the axial form factor GAðQ2Þ to a
dipole form given by

GAðQ2Þ ¼ gA

ð1þ Q2

m2
A

Þ2
; ð32Þ

where mA is the so-called axial mass and the axial radius,

hr2Ai, is related to mA by

hr2Ai ¼ −
6

GAð0Þ
∂

∂Q2
GAðQ2ÞjQ2¼0 ¼

12

m2
A

: ð33Þ

We note that experimentally, one of the determinations

of mA is obtained by fitting the axial form factor

GAðQ2Þ extracted from pion electroproduction data, yield-

ing a value of mA ¼ 1.077ð39Þ GeV [59]. Recent results

FIG. 13. Results for Gu−d
A ðQ2Þ (left) and Gu−d

p ðQ2Þ (right) as a function of Q2 for three source-sink time separations, namely

ts ¼ 0.94 fm (red filled circles), ts ¼ 1.13 fm (blue crosses), and ts ¼ 1.31 fm (green filled triangles). We also show results extracted

from the summation method (open brown diamonds) and two-state fit (open magenta pentagons). The experimental value of gA is shown
with the black asterisk. Results are slightly shifted to the right for clarity.
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from charged-current muon-neutrino scattering events

produced from the MiniBooNE experiment report a value

of mA ¼ 1.350ð170Þ GeV using a similar fit [60], which is

significantly higher than the historical world average.

Recent results from neutrino-nucleus cross sections using

deuterium target data report a smaller value of mA ¼
1.010ð240Þ GeV [61].

Fitting the momentum dependence of our results

for Gu−d
A ðQ2Þ using Eq. (32) we obtain a value of mA ¼

1.322ð42Þð17Þ GeV, which is consistent with the larger

value extracted from νμ interactions [60]. The fit is

performed by fixing the value for gA directly from our

lattice result forGu−d
A ð0Þ. We have checked that allowing gA

to vary as a fit parameter yields consistent results. We also

extract a consistent value for mA using the results from the

two-state fit. We quote the difference in the mean value of

mA extracted from fitting the ts ¼ 1.31 fm plateau results

for the form factors and that extracted from the results of the

two-state fits as the systematic error due to excited states. In

the left panel of Fig. 14 we show a comparison of the fits to

our lattice QCD results and the experimental ones. The

spread in the mean values is an indication of remaining

excited state contributions, which are small and which we

quote as our systematic error. The bands produced using the

values from Refs. [59,61] are lower and have a steeper slope

than our results, albeit with large errors.

In Fig. 14 we show our lattice QCD results forGu−d
p ðQ2Þ.

As expected from pion pole dominance, this form factor has

a much stronger Q2 dependence as compared to Gu−d
A ðQ2Þ.

Using the partially conserved axial current relation (PCAC)

and pion pole dominance one can relate the induced

pseudoscalar form factor Gu−d
p ðQ2Þ to Gu−d

A ðQ2Þ by

GpðQ2Þ ¼ GAðQ2Þ C

Q2 þm2
p

; ð34Þ

where C ¼ 4m2
N and mp ¼ mπ . This relation is used to

extract the induced pseudoscalar form factor using the

experimental determination of Gu−d
A ðQ2Þ. We perform the

same analysis for our lattice QCD results. Namely, in

Fig. 14 we include results for Gu−d
p ðQ2Þ obtained by

applying the pion-pole dominance hypothesis to the lattice

results on Gu−d
A using the lattice pion mass of mπ ¼

130 MeV in Eq. (34). At low Q2 value we observe a much

steeper rise as compared to the direct lattice computation of

GpðQ2Þ, and agreement both with the experimentally

determined bands taken by applying the pion-pole

assumption and with the directly determined values of

Gu−d
p ðQ2Þ from Ref. [5]. As noted above, for Q2 <

0.2 GeV2 where the discrepancy is largest, excited states

tend to produce smaller values. In addition, a similar

discrepancy at low Q2 has been observed in previous

lattice studies at heavier pion masses between multiple

volumes [26,27], indicating that volume effects may also

need to be investigated to resolve this tension. We plan to

FIG. 14. Our results for Gu−d
A ðQ2Þ (left) and Gu−d

p ðQ2Þ (right) using the plateau method for ts ¼ 1.31 fm (filled blue squares). In the

left panel, the solid blue (orange) line shows the fit to our lattice QCD results extracted from the plateau at ts ¼ 1.31 fm (from the two-

state fit) using Eq. (32). The experimental value of gA is shown with the black asterisk. The purple, red, and green bands are experimental

results for Gu−d
A ðQ2Þ taken from Refs. [59–61], respectively. In the right panel, the open blue squares show the prediction for Gu−d

p ðQ2Þ
assuming pion-pole dominance and using Eq. (34) to extract Gu−d

p ðQ2Þ from our lattice results for Gu−d
A ðQ2Þ shown in the left panel,

together with the corresponding fits, and the blue (orange) band is a fit to the predicted Gu−d
p ðQ2Þ using Gu−d

A ðQ2Þ extracted from the

plateau (two state). The two fits are overlapping. The filled blue squares show Gu−d
p ðQ2Þ extracted directly from the nucleon matrix

element with a fit to Eq. (39) (solid black line) after omitting the two lowest Q2 values. The filled black circles are direct measurements

of Gu−d
p ðQ2Þ from Ref. [5]. The purple, red, and green bands use the experimental results for Gu−d

A ðQ2Þ and the pion pole to infer

Gu−d
p ðQ2Þ.
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investigate both these systematics using a larger volume of

643 × 128 in a future work. For the current analysis we will

discard Gu−d
p ðQ2Þ at the two lowest values of Q2.

In addition to the dipole form, we fit our results for the

axial form factor using the so-called z-expansion [62],

given by

GðQ2Þ ¼
X

kmax

k¼0

akz
k; ð35Þ

where

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þQ2
p

−
ffiffiffiffiffiffiffi

tcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þQ2
p

þ ffiffiffiffiffiffiffi

tcut
p ð36Þ

and tcut ¼ 9m2
π . In Fig. 15 we compare the dipole fit with the

z-expansion fit. For the z expansionwe used kmax ¼ 3, fixing

a0 ¼ gA and imposingGaussian priors for the coefficients ak
for k > 1with widthw ¼ 5maxðja0j; ja1jÞ. Both fit Ansätze
describe the data very well, producing consistent values for

the radius, namely hr2Ai ¼ 0.266ð17Þ fm2 in the case of the

dipole fit and hr2Ai ¼ 0.265ð76Þ fm2 from the z expansion.

A fit using the z expansion ismore suitablewhen precise data

are available at a large number of Q2 values. Given the

statistical errors and relatively few momenta available from

our lattice calculation, the z expansion therefore yields larger
errors than a dipole fit. Given the consistency between the

two fits we thus opt to use the dipole form that yields smaller

errors for all the fits that follow.

PCAC relates the residue of the pion pole to the pion

decay constant fπ , the nucleon mass mN , and the pion-

nucleon coupling constant gπNN as follows [63]:

lim
Q2
→−m2

π

ðQ2 þm2
πÞGu−d

p ðQ2Þ ¼ 4mNfπgπNN : ð37Þ

The relation holds when including the leading correction as

obtained within the chiral perturbative framework used in

Ref. [64]. Using Eq. (34) we can relate gπNN to the axial

form factor as

lim
Q2
→−m2

π

Gu−d
A ðQ2ÞC ¼ 4mNfπgπNN ; ð38Þ

where for this ensemble fπ ¼ 89.80 MeV [6] and mN ¼
0.932ð4Þ GeV [12]. Using Gu−d

A ð−m2
πÞ ¼ 1.234ð35Þð20Þ

obtained from our dipole fit and C ¼ 4m2
N , we find

gπNN ¼ 12.81ð37Þð21Þ, which is consistent with the exper-

imental value gπNN ¼ 13.12ð10Þ measured from pion-

nucleon scattering lengths [65]. Were we to fit directly

the lattice data for Gu−d
p ðQ2Þ to the form

Gu−d
p ðQ2Þ ¼ 1

ð1þQ2=m2
πÞ

Gu−d
p ð0Þ

ð1þQ2=m2
pÞ2

ð39Þ

takingmπ ¼ 130 MeV and omitting the first twoQ2 values

from the fit, we obtain the solid line in Fig. 14, for which

mp ¼ 1.441ð115Þð648Þ GeV consistent with the axial

mass from fitting to the axial form factor and Gu−d
p ð0Þ ¼

165.62ð9.82Þð18.46Þ which is smaller than 4ðm2
N=m

2
πÞgA.

If we then were to use Eq. (37), we would determine

gπNN ¼ 8.50ð51Þð82Þ. This is smaller than the value

determined using pion-pole dominance and our lattice

results for Gu−d
A . Additionally one can compute also the

induced pseudoscalar charge, g�p, defined as

g�p ¼ mμ

2mN

GpðQ2 ¼ 0.88m2
μÞ; ð40Þ

where mμ is the muon mass. We find g�p ¼ 7.47ð30Þð80Þ
using our lattice results for Gu−d

A and pion-pole dominance.

In order to compute the individual light quark axial form

factors one needs, besides the isovector form factors, the

isoscalar combination. In Fig. 16 we illustrate our results

for the connected contributions toGuþd
A ðQ2Þ andGuþd

p ðQ2Þ
using the same analysis as for the isovector. Once more,

excited states are clearly more severe for Guþd
p ðQ2Þ at low

Q2 where the pion pole dominates and tends to decrease its

value leading to a milder Q2 dependence.

In Fig. 17 we show the disconnected contributions to

Guþd
A ðQ2Þ, which are clearly nonzero and negative. The

form factors for the disconnected contributions are obtained

combining final nucleon states with p⃗0 ¼ 0⃗, the same as in

the case of the connected contributions, and in addition all

sink momenta which satisfy p⃗02 ¼ ð2π=LÞ2. Since moreQ2

values are available, we plot, in Fig. 17, the sink-source

separation ts ¼ 1.31 fm and two-state fit methods alone for

better clarity. The disconnected contributions reduce the

value of Guþd
A ðQ2Þ and for zero momentum transfer result

in a value compatible with the experimental one. As already

FIG. 15. Gu−d
A ðQ2Þ extracted from the plateau method at

ts ¼ 1.31 fm, fitted to the dipole form (grey band) and to the

z expansion (blue band).
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mentioned, the disconnected contributions to Guþd
p ðQ2Þ are

particularly large and reduce its value especially at low

values of Q2. Adding the connected and disconnected

contributions obtained using p⃗0 ¼ 0⃗ for which common Q2

values are available yields the result shown in Fig. 18. We

note that, due to the fact that the disconnected part is

computed with much higher statistics as compared to the

connected, the error in the total quantity is computed by

adding the individual errors in quadrature. In Fig. 19 we

show the resulting dipole fits to the isoscalar form factor

Guþd
A ðQ2Þ using Eq. (32) for the connected, disconnected,

and total values. The parameters extracted are collected in

Table IV. The axial mass extracted by fitting Guþd
A ðQ2Þ is

muþd
A ¼ 1.736ð244Þð374Þ GeV. Although the central value

is larger, within the large statistical and systematic errors it

is in agreement with the one extracted for the isovector

case. In Table IV we also list the corresponding axial radii,

obtained from the dipole masses via Eq. (33).

For GpðQ2Þ we fit using Eq. (34) for the connected and

disconnected separately, allowing C and mp to vary. We

obtain the curves shown in Fig. 19 and consistent pole

masses, namely muþd;conn
p ¼ 0.324ð22Þð12Þ GeV for the

connected and muþd;disc
p ¼ 0.331ð81Þð36Þ GeV for the

disconnected. We show the total isoscalar GpðQ2Þ in

Fig. 19. As can be seen the errors are large, especially

in the smallQ2 region, and do not allow us to reliably quote

a value for the pole mass of GpðQ2Þ.
In Fig. 20 we show the strange and the charm form

factors, which only take disconnected contributions. For

the strangequark contributions,weuse sinkmomenta p⃗0 ¼ 0⃗

and p⃗02 ¼ ð2π=LÞ2, while for the charm quark where errors

are large only the p⃗0 ¼ 0⃗ case yields reasonable results. We

FIG. 16. Results for the connected contribution to Guþd
A ðQ2Þ (left) and Guþd

p ðQ2Þ (right). The notation is the same as in Fig. 13.

FIG. 17. Disconnected contribution toGuþd
A ðQ2Þ (left) and Guþd

p ðQ2Þ (right). We combine results obtained using sink momentum that

satisfy p⃗0 ¼ 0⃗ and p⃗02 ¼ ð2π=LÞ2. The notation is the same as in Fig. 13.
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observe a very good signal for Gs
AðQ2Þ up to momentum

transfer Q2 ¼ 0.5 GeV2. As already noted our results from

the plateaumethodwith ts ¼ 1.31 fm are consistent with the

two-state fit.Gs
AðQ2Þ can be well fitted to a dipole form, and

we obtain ms
A ¼ 0.921ð228Þð90Þ GeV. The results for

Gs
AðQ2Þ are compatible with the experimental values mea-

sured for Q2 > 0.45 GeV2, which, however, carry large

errors [66].Gc
AðQ2Þ is noisier in particular for the larger time

separations. For the smallest source-sink separation of

ts ¼ 0.94 fm we obtain a nonzero negative value for the

FIG. 18. Total contribution to Guþd
A ðQ2Þ (left) and Guþd

p ðQ2Þ (right). The notation is the same as in Fig. 13.

FIG. 19. Results for Guþd
A ðQ2Þ (left) and Guþd

p ðQ2Þ (right). We show their connected contributions (squares, upper panels),

disconnected contributions (crosses, middle panels), and the total (triangles, lower panels). The solid green triangles are obtained by

adding connected and disconnected contributions with sink momentum p⃗0 ¼ 0⃗ for which lattice results for both are available. The open

green triangles have been computed by interpolating the connected contributions to the additional Q2 values available for the

disconnected. The solid curves and their associated error bands have been extracted by fitting to Eqs. (32) and (34), respectively. The

horizontal dashed lines are drawn through zero.
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whole range ofQ2. However, for larger values of ts the results
become noisy, forbidding us to reach a conclusion on excited

state contributions. ForGs
pðQ2Þweobtain a nonzeronegative

contribution, which is about 6 times smaller in magnitude

compared to the disconnected Guþd
p ðQ2Þ. In the case of

Gc
pðQ2Þ results are compatiblewith zero even for the smallest

source-sink time separation. We do not display the results

produced with the summation method since these are very

noisy. In Fig. 21 we show fits to Gs
AðQ2Þ using the dipole

form of Eq. (32) andGs
pðQ2Þ using Eq. (34). ForGc

pðQ2Þ the
results are compatiblewith zero and no fit is attempted. Axial

masses and corresponding radii extracted from the dipole fits

are tabulated in Table IV. All the results for the form factors

are tabulated in the Tables V–IX.

C. Comparison with other studies

The axial and induced pseudoscalar form factors have

been studied by several lattice QCD groups using recent

dynamical simulations. Preliminary lattice QCD results

using an ensemble with a close to physical pion mass has

been presented by the PNDME Collaboration [67]. They

use a mixed action approach of Nf ¼ 2þ 1þ 1 highly

improved staggered quark (HISQ) staggered fermions and

clover-improved Wilson valence fermions. This action has

OðaÞ lattice artifacts, which are shown to be sizable for a ¼
0.09 fm as compared to their results at a ¼ 0.06 fm. Their

preliminary results onGu−d
A using an ensemble at pion mass

mπ ¼ 130 MeV and a ¼ 0.06 fm are in agreement with

ours. This shows that lattice artifacts for ourOðaÞ improved

action computed with a ¼ 0.0938 fm are small. On the

other hand, their results onGu−d
p ðQ2Þ for the same ensemble

are larger at lowQ2 values than ours. Given that their spatial

box length is L ∼ 5.76 fm as compared to L ∼ 4.51 fm of

our lattice, these preliminary results may indicate that

TABLE IV. Extracted values for the axial masses and corre-

sponding axial radii using dipole fits to Eq. (32) with their

associated χ2=d:o:f. The central value and statistical error are

from fits to results using the plateau method at ts ¼ 1.31 fm. The

first error is statistical while the second is systematic due to

excited states, taken as the difference between the central value

and the value extracted from the two-state fit.

Form factor mA [GeV] hr2Ai [ fm2] χ2=d:o:f

Gu−d
A 1.322(42)(17) 0.266(17)(7) 0.35

Guþd
A 1.736(244)(374) 0.155(43)(96) 0.64

Gu
A 1.439(28)(114) 0.225(28)(40) 0.61

Gd
A 1.243(49)(133) 0.301(24)(55) 0.42

Gs
A 0.921(228)(90) 0.549(272)(93) 0.30

FIG. 20. Gs
AðQ2Þ and Gc

AðQ2Þ (left) and Gs
pðQ2Þ and Gc

pðQ2Þ (right) versus Q2. The notation is the same as in Fig. 13.
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Gu−d
p ðQ2Þ suffers from sizable finite volume effects.

Additional lattice QCD results on the isovector axial form

factors at higher than physical pion mass have been

computed recently by two groups: LHPC has obtained

results on the isovector axial form factors using Nf ¼
2þ 1 clover-improved Wilson fermions with mπ ¼
317 MeV [57], which includes the isoscalar form factors

and using a mixed action formπ ¼ 356 MeV [68]. CLS has

presented preliminary results using an ensemble of Nf ¼ 2

clover fermions at a pion mass of mπ ∼ 340 MeV [69]. In

what follows we restrict ourselves to showing published

results only.

In Fig. 22 we compare our results for the isovector axial

form factors to the publishedLHPC results, which have been

produced usingNf ¼ 2þ 1Asqtad staggered sea quarks on

a 283 × 64 lattice and domain-wall valence fermions for

mπ ¼ 356 MeV [68]. Our results for Gu−d
A at the physical

point show a steeperQ2 dependence leading to a larger value

of gA. For G
u−d
p ðQ2Þ, the LHPC results tend to be larger in

particular at the smallestQ2 < 0.2 GeV2. The length of their

lattice is L ¼ 3.36 fm yielding Lmπ ∼ 6 as compared to

Lmπ ∼ 3.3 fm for our lattice. This may again point to finite

volume effects that need to be investigated.

VII. CONCLUSIONS

Results on the nucleon axial form factors are presented

for one ensemble of two degenerate twisted mass clover-

improved fermions tuned to reproduce approximately the

physical value of the pion mass. Using improved techniques

we evaluate both connected and disconnected contributions

to both axial and induced pseudoscalar form factors. Our

FIG. 21. Fits to Gs
AðQ2Þ using Eq. (32) (left) and Gs

pðQ2Þ using Eq. (34) (right).

FIG. 22. Comparison for the isovector axial (left) and induced pseudoscalar (right) form factors with the results from LHPC. The red

squares show the results from this work and the blue circles results from LHPC at mπ ¼ 356 MeV [68]. The dotted red error bar shows

our systematic error.
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study includes an investigation of excited state effects by

computing the nucleon three-point functions at several

sink-source time separations. Lattice matrix elements are

nonperturbatively renormalized by computing both the

singlet and the nonsinglet renormalization functions.

We find that the isovector axial form factor Gu−d
A ðQ2Þ is

described well by a dipole form with an axial mass

mA ¼ 1.322ð42Þð17Þ GeV, which is larger than the histori-
cal world average but is in agreement with a recent value

produced from the MiniBooNE experiment [60]. We can

relate, via PCAC, the axial form factor to the πN coupling

constant. We find that gπNN ¼ 12.81ð37Þð21Þ consistent

with the experimental value of gπNN ¼ 13.12ð10Þ [65].

Similarly, we can deduce Gu−d
p ðQ2Þ from our results on

Gu−d
A ðQ2Þ assuming pion pole dominance yielding agree-

ment with experiment. However, a direct extraction of the

isovector induced pseudoscalar form factor has a weakerQ2

dependence as compared to what is expected from pion pole

dominance. Thus, although one can describe well the data

using a pion pole behavior for its Q2 dependence, one

extracts a pole mass larger than the ensemble value of

mπ ¼ 130 MeV. GpðQ2Þ at low Q2 is shown to have more

severe excited states effects, which tend to lower its value.

Comparison to preliminary lattice results obtained on a

larger volume [67] indicate that volume effects may also

increase its value at low Q2. We plan to check for such

volume effects in a future analysis using a larger lattice.

An important conclusion of this work is that discon-

nected contributions to both isoscalar and strange form

factors are non-negligible. For the isoscalar guþd
A these

contributions need to be taken into account to bring

agreement with the experimental value. For Guþd
p ðQ2Þ

the disconnected contributions are particularly large and

of the same order as the connected part but with the

opposite sign leading to a weaker Q2 dependence for the

isoscalar pseudoscalar form factor. Both strange form

factors Gs
AðQ2Þ and Gs

pðQ2Þ are found to be negative

and nonzero, with the magnitude of Gs
AðQ2Þ of the same

order as that for the light disconnected contributions. Both

charm form factors tend to be negative but given the large

errors they remain compatible with zero.
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APPENDIX: TABLE OF RESULTS

TABLE V. Our values for the axial form factor for various values ofQ2. The first column givesQ2 in GeV2, the second is the isovector

axial form factor, the third is the connected contribution to the isoscalar axial form factor, the fourth column gives the total value of the

isoscalar, while the fifth and the sixth columns are the total contributions from the up and down quarks separately.

Q2 [GeV2] Gu−d
A Guþd

A ðConnÞ Guþd
A ðTotÞ Gu

AðTotÞ Gd
AðTotÞ

0.0000 1.212(33)(22) 0.595(29)(1) 0.445(35)(18) 0.827(30)(5) −0.380ð15Þð23Þ
0.0753 1.110(20)(16) 0.551(17)(11) 0.439(23)(20) 0.772(18)(2) −0.339ð12Þð16Þ
0.1477 1.035(14)(17) 0.518(14)(10) 0.430(18)(44) 0.728(13)(12) −0.308ð10Þð29Þ
0.2174 0.970(18)(10) 0.484(18)(13) 0.389(27)(33) 0.676(19)(8) −0.294ð13Þð23Þ
0.2849 0.911(20)(5) 0.458(17)(1) 0.377(31)(45) 0.641(20)(29) −0.270ð17Þð29Þ
0.3502 0.855(18)(9) 0.438(14)(1) � � � � � � � � �
0.4135 0.802(20)(9) 0.413(14)(3) � � � � � � � � �
0.5351 0.701(25)(21) 0.385(17)(23) � � � � � � � � �
0.5936 0.678(23)(18) 0.364(15)(1) � � � � � � � � �
0.6506 0.636(28)(53) 0.321(18)(17) � � � � � � � � �
0.7064 0.588(28)(65) 0.289(24)(35) � � � � � � � � �
0.7609 0.573(50)(45) 0.307(42)(29) � � � � � � � � �
0.8143 0.520(30)(73) 0.265(23)(7) � � � � � � � � �
0.8666 0.533(37)(52) 0.301(24)(22) � � � � � � � � �
0.9683 0.096(1.665)(161) 0.056(470)(169) � � � � � � � � �
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TABLE VI. Our values for the induced pseudoscalar form factor for various values of Q2. The notation is the same as in Table V.

Q2 [GeV2] Gu−d
p Guþd

p ðConnÞ Guþd
p ðTotÞ Gu

pðTotÞ Gd
pðTotÞ

0.0753 17.766(879)(1.032) 10.155(874)(878) 4.045(1.491)(1.401) 10.817(990)(909) −7.016ð725Þð66Þ
0.1477 12.788(417)(739) 6.893(324)(125) 2.338(651)(915) 7.519(415)(148) −5.410ð340Þð729Þ
0.2174 9.588(391)(441) 4.917(371)(269) 1.455(713)(460) 5.394(452)(181) −4.218ð360Þð204Þ
0.2849 6.923(326)(194) 3.977(276)(264) 1.750(679)(745) 4.314(384)(297) −2.673ð360Þð626Þ
0.3502 5.636(220)(56) 3.146(183)(43) � � � � � � � � �
0.4135 4.801(191)(310) 2.557(148)(107) � � � � � � � � �
0.5351 3.214(161)(384) 1.954(157)(38) � � � � � � � � �
0.5936 2.850(147)(107) 1.741(108)(188) � � � � � � � � �
0.6506 2.330(164)(777) 1.544(136)(632) � � � � � � � � �
0.7064 2.060(156)(874) 1.116(150)(140) � � � � � � � � �
0.7609 2.107(248)(168) 1.324(220)(44) � � � � � � � � �
0.8143 1.669(115)(665) 0.974(127)(273) � � � � � � � � �
0.8666 1.552(135)(202) 1.058(122)(91) � � � � � � � � �
0.9683 0.278(6.813)(159) −0.013ð2.984Þð609Þ � � � � � � � � �

TABLE VII. Our values for the disconnected contributions to Guþd
A and Guþd

p as a function of Q2.

Q2 [GeV2] Guþd
A ðDiscÞ Guþd

p ðDiscÞ
0.0000 −0.150ð20Þð19Þ � � �
0.0647 −0.096ð33Þð10Þ −6.264ð2.584Þð720Þ
0.0753 −0.111ð13Þð16Þ −6.160ð969Þð392Þ
0.0754 −0.127ð14Þð9Þ −7.947ð1.147Þð184Þ
0.1329 −0.083ð19Þð13Þ −4.702ð981Þð1Þ
0.1477 −0.088ð12Þð25Þ −4.555ð565Þð579Þ
0.1482 −0.101ð15Þð15Þ −5.058ð621Þð138Þ
0.1538 −0.100ð10Þð19Þ −4.356ð407Þð303Þ
0.1990 −0.105ð29Þð27Þ −3.611ð882Þð37Þ
0.2176 −0.095ð20Þð27Þ −3.462ð608Þð12Þ
0.2292 −0.095ð14Þð27Þ −2.838ð418Þð483Þ
0.2331 −0.105ð63Þð33Þ −0.862ð1.771Þð1.427Þ
0.2851 −0.081ð25Þð34Þ −2.227ð621Þð698Þ
0.2866 −0.088ð24Þð23Þ −2.405ð570Þð406Þ
0.3075 −0.071ð16Þð26Þ −2.251ð389Þð275Þ

TABLE VIII. Our values for the Gs
A and Gs

p as a function of Q2.

Q2 [GeV2] Gs
A Gs

p

0.0000 −0.0427ð100Þð93Þ � � �
0.0647 −0.0257ð148Þð101Þ −0.812ð486Þð99Þ
0.0753 −0.0363ð63Þð44Þ −1.183ð561Þð329Þ
0.0754 −0.0364ð75Þð42Þ −0.815ð426Þð354Þ
0.1329 −0.0313ð94Þð93Þ −0.925ð249Þð72Þ
0.1477 −0.0289ð62Þð51Þ −0.975ð278Þð24Þ
0.1482 −0.0281ð67Þð15Þ −0.798ð181Þð55Þ
0.1538 −0.0297ð46Þð38Þ 0.124(412)(158)
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0.2927 0.0096(183)(201) −0.370ð169Þð212Þ
(Table continued)
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