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The D-term is one of the conserved charges of hadrons defined as the forward limit of the
gravitational form factor D(t). We calculate the nucleon’s D-term in a holographic quantum
chromodynamics model in which the nucleon is described as a soliton in five dimensions. We
show that the form factor D(t) is saturated by the exchanges of infinitely many 0++ and 2++

glueballs dual to transverse-traceless metric fluctuations on the Wick-rotated AdS7 black
hole geometry. We refer to this phenomenon as “glueball dominance,” in perfect analogy
to the vector meson dominance of the electromagnetic form factors. However, the value
at vanishing momentum transfer D(t = 0) can be interpreted as due to the exchange of
pairs of pions and infinitely many vector and axial-vector mesons without any reference to
glueballs. We find that the D-term is slightly negative as a result of a cancellation between
the isovector and isoscalar meson contributions.
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1. Introduction
Nucleons (protons and neutrons) have a number of conserved charges. They have mass of about
1 GeV associated with translational invariance. They have spin 1/2 associated with rotational in-
variance. They have electric charges and magnetic moments from electromagnetic gauge invari-
ance. They have a baryon number of +1 associated with the global U(1) symmetry. There are
also approximately conserved charges related to isospin (flavor) symmetry. All these charges are
well known and very accurately measured, and their values are well documented in textbooks
and the literature [1]. There is, however, one exactly conserved charge, the so-called D-term,
whose value is presently unknown. The D-term is the forward limit of one of the gravitational
form factors D(t = −k2) defined through the off-forward hadronic matrix element of the quan-
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tum chromodynamics (QCD) energy momentum tensor 〈p′|Tμν |p〉 (k = p′ − p); see Ref. [2] for
a recent review. It was first discovered in the 1960s [3,4] but has kept a remarkably low-profile
status known only to a subset of theorists in the nuclear physics community. The situation has
changed drastically in the past several years, mainly fueled by the anticipation of the future
Electron–Ion Collider (EIC) experiments [5–7] dedicated to the study of nucleon structure. In
particular, the first attempt to extract the D-term from experimental data has been made [8].

The value of the nucleon D-term has long remained unknown because there is no known way
to directly measure it. This would require a controlled experimental setup to scatter a nucleon
from gravitons, which is possible only in thought experiments. Yet, there are indirect ways to
measure the D-term in lepton–nucleon scattering. The price to pay, however, is that one can
only access the quark and gluon components separately from different experiments,

D = Du + Dd + Ds + Dg + · · · , (1)

where Du is from the up-quark part of the energy momentum tensor, Dg is from the gluon
part, etc. Each component depends on the renormalization scale, and only the sum is
renormalization-group invariant. The light-quark contribution Du,d can in principle be accessed
in deeply virtual Compton scattering (DVCS) by separately measuring the real and imaginary
parts of the Compton form factors [9,10]. The gluon contribution Dg, on the other hand, can
be accessed in near-threshold photo- and lepto-production of heavy quarkonia such as J/ψ and
ϒ [11–18] (see however, Refs. [19–23]). Similarly, the strangeness contribution Ds can be probed
in near-threshold φ-meson lepto-production [14]. Alternatively, these components can also be
calculated in lattice QCD simulations; see, for example, Refs. [24] and references therein.

Although the magnitude and even the sign of the D-term are unknown, the general expec-
tation is that it is negative. This is based on an analogy to the mechanical stability analysis of
classical systems. Being the spatial component of the energy momentum tensor, after Fourier-
transforming to the coordinate space the D-term form factor may be associated with the “shear”
and “pressure,”

Ti j =
(

rir j

r2
− δi j

3

)
s(r) + δi j p(r), (2)

of a classical spherical system [2,25]. A positive D-term would imply overall positive outward
force, making the system unstable. We note, however, that there is no field-theoretical proof of
the connection between the negativity of the D-term and the stability of hadronic bound states.
Besides, the term “pressure” should not be taken literally in its usual sense in thermodynamics.

In this paper we calculate the (total) nucleon D-term in the chiral limit using gauge/string du-
ality based on a holographic QCD model proposed in Refs. [26,27]. The model is “top-down,”
meaning that it has been directly derived from string theory, and is realized in a D4/D8 brane
configuration in type IIA superstring theory. As such, it does not rely on ad hoc assumptions
and allows for a systematic truncation and/or inclusion of various higher-order corrections
(stringy effects, 1/Nc corrections, etc.). In this model the baryons are realized as solitons in
a five-dimensional gauge theory [26,28–31], and various properties, including electromagnetic
form factors [32–34], have been investigated using this description. As a matter of fact, holo-
graphic approaches are particularly suited for the study of the gravitational form factors be-
cause one can literally exchange gravitons, albeit in extra dimensions. Indeed, there have been
previous attempts to compute the D-term in “bottom-up” holographic models [19,35,36]. How-
ever, the outcomes of these studies are rather mixed: Ref. [35] found that the D-term was simply
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zero; Ref. [19] argued that the D-form factor was proportional to the A-form factor (defined in
Eq. (4)), but the proportionality constant remained undetermined. The latter work has recently
been revisited in Refs. [18,36], where the proportionality constant was found to be subleading in
the 1/Nc expansion. There is also work based on an AdS/QCD-inspired quark–diquark model
[37], but holography was not used in the actual calculations. In view of this, it is worthwhile to
see what top-down holographic models have to say about the D-term. Our model is sophisti-
cated enough to accommodate infinite towers of meson, baryon, and glueball resonances. We
shall be particularly interested in how these degrees of freedom contribute to the D-term.

Our calculation bears some resemblance to those in the chiral soliton model and the Skyrme
model [38–41]. This is because a baryon in our model is described as a soliton (an instanton)
in five dimensions, similarly to the Skyrmion in four dimensions. In fact, it is known that one
can derive the Skyrme model from our model [26–28].

In the next section we give a brief review of the gravitational form factors in QCD. In Sect. 3
we introduce our model and take a first look at the energy momentum tensor in this model.
In Sect. 4, we calculate the D-term in the “classical” approximation by Fourier-transforming
the soliton energy momentum tensor. Then, in Sect. 5, we discuss the form factor D(t) using
holographic renormalization and establish its connection to scalar and tensor glueballs in QCD.
Finally, in Sect. 6 we conclude with physics interpretations and future perspectives.

2. Gravitational form factors
In this section we quickly introduce the nucleon gravitational form factors and set up our no-
tation. More details can be found in a recent review [2]. In accordance with the string theory
literature, we use the “mostly plus” metric ημν = (−1, 1, 1, 1). The QCD energy momentum
tensor then takes the form

T μν = F μα
a F ν

aα − ημν

4
F αβ

a F a
αβ + ψ̄γ (μDν)ψ, (3)

where a = 1, 2, . . . , N2
c − 1 and A(μBν) ≡ 1

2 (AμBν + AνBμ) denotes symmetrization. ψ̄ =
ψ†β = iψ†γ 0, and the gamma matrices satisfy the Dirac algebra γ μγ ν + γ νγ μ = 2ημν . The
nucleon gravitational form factors are defined by the off-forward matrix element of the energy
momentum tensor [3,4],

〈p′|T μν |p〉 = ū(p′)

[
iγ (μPν)A(t) + iP(μσ

ν)
ρ kρ

2M
B(t) + kμkν − ημνk2

4M
D(t)

]
u(p), (4)

where k = p′ − p, t = −k2 = k2
0 − �k2, and Pμ = 1

2 (pμ + p′μ). M is the nucleon mass. The nu-
cleon spinors are normalized as ū(p)u(p) = 2M. Equation (4) is the most general parameter-
ization given that Tμν is symmetric and conserved: ∂μTμν ∼ kμTμν = 0. Energy conservation
also implies that the three form factors A, B, and D are renormalization-group invariant. Their
values at t = 0 are of particular interest. It is known that A(t = 0) = 1 from momentum con-
servation and B(t = 0) = 0 from angular momentum conservation. However, the value D(t =
0) is not constrained by any symmetry, and is currently unknown. Our main goal in this paper
is to study D(t) in the holographic QCD model proposed in Refs. [26,27].

We shall be working in the Breit frame where �p ′ = �k/2 = −�p, so that �P = 0 and k0 = p′0 −
p0 = 0. In this frame, ū(p′)u(p) = 2p0δs′s = 2

√
M2 + �k2/4 δs′s, where s′, s = ± 1

2 denote the spin
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states of the nucleon, and

〈p′|T 00|p〉
2p0

=
(

AM − B�k2

4M
+ D�k2

4M

)
δs′s,

〈p′|T 0i|p〉
2p0

= A + B
4

εi jk(−ik j )σ k
s′s,

〈p′|T i j |p〉
2p0

= D
4M

(kik j − �k2δi j )δs′s (i, j = 1, 2, 3). (5)

Therefore, the D-term can be obtained by reading off the coefficient of kikj in 〈Tij〉.
For a later discussion, following Ref. [11], let us also introduce the “transverse-traceless” (TT)

part T μν

TT of the energy momentum tensor. It is defined as the part of Tμν that satisfies the
conditions ∂μT μν

TT = (TTT)μμ = 0. Explicitly,

T μν

TT = T μν + 1
3

(
∂μ∂ν

∂2
− ημν

)
T μ

μ . (6)

Equation (4) can then be rewritten as

〈p′|T μν |p〉 = ū(p′)

[
iγ (μPν)A + iP(μσ

ν)
ρ kρ

2M
B − M

3

(
kμkν − ημνk2) (

A
k2

− B
4M2

)]
u(p)

+ M
3

(
kμkν − ημνk2) (

A
k2

− B
4M2

+ 3D
4M2

)
ū(p′)u(p). (7)

The first line on the right-hand side is the matrix element of T μν

TT and the second line is from the
trace part. Note that the structure kμkν − k2ημν characteristic of the D-term is now present in
both parts.

Before leaving this section, for the convenience of the reader we note the definition of the
gravitational form factors in the “mostly minus” metric ημν = (1, −1, −1, −1) which is used in
most QCD literature. The gamma matrices in the two conventions are related as

γ
μ

mostly minus = iγ μ

mostly plus. (8)

With the QCD energy momentum tensor in this metric,

T μν = −F μαF ν
α + ημν

4
F αβFαβ + ψ̄ iγ (μDν)ψ, (9)

(ψ̄ = ψ†γ 0), we now write

〈p′|T μν |p〉 = ū(p′)

[
γ (μPν)A(t) + iP(μσ

ν)
ρ kρ

2M
B(t) + kμkν − ημνk2

4M
D(t)

]
u(p), (10)

where t = k2 = k2
0 − �k2.

3. Nucleon in holographic QCD
The two-flavor (Nf = 2) meson–baryon sector of our model [26,27] is defined by a U(2) gauge
theory in a curved five-dimensional spacetime (xμ = 0,1,2,3, z) supplemented with the Chern–
Simons (CS) term

S = −κ

∫
d4xdz tr

[
1
2

h(z)F 2
μν + k(z)F 2

μz

]
− κ

2

∫
d4xdz

(
1
2

h(z)F̂ 2
μν + k(z)F̂ 2

μz

)
+ SCS, (11)

where

h(z) = (1 + z2)−1/3, k(z) = 1 + z2 (−∞ < z < ∞) (12)
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are the warp factors along the fifth dimension. Fμν = F a
μν

τ a

2 , Fμz = F a
μz

τ a

2 are the SU(2) field
strength tensors (τ a = 1,2,3 being the Pauli matrices normalized as tr[τ aτ b] = 2δab), and F̂μν is
the U(1) field strength tensor. The Lorentz indices of these gauge fields are raised and lowered
by the flat five-dimensional metric (−1, 1, 1, 1, 1). The Chern–Simons term SCS prescribes the
interaction between the SU(2) and U(1) fields, but its explicit form is not needed for the present
discussion. The parameter

κ = λNc

216π3
(13)

is proportional to the number of colors Nc and the ’t Hooft coupling λ = g2Nc. All dimension-
ful scales have been made dimensionless by appropriately rescaling by the model’s only mass
parameter MKK (e.g., xμ → x

′μ = xμMKK). These parameters was determined in Refs. [26,27]
by fitting the ρ-meson mass and the pion decay constant

MKK = 949 MeV, λ = 16.63 (κ = 0.00745). (14)

Mesons with isospin quantum numbers π , ρ, a1, … are described by the fluctuations of the
SU(2) gauge field Fμν . We consider the chiral limit, so the pions are massless. Iso-singlet mesons
ω, η′, … are described by the U(1) field. A baryon is realized by a static (independent of t = x0)
soliton-like configuration of Fμν which satisfies the equation of motion of the five-dimensional
gauge theory in Eq. (11) [26,30]. This is charged under the U(1) gauge field Âμ through the CS
term, and the charge is identified with the baryon number. At strong coupling λ 
 1 and in
the small-z region where the metric is approximately flat, h(z) ≈ k(z) ≈ 1, the solution is simply
given by the BPST instanton [42] in four-dimensional Euclidean space (xi = 1,2,3, z) [30]:

Ai = (z − Z)τi + (xm − Xm)εminτn

ξ 2 + ρ2
, Az = −(�x − �X ) · �τ

ξ 2 + ρ2
,

Fi j = ∂iA j − ∂ jAi + i[Ai, Aj ] = 2ρ2

(ξ 2 + ρ2)2
εi jaτ

a, Fiz = − 2ρ2

(ξ 2 + ρ2)2
τi,

Â0 = 27π

λ

2ρ2 + ξ 2

(ρ2 + ξ 2)2
, (15)

where ξ 2 ≡ (�x − �X )2 + (z − Z)2. ρ is the instanton “size” and ( �X , Z) denotes the “center” of
the instanton. When the soliton is quantized, these parameters, together with the “orientation”
of the instanton in the flavor SU(2) space, Fμν → VFμνV−1, are promoted to time-dependent
operators (for example, ρ → ρ̂(t)), a procedure known as the collective coordinate quantiza-
tion. While this has been done in previous applications of the model [30,32], in this work we
shall treat them as c-numbers, leaving their quantum treatment for future work. This means that
we eventually set �X = 0 (without loss of generality) and employ the value Z = 0 which mini-
mizes the soliton potential in the Z-direction [30]. It should be kept in mind that, by neglecting
quantization, we are effectively treating the nucleon as a scalar particle because the quantiza-
tion of the SU(2) orientation is what makes the soliton a spin-1/2 particle. The D-form factor
also exists for scalar hadrons, but the B-form factor (see Eq. (4)) does not. In order to compute
the latter, soliton quantization is crucial.

When |z| � 1, the flat space approximation h ≈ k ≈ 1 breaks down. Exact analytical solutions
in this region are no longer available. However, when |z| 
 1, the following approximate solution
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has been constructed [32] (∂ i ≡ ∂/∂xi):

Â0 ≈ −108π3

λ
G,

Ag
i ≈ 2π2ρ2τ a(εial∂l + δia∂Z )G,

Ag
z ≈ 2π2ρ2τ a∂aH,

F g
iz ≈ 2π2ρ2τ a

[
∂i∂aH − δia∂z∂ZG − εiak∂k∂zG

− 4π2ρ2 (δia∂kG∂kH − ∂aG∂iH − εiac∂ZG∂cH )
]
,

F g
i j ≈ 2π2ρ2τ a

[(
ε jal∂i∂l − εial∂l∂ j − δia∂ j∂Z + δ ja∂i∂Z

)
G

− 4π2ρ2 (
εai j (∂ZG)2 + εi jl∂aG∂l G + δia∂ jG∂ZG − δ ja∂iG∂ZG

)]
, (16)

in the so-called singular gauge,

A → Ag = g−1Ag − ig−1dg, g = z − Z − i(�x − �X ) · �τ
ξ

. (17)

In Ref. [32], the non-Abelian commutator terms in F g
iz and F g

i j have been dropped since they are
negligible when |z| 
 1. Here we have restored them for a later purpose. The Green functions
G(|�x − �X |, z, Z) and H (|�x − �X |, z, Z) satisfy (∇2

x ≡ ∂i∂i)

h(z)∇2
xG + ∂z(k(z)∂zG) = δ(z − Z)δ(�x − �X ),

∇2
xH + ∂z

(
h−1(z)∂z(k(z)H )

)
= 1

k(z)
δ(z − Z)δ(�x − �X ). (18)

In order to compute the D-term, or more generally the gravitational form factors, it is desir-
able to have an approximate solution which smoothly interpolates the above solutions in the
two limits |z|  1 and |z| 
 1. Such a solution can be readily found for the U(1) part. We
start with the small-z region and consider the following equation of motion for Â0 in the SU(2)
instanton background:

h(z)∇2
xÂ0 + ∂z(k(z)∂zÂ0) = −648π

λ

ρ4

(ξ 2 + ρ2)4
, (19)

or in the Fourier space,

−�k2h(z)Â0 + ∂z(k(z)∂zÂ0) = −27π3ρ4e−|�k|
√

ρ2+z2

λ(ρ2 + z2)5/2

(
3 + 3|�k|

√
ρ2 + z2 + �k2(ρ2 + z2)

)
. (20)

In the flat space approximation h(z) ≈ k(z) ≈ 1, the solution regular at ξ = 0 is given by Eq.
(15). The boundary conditions are such that Â0(z → ∞) = 0 and the solution is smooth at z =
0, namely, ∂zÂ0(z)|z=0 = 0. When |z| 
 1, the right-hand side of Eq. (19) is negligible, and the
equation becomes identical to that for G in Eq. (18). Therefore, the solution of Eq. (19) with
the said boundary conditions smoothly interpolates the solutions at |z|  1 and |z| 
 1. We
will use it as an approximate solution in the whole region 0 < |z| < ∞.

The situation is more complicated for the SU(2) part. The asymptotic solution in Eq. (16)
with Eq. (18) has been obtained by neglecting the nonlinear terms in the Yang–Mills equation.
In the small-instanton regime ρ  1, or equivalently, the strong coupling regime λ 
 1 (note the
correspondence ρ ∼ 1/

√
λ [30]), the large-z and small-z solutions have an overlapping region

of validity ρ  z  1 where they can be smoothly matched [32]. We extrapolate G and H to
small z by solving Eq. (16) with the instanton configuration in Eq. (15) rotated to the singular

6/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/9/093B06/6674235 by guest on 18 Septem

ber 2023



PTEP 2022, 093B06 M. Fujita et al.

gauge Aμ → Ag
μ and substituted into the left-hand side. This gives

G(x, z) = H (x, z) = 1
4π2ρ2

ln
ξ 2

ξ 2 + ρ2
(|z| � 1), (21)

with

(∇2
x + ∂2

z )

(
G
H

)
= ρ2

π2ξ 2(ξ 2 + ρ2)2
. (22)

In the ρ → 0 limit, G, H reduce to the flat space Green function −1
4π2ξ 2 in four dimensions.

Regarding the right-hand side of Eq. (22) as a regularized form of δ(�x − �X )δ(z − Z), we are
led to consider the equations

h(z)∇2
xG + ∂z(k(z)∂zG) = ρ2

π2ξ 2(ξ 2 + ρ2)2
,

∇2
xH + ∂z

(
h−1(z)∂z(k(z)H )

)
= h(z)

k(z)
ρ2

π2ξ 2(ξ 2 + ρ2)2
(23)

instead of Eq. (18).1 Equation (23) is to be solved with boundary conditions G, H → 0 as
|z| → ∞ and ∂zG|z = 0 = ∂zH|z = 0 = 0. At large z the right-hand side is negligible, and the
equation reduces to Eq. (18). At small z, G and H smoothly connect to the instanton solution
by construction. Therefore, we can use Eq. (16) with Eq. (23) as an approximate solution in the
whole range 0 < |z| < ∞ even when ρ is of order unity, provided the non-Abelian commutator
terms in Fij and Fiz in Eq. (16) are kept. To go beyond this approximation, one has to numerically
solve the Yang–Mills equation in the curved background as was done in Refs. [43–45].

Let us now take a first look at the energy momentum tensor in this model. We can write down
the following “classical” energy momentum tensor in four dimensions,

T cl
μν (x) = 2κ

∫ ∞

−∞
dz tr

[
h(z)FμρF ρ

ν + k(z)FμzFνz − ημν

2

(
h(z)

2
F 2

αβ + k(z)F 2
μz

)]
+ κ

∫ ∞

−∞
dz

[
h(z)F̂μρF̂ ρ

ν + k(z)F̂μzF̂νz − ημν

2

(
h(z)

2
F̂ 2

αβ + k(z)F̂ 2
μz

)]
, (24)

by varying the action in Eq. (11) with respect to the flat metric ημν [46]. The Chern–Simons term
does not contribute since it is independent of the metric. When evaluated on-shell, Eq. (24) is
conserved,

∂μT cl
μν = 0. (25)

We have explicitly verified Eq. (25) using the equation of motion derived in Ref. [32].
We expect that Eq. (24) is a reasonable approximation to the full result when the baryon is

treated as heavy (at least parametrically) as in large-Nc QCD. (In Sect. 5 we discuss the cor-
rections to this formula due to glueballs.) In particular, the nucleon mass can be calculated
as

M =
∫

d3xT cl
00(�x) = κ

∫
d3xdztr

[
h(z)

2
F 2

i j + k(z)F 2
iz

]
+ κ

2

∫
d3xdz

[
h(z)(∂iÂ0)2 + k(z)(∂zÂ0)2] , (26)

1Differently from Eq. (18), we have introduced h(z) on the right-hand side of the equation for H for a
technical reason to be explained in the next section. The choice of the inhomogeneous term is somewhat
arbitrary in our construction of an approximate solution.
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where we have already substituted the classical configuration A0 = Âi = Âz = 0. Equation (26)
is consistent with Eq. (3.18) of [30] after using the equation of motion. The latter expression
is simply the minus of the on-shell action

∫
dtM = −S (this time including the Chern–Simons

term), which is appropriate for a classical, heavy particle at rest. For the instanton solution, the
integrals in Eq. (26) can be explicitly evaluated and lead to the structure [30]

M = 8π2κ

(
1 + O(ρ2) + O

(
1

λ2ρ2

))
. (27)

(Remember the mass is measured in units of MKK.) The leading term 8π2κ ∼ O(λNc) comes
from the SU(2) part. The subleading terms ρ2 and 1/ρ2 come from the SU(2) and U(1) fields,
respectively. The SU(2) fields tend to shrink the instanton size ρ → 0, while the U(1) field tends
to expand the size ρ → ∞, making the system unstable. As a compromise, the minimum energy
is achieved when ρ ∼ O(1/

√
λ). The situation is entirely analogous to the Skyrme model where

the baryon (realized as a solitonic configuration of pions) is stabilized by introducing the ω-
meson [47]. The numerical value of ρ has been fixed in this way in the instanton approximation
[30]:

ρ =
√

27π

λ

√
6
5

≈ 2.36,
M

MKK
= λNc

27π
+

√
2
15

Nc ≈ 1.68. (28)

Together with Eq. (14), this gives M ∼ 1.5 GeV, which is larger than the observed value. How-
ever, the value of M is subject to changes after the collective coordinate quantization [30].

Returning to Eq. (24), our main interest in this paper is the spatial i, j = 1, 2, 3 components,

T cl
i j (�x) = 2κ

∫ ∞

−∞
dz tr

[
h(z)Fil Fjl + k(z)FizFjz − δi j

2

(
h(z)

2
F 2

lm + k(z)F 2
lz

)]
+ κ

∫ ∞

−∞
dz

[
−h(z)∂iÂ0∂ j Â0 + δi j

2

(
h(z)(∂iÂ0)2 + k(z)(∂zÂ0)2)] . (29)

Classically, one might expect that the form factor D(|�k|) could be calculated by simply inserting
the above solutions into Eq. (29) and Fourier-transforming to momentum space, �x → �k. (Below
we shall often use the notation D(|�k|) instead of D(t).) Since T cl

i j is conserved, it must have the
structure

T cl
i j (�k) = (kik j − δi j

�k2)
D(|�k|)

4M
. (30)

However, it turns out that this naive approach is valid only at �k = 0. In the next section we
numerically evaluate the D-term D(0) in this way. A more general analysis valid for arbitrary
values of |�k| will be presented in Sect. 5.

4. “Classical” calculation of the D-term
In this section we calculate the D-term “classically,” by Fourier-transforming the naive energy
momentum tensor in Eq. (29) with the approximate solutions Â0, Fij, and Fiz constructed in
the previous section. This is analogous to what has been done in the Skyrme model or chiral
soliton models. For a reason to be clarified in the next section, the calculation in the present
section is valid only at vanishing momentum transfer |�k| = 0. When |�k| �= 0, one must carry out
a fully holographic calculation which will be discussed in the next section. We shall calculate
the contributions from the U(1) and SU(2) fields separately:

D(0) = DU(1)(0) + DSU(2)(0). (31)
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In the remainder of this section, only three-momenta�k, �q appear. We thus write |�k| ≡ k, |�q| ≡ q
below to simplify the notation.

4.1. U(1) part
In Sect. 3 we constructed an approximate solution for the U(1) gauge potential Â0(x, z) which
can be used in the entire range −∞ < z < ∞. This is obtained by numerically solving Eq. (20)
with the boundary conditions Â0(k, z = ∞) = 0 and ∂zÂ(k, z)|z=0 = 0. The next step is to sub-
stitute this solution into Eq. (29):

T U(1)
i j = κ

∫ ∞

−∞
dz

∫
d3xei�k·�x

[
−h(z)∂iÂ0∂ j Â0 + δi j

2

(
h(z)(∂l Â0)2 + k(z)(∂zÂ0)2)]

= κ

∫ ∞

−∞
dz

∫
d3q

(2π )3

[
h(z)qi(kj − q j )Â0(q, z)Â0(|�k − �q|, z)

− δi j

2

(
h(z)�q · (�k − �q)Â0(q, z) + ∂z(k(z)∂zÂ0(q, z))

)
Â0(|�k − �q|, z)

]

≡ κ

∫ ∞

−∞
dz(P1(k, z)kik j + Q1(k, z)δi jk2). (32)

In the second equality we integrated by parts in z. The coefficients P1 and Q1 can be calculated
as follows:

P1(k, z) = h(z)
2(k2)2

∫
d3q

(2π )3
(2�q · �kk2 − 3(�q · �k)2 + q2k2)Â0(q, z)Â0(|�k − �q|, z)

= h(z)
8π2k2

∫ 1

−1
d cos θ

×
∫ ∞

0
q3dq(2k cos θ − 3q cos2 θ + q)Â0(q, z)Â0(

√
k2 + q2 − 2kq cos θ, z). (33)

Q1(k, z) = 1
2k2

∫
d3q

(2π )3

[
h(z)

(
(�q · �k)2

k2
− �q · �k

)
Â0(q, z) − ∂z(k(z)∂zÂ0(q, z))

]
× Â0(|�k − �q|, z). (34)

Despite the singular prefactor 1/k2, P1(k = 0,z) is finite, as one can see by expanding the in-
tegrand in k and performing the angular integral. On the other hand, Q1(k = 0, z) is actually
divergent. If the bulk equation of motion is solved exactly, this divergence should be canceled
by the contribution from the SU(2) field. Moreover, after the cancellation the coefficients of
kikj and −δijk2 must agree exactly due to the conservation law (cf. Eq. (30)). Indeed, after some
manipulation (including the addition of total derivative terms), one can show that

Q1(k, z) = −P1(k, z) − 1
(k2)2

×
∫

d3q
(2π )3

�k · (�k − �q)
(−q2h(z)Â0(q, z) + ∂z(k(z)∂zÂ0(q, z))

)
Â0(|�k − �q|, z).(35)

The expression inside the brackets is connected to the SU(2) fields via the equation of motion,
Eq. (20). In practice, since our solution is approximate and obtained only numerically, it may
be difficult to achieve a precise cancellation. We thus focus on the coefficient of kikj which is
safely calculable in the present approach, and leave a more complete analysis for future work.
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4.2. SU(2) part
We now turn to the SU(2) fields. Let us first point out that the instanton solution, valid in the
small-z region, does not give rise to the structure kiki. Indeed, inserting Eq. (15) into Eq. (29),
we find

T instanton
i j (k) ∼ 8κρ4δi j

∫
dz

∫
d3xeik·x h(z) − k(z)

(ξ 2 + ρ2)4

= π2κρ4δi j

3

∫
dz

h(z) − k(z)
(z2 + ρ2)5/2

(
3 + 3k

√
z2 + ρ2 + k2(z2 + ρ2)

)
e−k

√
z2+ρ2

,(36)

where the z-integral should be cut off around z � O(1). Note that the coefficient of δij is finite
at k = 0, meaning that Eq. (36) gives a divergent contribution to D(k = 0) since Tij ∼ D(k)δijk2.
This is expected in view of our discussion in the previous subsection. If the equation of motion
is solved exactly, the divergence must be canceled by the contributions from the U(1) field as
well as that from the SU(2) field in the large-z region (where the instanton approximation breaks
down). However, since we decided to focus on the coefficient of kikj, we do not dwell on Eq. (36)
further.

Next, we consider the large-z region |z| 
 1 where the solution is given by Eqs. (16) and
(18). Equation (18) can be formally solved by introducing the complete set of eigenfunctions
[26,32],

− 1
h(z)

∂z(k(z)∂zψn(z)) = m2
nψn(z) (n = 1, 2, 3, . . .), (37)

normalized as

κ

∫
dzh(z)ψnψm = δmn, (38)

and associated eigenfunctions

φ0(z) = 1√
κπ

1
k(z)

, φn(z) = 1
mn

∂zψn(z) (n = 1, 2, 3, . . .). (39)

Using these eigenfunctions, we can write the solution of Eq. (18) as, in momentum space,

G(k, z, Z) = −κ

∞∑
n=1

ψn(z)ψn(Z)
k2 + m2

n
,

H (k, z, Z) = −κ

∞∑
n=0

φn(z)φn(Z)
k2 + m2

n
, (40)

where m0 = 0. ψn(z) is an even (odd) function in z when n is odd (even). Since ψ2n(0) = 0 and
φ2n + 1(0) = 0, only odd n values contribute in G, and only even n values contribute in H at Z =
0. Numerically, we find, for n ≥ 1,

mn

MKK
= 0.818, 1.2525, 1.695, 2.132, 2.567, 3.001, 3.435, 3.868, 4.300, . . .

(41)

Note that m1 = 0.818MKK ≈ 776 MeV is the ρ-meson mass. More generally, G ∼ ψ2n−1 repre-
sents vector mesons (ρ-meson excited states) and H ∼ φ2n with n ≥ 1 represents axial vector
mesons (a1-meson excited states). The n = 0 term φ0 in H represents the massless pion field.

To calculate the D-term, we need to extrapolate the above solution to the small-z region. The
main complication is the nonlinearity of the SU(2) Yang–Mills equation. We argued in Sect. 3
that, at least in the strong coupling limit where 1 
 ρ, the linear approximation is valid up
to z � ρ, and an approximate solution in this regime can be obtained by replacing Eq. (18)
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with Eq. (23). The remaining parametrically small region ρ > z > 0 does not contribute to the
coefficient of kikj as we have seen in Eq. (36), so we may further extrapolate this solution down
to z = 0. However, as the coupling is lowered and ρ exceeds unity, the non-Abelian commutator
terms in Fij and Fiz become important. This is why we have kept them in Eq. (16).

Since the full SU(2) energy momentum tensor is local and involves up to four powers of the
gauge fields, it is much more advantageous to work in the original coordinate space. In Eq. (29)
there are two terms that can give rise to the structure kikj. Noting that G and H depend only
on the magnitude x = |�x| (and z), we write

tr[h(z)Fil Fjl + k(z)FizFjz] = xix j

x2
X (x, z) + δi jY (x, z). (42)

After a rather tedious calculation we find

X = 2(2π2ρ2)2[h(z)(E2 + F2 − I2 + 2DF − 2DI ) + k(z)(2AB + B2 − C2)
]
, (43)

with

A = ∂xH
x

− ∂z∂ZG − 4π2ρ2∂xG∂xH,

B = ∂2
xH − ∂xH

x
+ 4π2ρ2∂xG∂xH,

C = ∂x∂zG − 4π2ρ2∂ZG∂xH,

D = 2∂xG
x

− 4π2ρ2(∂ZG)2,

E = ∂x∂ZG + 4π2ρ2∂xG∂ZG,

F = ∂2
xG − ∂xG

x
,

I = −4π2ρ2(∂xG)2. (44)

∂ZG can be eliminated by using the formula (see Eq. (2.79) of Ref. [32] and Eq. (23))

∂ZG = − 1
h(z)

∂z(k(z)H ), ∂z∂ZG = ∇2
xH − h(z)

k(z)
ρ2

π2ξ 2(ξ 2 + ρ2)2
, (45)

after which we may set Z = 0. The first relation was originally derived in the large-z, linear
regime, but it is also valid in the small-z regime where k(z) ≈ h(z) ≈ 1, G ≈ H, and ∂ZG ≈
−∂zG. Given X, we can evaluate the SU(2) contribution to the D-term as

DSU(2)(0) = −64πκM lim
k→0

1
k2

∫ ∞

0
dz

∫ ∞

0
dxx2 j2(kx)X (x, z), (46)

where j2 is the spherical Bessel function.

4.3. Numerical result
We have solved Eqs. (20) and (23) numerically with the Neumann boundary conditions at x =
0 and z = 0 and the Dirichlet boundary conditions Â0 = G = H = 0 at infinity. Great care is
needed in order to obtain a stable solution for H (and especially its x- and z-derivatives) because
of the massless pion pole, the n = 0 term in Eq. (40), as well as the pole 1/ξ 2 on the right-hand
side of Eq. (23). To cope with these, we first make the shift (cf. Eq. (21))

G(x, z) = G̃(x, z) + 1
4π2ρ2

ln
ξ 2

ξ 2 + ρ2
, H (x, z) = H̃ (x, z) + 1

k(z)
1

4π2ρ2
ln

ξ 2

ξ 2 + ρ2
, (47)
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to avoid the singular behavior near the origin.2 We then solve the resultant differential equa-
tions for G̃(x, z) and H̃ (x, z) by employing the pseudospectral method [48]. In this method, the
functions G̃(x, z), H̃ (x, z) are expanded by tensor products um(x; Lx)un(z; Lz) (1 ≤ m, n ≤ N)
where the basis functions un(y; L) = y2/(y + L)2TLn(y; L) − 1, which individually satisfy the
boundary conditions, are related to the rational Chebyshev functions TLn(y; L) on the semi-
infinite interval 0 < y < ∞ via the “basis recombination” [48]. The adjustable parameters Lx

and Lz are set to 1 for solving G̃(x, z), while we use Lx = 16 and Lz = 1 for H̃ (x, z) to better
stabilize the x-dependence of H. The number of basis functions N is varied in the range 60 ≤
N ≤ 120, and the variation in the results is used as an estimate of the systematic errors for each
value of k. The libraries SciPy [49], Eigen [50], and Boost.Multiprecision [51] have been helpful
for these numerical analyses.

The solutions just described depend on the input value of ρ. For the instanton solution, ρ is
given by Eq. (28). Since we go beyond the instanton approximation, ρ needs to be recalculated
accordingly. For our new solution, the nucleon mass in Eq. (26) takes the form

M(ρ ) = 2κ

∫ ∞

0

q2dq
2π2

∫ ∞

0
dz

[
h(z)

2

(
q2Â2

0(q, z) + (∂zÂ0(q, z))2)]

+ 8πκ (4π2ρ2)2
∫ ∞

0
x2dx

∫ ∞

0
dz

×
[

h(z)
(
E2 + (D + F )2 + 1

2
(D + I )2

)
+ k(z)(A2 + C2 + (A + B)2)

]
. (48)

We find M(ρ) has a minimum at (cf. Eq. (28))

ρ∗ ≈ 2.26, M(ρ∗) ≈ 1.31MKK . (49)

We have thus evaluated the integrals from Eqs. (33) and (46) using the solutions Â0, G, and H
with ρ = ρ∗, and extrapolated them to k → 0 to obtain

DU(1)(0) ≈ 0.543, DSU(2)(0) ≈ −0.685 ± 0.022, (50)

where the errors for the U(1) part are negligibly small. After a cancellation between the positive
U(1) and negative SU(2) contributions, the total D-term,

D(0) = DSU(2)(0) + DU(1)(0) ≈ −0.140 ± 0.022, (51)

turns out to be slightly negative. That the U(1) contribution is positive is intuitively easy to
understand. The U(1) field is analogous to the static electric field �E ∼ �r/r3 of a point charge.
The energy momentum tensor (Maxwell’s stress tensor) of a point charge takes the form

Ti j ∼ −EiEj + δi j

2
�E2 = − 1

r4

(
rir j

r2
− δi j

3

)
+ δi j

6r4
. (52)

The “pressure” p(r) ∼ 1/(6r4) (see Eq. (2)) is everywhere positive and hence the D-term D ∼∫
d3rr2p(r) is also positive (actually divergent). On the other hand, the SU(2) fields may be

thought of as the “pion cloud” in traditional hadron physics. In the chiral quark soliton model,
it has been argued that the pion cloud is responsible for making the D-term negative [38]. Our
result is consistent with this argument, although in the present approach the “cloud” is made
up of not only pions but also infinitely many vector and axial-vector mesons. Incidentally, if we

2This is why we have introduced the factor h(z) on the right-hand side of the equation for H in Eq. (23).
Without this factor, the subtraction in Eq. (47) induces a discontinuity in the resultant equation at the
origin: the limits x → 0 with z = 0 fixed and z → 0 with x = 0 fixed do not agree.
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neglect the non-Abelian commutator terms (terms proportional to ρ2 in Eq. (44)), the SU(2)
contribution also becomes positive.

Our result provides a new perspective on the stability of nucleons in holographic QCD. If we
interpret the D-term as a measure of outward radial force, the U(1) and SU(2) fields generate
positive and negative forces, respectively, and they tend to expand and shrink the system. This is
entirely analogous to the calculation of the nucleon’s mass as briefly mentioned below Eq. (27)
and discussed in detail in Ref. [30]. Namely, the U(1) field (iso-singlet mesons, in particular the
ω meson) tends to expand the nucleon by preferring large instanton sizes ρ → ∞, and this is
counterbalanced by the SU(2) fields (iso-vector mesons π , ρ, a1, …) which prefer small sizes
ρ → 0. Neither one of them alone can stabilize the nucleon. Thus, there seems to be a direct
link between the stability arguments in terms of the nucleon’s mass and the D-term when they
are decomposed into contributions from different subsystems. On the other hand, the present
discussion does not indicate whether the sign of the total D = DU(1) + DSU(2), which happens
to be slightly negative, is of particular significance regarding stability (cf. Refs. [52,53]).

5. Coupling to gravity
In gauge/string duality, the proper method to calculate the field theory expectation value of the
energy momentum tensor has been established [54,55]. In this section we apply the framework
of holographic renormalization developed in Refs. [55,56] to the calculation of the form factor
D(|�k|) and elucidate its connection to the glueball spectrum. We shall also explain why the
classical calculation in the previous section is valid only at |�k| = 0. For previous attempts in
bottom-up holographic models, see Refs. [19,36].

5.1. Setup
The basic idea of our holographic calculation is that matter fields in the “bulk” perturb the
metric, and this “wake” is propagated to the boundary and recorded as the field theory ex-
pectation value 〈Tμν〉. In bottom-up holographic QCD models, gravity is confined in the same
five-dimensional (deformed) anti-de Sitter spaces where the matter fields live. However, the situ-
ation is different in our top-down model. The action in Eq. (11) is a low-energy effective theory
on the “flavor” D8 branes embedded in a ten-dimensional curved space-time in type IIA super-
gravity. The latter is further derived from 1-dimensional supergravity (M-theory) on doubla y
Wick rota-ed AdS7 black hole × S4 [57],

ds2 = r2

L2

[
f (r)dτ 2 − dx2

0 + dx2
1 + dx2

2 + dx2
3 + dx2

11

] + L2

r2

dr2

f (r)
+ L2

4
d�2

4, (53)

after compactifying the eleventh dimension x11 on a circle of radius

R11 = gsls = λ

2πNcMKK
. (54)

In Eq. (53) we defined

f (r) = 1 − R6

r6
, R = L2MKK

3
, L3 = 8πgsNcl3

s , (55)

where gs is the string coupling and ls = √
α′ is the string length. The following relation is useful:

λNc = L6MKK

32πgsl5
s
. (56)
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The radial coordinate r (∞ > r > R) is related to z in Eq. (11) as

z = ±
√

r6

R6
− 1. (57)

Below we shall use r and z interchangeably, keeping in mind that they are related as in Eq. (57).
The AdS7 black hole geometry is sourced by the Nc D4 branes spanning the coordinates

(xμ = 0,1,2,3, τ ). In this background, Nf D8 branes are placed at τ = 0 and τ = π /MKK corre-
sponding to the z > 0 and z < 0 branches, respectively, which are smoothly connected at r =
R. We adopt the probe approximation Nc 
 Nf , and the backreaction of the geometry due to
the D8 branes is neglected. The S4 part of the D8 branes has already been integrated out in
Eq. (11). The dual field theory on the boundary of AdS7 at r → ∞ is a six-dimensional confor-
mal field theory coupled with four-dimensional fermions at the location of the D8/D8 branes.3

After compactifying the x11 direction in Eq. (54), and furthermore the τ -direction on a circle
τ ∼ τ + 2π /MKK with supersymmetry-breaking boundary conditions, the theory becomes a
four-dimensional, confining SU(Nc) Yang–Mills theory coupled with Nf Dirac fermions, that
is SU(Nc) QCD with Nf flavors, at low energies. Our task is to calculate the induced energy
momentum tensor 〈Tij〉 in this boundary theory sourced by the soliton, which corresponds to
the nucleon, living on the D8 branes.

While the method of holographic renormalization has been extended to non-conformal the-
ories [56], for our purposes it is more convenient to work in the eleven-dimensional (or seven-
dimensional, after reducing on S4) setting in Eq. (53) instead of ten-dimensional type-IIA su-
pergravity with the dilaton. In this setting, we calculate the metric fluctuation caused by the
bulk soliton (xM = (x0,1,2,3, τ , r, x11)),

δgMN (τ, x11, x, r) = κ2
7

∫
dτ ′dx′

11d4x′dr′
√

−G′
(7)

× GMNAB(τ − τ ′, x11 − x′
11, x − x′, r, r′)T AB(τ ′, x′

11, x′, r′), (58)

in the axial gauge

δgMr = 0, (59)

and study the behavior of the four-dimensional components δgμν (μ,ν = 0,1,2,3) near the
boundary r → ∞. The expectation value of the energy momentum tensor is then proportional
to the coefficient of the 1/r4 term integrated over the extra dimensions∫

x11,τ

δgμν ∼ Cμν

r4
+ · · · , 〈Tμν〉 ∝ Cμν. (60)

(See Ref. [55] for the precise prescription.) In Eq. (58), GMNAB is the graviton propagator and
G′

(7) = −(r′/L)10 is the determinant of the AdS part of the metric. T AB (A,B = 0,1,2,3,τ ,r,11)
is the seven-dimensional energy momentum tensor (already integrated over S4) of the soliton.
κ2

7 is related to the eleven-dimensional gravitational constant as

κ2
11 = Vol(S4)κ2

7 = 8π2

3

(
L
2

)4

κ2
7 . (61)

3This six-dimensional conformal field theory is the N = (2, 0) superconformal field theory realized on
Nc M5 branes extended along the x0,1,2,3,11 and τ directions, which are the M-theory lift of the D4 branes
in type IIA string theory. On the other hand, the M-theory lift of a D8 brane is not well understood. We
just use the M-theory description as a convenient notation to organize the fields in type IIA supergravity.
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For a static soliton, T AB does not depend on x′
0 or x′

11. Going to the Fourier space, we get

δgMN (�k, r) ≡
∫

dτdx11d3�x ei�k·�xδgMN (τ, x11, �x, r)

= κ2
7

∫
dr′

√
−G′

(7)GMNAB(�k, r, r′)T AB(�k, r′), (62)

where G(�k, r, r′) is the momentum space graviton propagator with kτ = k11 = k0 = 0, and we
defined

T AB(�k, r′) ≡ 2πR11

∫
dτ ′T AB(τ ′,�k, r′). (63)

The τ ′-integral is trivial because the configuration of D8 branes described above instructs us
to write, in the z-coordinates,

T AB(τ ′,�k, z) = T AB(�k, |z|)
4πR11

(
δ(τ ′) + δ(τ ′ − π/MKK )

)
. (64)

The bulk energy momentum tensor TAB can be obtained by varying the D8 brane action with
respect to the eleven-dimensional metric in Eq. (53),

TAB = − 2√−G(11)

δSD8

δGAB
(11)

Vol(S4), (65)

where we only keep the quadratic terms in the field strength tensor in the D8 brane action

SD8 ≈ −C
∫

d4xdrd4�4e−�
√

−g̃
1
4

g̃mng̃abtr[FmaFnb], (66)

with C = (64π6l5
s )−1. g̃ is the induced metric on the D8-brane,

g̃abdxadxb = r3

L3
[−dx2

0 + (d�x)2] + r
L

(
L2

r2 f (r)
+ f (r)

(
∂τ

∂r

)2
)

dr2 + r
L

L2

4
d�2

4, (67)

with a nontrivial dilaton field e−� = 1
gs

(L/r)3/2. (In the present case, ∂τ /∂r = 0.) In the eleven-
dimensional notation, Eq. (66) takes the form

SD8 = − C
2πR11gs

∫
dτdx11d4xdrd4�4 (δ(τ ) + δ(τ − π/MKK ))

×
√−G(11)√

Gττ

1
4

GABGMNtr [FAMFBN ] + · · · . (68)

This leads to

2πR11

∫
dτ ′

√
−G′

(7)Tμν = π2Cr′2L2

3gs

√
f (r′)

tr

[
FμρF ρ

ν + (1 + z2)
4
3 FμzFνz

− ημν

4

(
Fρσ F ρσ + 2(1 + z2)

4
3 FρzF ρ

z

)]
, (69)

2πR11

∫
dτ ′

√
−G′

(7)T11,11 = π2Cr′2L2

3gs

√
f (r′)

tr

[
−1

4
Fρσ F ρσ − (1 + z2)

4
3

2
FρzF ρ

z

]
, (70)

2πR11

∫
dτ ′

√
−G′

(7)Tμz = π2Cr′2L2

3gs

√
f (r′)

tr
[
FμρF ρ

z

]
, (71)

2πR11

∫
dτ ′

√
−G′

(7)Tzz = π2Cr′2L2

3gs

√
f (r′)

tr

[
1
2

FzρF ρ
z − 1

4(1 + z2)
4
3

Fρσ F ρσ

]
, (72)
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with

Tμr = ∂z
∂r

Tμz = 3r5

zR6
Tμz, Trr = 9r10

z2R12
Tzz. (73)

[For simplicity only the SU(2) part is shown.] It is important to notice that Eq. (68) is inde-
pendent of Gττ , hence Tττ = 0 for the soliton configuration. This is simply because the D8/D8
branes do not extend in the τ -direction. On the other hand, T11,11 is nonvanishing even though
the D8/D8 branes do not extend in the x11 direction. This can be easily understood as the cou-
pling between the gauge fields and the dilaton field in the type IIA description in ten dimensions.

5.2. Glueballs in the AdS7 black hole
In this paper we do not attempt to compute Eq. (62) in its full glory because we do not have
the exact (numerical) solution of the soliton configuration. Instead, assuming that the latter
is known, we will analyze the bulk Einstein equation in detail and establish the connection
between the gravitational form factors and the known glueball spectrum of this theory [58,59]
(see also Refs. [60–62]).

The relevance of glueballs to the present problem can be understood as follows. Since the spa-
tial part of the field theory energy momentum tensor is transverse kiTij = 0, near the boundary
the metric fluctuation must also be transverse, kiδgij = 0, and can be parameterized as4

δgi j ≈ δgTT
i j + 1

5

(
δi j − kik j

�k2

)
δga

a (r → ∞). (74)

δgTT is the so-called transverse-traceless (TT) part where it is understood that the “trace” is
taken in six dimensions xa = (xμ = 0,1,2,3, x11, τ ). As for the trace part, since we neglect the
backreaction of the D8/D8 branes in the probe approximation,5 the geometry is asymptotically
AdS with no dilaton. In the axial gauge, the Einstein equation then automatically requires that
δga

a ≈ 0 in the asymptotically AdS regime.6 Therefore, the trace term can be neglected and the
D-term entirely originates from the TT modes of the AdS7 black hole. Glueballs are nothing but
the normalizable TT modes of the linearized Einstein equation. They can be classified accord-
ing to spin under the rotation group SO(3) in physical space and interpreted as the actual spec-
trum of glueballs on the boundary field theory. Among the 14 independent TT modes, those
relevant to the present discussion are referred to as T4 and S4 in the classification of Ref. [59].7

The T4 mode consists of 2++, 1++, and 0++ glueballs. They are transverse and traceless in five
dimensions x0,1,2,3,11 and have vanishing components in the other dimensions. Despite the dif-
ference in spin, all these glueballs obey the same bulk equation of motion, namely the massless
Klein–Gordon equation on the AdS7 black hole. Therefore, their masses are degenerate. The

4Near the boundary r → ∞, the metric fluctuation in the d = 6 dimensional subspace xa = (x0,1 2,3,11,τ )
can be generically written as

δgab ≈ δgTT
ab + kakcδgc

b + kbkcδgc
a

k2
− kakbkckdδgcd

(k2)2
+ 1

d − 1

(
ηab − kakb

k2

)(
δgc

c − kckdδgcd

k2

)
,

in momentum space. Taking ka = δa
i ki and imposing the condition kiδgi

j = 0 we arrive at Eq. (74).
5The backreacted geometry for the present problem has been calculated in Ref. [63].
6If one works in the type IIA setup or in AdS5/QCD4 models, one must include this term and solve the

Einstein equation coupled to the dilaton field [19,56].
7In this paper we do not consider metric fluctuations on S4. Actually, if one does that, there exists

another 0++ glueball mode called L4 [59,60] which can be sourced by the S4 part of the energy momentum
tensor (obtained similarly to T11,11 in Eq. (70)). However, this is not a TT mode, and one can show that
it does not contribute to the boundary energy momentum tensor.
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T4(2++) glueballs are transverse-traceless already in four dimensions x0,1,2,3. Among the five
independent 2++ polarizations, the following mode stands out as it features the same spatial
tensor structure as in Eq. (5):

δgT4
μν (2++) ∼

(
2 � j

�i δi j − kik j

�k2

)
, (75)

where �i satisfies ki�i = 0. The metric fluctuation corresponding to the T4(0++) glueballs are
traceless in five dimensions [58,59],

δgT4
ab(0++) ∼

(
δgμν δgμ,11

δg11,μ δg11,11

)
∼

(
ημν − kμkν

k2 0
0 −3

)
, (76)

with kμ = (0,�k). The spatial part again contains the structure kik j − δi j
�k2 we look for. Note

that the largest component is in the eleventh dimension. Therefore, the T4(0++) mode may be
thought of as the counterpart of the dilaton in type IIA supergravity.

On the other hand, the S4 mode consists only of 0++ glueballs. Their masses are not degener-
ate with the T4 glueballs, and actually the lightest scalar glueball belongs to this class. In Ref. [58]
this solution was dubbed “exotic” because it has a nonzero component in the τ -direction ,

δgS4
ab ∼

⎛⎜⎝δgμν

δg11,11

δgττ

⎞⎟⎠ ∼

⎛⎜⎝ημν − kμkν

k2

1
−4

⎞⎟⎠. (77)

Far away from the boundary, the metric fluctuation cannot be written in this simple form, and
it is no longer possible to literally maintain the “transverse-traceless” condition. Besides, the
explicit solution constructed in Ref. [58] features nonvanishing components in the r-direction
(see Eq. (93) below).

We thus see that there are three different types of glueballs that can potentially contribute to
the D-term. Accordingly, the bulk energy momentum tensor from Eqs. (69)-(70) can be decom-
posed as8

TAB = T T(2)
AB + T T(0)

AB + T S
AB + T other

AB , (78)

where T T(2)
AB is the part that sources the T4(2++) excitation in Eq. (75), etc. T other

AB is the remainder
which does not contribute to 〈Tμν〉 on the boundary. (See Eqs. (100)–(104).) Since each TT
mode satisfies a decoupled equation, near the boundary we can write, schematically,

δgμν ∼ GT(2)
μνABT AB

T(2) + GT(0)
μνABT AB

T(0) + GS
μνABT AB

S . (79)

The boundary energy momentum tensor 〈Tab〉 of the six-dimensional field theory is therefore
given by the linear combination

〈Tab〉 = t2(�k2)

⎛⎜⎜⎜⎝
(

2�k2 �k2� j
�k2�i

�k2δi j − kik j

)
0

0

⎞⎟⎟⎟⎠ + t0(�k2)

⎛⎜⎝k2ημν − kμkν

−3k2

0

⎞⎟⎠

+ s0(�k2)

⎛⎜⎝k2ημν − kμkν

k2

−4k2

⎞⎟⎠
8In the following, the trivial τ -integral (cf. Eqs. (62) and (63)) is understood both for the bulk energy

momentum tensor T AB and the metric fluctuation δgMN.
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=

⎛⎜⎜⎜⎝
(2t2 − t0 − s0)�k2 �k2� j

�k2�i (t2 + t0 + s0)(�k2δi j − kik j )
(−3t0 + s0)�k2

−4s0
�k2

⎞⎟⎟⎟⎠ . (80)

Comparing the four-dimensional part of this to Eqs. (5) or (7), we can identify9

t2 = M
3

(
A
�k2

− B
4M2

)
δs′s,

t2�i
�k2 = A + B

4
εi jk(ik j )σ k

s′s,

t0 + s0 = −M
3

(
A
�k2

− B
4M2

+ 3D
4M2

)
δs′s. (81)

Note that t2 and t0 + s0 both have a pole 1/�k2, but they cancel in the sum. The components of
Eq. (80) are then given by

〈T00〉 = (2t2 − t0 − s0)�k2 = M

(
A − B�k2

4M2
+ D�k2

4M2

)
δs′s, (82)

〈T0i〉 = t2�i
�k2 = A + B

4
εi jk(ik j )σ k

s′s, (83)

〈Ti j〉 = (t2 + t0 + s0)(�k2δi j − kik j ) = D
4M

(kik j − �k2δi j )δs′s, (84)

in agreement with Eq. (5). Moreover, the traceless condition in six dimensions leads to the QCD
trace anomaly relation in four dimensions,

−〈T μ
μ 〉 = 〈T 11

11 〉 + 〈T τ
τ 〉 = M

(
A − B�k2

4M2
+ 3

D�k2

4M2

)
δs′s. (85)

In order to determine the parameters t0, t2, s0, one needs to fully solve the linearized Einstein
equation with the (numerically obtained) bulk energy momentum tensor. This will be discussed
in the next subsection. A naive expectation, however, is that the S4 mode decouples or is sup-
pressed compared to the T4 modes, namely, |s0|  |t0,2|. Indeed, there have been arguments
in the literature [58,62] that the S4 glueball states may not survive in the “continuum limit”
MKK → ∞ keeping meson masses fixed and including the stringy 1/λ corrections to all orders.
The corresponding metric fluctuation in Eq. (77) has the largest component in the τ -direction
whose compactification radius 1/MKK shrinks to zero in this limit. Such arguments are also
practically motivated since there is an excess of 0++ glueballs from holography compared with
lattice QCD results [59,62]. We note, however, that there is no symmetry argument which pre-
vents the S4 mode from surviving the continuum limit. In this paper we will not try to include
the stringy corrections, but work in the supergravity approximation without taking the contin-
uum limit. Within this approximation, we will see that the S4 mode actually contributes to the
gravitational form factors.

9For the sake of generality, here we temporarily restore the spin-1/2 nature of the nucleon. In the present
treatment using the classical bulk energy momentum tensor in Eq. (69) with spherically symmetric gauge
configurations, the dependence of the energy momentum tensor on the spin states of the nucleon is not
captured and �i vanishes.
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5.3. Solving the Einstein equation
Let us investigate in detail whether and how the various glueball states described in the previous
subsection couple to the soliton. For this purpose, we turn to the linearized Einstein equation,

HAB ≡ ∇2δgAB + ∇A∇BδgC
C − ∇C (∇AδgBC + ∇BδgAC ) − 12

L2
δgAB

= −2κ2
7

(
TAB − gAB

5
T C

C

)
, (86)

where the covariant derivative and raising/lowering of indices are calculated with respect to the
background metric gAB in Eq. (53). We do not impose δgC

C ≈ 0 at this point, since this condition
holds only near the boundary r → ∞. After eliminating T C

C by taking a trace, Eq. (86) can be
cast into the equivalent form

HAB = HAB − gAB

2
HC

C = −2κ2
7TAB. (87)

Let us first substitute the following parametrization relevant to the T4(2++) mode (see Eq.
(75)),

δgT(2)
00 = 2

r2

L2
hT(2)(r, k),

δgT(2)
i j = r2

L2

(
δi j − kik j

�k2

)
hT(2); (88)

we find, for kμ = (0,�k),

H00 = 2
r2

L2
∇2hT(2),

Hi j = r2

L2

(
δi j − kik j

�k2

)
∇2hT(2), (89)

with all the other components vanishing. Here, ∇2 is the massless Klein–Gordon operator

∇2 = 1
L2r5

∂r
(
(r7 − rR6)∂r

) − L2k2

r2
, (90)

and the propagation is diagonal in Lorentz indices. Naturally, this mode can be sourced by a
part of the bulk Tμν that has the same tensorial structure as in Eq. (89). As for the T4(0++)
mode, we use (see Eq. (76))

δgT(0)
μν = r2

L2

(
ημν − kμkν

k2

)
hT(0)(r, k),

δgT(0)
11,11 = −3

r2

L2
hT(0), (91)

and find that

Hμν = r2

L2

(
ημν − kμkν

k2

)
∇2hT(0),

H11,11 = −3
r2

L2
∇2hT(0). (92)

Again, there is no mixing of Lorentz indices. This explains the above-mentioned degeneracy
between the T4(2++) and T4(0++) glueballs. Turning to TAB on the right-hand side, we see from
Eq. (70) that the component T11,11 is nonvanishing. Therefore, the soliton can act as a source
for the T4(0++) mode (or the dilaton in the type IIA language).
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Next, we substitute the following S4(0++) metric fluctuation [58]10 into the left-hand side of
Eq. (87):

δgS
ττ = − f (r)

r2

L2
hS(r, k),

δgS
μν = r2

4L2

[
ημν − kμkν

k2
− 12R6

5r6 − 2R6

kμkν

k2

]
hS,

δgS
11,11 = r2

4L2
hS,

δgS
rr = − L2

r2 f (r)
3R6

5r6 − 2R6
hS,

δgS
rμ = 90r7R6

L2(5r6 − 2R6)2

ikμ

k2
hS. (93)

The result is

Hττ = −r2 f (r)
L2

5(r6 − R6)
5r6 − 2R6

HS,

Hμν = r2

L2

5(r6 + 2R6)
4(5r6 − 2R6)

(
ημν − kμkν

k2

)
HS,

H11,11 = r2

L2

5(r6 + 2R6)
4(5r6 − 2R6)

HS,

Hrr = 0,

Hrμ = 0, (94)

where

HS ≡
(

1
L2r5

∂r
(
(r7 − rR6)∂r

) − L2k2

r2
+ 432R12

L2(5r6 − 2R6)2

)
hS

=
(

∇2 + 432R12

L2(5r6 − 2R6)2

)
hS. (95)

The differential operator in Eq. (95) agrees with the one derived in Refs. [58,59] for the S4 mode.
The following identity will be very useful later:

5(r6 + 2R6)
5r6 − 2R6

(
1
r3

∂r(r(r6 − R6)∂r) + 432r2R12

(5r6 − 2R6)2

)
= 1

r3
∂r

(
r(r6 − R6)

5(r6 + 2R6)
5r6 − 2R6

(
∂r + 72r5R6

(5r6 − 2R6)(r6 + 2R6)

))
= 1

r3
∂r

(
r(r6 − R6)

(
∂r + 144r5R6

(5r6 − 2R6)(r6 + 2R6)

)
5(r6 + 2R6)
5r6 − 2R6

)
. (96)

We see that the spatial components Hi j have the expected tensor structure. On the other hand,
unlike for the T4 modes above, now the ττ componentHττ ∝ Tττ is nonvanishing. Since Tττ = 0
for the soliton configuration, as we pointed out below Eq. (73), naively this implies that the
soliton does not excite the S4 mode. However, the situation is more complex because of the
presence of T other in Eq. (78) and its induced metric fluctuation δgother. The primary role of

10Note that Eq. (93) is not expressed in the axial gauge of Eq. (59). However, this does not affect the
discussion below because HAB is gauge invariant and δgMr rapidly vanishes in the large r limit.
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this term is to account for the Tμr and Trr components of the bulk energy momentum tensor.
These are nonvanishing for the soliton solution (see Eqs. (71)–(73)), but they do not directly
couple to any of the above TT modes. In the axial gauge δgMr = 0, the components of the
Einstein equation having an r-index serve as first-order constraints [64] that can be used to
eliminate non-TT modes via the conservation law ∇MTMn = 0 (n = 0,1,2,3,11), or explicitly,

∂μTμn = − 1
L4r3

∂r(r(r6 − R6)Trn), (97)

ηmnTmn = 1
L4r2

(
L4r3∂μTμr + r(r6 − R6)∂rTrr + (8r6 + R6)Trr

) − r6(r6 + 2R6)
(r6 − R6)2

Tττ . (98)

Let us employ the following ansatz:

δgother
μν (�k, r) = r2

L2

kμkν

k2
a(r, k),

δgother
11,11(�k, r) = r2

L2
b(r, k),

δgother
ττ (�k, r) = r2 f (r)

L2
(−b(r, k)). (99)

This solves the linearized Einstein equation with the bulk energy momentum tensor of the form

2κ2
7T other

μν ≡ 1
L4r3

∂r

[(
ημν − kμkν

k2

)
r(r6 − R6)∂ra − 3R6ημνb

]
, (100)

2κ2
7T other

11,11 ≡ 1
L4r3

∂r
(
r(r6 − R6)∂r(a − b) − 3R6b

) + k2b, (101)

2κ2
7T other

μr ≡ ikμ

3R6

r(r6 − R6)
b, (102)

2κ2
7T other

rr ≡ (5r6 − 2R6)∂ra + 3R6∂rb
r(r6 − R6)

, (103)

2κ2
7T other

ττ ≡ f (r)
L4r3

∂r
(
r(r6 − R6)∂r(a + b) − 3R6(a + b)

) − f (r)k2b. (104)

Here, a(r, k) and b(r, k) are determined by imposing

T other
μr = Tμr, T other

rr = Trr, (105)

where the right-hand sides of these equations are the bulk energy momentum tensor from Eq.
(73). Because the gauge configuration under consideration is spherically symmetric, one can
show that Tμr is proportional to kμ and hence the first equation of Eq. (105) can be solved
immediately. The second equation of Eq. (105) contains at most first-order derivatives in r and
it can be uniquely solved by imposing the boundary condition a → 0 at r → ∞. With the
conditions in Eq. (105), we find that the metric fluctuation in Eq. (99) satisfies the μr and rr
components of the linearized Einstein equation in Eq. (87). Note that the parameterization
in Eq. (99) is not unique. Different parameterizations lead to different decompositions of the
Einstein equation in Eqs. (78) and (79) without changing the total induced metric δgab and hence
the boundary energy momentum tensor 〈Tab〉. We are led to the choice in Eq. (99) because then
the reduced five-dimensional energy momentum tensor

L
r
√

gττ g11,11T other
μν ∼

√
f (r)

r
L

1
r3

∂r[· · · ] = 3
LR3

sgn(z)∂z[· · · ] (106)
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is a total derivative in z,11 a feature that will turn out to be convenient shortly. As r goes to
infinity, T other

rr = Trr ∼ 1/r11 and T other
μr = Tμr ∼ 1/r10, as can be seen by substituting Eq. (16)

into Eqs. (71) and (72) and noticing that G ∼ 1/z ∼ 1/r3 and H ∼ 1/z2 ∼ 1/r6 in this limit. This
implies a ∼ 1/r9 and b ∼ 1/r3, and hence δgother

μν ∼ 1/r7 and δgother
11,11 ∼ δgother

ττ ∼ 1/r. We see that
δgother

μν decays too fast to contribute to 〈Tμν〉, but gother
11,11 and δgother

ττ decay slowly and potentially
contribute to 〈Tττ 〉 and 〈T11,11〉12 (but not to 〈Tμν〉). On the other hand, near z = 0 or r = R
where the instanton approximation is good, we can use Eq. (15) to deduce the singular behavior
as z → 0,

Tμr ∼ Tμz

z
∼ ∂zÂ0

z2
∼ 1

z
, Trr ∼ 1

z3
. (107)

(The leading singularity comes from the U(1) part.) Comparing with Eqs. (102) and (103), we
find that

a ∼ b ∼
√

r6 − R6 ∼ z (z → 0). (108)

Since the ττ component of the total bulk energy momentum tensor Tττ , as well as the T4 part
T T(2)

ττ and T T(0)
ττ , is zero, Eq. (104) means that an effective source term for the S4 mode is induced.

To compensate Eq. (104) by the S4 mode, we impose

2κ2
7T S

ττ ≡ r2 f (r)
L2

5(r6 − R6)
5r6 − 2R6

HS = −2κ2
7T other

ττ , (109)

(see Eq. (94)), which implies

2κ2
7T S

μν ≡ − r2

L2

5(r6 + 2R6)
4(5r6 − 2R6)

(
ημν − kμkν

k2

)
HS

= r6 + 2R6

4 f (r)(r6 − R6)

(
ημν − kμkν

k2

)
2κ2

7T other
ττ (110)

= r6 + 2R6

4(r6 − R6)

(
ημν − kμkν

k2

)[
1

L4r3
∂r

(
r(r6 − R6)∂r(a + b) − 3R6(a + b)

) − k2b
]

,

δgS
μν ≈ r2

4L2

(
ημν − kμkν

k2

)
hS + O(1/r7), (111)

with HS ∼ 1/r3 and hS ∼ 1/r3 as r → ∞. Comparing the large-r behavior of Eq. (109),

r2

L2
HS ∼ − 1

L4r3
∂r(r7∂rb) + k2b, (112)

with that of Eq. (95), we can identify

hS = −b + O(1/r6). (113)

(Note that ∂r(r7∂rr−6) = 0.)
We thus conclude that, contrary to the naive expectation, the S4 glueballs in general con-

tribute to the boundary energy momentum tensor, albeit in a somewhat indirect way. Conse-

11More precisely, because of the sign function sgn(z) = z/|z|, there arises a delta function contribution
∂zsgn(z) = 2δ(z) upon partial integration. However, this term vanishes due to the property in Eq. (108)
of the baryon configuration.

12Note that this part is transverse-traceless by itself: 〈Tττ 〉 + 〈T11,11〉 = 0. It is another TT mode different
from the ones described above.
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quently, the source term for the T4 glueballs is not the total Tμν in Eq. (69), but instead13

T T
μν ≡ T T(0)

μν + T T(2)
μν = Tμν − T S

μν − T other
μν . (114)

Note that the leading term δgS
μν ∼ r2hS ∼ 1/r as r → ∞ is canceled against a like term in δgT

μν ∝
T T

μν ∼ −T S
μν . Indeed, from Eq/ (94) we find

2κ2
7T S

μν ≈
(

− 1
L4r3

∂r(r7 − rR6)∂r + k2
)

L2

r2
δgS

μν. (115)

Similarly, from Eqs. (88) and (91),

2κ2
7T T

μν =
(

− 1
L4r3

∂r(r7 − rR6)∂r + k2
)

L2

r2
δgT

μν. (116)

Therefore, near the boundary r → ∞,

2κ2
7

(
T T

μν + T S
μν

) ≈
(

− 1
L4r3

∂r(r7 − rR6)∂r + k2
)

L2

r2

(
δgT

μν + δgS
μν

)
. (117)

Since T T
μν + T S

μν = Tμν − T other
μν ∼ 1/r7, most of the terms in δgT/S

μν which decay slower than 1/r7

cancel in the sum δgT
μν + δgS

μν . The leading surviving contribution is the 1/r4 term,

δgT
μν + δgS

μν ∼ Cμν

r4
(r → ∞). (118)

This is precisely what contributes to the boundary energy momentum tensor via holographic
renormalization; see Eq. (60). Remarkably, when k = 0, Cμν is directly proportional to the
classical energy momentum tensor in Eq. (24), as can be seen by writing

2κ2
7

∫ ∞

R
drr3(Tμν − T other

μν ) = 2κ2
7

∫ ∞

R
drr3(T T

μν + T S
μν ) = 6Cμν

L2
(119)

at k = 0. In the last equality, we have used the identity in Eq. (96) in order to recast the integrand
(cf. Eq. (110)) as a total derivative. The first term on the left-hand side is proportional to Eq. (24)
and the second term vanishes (cf. Eq. (108)):

2κ2
7

∫ ∞

R
drr3T other

μν = 3R6

L4
ημνb|r=R = 0. (120)

This means that the naive expression in Eq. (24) can be used to calculate gravitational form
factors at k = 0. Below we shall reconfirm this important observation in a different way.

5.4. Glueball dominance of the gravitational form factors
Armed with the general discussion in the previous subsection, we are now ready to compute
the form factor D(�k) for generic values of �k. From Eq. (84), we can write

D = DT(2) + DT(0) + DS(0) = 4M(t2 + t0 + s0), (121)

where each component can be determined by solving the corresponding wave equations. It
should be clear by now that the split DT ∼ t2 + t0 is actually not necessary. As we have seen
above, the propagators of the T4(2++) and T4(0++) modes are identical and diagonal in Lorentz
indices,

GT(2)
μνAB = GT(0)

μνAB ≡ r2r′2

L4
G̃T(ημρηνλ + ημληνρ )δρ

Aδλ
B, (122)

13Since the rr, rμ and ττ components of T T
AB ≡ TAB − T S

AB − T other
AB are all zero, the conservation law

of Eqs. (97) and (98) imply that T T
AB satisfy the transverse traceless conditions ∂μT T

μn = 0 = ηmnT T
mn (n, m

= 0,1,2,3,11) in five dimensions.
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where G̃T is the Green function for the massless Klein–Gordon equation

−∇2G̃T(r, r′,�k) = −
(

1
L2r5

∂r

(
(r7 − rR6)∂r

)
− L2

r2
�k2

)
G̃T(r, r′,�k) = L5

r5
δ(r − r′). (123)

We can thus write, in Eq. (62),

GT(2)
μνABT AB

T(2) + GT(0)
μνABT AB

T(0) = r2r′2

L4
G̃T(ημρηνλ + ημληνρ )T ρλ

T = 2r2

r′2 G̃TT T
μν, (124)

where T T
μν is given by Eq. (114). This leads to the formula

δgT
μν (r,�k) = 2κ2

7
r2

L2

∫ ∞

R
dr′√−G′(7)G̃T(r, r′,�k)

L2

r′2 T
T

μν (r′,�k)

= 2κ2
7
π2Cr2L2

3gs

∫ ∞

R

dr′√
f (r′)

G̃T(r, r′,�k)tr[FμρF ρ
ν (r′,�k)] + · · ·

= κ2
7
π2Cr2L2R

9gs

∫ ∞

−∞
dzG̃T(r, r′(z),�k)h(z)tr[FμρF ρ

ν (r′(z),�k)] + · · · , (125)

where we used Eq. (69) and in the second line we switched to the variable z using Eq. (57). The
omitted terms include the subtraction −T S

i j − T other
i j in Eq. (114). Similarly, with the help of the

identity in Eq. (96), we introduce the Green function for the S4 mode,

−
[

1
L2r5

∂r

(
(r7 − rR6)

(
∂r + 144r5R6

(5r6 − 2R6)(r6 + 2R6)

))
− L2

r2
�k2

]
G̃S(r, r′,�k) = L5

r5
δ(r − r′).

(126)

Using Eqs. (93) and (94), we find

δgS
μν (r,�k) ≈ 2κ2

7
r2

L2

∫ ∞

R
dr′

√
−G′

(7)G̃
S(r, r′,�k)

L2

r′2 T
S

μν (r′,�k), (127)

up to terms irrelevant (suppressed by powers of 1/r) to holographic renormalization.
There is, however, a subtlety in the above discussion. As we have pointed out in the previous

subsection, both δgT
μν and δgS

μν have a component which decays slowly, ∼1/r. While they cancel
eventually in the sum δgT

μν + δgS
μν , it is convenient to extract the O(1/r4) components in δgT/S

μν

by subtracting the slowly decaying terms, because each term in our formal expression of the
Green functions G̃T/S(r, r′) in Eq. (134) behaves as 1/r6 as r → ∞ and the 1/r terms in δgT/S

μν

cannot be captured without taking the infinite sum. For this purpose, we define

δg
T
μν ≡ δgT

μν − r2

4L2

(
ημν − kμkν

k2

)
b,

δg
S
μν ≡ δgS

μν + r2

4L2

(
ημν − kμkν

k2

)
b, (128)

and the corresponding subtracted bulk energy momentum tensor

2κ2
7T

T
μν ≡ 2κ2

7T T
μν + 1

4

(
ημν − kμkν

k2

)(
−k2 + 1

L4r3
∂r

(
(r7 − rR6)∂r

))
b,

2κ2
7T

S
μν ≡ 2κ2

7T S
μν − 1

4

(
ημν − kμkν

k2

)
×

[
−k2 + 1

L4r3
∂r

(
(r7 − rR6)

(
∂r + 144r5R6

(5r6 − 2R6)(r6 + 2R6)

))]
b. (129)

Equations (111), (113), and (118) imply δg
S/T
μν ∼ 1/r4, as desired.
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With this in mind, we now solve Eqs. (123) and (126) by introducing the complete set of
eigenfunctions,

− 1
r3L4

∂r

(
(r7 − rR6)∂r�

T
n (r)

)
= (

mT
n

)2
�T

n (r) (n = 1, 2, 3, . . .), (130)

− 1
r3L4

∂r

(
(r7 − rR6)

(
∂r + 144r5R6

(5r6 − 2R6)(r6 + 2R6)

)
�S

n (r)
)

= (
mS

n

)2
�S

n (r), (131)

which are regular at r = R and vanish in the limit r → ∞. They satisfy the completeness relations

r3

L3

∞∑
n=1

�T/S
n (r)�T/S

n (r′) = δ(r − r′), (132)∫ ∞

R
drr3�T/S

n (r)�T/S
m (r) = L3δmn. (133)

The solution of Eqs. (123) and (126) can then be formally written as

G̃T/S(r, r′,�k) =
∞∑

n=1

�
T/S
n (r)�T/S

n (r′)(
mT/S

n

)2
+ �k2

. (134)

mT/S
n are nothing but the masses of the T4 and S4 0++ glueballs [59]. Numerically (see Table 1

of Ref. [59]),

L4

R2

(
mT

n

)2 = 22.097, 55.584, 102.456, 162.722, 236.400, 323.541, 424.195, . . .

(135)

or, equivalently, using the relation L2/R = 3/MKK,

mT
n

MKK
= 1.567, 2.485, 3.374, 4.242, 5.125, 5.996, 6.865, . . . (136)

Surprisingly, to a very good approximation,

mT
n ≈ 2mn, (137)

where mn are the vector meson masses of Eq. (41). This approximate relation becomes more
and more accurate as n increases. Already when n = 2, the discrepancy is at the sub-percent
level. This hints at some kind of degeneracy between a glueball and a pair of vector mesons.
We shall come back to this point in the concluding section. Similarly, for the S4 mode,

mS
n

MKK
= 0.901, 2.285, 3.240, 4.150, 5.042, 5.925, 6.804, . . . (138)

It is easy to see that the normalizable modes �
T/S
n (r) decay near the boundary r → ∞ as

�T/S
n (r) ≈ α

T/S
n

r6
. (139)

The coefficients α
T/S
n can be obtained by integrating Eqs. (130) and (131) over r:

αT/S
n =

(
mT/S

n

)2
L4

6

∫ ∞

R
drr3�T/S

n (r). (140)

We can thus write the leading term as

δg
T/S
μν (�k, r) ≈ CT/S

μν (�k)

r4
+ · · · (141)
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with �k-dependent coefficients CT/S
μν (�k). The relation between 〈Tμν〉 and CT/S

μν is fixed by holo-
graphic renormalization [55,56]. This is conveniently done in a different coordinate system,

� = L4

r2
(

1
2 (1 + √

f (r))
)2/3 , (142)

in which the metric (5.1) takes the Fefferman–Graham form

ds2 = L2
[

1
�

(
1 − 5�3

6�3
KK

)
dτ 2 + 1

�

((
1 + �3

6�3
KK

)
dxμdxμ + �3

L10
Ci jdxidx j

)
+ d�2

4�2
+ 1

4
d�2

4

]
+ O(�3), (143)

where �KK = L4/R2. From this expression we can read off the boundary energy momentum
tensor,

〈Tμν (�k)〉 =
〈
T T

μν (�k)
〉
+

〈
T S

μν (�k)
〉
, (144)

〈
T T/S

μν (�k)
〉
= 6

2κ2
7 L5

CT/S
μν (�k) = 6

L10

∞∑
n=1

αT/S
n

∫ ∞

R
dr′ r′3�T/S

n (r′)

�k2 +
(

mT/S
n

)2T
T/S
μν (r′,�k), (145)

where α
T/S
n are given by Eq. (140). In particular, using Eqs. (13) and (56), we find〈

T T
i j (�k)

〉
= 12κ

L7

∑
n

αT
n

�k2 + (
mT

n

)2

∫ ∞

−∞
dz�T

n (r′(z))h(z)tr
[
FikFjk(z,�k)

]
+ · · · . (146)

To get the four-dimensional energy momentum tensor, we have to integrate over the extra di-
mensions x11 and τ , but this has been already done in Eq. (62).

We have thus seen that the D-term gravitational form factor is saturated by the exchange of
an infinite tower of 2++ and 0++ glueballs. Schematically,

D(|�k|) ∼
∞∑

n=1

cT
n (|�k|)

�k2 + (
mT

n

)2 +
∞∑

n=1

cS
n (|�k|)

�k2 + (
mS

n

)2 . (147)

It is tempting to refer to this as the “glueball dominance” of the D-term, in perfect analogy
to the vector meson dominance of the electromagnetic form factors. In both cases, in general
one has to sum over infinitely many resonances. Equation (147) should be contrasted with the
tripole form

D(|�k|) ∼ 1

(�k2 + �2)3
(148)

suggested by perturbative QCD analyses at large k [65–67]. While Eqs. (147) and (148) are
seemingly very different, an infinite sum can change the analytic properties in |�k|. Indeed, it
has been observed in Ref. [32] that the electromagnetic form factors calculated in the present
model can be well fitted by the dipole form 1/(�k2 + �′2)2 despite being formally expressed by
an infinite sum of single-pole (vector meson) propagators like Eq. (147). Note that in certain
bottom-up models [18,35], the summation over n can be done explicitly to illustrate this point.

In the present model, the summation over n cannot be performed in a closed analytic form.
However, the value at the special point k = 0 can be exactly determined with the help of
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Eq. (140):

lim
r→∞ G̃T/S(r, r′,�k = 0) = 1

r6

∑
n

α
T/S
n �

T/S
n (r′)

(mT/S
n )2

= L4

6r6

∑
n

∫ ∞

R
dr′′r′′3�T/S

n (r′′)�T/S
n (r′) = L7

6r6
.

(149)

Remarkably, this is independent of r′, so the convolution with the graviton propagator disap-
pears. Thus, the distinction between the S4 and T4 propagators becomes irrelevant at this point.
It then follows that

〈Ti j (�k = 0)〉 ≈ 2κ

∫
dzh(z)tr[Fil Fjl ](�k = 0, z) + · · · . (150)

This is nothing but the naive classical formula in Eq. (29) evaluated in the previous section ex-
cept for the subtraction term −T other in Eq. (114) which, however, can be ignored because it is
a total derivative; see Eq. (120). We have thus arrived at the same conclusion as in the previous
subsection: that the value D(0) can be calculated by simply Fourier-transforming the classical
energy momentum tensor in Eq. (29) without any reference to glueballs. At �k = 0, exchanging
infinitely many glueballs is tantamount to exchanging no glueball at all.

Another regime where an analytical expression of the propagator is available is the large-
momentum region |�k| 
 MKK .14 In this regime, we expect that G̃T/S(r → ∞, r′,�k) is exponen-
tially small in |�k| for |�k|L2 > r′.15 In the opposite region,

r′ > |�k|L2 = 3R
|�k|

MKK

 R, (151)

the geometry is approximately AdS7 (instead of AdS7 black hole), and the propagator is ex-
plicitly known in terms of the modified Bessel functions [68],

G̃T/S(r, r′,�k) ≈ L7

r3r′3 K3(|�k|L2/r′)I3(|�k|L2/r) ≈ |�k|3L13

48r6r′3 K3(|�k|L2/r′), (152)

for r → ∞ > r′. Equation (152) reduces to Eq. (149) by formally setting �k = 0. Noting that r
′

≈ |z|1/3R in this regime, we see that the D-term can be calculated from the convolution

〈Ti j (�k)〉 ≈ 2κ

∫
dz

{
27|�k|3

8|z|M3
KK

K3

(
3|�k|

|z|1/3MKK

)}
h(z)tr[Fil Fjl ](�k, z) + · · · . (153)

Since the z-integral is effectively limited to |z| � 27|�k|3/M3
KK , we see that the gravity effect

strongly suppresses the D-term at large |�k|.
To summarize, we arrive at the following strategy to calculate the energy momentum ten-

sor and the gravitational form factors. The value at the special point �k = 0 can be obtained
“classically” as demonstrated in the previous section. When 0 < |�k| � MKK ∼ 1 GeV, they can
be calculated, in principle, by Eqs. (144) and (145), where one has to explicitly evaluate the

14The following discussion should be taken with caution because the present model starts to deviate
from QCD as the momentum transfer gets much larger than MKK.

15When |�k|L2 
 r′ 
 R, one can see from Eq. (152) that the propagator is exponentially suppressed,
and the suppression gets stronger as r′ approaches R from above. When r′ ∼ R, the AdS approximation
breaks down. Nevertheless, by formally Taylor-expanding Eq. (134),

G̃T/S(r, r′,�k) =
∞∑

n=1

∞∑
i=1

(−(mT/S
n )2)i−1

(�k2)i
�T/S

n (r)�T/S
n (r′),

and repeatedly using Eqs. (130), (131), and (132), one can show that all the coefficients of 1/(�k2)i vanish.
This suggests that the propagator decays faster than any inverse power of 1/�k2.
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Fourier modes of the bulk energy momentum tensor Tμν (r,�k) and perform the infinite sum.
Equation (145) exhibits the phenomenon of “glueball dominance,” namely the form factor is
saturated by the exchange of the T4 and S4 glueballs. When |�k| 
 MKK , we may continue to
use holographic renormalization. The bulk spacetime effectively reduces to AdS7 (as opposed
to the AdS7 black hole) and the connection to glueballs becomes less obvious. Note that the
first region |�k|  1 GeV practically covers the phenomenologically important region [11,12,15].
The region |�k| 
 1 GeV is also interesting for certain applications [13,14,21], but in this regime
one should use perturbative QCD techniques [66,67] rather than holography.

Finally, let us comment on the relation to previous approaches in the literature [11,19,36]. In
bottom-up holographic models, one works in asymptotically AdS5 spaces. Needless to say, the
S4 mode is nonexistent in these spaces. There are five transverse-traceless graviton polarizations
in AdS5, in one-to-one correspondence with the T4(2++) modes in AdS7. They are interpreted
as the 2++ glueballs in the boundary field theory. Via holographic renormalization, the AdS5

counterpart of Eq. (75) induces the transverse-traceless part of the QCD energy momentum
tensor, namely, the first line of Eq. (7) [11]. Separately to this, one has to exchange the dilaton
dual with the 0++ glueballs, which leads to the trace part of the energy momentum tensor, the
second line of Eq. (7). The A-form factor in the coefficient of kμkν − ημνk2 cancels between the
two, and only the D-form factor remains. However, the split in Eq. (7) is somewhat artificial,
and the cancellation may become a delicate issue [36]. In our AdS7/CFT6/QCD4 setup, the
2++ and 0++ glueballs (the latter would correspond to the dilaton in a five-dimensional setup)
are treated on an equal footing. They are both transverse-traceless from the seven-dimensional
point of view, and their distinction is immaterial for the purpose of calculating the gravitational
form factors.

6. Discussions and conclusions
Let us try to interpret our results diagrammatically. In our model, the form factor D(t = −�k2)
is given by the convolution of the soliton energy momentum tensor TAB and the graviton prop-
agator in the AdS7 black hole geometry which contains information about the 2++ and 0++

glueballs. When t = 0, the graviton propagator trivializes. The D-term D(0) is then related to
the Fourier transform of the “classical” energy momentum tensor Tcl in Eq. (24) evaluated
on-shell. Since Tcl ∼ G2, H2 (see Eq. (43)) can be expressed by the square of the vector meson
propagators near the boundary, and one may say that a graviton couples to the nucleon by ex-
changing pairs of pions and infinitely many vector and axial-vector mesons.16 This is depicted
in the left diagram of Fig. 1. Roughly the D-term may be understood as the coupling between
a graviton and a “meson cloud,” similarly to the pion cloud in the chiral quark soliton model
(see, e.g., Ref. [38]). We emphasize, however, that in our calculation the pion contribution is
just one term n = 0 in the infinite sum of Eq. (40). When 0 < |�k| � MKK ∼ 1 GeV, one sees the
individual contributions of glueballs in Eq. (134). The emerging picture in this regime is that
the meson pairs from T AB in the bulk couple with glueball intermediate states which eventu-
ally interact with an external graviton (Fig. 1, middle). One may interpret this situation as the
“glueball dominance” of the gravitational form factors, in perfect analogy to the vector me-

16The energy momentum tensor also contains cubic and quartic terms in G and H (cf. Eq. (43)) which
can be interpreted as three-meson and four-meson exchanges. However, such contributions are sup-
pressed near the boundary.
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Fig. 1. Diagrammatic interpretation of the nucleon’s gravitational form factor D(|�k|). The wavy line
denotes an external graviton. Left: Two vector meson (pion) exchanges at �k = 0. The intermediate lines
represent the meson propagators G, H of Eq. (40). Middle: 2++ and 0++ glueball exchanges when |�k| �
1 GeV. The dashed line represents the glueball propagators of Eq. (134). Right: Two-gluon exchanges in
the perturbative high-|�k| (
1 GeV) region.

son dominance of the electromagnetic form factors previously observed in our model [32]. In
both cases, one has to exchange infinitely many resonances. Curiously, as we pointed out below
Eq. (41), the masses of the T4 glueballs are strikingly close to those of two vector mesons. To
our knowledge, this coincidence does not seem to have been pointed out in the literature. It
would be very interesting to explore the reason for and implications of this observation. Fi-
nally, in the large-k region, the geometry becomes effectively AdS7 (as opposed to the AdS7

black hole) and the information about the glueball spectrum is lost. While the meson exchange
picture is still possible, in this region one should rather use perturbative QCD techniques to
calculate form factors. In particular, the D-term is given by the two-gluon exchange to leading
order (Fig. 1, right) [66].

The connection between the D-term and glueballs has been recently emphasized by Mamo
and Zahed using a bottom-up AdS5/QCD4 model [18,36]. As we commented at the end of
Sect. 5, in their calculation the D-term results from a cancellation between the transverse-
traceless (TT) graviton and dilaton exchanges in AdS5 (in other words, between the first and
second lines in Eq. (7)). They argue that, due to the degeneracy of the 2++ and 0++ glueball
masses, the cancellation is complete (meaning D = 0) in the large-Nc limit. They further ar-
gue that the D-term becomes nonzero only after including 1/Nc corrections, suggesting that the
large-Nc counting argument [2],

D ∼ O
(
N2

c

)
, (154)

does not hold. In contrast, in our AdS7/CFT6/QCD4 calculation, the contributions from the
2++ and 0++ T4 glueballs add up (see Eqs. (122) and (124)), after which their distinction be-
comes immaterial. Moreover, the value D(k = 0) can be calculated “classically” as in Sect. 4
without any reference to glueballs. Our result is consistent with the large-Nc counting, since

D ∼ κM ∼ O
(
N2

c

)
. (155)
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(MKK ∼ O(N0
c ) since it is related to the ρ-meson mass.) Interestingly, however, the actual nu-

merical value calculated in Sect. 4 is small due to a cancellation between the iso-singlet and
iso-vector contributions.

In conclusion, we have demonstrated that our model of QCD offers a novel holographic
framework to calculate the nucleon D-term and possibly other gravitational form factors, with
a vivid physical interpretation in terms of meson and glueball exchanges. There are a num-
ber of avenues for improvement and generalization. First, the quantization of the collective
coordinates should be implemented. It is known that the quantization brings in uncertainties
in baryon masses associated with the zero-point (vacuum) energy of harmonic oscillators [30].
We expect that the D-term, being a nonforward matrix element, is less affected by this problem.
However, without quantization, the spin-1/2 nature of the nucleon is lost, and one cannot talk
about the B-form factor in Eq. (4). Second, in order to calculate D(k) for nonvanishing values
of k, it is desired to convolute a more accurate soliton configuration in the entire space 0 < |z|
< ∞ obtained numerically (see e.g., Refs. [43–45]) with the graviton propagator to incorporate
the contributions from the glueballs. This is crucial, in particular, for the calculation of the
“mechanical radius” [2]17

〈r2〉 ≡ 6D(0)∫ ∞
0 dk2D(k2)

. (156)

Since the entire region in k is involved, a proper evaluation of the mechanical radius must
include the glueball degrees of freedom. The calculation is significantly more complex than
that of the electromagnetic form factors and the associated “charge radius” in this model [32],
which only requires knowledge of the asymptotic behavior as z → ∞ of the bulk gauge fields.
There are other interesting directions such as the effect of finite quark masses (finite pion mass)
and generalizations to mesons and excited baryons [70], and perhaps even to atomic nuclei [71].
We hope to address these issues in future.
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