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Taking account of the Lorentz contraction effect of the extended nucleon core as a nucleon 
but not as a quark, it is shown that the Gaussian inner orbital wave function can produce 
the form factor very close to the dipole formula. 
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Recent experiments show that the nucleon electromagnetic form factor are 
empirically described by the "scaling law" e- 1GEP = flp - 1GMP = fLn- 1GMn (=F) and 

GEn=O and by the "dipole formula" F= (l+K-2Jti)-2
, where we have followed 

the usual notations and K 2 = 0.71 (Ge V / cY. The scaling law was already dis­
cussed on the theoretical basis of the nonrelativistic urbaryon (quark) model.1>' 2> 

Ishida et al. 2
) and Drell et al. 3> attempted to extract information about the inner 

orbital wave function at short distances from the It !-dependence of F in a wide 
region of It I over M 2 (M being the nucleon mass), using nonrelativistic for­

mulas. In this note we show that if possible relativistic effects as a nucleon 
(not as a quark), especially the Lorentz contraction of the nucleon core, are taken 

into account in a proper way, their conclusions become never true but the simple 
Gaussian inner orbital wave function can produce the form factor very close to 

the dipole formula. 

Those who are working with the nonrelativistic quark model have believed 

that if It I <_Mq2 (Mq being the quark mass), nonrelativistic formulas can be used 
for everything. As for the form factor, therefore, they have used 

F= WNR (Drell et al. and others), 

with the nonrelativistic formula 

(la) 

(lb) 

(2) 

where m~ is the mean square mass of p and w mesons and q the momentum 
transfer. ¢ (x, · · ·) stands for the inner orbital wave function, where independent 

inner coordinates are denoted by x and Assuming the simple Gaussian func­

tion for ¢, we have got 
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(3) 

where <r2)c is the mean square radius of the nucleon core. It is evident that 

the simple Gaussian function never gives us the form factor consistent with the 

dipole formula for It 12:1\IP. This is the reason why Ishida et al. introduced a 

singular wave function and Drell et al. discussed singular potentials among con­

stituent particles. It is, however, to be noted that Eq. (2) is a nonrelativistic 

formula to be verified not only for It I <!;;')'t1q2 but also for It I <M2
• Here we want 

to emphasize that relativistic effects as a nucleon (but not as a quark) become 

very important for It I ?:;M2
• Indeed, -vve can see that the Lorents contraction ef­

fect as a nucleon for It! >1\P should reduce <r2)c in Eq. (3) by the Lorentz 

factor, r-I, approximately proportional to M 2!t!-1
• Hence Eq. (3) must be 

modified essentially in its It !-dependence in the following way: 

(4) 

where OFI (q2) is the overlap integral defined by (¢F, ¢1). 
Hence we cannot exclude the Gaussian inner wave function. Furthermore 

note that the region Mq2~ It!> M 2 covers a wide range from one (Ge V /c) 2 to 

several ten (Ge V /cY if Mq~ (5 to 10) X M. 
In order to take properly the relativistic effect into account we must in­

evitably use the four-climensionnl inner orbital wave function. In the quark model, 

the nucleon is assumed to be a composite particle of three qwuks. Suppose that 

the three quarks have, respectively, four-r>Osition coordinates Xr, .x2 aed x~. After 

separating the center-of-mass coordinate X= (x1 + x 2 + :r3) /3, we keep two inde­

pendent relative coordinates r= (.T2 - .x3) / v6" and s = (- 2.x1 + xd- X:;) /3v2. Now, 
as the simplest example, we can choose the four-dimensional Gaussian function 

'0 (r s· P) = (a/7r) 2 exp [-~- { r 2 + s2
- _ _? __ (P· rY- ? (P· s) 2

} J (5) 
v- ' ' _2 1\P M 2 

for the inner orbital wave function,*) where P stands for the center-of-mass 

momentum of the composite system, i.e. the nucleon momentum, and (a/nY is 

the normalization cost<mt determined by J) l\bl 2d 4rd4s= 1. The constant a is related 

to the mean square radius of the nucleon core through a-1 = <r2)c/3. It may be 

worth while to emphasize another reason ·why Eq. (5) is used here: Equation 

(5) represents the ground state eigenfunction of the Hamiltonian of a four­

dimensional harmonic oscillator consistent with the famous linearly raising tra­

jectory in an extended particle model. 4
) Our procedure should he regarded as 

one theoretical attempt in an extended particle model represented by a trilocal field 

based on the quark model, rather than one in the naive relativistic quark model. 
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The relativistic form factor is giVen by the formula*) 

lVn = S S ¢* (r, s; Pv) eiq·(ar+l!.~)qJ (r, s; P 1) d 4rd4s, 

or symbolically 

(6) 

(6') 

where P1 and PF are, respectively, the initial and final momenta of the nucleon 

and q = PF- Pr. a and b is one of the following pairs; (0, - .J2), ( /3/2, 1/ .J2) 
and (- .J3/2, 1/ .J2). Note here that a 2 + b~ = 2 for every pair. Inserting Eq. (5) 

into Eq. (6), one obtains 

(7) 

Here the first factor is not other than the overlap integral 

with (8) 

it I T = 1 +----- and B=4, 
2M2 

vvhere B = 4 means the number of dimensions giving the Lorentz contraction, 

namely, the longitudinal space-like inner coordinates and two time-like inner 

coordinates. As mentioned above we can see in Eq. (7) that .J [~ behaves just 

like the effective Lorentz contraction factor and the exponential function in Eq. 

(7) goes to a constant as!t I increases over M 2
• The ltl-dependenc:e of the form 

factor for Mq2~ It I ~M2 is, therefore, governed mainly by the overlapping-effect 

factor (1/ .J r) B which goes to (It !/2M2
) -B/

2
• vV e can remark that power B is 

nothing other than the number o:f independent relative coordinates. Thus the 

dipole-like behavior of vVn. can be obtained from B = 4, namely, the inner freedom 

of motion equivalent to four indepencent relative coordinates. Thus the dipole­

like behavior of 1Vn can be obtained from B = 4, namely, the inner freedom of 

motion equivalent to four independent relative coordinates. 

Equations (1a) and (lb) should, respectively, be replaced \vith 

F=vV R.' 

F= (1 + l;-(r2
) rT- 1it!) -lvV . (, \ . R. ' 

(9a) 

(9b) 

where (r2)v = 6mv2 is the mean square radius of the vector meson cloud. Both 

formulas (9a) and (9b) together with Eq. (7) behave like the dipole formula 

*l It is to be noted that most of the infinite component field theories have identified the form 

factor with the overlap function (</Jp, ¢ 1 ) but never with (</Jp, eiqx¢1) itself. In fact, some authors 

have derived our later result, (</Jp, ¢ 1 ) = (1 + lti/2M2) - 2 as the form factor, using the infinite component 

field theory. See A. 0. Barut's lecture given at the Colorado Summer School in 1H67. We must em­

phasize here that the form factor should not be given by (</J p, <Pi). 
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modified by a constant factor for Mq2> Jtl > M 2
• Note that they contain only 

one free parameter <r2)c to be adjusted. Let us first compare the theoretical 
form factor given by Eq. (9a) together with Eq. (7)--call it Case (i)-­
with experiment5

) in Fig. 1, in which we have used <r2)c = 7.50 (Ge VI c)- 2
• From 

them one can see that the theoretical curve given by Eqs. (9a) and (7) is not 
inconsistent with the experimental plot but quite different from the nonrelativistic 
Gaussian form factor W 0 • Next we examine Case (ii) in which Eq. (9b) is 
combined with Eq. (7), namely, each quark has the vector meson cloud. Choos­
ing <r2)c = 1.82 (Ge VI c)-2

, we see in Fig. 2 that the theoretical curve can 
reproduce the experimental plot in a wide range of JtJ from zero to about 25 
(Ge VI cY. It is repeatedly noted that this fit has been obtained by adjusting only 
one parameter <r2)c, and that the nonrelativistic Gaussian form factor is strongly 
modified in its essence. 
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Fig. 1. Comparison of the theoretical form factors with experiments in Case (i) 
with (r2)c=7.50 (GeV/c) -z. The dipole formula and the nonrelativistic Gaussian 
form factor are~ respectively, shown by the broken and chain lines, 
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Fig. 2. Comparison of the theoretical form factors with experiments in Case (ii) 
with <r2)c=l.82 (GeV/c) -z, in Case (iii) with <r2)c=8.81 (GeV/c) -2 and 
A=1.4, and in Case (iv) with <r2)c=l.20 (GeV/c)-2 and A=0.9. The broken 
line shows the dipole formula. 

Here we want to introduce a new parameter, say A, into the mner orbital 

wave function as follows: 

(a) 2
,----- [a{ 2 2 2A 2 2A 2}] 1'),. (r, s; P) = ,----:;; v 2}, -1 exp z r + s - M2 (P· r) - M

2 
(P·s) . (10) 

It is easy to see that the parameter A distinguishes the time-like extension from 

the space-like one of the inner orbital motion, and that A= 1 gives us the original 

one Eq. (5). Using r/h, we have got 

~Vi{)= r),. -1 
( 1 + 2-;l ~-i 2~2) -l exp [- ~ <r2)cT).. - 11 t I], (11) 

where 
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I'=l+tlltl. 
A. 2]).,{2 

(12) 

The form factor F~.. is obtained by Eq. (11) together with the modified formulas 

(13a) 

(13b) 

In case (iii) Eq. (13a) is combined with Eq. (11), and Case (iv) is given by 

Eq. (13b) together with Eq. (11). In both cases the form factor goes to one 

proportional to (2M2 Iti- 1Y like the dipole formula. Figure 2 sho-vvs us that the 

experimental plot can be fitted by the theoretical curves with <r2)c = 8.81 (Ge V/ c)-2 

and l=1.4 in Case (iii) and with<r2)c=1.20 (GeV/c)- 2 andtl=0.9inCase (iv). 

The theoretical curves are in good agreement ·with experiment. Needless to say, 

Cases (iii) and (iv) include Cases (i) and (ii), respectively, as their special cases 
with }, = 1. 

From the above arguments we have inferred that the Lorentz contraction of 

the extended nucleon core can be a possible origin of the "dipole formula". 

The same effects will appear also in inelastic electron proton collisions leading 

to the isobar excitation. In the nonrelativistic quark model we have got the 

differential cross section for the inelastic collision in the following form :6
> 

(14) 

using the simple Gaussian wave function, where L is an integral number deter­

mined by the type of transition, and A a numerical factor. If we take the 
Lorentz contraction factor into account, then we can infer that Eq. (14) should 

be replaced with 

(15) 

where v T and OFr (q2
) are, respectively, the effective Lorentz contraction factor 

and the overlap integral in the inelastic colli::don. The simDar structure of the 

wave function suggests us that T->rl and OF 1 (q 2
) -> (q2

)-
2 as q 2 goes over JlvP, and 

then that the inelastic cross section would behave like the dipole formula squared 

for q2~M2 • Indeed, it seems to us that recent experiments indicate such a be­
havior for the cross section.') Detailed discussions will be given in a forth­

coming paper in which the full nucleon and isobar wave functions and the quark 

current to be valid for Mq 2> It I> M 2 will be formulated. 

The earlier form of this work w~1s done when one of the authors (M. N.) was 

working in the Niels Bohr Institute in Copenhagen. He would like to express 

his sincere gratitude to Professor A. Bohr for his kind hospitality and to Professor 

Z. Koba for many discussions. He is also much indepted to Professor T. Taka­

bayashi for helpful discussions. 
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