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We present results for the nucleon electromagnetic form factors using an ensemble of maximally
twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-
source separations and three analysis methods to probe ground-state dominance. We evaluate both
the connected and disconnected contributions to the nucleon matrix elements. We find that the
disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper
bound of up to 2% of the connected and smaller than its statistical error. We present results for the
isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and
neutron form factors. By fitting the momentum dependence of the form factors to a dipole form
or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic
moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
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I. INTRODUCTION

Electromagnetic form factors probe the internal struc-
ture of hadrons mapping their charge and magnetic dis-
tributions. The slope of the electric and magnetic form
factors at zero momentum yields the electric and mag-
netic root mean square radius, while the value of the
form factors at zero momentum give its electric charge
and magnetic moment. Extensive electron scattering ex-
periments have been carried out since the fifties for the
precise determination of the nucleon form factors, includ-
ing recent experiments at Jefferson Lab, MIT-Bates and
Mainz. For a recent review on electron elastic scattering
experiments, see Ref. [1]. The proton radius can also be
obtained spectroscopically, namely via the Lamb shifts
of the hydrogen atom and of muonic hydrogen [2] and
via transition frequencies of electronic and muonic deu-
terium. In these measurements, including a recent exper-
iment using muonic deuterium [3], discrepancies are ob-
served in the resulting proton radius between hydrogen
and deuterium and their corresponding muonic equiva-
lents. Whether new physics is responsible for this dis-
crepancy, or errors in the theoretical or experimental
analyses, a first principles calculation of the electromag-
netic form factors of the nucleon can provide valuable
insight. Although nucleon electromagnetic form factors
have been extensively studied in lattice QCD, most of
these studies have been carried out at higher than physi-

cal pion masses, requiring extrapolations to the physical
point, which for the case of baryons carry a large system-
atic uncertainty.
In this paper, we calculate the electromagnetic form

factors of the nucleon using an ensemble of two degen-
erate light quarks (Nf = 2) tuned to reproduce a pion
mass of about 130 MeV, in a volume with mπL ≃3 [4].
We use the twisted mass fermion action with clover im-
provement [5, 6]. We employ O(105) measurements to re-
duce the statistical errors, and multiple sink-source sepa-
rations to study excited state effects using three different
analyses. We extract the momentum dependence of the
electric and magnetic Sachs form factors for both isovec-
tor and isoscalar combinations, i.e. for both the differ-
ence (p−n) and sum (p+n) of proton and neutron form
factors. For the latter we compute the computationally
demanding disconnected contributions and find them to
be smaller than the statistical errors of the connected
contributions. To fit the momentum dependence we use
both a dipole form as well as the z-expansion [7]. From
these fits we extract the electric and magnetic radii, as
well as, the magnetic moments of the proton, the neu-
tron and the isovector and isoscalar combinations. For
the electric root mean squared (rms) radius of the pro-

ton we find
√

〈r2E〉p = 0.767(25)(21) fm where the first
error is statistical and the second a systematic due to
excited states. Although this value is closer to the value
of 0.84087(39) fm extracted from muonic hydrogen [3], a
more complete analysis of systematic errors using multi-
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ple ensembles is required to assess accurately all lattice
artifacts.

The remainder of this paper is organized as follows:
in Section II we provide details of the lattice set-up for
this calculation and in Section III we present our results.
In Section IV we compare our results with other lattice
calculations and in Section V we summarize our findings
and conclude.

II. SETUP AND LATTICE PARAMETERS

A. Electromagnetic form factors

The electromagnetic form factors are extracted from
the electromagnetic nucleon matrix element given by

〈N(p′, s′)|OV
µ |N(p, s)〉 =

√

m2
N

EN (~p′)EN (~p)
ūN (p′, s′)ΛV

µ (q
2)uN (p, s) (1)

with N(p, s) the nucleon state of momentum p and spin
s, EN (~p) = p0 its energy andmN its mass, ~q = ~p ′−~p, the
spatial momentum transfer from initial (~p) to final (~p ′)
momentum, uN the nucleon spinor and OV the vector
current. In the isospin limit, where an exchange between
up and down quarks (u ↔ d) and between proton and
neutron (p ↔ n) is a symmetry, the isovector matrix
element can be related to the difference between proton
and neutron form factors as follows:

〈p|2
3
ūγµu− 1

3
d̄γµd|p〉 − 〈n|2

3
ūγµu− 1

3
d̄γµd|n〉

u↔d−−−→
p↔n

〈p|ūγµu− d̄γµd|p〉. (2)

Similarly, for the isoscalar combination we have

〈p|2
3
ūγµu− 1

3
d̄γµd|p〉+ 〈n|2

3
ūγµu− 1

3
d̄γµd|n〉

u↔d−−−→
p↔n

1

3
〈p|ūγµu+ d̄γµd|p〉. (3)

We will use these relations to compare our lattice results,
obtained for the isovector and isoscalar combinations,
with the experimental data for the proton and neutron
matrix elements.
We use the symmetrized lattice conserved vector cur-

rent, OV
µ = 1

2 [jµ(x) + jµ(x− µ̂)], with

jµ(x) =
1

2
[ψ̄(x+ µ̂)U †

µ(x)(1 + γµ)τaψ(x)

−ψ̄(x)Uµ(x)(1− γµ)τaψ(x+ µ̂)], (4)

where ψ̄ = (ū, d̄) and τa acts in flavor space. We consider
τa = τ3, the third Pauli matrix, for the isovector case,
and τa = 1/3 for the isoscalar case. µ̂ is the unit vector
in direction µ and Uµ(x) is the gauge link connecting
site x with x + µ̂. Using the conserved lattice current
means that no renormalization of the vector operator is
required.
The matrix element of the vector current can be de-

composed in terms of the Dirac F1 and Pauli F2 form
factors as

ΛV
µ (q

2) = γµF1(q
2) +

iσµνq
ν

2mN

F2(q
2). (5)

F1 and F2 can also be expressed in terms of the nucleon
electric GE and magnetic GM Sachs form factors via the
relations

GE(q
2) =F1(q

2) +
q2

(2mN )2
F2(q

2), and

GM (q2) =F1(q
2) + F2(q

2). (6)

B. Lattice extraction of form factors

On the lattice, after Wick rotation to Euclidean time,
extraction of matrix elements requires the calculation of
a three-point correlation function shown schematically in
Fig. 1. For simplicity we will take x0 = (~0, 0) from here
on. We use sequential inversions through the sink, fixing
the sink momentum ~p ′ to zero, which constrains ~p = −~q:

Gµ(Γ; ~q; ts, tins) =
∑

~xs~xins

e−i~q.~xinsΓαβ〈χ̄β
N (~xs; ts)|Oµ(~xins; tins)|χα

N (~0; 0)〉

ts−tins→∞−−−−−−−→
tins→∞

∑

ss′

Γαβ〈χβ
N |N(0, s′)〉〈N(p, s)|χ̄α

N 〉〈N(0, s′)|Oµ(q)|N(p, s)〉e−EN (~p)tinse−mN (ts−tins), (7)

where Γ is a matrix acting on Dirac indices α and β and
χN is the standard nucleon interpolating operator given

by

χα
N (~x, t) = ǫabcuaα(x)[u

b⊺(x)Cγ5d
c(x)]. (8)
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FIG. 1. Three-point nucleon correlation function with source
at x0, sink at xs and current insertion Oµ at xins. The con-
nected contribution is shown in the upper panel and the dis-
connected contribution in the lower panel.

with C = γ0γ2 the charge conjugation matrix. In the
second line of Eq. (7) we have inserted twice a complete
set of states with the quantum numbers of the nucleon,
of which, after assuming large time separations, only the
nucleon survives with higher energy states being expo-
nentially suppressed. We use Gaussian smeared point-
sources [8, 9] to increase the overlap with the nucleon
state with APE smearing applied to the gauge links, with
the same parameters as in Ref. [10], tuned so as to yield
a rms radius of about 0.5 fm. These are the same param-
eters as in Ref. [11], namely (NG, αG) = (50, 4) for the
Gaussian smearing and (NAPE, αAPE) = (50, 0.5) for the
APE smearing.
We construct an optimized ratio dividing Gµ by a com-

bination of two-point functions. The optimized ratio Rµ

is given by

Rµ(Γ; ~q; ts; tins) =
Gµ(Γ; ~q; ts; tins)

G(~0; ts)
×

[

G(~0; ts)G(~q; ts − tins)G(~0; tins)

G(~q; ts)G(~0; ts − tins)G(~q; tins)

]
1

2

(9)

with the two-point function given by

G(~p; t) =
∑

~x

e−i~p~xΓαβ
0 〈χ̄β

N (~x; t)|χα
N (~0; 0)〉. (10)

Γ0 is the unpolarized projector, Γ0 = 1+γ0

4 . After tak-
ing the large time limit, unknown overlaps and energy

exponentials cancel in the ratio, leading to the time-
independent quantity Πµ(Γ; ~q), defined via:

Rµ(Γ; ~q; ts; tins)
ts−tins→∞−−−−−−−→
tins→∞

Πµ(Γ; ~q). (11)

Having Πµ(Γ; ~q), different combinations of current in-
sertion directions (µ) and nucleon polarizations deter-
mined by Γ yield different expressions for the form fac-
tors [12, 13]. Namely, we have

Π0(Γ0; ~q) =CEN +mN

2mN

GE(Q
2),

Πi(Γ0; ~q) =C qi
2mN

GE(Q
2),

Πi(Γk; ~q) =C ǫijkqj
2mN

GM (Q2), (12)

where Q2 = −q2, is the Euclidean momentum transfer

squared, C =
√

2m2

N

EN (EN+mN ) , and the polarized projector

is given by Γk = iγ5γkΓ0, and i, k = 1, 2, 3.
In what follows we will use three methods to extract

Πµ from lattice data:
i) Plateau method. We seek to identify a range of values
of tins where the ratio Rµ is time-independent (plateau
region). We fit, within this window, Rµ to a constant
and use multiple ts values. Excited states are considered
suppressed when our result does not change with ts.
ii) Two-state fit method. We fit the time dependence of
the three- and two-point functions keeping contributions
up to the first excited state. Namely, we truncate the
two-point function of Eq. (10) keeping only the ground
and first excited states to obtain

G(~p; t) = c0(~p)e
−E(~p)t[1+c1(~p)e

−∆E1(~p)t+O(e−∆E2(~p)t)].
(13)

Similarly, the three-point function of Eq. (7) becomes

Gµ(Γ; ~q; ts, tins) =a
µ
00(Γ; ~q)e

−m(ts−tins)e−E(~q)tins×
[

1+aµ01(Γ; ~q)e
−∆E1(~q)tins

+aµ10(Γ; ~q)e
−∆m1(ts−tins)

+aµ11(Γ; ~q)e
−∆m1(ts−tins)e−∆E1(~q)tins

+O[min(e−∆m2(ts−tins), e−∆E2(~q)tins)]

]

,

(14)

where ∆Ek(~p) = Ek(~p)−E(~p) is the energy difference be-
tween the kth nucleon excited state and the ground state
at momentum ~p andm = E(~0) and ∆mk = ∆Ek(~0). The
desired ground state matrix element is given by

Πµ(Γ; ~q) =
aµ00(Γ; ~q)

√

c0(~0)c0(~q)
. (15)

In practice, we fit simultaneously the three-point function
and the finite and zero momentum two-point functions
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TABLE I. Simulation parameters of the ensemble used in
this calculation, first presented in Ref. [4]. The nucleon and
pion mass and the lattice spacing have been determined in
Ref. [14].

β=2.1, cSW=1.57751, a=0.0938(3) fm, r0/a=5.32(5)

483×96, L=4.5 fm

αµ=0.0009

mπ=0.1304(4) GeV

mπL=2.98(1)

mN=0.932(4) GeV

in a twelve parameter fit to determine m, E(~q), ∆m1,

∆E1(~q), c0(~q), c0(~0), c1(~q), c1(~0), a
µ
00(Γ; ~q), a

µ
01(Γ; ~q),

aµ10(Γ; ~q) and a
µ
11(Γ; ~q). The two-point function is evalu-

ated using the maximum statistics available at time sep-
aration ts/a = 18.
iii) Summation method. We sum the ratio of Eq. (9) over
the insertion time-slices. From the expansion up to first
excited state of Eq. (14) one sees that a geometric sum
arises, which yields:

ts−a
∑

tins=a

Rµ(Γ; ~q; ts; tins)
ts→∞−−−−→ c+Πµ(Γ; ~q)ts+O(tse

−∆m1ts).

(16)
The summed ratio is then fitted to a linear form and
the slope is taken as the desired matrix element. We
note that, in quoting final results, we do not use the val-
ues extracted from summation method However, it does
provide an additional consistency check for the plateau
values.

C. Lattice setup

The simulation parameters of the ensemble we use are
tabulated in Table I. We use an Nf = 2 ensemble of
twisted mass fermion configurations with clover improve-
ment with quarks tuned to maximal twist, yielding a pion
mass of about 130 MeV. The lattice volume is 483×96
and the lattice spacing is determined at a =0.0938(3) fm
yielding a physical box length of about 4.5 fm. The value
of the lattice spacing is determined using the nucleon
mass, as explained in Ref. [14]. Details of the simulation
and first results using this ensemble were presented in
Refs. [4, 10].
The parameters used for the calculation of the corre-

lation functions are given in Table II. We use increasing
statistics with increasing sink-source separation so that
statistical errors are kept approximately constant. Fur-
thermore, as will be discussed in Section III, GE(Q

2)
is found to be more susceptible to excited states com-
pared to GM (Q2), requiring larger separations for ensur-
ing their suppression. Therefore, we carry out sequential
inversions for five sink-source separations using the un-
polarized projector Γ0, which yields GE(Q

2) according
Eq. 12. To obtain GM (Q2), we carry out three additional

TABLE II. Parameters of the calculation of the form factors.
The first column shows the sink-source separations used, the
second column the sink projectors and the last column the
total statistics (Nst) obtained using Ncnf configurations times
Nsrc source-positions per configuration.

ts [a] Proj. Ncnf ·Nsrc = Nst

10,12,14 Γ0, Γk 578·16 = 9248

16 Γ0 530·88 = 46640

18 Γ0 725·88 = 63800

sequential inversions, one for each polarized projector Γk,
k = 1, 2, 3, for each of the three smallest separations.

III. RESULTS

A. Analysis

1. Isovector contributions

We use the three methods, described in the previous
section, to analyze the contribution due to the excited
states and extract the desired nucleon matrix element.
We demonstrate the quality of our data and two-state

fits in Figs. 2 and 3 for the isovector contributions to
GE(Q

2) and GM (Q2) respectively, for three momentum
transfers, namely the first, second and fourth non-zero
Q2 values of our setup. In these figures we show the
ratio after the appropriate combinations of Eq. (12) are

taken to yield either Gu−d
E (Q2) or Gu−d

M (Q2). We indeed
observe larger excited state contamination in the case
of Gu−d

E (Q2), which is the reason for considering larger
values of ts for this case. We note that for fitting the
plateau and summation methods, the ratios of Eq. (9) are
constructed with two- and three-point functions with the
same source positions and gauge configurations. For the
two-state fit, as already mentioned, we use the two-point
correlation function at the maximum statistics available,
namely 725 configurations times 88 source positions, as
indicated in Table II. These are the ratios shown in Figs. 2
and 3, which differ from those used for the plateau fits.
The investigation of excited states is facilitated further

by Figs. 4 and 5. These plots indicate that excited state
contributions are present in Gu−d

E (Q2) for the first three
sink-source separations of ts/a = 10, 12 and 14 in par-
ticular for larger momentum transfer. For the two larger
sink-source separations we see convergence of the results
extracted from the plateau method, which are in agree-
ment with those from the summation method and the
two-state fits when the lower fit range is tlows = 12a =

1.1 fm. For Gu−d
M (Q2), all results from the three sink-

source separations are in agreement and consistent with
the summation and two-state fit methods within their er-
rors. The values obtained at ts = 18a = 1.7 fm for the
case of Gu−d

E (Q2) and ts = 14a = 1.3 fm for the case of



5

10 5 0 5 10
(tins ts/2)/a

0.4

0.5

0.6

0.7

0.8

0.9
∑

~ q
∈Q

2R
u

d
0

(
0;
~ q;

t s
,t

in
s)
→

G
u

d
E

(Q
2 )

ts = 12a = 1.1 fm
ts = 14a = 1.3 fm

ts = 16a = 1.5 fm ts = 18a = 1.7 fm

FIG. 2. Ratio yielding the isovector electric Sachs form factor.
We show results for three representative Q2 values, namely
the first, second and fourth non-zero Q2 values from top to
bottom, for ts = 12a (open circles), ts = 14a (filled squares),
ts = 16a (filled circles) and ts = 18a (filled triangles). The
curves are the results from the two-state fits, with the fainter
points excluded from the fit. The band is the form factor
value extracted using the two-state fit.

10 5 0 5 10
(tins ts/2)/a

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

∑
~ q
∈Q

2

ijk q k
R

u
d

i
(

k;
~ q;

t s
,t

in
s)
→

G
u

d
M

(Q
2 )

ts = 10a = 0.9 fm ts = 12a = 1.1 fm ts = 14a = 1.3 fm

FIG. 3. Ratio yielding the isovector magnetic Sachs form
factor. We show results for three representative Q2 values,
namely the first, second and fourth non-zero Q2 values from
top to bottom, for ts = 10a (open squares), ts = 12a (open
circles), and ts = 14a (filled squares). The curves are the
results from the two-state fits, with the fainter points excluded
from the fit. The band is the form factor value extracted using
the two-state fit.

0.8 1.0 1.2 1.4 1.6
ts [fm]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
u

d
E

(Q
2 )

Q2 = 0.074 GeV2

Q2 = 0.214 GeV2

Q2 = 0.345 GeV2

Q2 = 0.527 GeV2

Plateau
Summation

Two-state

0.9 1.1 1.3
tlow
s  [fm]

FIG. 4. Isovector electric form factor, for four non-zero Q2

values, extracted from the plateau method (squares), the sum-
mation method (circles) and the two-state fit method (trian-
gles). The plateau method results are plotted as a function of
the sink-source separation while the summation and two-state
fit results are plotted as a function of tlows , i.e. of the smallest
sink-source separation included in the fit, with thighs kept fixed
at ts = 18a = 1.7 fm. The open square and band shows the
selected value and its statistical error used to obtain our final
results.

Gu−d
M (Q2) are shown in Figs. 4 and 5 with the open sym-

bols and associated error band that demonstrates con-
sistency with the values extracted using the summation
and two-state fit methods.

Our results for the isovector electric Sachs form factor
extracted using all available ts values and from the sum-
mation and two-state fit methods are shown in Fig. 6.
On the same plot we show the curve obtained from a
parameterization of experimental data for Gp

E(Q
2) and

Gn
E(Q

2) according to Ref. [15], using the parameters ob-
tained in Ref. [16], and taking the isovector combination
Gp

E(Q
2)−Gn

E(Q
2). We see that as the sink-source sepa-

ration is increased, our results tend towards the experi-
mental curve. The results from the two-state fit method
using tlows =1.1 fm is consistent with those extracted from
the plateau for ts = 1.7 fm for all Q2 values. Results
extracted using the summation method are consistent
within their large errors to those obtained from fitting
the plateau for ts = 1.7 fm.

In Fig. 7 we show our results for the isovector magnetic
form factor. We observe that excited state effects are
milder than in the case of Gu−d

E (Q2), corroborating the
conclusion drawn by observing Fig. 5. We also see agree-
ment with the experimental curve for Q2 values larger
than ∼0.2 GeV2. However, our lattice results underesti-
mate the experimental ones at the two lowest Q2 values.
Excited state effects are seen to be small for this quan-
tity, and thus they are unlikely to be the cause of this
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0.8 1.0 1.2 1.4
ts [fm]

1.0

1.5

2.0

2.5

3.0

3.5

4.0
G

u
d

M
(Q

2 )

Q2 = 0.074 GeV2

Q2 = 0.214 GeV2

Q2 = 0.344 GeV2

Q2 = 0.526 GeV2

Plateau
Summation

Two-state

0.9 1.0 1.1 1.2
tlow
s  [fm]

FIG. 5. Isovector magnetic form factor. The notation is the
same as that in Fig. 4. For the summation and two-state fit
methods, the largest sink-source separation included in the fit
is kept fixed at thighs = 14a = 1.3 fm.

0.0 0.2 0.4 0.6 0.8 1.0
Q2 [GeV2]

0.2

0.4

0.6

0.8

1.0

G
u

d
E

(Q
2 )

ts = 0.9 fm
ts = 1.1 fm
ts = 1.3 fm
ts = 1.5 fm
ts = 1.7 fm
Summation,
ts ∈ [0.9, 1.7] fm
Two-state,
ts ∈ [1.1, 1.7] fm

Kelly parameterization

FIG. 6. Isovector electric Sachs form factor as a function
of the momentum transfer squared (Q2). Symbols for the
plateau method follow the notation of Figs. 2 and 3. Results
from the summation method are shown with open diamonds
and for the two-state fit method with the crosses. The solid
line shows Gp

E(Q
2)−Gn

E(Q
2) using Kelly’s parameterization

of the experimental data [15] with parameters taken from Al-
berico et al. [16].

discrepancy given the consistency of our results at three
separations, as well as with those extracted using the
summation and the two-state fit method. This small dis-
crepancy could be due to suppressed pion cloud effects,
due to the finite volume, that could be more significant
at low momentum transfer. For example, a study of the

magnetic dipole form factor GM1 in the N → ∆ transi-
tion using the Sato-Lee model predicts larger pion cloud
contributions at low momentum transfer [17]. Lattice
QCD computations also observe a discrepancy at lower
Q2 for GM1 when compared to experiment [18]. Analy-
sis on a larger volume is ongoing to investigate volume
effects not only in GM (Q2) but also for other nucleon
matrix elements and the results will be reported in sub-
sequent publications. Our results for the form factors
at all sink-source separations and using the summation
and two-state fit methods are included in Appendix A in
Tables VIII to XI. Preliminary results for the isovector
electromagnetic form factors have been presented for this
ensemble in Refs. [19, 20].

0.0 0.2 0.4 0.6 0.8 1.0
Q2 [GeV2]

1

2

3

4

5

G
u

d
M

(Q
2 )

ts = 0.9 fm
ts = 1.1 fm
ts = 1.3 fm
Summation,
ts ∈ [0.9, 1.3] fm
Two-state,
ts ∈ [0.9, 1.3] fm

Kelly parameterization

FIG. 7. Isovector magnetic Sachs form factor as a function of
the momentum transfer squared. The notation is the same as
that of Fig. 6.

2. Isoscalar contributions

We perform a similar analysis for the isoscalar contri-
butions, denoted by Gu+d

E (Q2) and Gu+d
M (Q2). As men-

tioned, we use the combination (u + d)/3 in the matrix

element for the isoscalar such that it yields Gu+d
E,M (Q2) =

Gp
E,M (Q2) +Gn

E,M (Q2). Having also the isovector com-

bination Gu−d
E,M (Q2) = Gp

E,M (Q2) − Gn
E,M (Q2) the indi-

vidual proton and neutron form factors can be extracted.
While isovector matrix elements receive no disconnected
contributions since they cancel in the isospin limit, the
isoscalar form factors do include disconnected fermion
loops, shown schematically in Fig. 1. These disconnected
contributions are included for the first time here at the
physical point to obtain the isoscalar form factors.
The connected isoscalar three-point function is com-

puted using the same procedure as in the isovector
case. We show results for the connected contribution
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0.8 1.0 1.2 1.4 1.6
ts [fm]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
G

u
+

d,
co

nn
.

E
(Q

2 )

Q2 = 0.074 GeV2

Q2 = 0.214 GeV2

Q2 = 0.345 GeV2

Q2 = 0.527 GeV2
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FIG. 8. Connected contribution to the Gu+d
E (Q2) form fac-

tor, for four non-zero Q2 values, extracted from the plateau
method (squares), the summation method (filled circles) and
the two-state fit method (filled triangles). The notation is the
same as in Fig. 4.

to Gu+d
E (Q2) and Gu+d

M (Q2) in Figs. 8 and 9 respectively.
These results are for the same momentum transfer val-
ues as used in Figs. 4 and 5. In the case of the isoscalar
electric form factor, we observe contributions due to ex-
cited states that are similar to those observed for the
isovector case. Namely, we find that a separation of
about ts=1.7 fm is required for their suppression. For
the isoscalar magnetic form factor, we observe that the
values extracted from fitting the plateau at time sepa-
rations ts = 1.1 fm and ts = 1.3 fm are consistent and
also in agreement with the values extracted using the
two-state fit and summation methods.
The disconnected diagrams of the electromagnetic

form factors are particularly susceptible to statistical
fluctuations, even at larger pion masses of 370 MeV as
reported in Refs. [21] and [22]. Here we show results,
at the physical pion mass, for the disconnected contribu-
tion to Gu+d

E (Q2) and Gu+d
M (Q2) in Fig. 10 for the first

non-zero momentum transfer. The results are obtained
using the same ensemble used for the connected contribu-
tions, detailed in Table I, using 2120 configurations, with
two-point functions computed on 100 randomly chosen
source positions per configuration. 2250 stochastic noise
vectors are used for estimating the fermion loop. Av-
eraging the proton and neutron two-point functions and
the forward and backwards propagating nucleons yields
a total of 8·105 statistics. More details of this calculation
are presented in Ref. [23], where results for the axial form
factors are shown.
In the case of the electric form factor, we obtain

Gu+d,disc.
E (Q2 = 0.074 GeV2) = −0.002(3), which is con-

sistent with zero and about 0.2% of the value of the con-
nected contribution and four times smaller than its sta-
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0.8

0.9

G
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d,
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2 ) Q2 = 0.074 GeV2

Q2 = 0.214 GeV2

Q2 = 0.344 GeV2

Q2 = 0.526 GeV2

Plateau
Summation

Two-state

0.9 1.0 1.1 1.2
tlow
s  [fm]

FIG. 9. Connected contribution to the Gu+d
M (Q2) form factor.

The notation is the same as in Fig. 5.

tistical error. For the magnetic form factor, fitting to

the plateau we obtain Gu+d,disc.
M (Q2 = 0.074 GeV2) =

−0.016(7) which is 2% of the value of the connected con-
tribution at this Q2 and half the value of the statisti-
cal error. These values are consistent with a dedicated
study of the disconnected contributions using an ensem-
ble of clover fermions with pion mass of 317 MeV [24]
and a recent result at the physical point presented in

Ref. [25]. There it was shown that Gu+d,disc.
M (Q2) is

negative and largest in magnitude at Q2 = 0 while

Gu+d,disc.
E (Q2) is largest at around Q2 = 0.4 GeV2. In

our case, at our largest momentum transfer, we find

Gu+d,disc.
E (Q2 = 0.280 GeV2) = −0.0056(40), which is

1% of the value of the connected contribution at this
momentum transfer and smaller than the associated sta-
tistical error. Investigation of methods for increasing the
precision at the physical point is ongoing, with prelimi-
nary results presented in Ref. [26] for the ensemble used
here, and will be reported in a separate work.

We show our results for the connected contribution
to the isoscalar electric and magnetic form factors in
Figs. 11 and 12 extracted from the plateau method for all
available sink-source separations, and from the summa-
tion and the two-state fit methods. The isoscalar electric
form factor tends to decrease as the sink-source separa-
tion increases approaching the experimental parameteri-
zation. This may indicate residual excited state effects,
that need to be further investigated by going to larger
time separations. For the isoscalar magnetic form factor,
we observe a weaker dependence on ts pointing to less
severe excited state effects.



8

6 4 2 0 2 4 6
(tins ts/2)/a

0.03

0.02

0.01

0.00

0.01

0.02

0.03
∑

~ q
∈Q

2R
0(

0;
~ q;

t s
,t

in
s)
→

G
u

+
d,

di
sc

E
(Q

2 )

ts = 8a = 0. 8 fm
ts = 10a = 0. 9 fm

6 4 2 0 2 4 6
(tins ts/2)/a

0.10

0.08

0.06

0.04

0.02

0.00

∑
~ q
∈Q

2

ijk q k
R

i(
k;
~ q;

t s
,t

in
s)
→

G
u

+
d,

di
sc

M
(Q

2 )

ts = 8a = 0. 8 fm
ts = 10a = 0. 9 fm

FIG. 10. Disconnected contribution to the electric (upper
panel) and magnetic (lower panel) isoscalar Sachs form fac-
tors for sink-source separation ts = 8a = 0.75 fm (inverted
triangles) and ts = 10a = 0.94 fm (squares) for the first non-
zero momentum transfer of Q2 = 0.074 GeV2. The horizontal
bands show the values obtained after fitting with the plateau
method to the results at ts = 10a = 0.94 fm.

B. Q2-dependence of the form factors

1. Isovector and isoscalar form factors

We fit GE(Q
2) and GM (Q2) to both a dipole Ansatz

and the z-expansion form. The truncated z-expansion is
expected to model better the low-Q2 [7] dependence of
the form factors, while the dipole form is motivated by
vector-meson pole contributions to the form factors [27].
For the case of the dipole fits, we use

Gi(Q
2) =

Gi(0)

(1 + Q2

M2

i

)2
, (17)

with i = E, M , allowing both GM (0) and MM to vary
for the case of magnetic form factor, while constraining
GE(0) = 1 for the case of the electric form factor. For
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ts = 1.7 fm
Summation,
ts ∈ [0.9, 1.7] fm
Two-state,
ts ∈ [1.1, 1.7] fm

Kelly parameterization

FIG. 11. Connected contribution to the isoscalar electric
Sachs form factor as a function of the momentum trans-
fer, using the notation of Fig. 11. The solid line shows
Gp

E(Q
2) + Gn

E(Q
2) using the Kelly parameterization of ex-

perimental data from Ref. [15] with parameters taken from
Alberico et al. [16].
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FIG. 12. Connected contribution to the isoscalar magnetic
Sachs form factor as a function of the momentum transfer.
The notation is the same as in Fig. 11.

the z-expansion, we use the form [7]

Gi(Q
2) =

kmax
∑

k=0

aikz
k, where

z =

√

tcut +Q2 −√
tcut

√

tcut +Q2 +
√
tcut

(18)

and take tcut = 4m2
π. For both isovector and isoscalar

GE(Q
2) we fix aE0 = 1 while for GM (Q2) we allow all
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FIG. 13. Results from fitting using the z-expansion as a func-
tion of kmax for aE

1 (lower panel), aM
1 (center panel) and aM

0

(top panel) of Eq. 18.
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FIG. 14. Isovector electric Sachs form factor as a function of
the momentum transfer extracted from the plateau method at
ts = 18a = 1.7 fm (triangles). We show fits using the dipole
form (left) and the z-expansion (right). The black points are
obtained using experimental data for Gp

E(Q
2) from Ref. [29]

and for Gn
E(Q

2) from Refs. [30–44].

parameters to vary. We use Gaussian priors for aik for
k ≥ 2 with width w = 5max(|ai0|, |ai1|) as proposed in
Ref. [28]. We observe larger errors when fitting with the
z-expansion compared to the dipole form. In Fig. 13
we show aM0 and aM1 from fits to the magnetic isovector
form factor and aE1 from fits to the electric as a function
of kmax and observe no significant change in the fitted
parameters beyond kmax ≥ 2. We also note that the
resulting values for aik for k ≥ 2 obtained are well within
the Gaussian priors, i.e. |aik| ≪ 5max(|ai0|, |ai1|). We
therefore quote results using kmax = 2 from here on.

Fits to the Q2 dependence of Gu−d
E (Q2) are shown in
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FIG. 15. Isovector magnetic Sachs form factor as a function
of the momentum transfer extracted from the plateau method
at ts = 14a = 1.3 fm (squares). We show fits using the dipole
form (left) and the z-expansion (right). The smaller error
band corresponds to fitting to all Q2 values, while the larger
band is obtained after omitting the two smallest values. The
black points are obtained using experimental data forGp

M (Q2)
from Ref. [29] and for Gn

M (Q2) from Refs. [45–50].
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FIG. 16. Disconnected contribution to the isoscalar magnetic
Sachs form factor as a function of the momentum transfer for
ts = 8a = 0.7 fm (inverted triangles) and ts = 10a = 0.9 fm
(squares). The bands show fits to the z-expansion form with
kmax = 1.

Fig. 14 using the values extracted from the plateau at
ts = 18a = 1.7 fm. The line and error band are the re-
sult of fitting to either dipole or the z-expansion for all
available Q2 values. Both dipole and z-expansion form
describe the lattice QCD results well. In this plot we also
show results from experiment, using data for Gp

E(Q
2) ob-

tained from Ref. [29] and data forGn
E(Q

2) from Refs. [30–
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FIG. 17. Isoscalar electric Sachs form factor with fits to the
dipole form (left) and to the z-expansion (right). We show
with triangles the sum of connected and disconnected contri-
butions, with the plateau result for ts = 18a = 1.7 fm for the
connected and for ts = 10a = 0.9 fm for the disconnected.
The black points show experiment using the same data as for
Fig. 14.

44]. To subtract the two form factors and obtain the
isovector combination, we linearly interpolate the more
accurate experimental data of Gp

E(Q
2) to the Q2 values

for which Gn
E(Q

2) is available.
For both dipole and z-expansion fit, the resulting curve

lies about one standard deviation above the experimental
data. This small discrepancy may be due to small resid-
ual excited state effects, which would require significant
increase of statistics at larger sink-source separations to
identify. Having only performed the calculation using one
ensemble we cannot check directly for finite volume and
cut-off effects. However, in a previous study employing
Nf = 2 twisted mass fermions at heavier than physical
pion masses and three values of the lattice spacing, we
found no detectable cut-off effects in these quantities for a
lattice spacing similar to the one used here [13]. We have
also performed a volume assessment using the aforemen-
tioned heavier mass twisted mass ensembles with mπL
values ranging from 3.27 to 5.28. Namely, we found no
volume dependence within our statistical accuracy be-
tween two ensembles with mπL = 3.27 and mπL=4.28
respectively and similar pion mass of mπ ≃300 MeV. We
plan to carry out a high accuracy analysis of the vol-
ume dependence at the physical point on a lattice size of
643 × 128 keeping the other parameters fixed in a forth-
coming publication.
The same analysis carried out for Gu−d

E (Q2) is also

performed for Gu−d
M (Q2) in Fig. 15, where we use the re-

sult from fitting to the plateau at the largest sink-source
separation available, namely ts = 14a = 1.3 fm. As for
the case of Gu−d

E (Q2), both the dipole Ansatz and z-
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FIG. 18. Isoscalar magnetic Sachs form factor with fits to the
dipole form (left) and to the z-expansion (right). We show
with triangles the sum of connected and disconnected contri-
butions, with the plateau result for ts = 14a = 1.3 fm for the
connected and for ts = 10a = 0.9 fm for the disconnected.
The black points show experiment using the same data as for
Fig. 15.

expansion describe well the lattice QCD data. The plots
show two bands, one when including all Q2 values, re-
sulting in the smaller error band, and one in which the
first two Q2 values are omitted, resulting in the larger
band. The experimental data shown are obtained using
Gp

M (Q2) from the same experiment as for Gp
E(Q

2) shown
in Fig. 14, namely Ref. [29], and Gn

M (Q2) from Refs. [45–
50].

In both dipole and z-expansion fits of Gu−d
M (Q2) we

find that the Q2 dependence is consistent with experi-
ment after Q2 ≃ 0.2 GeV2. We suspect that the devia-
tion at the two smallest Q2 values is due to finite volume
effects. As already mentioned, we plan to further inves-
tigate this using an ensemble of Nf = 2 twisted mass
fermions on a larger volume of 643 × 128. As can be
seen, discarding the two lowest Q2 values results in a
larger error for Gu−d

M (0), in particular in the case of the
z-expansion.
We show the momentum dependence of the discon-

nected contribution to Gu+d
M (Q2) in Fig. 16. The large

errors do not permit as thorough analysis as for the con-
nected contribution. Since the disconnected isoscalar
contributions do not follow a dipole form, and in the
absence of any theoretically motivated form for the dis-
connected contributions, we use a z-expansion fit with

kmax = 2, fixing a0 = 0 for Gu+d,disc.
E (Q2) and with

kmax = 1, allowing both a0 and a1 to vary. For the

case ofGu+d,disc.
E (Q2) we find results consistent with zero.

For the magnetic case, the disconnected contribution de-
creases the form factor by at most 3% at Q2 = 0.
We add connected and disconnected contributions to
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TABLE III. Results for the isovector electric charge radius
of the nucleon (〈r2E〉

u−d) from fits to Gu−d
E (Q2). In the first

column we show ts for the plateau method and the ts fit range
for the summation and two-state fit methods.

ts [fm]
dipole z-expansion

〈r2E〉
u−d [fm2] χ2

d.o.f
〈r2E〉

u−d [fm2] χ2

d.o.f

Plateau

0.94 0.523(08) 2.0 0.562(19) 1.2

1.13 0.562(14) 1.9 0.677(37) 0.7

1.31 0.580(26) 1.2 0.718(75) 0.7

1.50 0.666(33) 0.9 0.61(10) 0.3

1.69 0.653(48) 0.6 0.52(14) 0.2

Summation

0.9-1.7 0.744(55) 0.3 0.79(14) 0.2

Two-state

1.1-1.7 0.623(33) 1.0 0.56(10) 0.8

obtain the isoscalar contributions shown in Figs. 17
and 18. There are small discrepancies between our lat-
tice data and experiment at larger Q2 values. Whether
these are due to volume effects or other lattice artifacts
will be investigated in a follow-up study.
The slope of the form factors at Q2=0 is related to the

isovector electric and magnetic radius as follows

∂

∂Q2
Gi(Q

2)|Q2=0 = −1

6
Gi(0)〈r2i 〉, (19)

with i = E,M for the electric and magnetic form factors
respectively. For the z-expansion, this is given by

〈r2i 〉 = − 6

4tcut

ai1
ai0

(20)

and for the dipole fit

〈r2i 〉 =
12

M2
i

. (21)

Furthermore, the nucleon magnetic moment is defined as
µ = GM (0) and is obtained directly from the fitted pa-
rameter in both cases. As for the form factors, we will
denote the isovector radii and magnetic moment with the
u−d superscript and for the isoscalar with u+d. We tab-
ulate our results for the isovector radii and magnetic mo-
ment from both dipole and z-expansion fits in Tables III
and IV, and from fits to the isoscalar form factors in
Tables V and VI. For the isoscalar results shown in Ta-
bles V and VI, we show two results for each case, namely
the result of fitting only the connected contribution in
the first column of each case and the total contribution,
by combining connected and disconnected, in the second
column.
For our final result for the isovector electric charge ra-

dius, we use the central value and statistical error of the
result from the plateau method at ts = 18a = 1.7 fm
using a dipole fit to all Q2 values. We also include a

TABLE IV. Results for the isovector magnetic charge radius
of the nucleon (〈r2M 〉u−d) and the isovector magnetic moment
GM (0) = µu−d from fits to Gu−d

M (Q2). In the first column we
show ts for the plateau method and the ts fit range for the
summation and two-state fit methods. The two smallest Q2

values are omitted from the fit.

ts [fm]
dipole z-expansion

〈r2M 〉u−d [fm2] χ2

d.o.f
〈r2M 〉u−d [fm2] χ2

d.o.f

Plateau

0.94 0.404(10) 0.3 0.59(13) 0.3

1.13 0.434(22) 0.3 0.82(23) 0.3

1.31 0.536(52) 0.3 0.79(40) 0.3

Summation

0.9-1.3 0.68(16) 0.1 1.83(49) 0.1

Two-state

0.9-1.3 0.470(31) 0.3 1.15(25) 0.3

ts [fm]
dipole z-expansion

Gu−d
M (0) χ2

d.o.f
Gu−d

M (0) χ2

d.o.f

Plateau

0.94 3.548(52) 0.3 3.85(16) 0.3

1.13 3.595(90) 0.3 4.13(31) 0.3

1.31 4.02(21) 0.3 4.31(57) 0.3

Summation

0.9-1.3 4.32(57) 0.1 6.35(1.35) 0.1

Two-state

0.9-1.3 3.74(14) 0.3 4.71(42) 0.3

TABLE V. Results for the isoscalar electric charge radius of
the nucleon (〈r2E〉

u+d). In the first column we show ts for the
plateau method and the ts fit range for the summation and
two-state fit methods. For each ts and for each fit Ansatz,
we give the result from fitting to the connected contribution
in the first column and to the total contribution of connected
plus disconnected in the second column.

ts [fm]
dipole z-expansion

〈r2E〉
u+d [fm2] χ2

d.o.f
〈r2E〉

u+d [fm2] χ2

d.o.f

Connected Total Connected Total

Plateau

0.94 0.440(3) 0.449(49) 4.5 0.418(9) 0.427(49) 0.9

1.13 0.469(6) 0.478(49) 1.9 0.464(17) 0.474(52) 0.7

1.31 0.494(12) 0.503(50) 0.9 0.485(34) 0.495(59) 0.5

1.50 0.502(14) 0.512(50) 0.3 0.494(41) 0.503(63) 0.4

1.69 0.527(22) 0.537(53) 0.9 0.493(60) 0.503(77) 0.8

Summation

0.9-1.7 0.565(20) 0.576(53) 0.9 0.555(54) 0.564(72) 0.6

Two-state

1.1-1.7 0.490(16) 0.499(51) 0.5 0.453(77) 0.462(91) 0.7
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TABLE VI. Results for the isoscalar magnetic charge radius
of the nucleon (〈r2M 〉u+d) and the isoscalar magnetic moment
Gu+d

M (0). The notation is as in Table V.

ts [fm]
dipole z-expansion

〈r2M 〉u+d [fm2] χ2

d.o.f
〈r2M 〉u+d [fm2] χ2

d.o.f

Connected Total Connected Total

Plateau

0.94 0.392(13) 0.302(34) 0.2 0.41(19) 0.32(20) 0.2

1.13 0.419(29) 0.329(47) 0.1 0.84(28) 0.78(32) 0.1

1.31 0.476(59) 0.394(82) 0.4 0.4(1.0) 0.4(1.1) 0.5

Summation

0.9-1.3 0.50(18) 0.42(24) 0.2 1.94(92) 2.0(1.3) 0.2

Two-state

0.9-1.3 0.439(44) 0.353(65) 0.2 0.89(47) 0.83(52) 0.2

ts [fm]
dipole z-expansion

Gu+d
M (0) χ2

d.o.f
Gu+d

M (0) χ2

d.o.f

Connected Total Connected Total

Plateau

0.94 0.838(16) 0.808(18) 0.2 0.867(50) 0.837(50) 0.2

1.13 0.841(29) 0.811(30) 0.1 0.981(90) 0.951(90) 0.1

1.31 0.900(59) 0.870(60) 0.4 0.90(19) 0.87(19) 0.5

Summation

0.9-1.3 0.88(16) 0.85(16) 0.2 1.51(45) 1.48(45) 0.2

Two-state

0.9-1.3 0.861(47) 0.831(48) 0.2 1.01(14) 0.98(14) 0.2

systematic error from the difference of the central values
when comparing with the two-state fit method to account
for excited states effects. Similarly, for the magnetic ra-
dius and moment, we take the result from the dipole fits
to our largest sink-source separation, which for this case
is ts = 14a = 1.31 fm and as in the case of the electric
charge radius, we take the difference with the two-state
fit method as an additional systematic error. In this case,
the values at the two lowest momenta are not included
in the fit. Our final values for the isovector radii and
isovector nucleon magnetic moment are:

〈r2E〉u−d = 0.653(48)(30) fm2,

〈r2M 〉u−d = 0.536(52)(66) fm2, and

µu−d = 4.02(21)(28), (22)

where the first error is statistical and the second error is a
systematic obtained when comparing the plateau method
to the two-state fit method as a measure of excited state
effects. For the isoscalar radii and moment we follow a
similar analysis after adding the disconnected contribu-
tion from the plateau method for ts = 10a = 0.9 fm. We
obtain

〈r2E〉u+d = 0.537(53)(38) fm2,

〈r2M 〉u+d = 0.394(82)(42) fm2, and

µu+d = 0.870(60)(39). (23)
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FIG. 19. Proton electric Sachs form factor as a function of
the momentum transfer. We show with triangles the sum of
connected and disconnected contributions, with the plateau
result for ts = 18a = 1.7 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Ref. [29].

C. Proton and neutron form factors

Having the isovector and isoscalar contributions to the
form factors, we can obtain the proton (Gp(Q2)) and
neutron (Gn(Q2)) form factors via linear combinations
taken from Eqs. (2) and (3) assuming isospin symmetry
between up and down quarks and proton and neutron.
Namely, we have:

Gp(Q2) =
1

2
[Gu+d(Q2) +Gu−d(Q2)]

Gn(Q2) =
1

2
[Gu+d(Q2)−Gu−d(Q2)] (24)

where Gp(Q2) (Gn(Q2)) is either the electric or magnetic
proton (neutron) form factor. In Figs. 19 and 20 we show
results for the proton electric and magnetic Sachs form
factors respectively. As for the isoscalar case, the dis-
connected contributions have been included. The bands
are from fits to the dipole form of Eq. (17). In these
plots we compare to experimental results from the A1
collaboration [29]. We observe a similar behavior when
comparing to experiment as for the case of the isovector
form factors. Namely, the dipole fit to the lattice data
has a smaller slope for small values of Q2 as compared to
experiment, while Gp

M (Q2) reproduces the experimental
momentum dependence for Q2 > 0.2 GeV2.

In Figs. 21 and 22 we show the same for the neutron
form factors. For the neutron electric form factor we fit
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FIG. 20. Proton magnetic Sachs form factor as a function of
the momentum transfer. We show with squares the sum of
connected and disconnected contributions, with the plateau
result for ts = 14a = 1.3 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Ref. [29].

to the form [15]:

Gn
E(Q

2) =
τA

1 + τB

1

(1 + Q2

Λ2 )2
(25)

with τ = Q2/(2mN )2 and Λ2 = 0.71 GeV2 and allow A
and B to vary. This Ansatz reproduces our data well.
We compare to a collection of experimental data from
Refs. [30–44]. For Gn

M (Q2), we agree with the experimen-
tal data for Q2 > 0.2 GeV2, however we underestimate
the magnetic moment by about 20%. Experimental data
for Gn

M (Q2) shown in Fig. 22 are taken from Refs. [45–
50].
We use Eq. (19) to obtain the radii using the dipole

fits. For the case of Gn
E(Q

2), the neutron electric radius is
obtained via: 〈r2E〉n = − 3A

2m2

N

, where A is the parameter

of Eq. (25). In all cases we have combined connected and
disconnected. We obtain:

〈r2E〉p = 0.589(39)(33) fm2,

〈r2M 〉p = 0.506(51)(42) fm2, and

µp = 2.44(13)(14), (26)

for the proton, and:

〈r2E〉n = −0.038(34)(6) fm2,

〈r2M 〉n = 0.586(58)(75) fm2, and

µn = −1.58(9)(12), (27)

for the neutron, where as in the case of the isoscalar and
isovector, the first error is statistical and the second is a
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FIG. 21. Neutron electric Sachs form factor as a function
of the momentum transfer. Triangles are from the sum of
connected and disconnected contributions, with the plateau
result for ts = 18a = 1.7 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
form of Eq. (25). Experimental data are shown with the black
points, obtained from Refs. [30–44].

systematic obtained when comparing the plateau method
to the two-state fit method as a measure of excited state
effects.

IV. COMPARISON WITH OTHER RESULTS

A. Comparison of isovector and isoscalar form

factors

Recent lattice calculations for the electromagnetic
form factors of the nucleon include an analysis from the
Mainz group [51] using Nf = 2 clover fermions down to a
pion mass of 193 MeV, results from the PNDME collabo-
ration [52] using clover valence fermions on Nf = 2+1+1
HISQ sea quarks down to pion mass of ∼220 MeV and
Nf = 2+1+1 results from the ETM collaboration down
to 213 MeV pion mass [53]. Simulations directly at the
physical point have only been possible recently. The
LHPC has published results in Ref. [54] using Nf = 2+1
HEX smeared clover fermions, which include an ensemble
with mπ =149 MeV. Preliminary results for electromag-
netic nucleon form factors at physical or near physical
pion masses have also been reported by the PNDME
collaboration in Ref. [55] using clover valence quarks
on HISQ sea quarks at a pion mass of 130 MeV and
by the RBC/UKQCD collaboration using Domain Wall
fermions at mπ = 172 MeV in Ref. [56].

In Fig. 23 we compare our results for Gu−d
E (Q2) from

the plateau method using ts = 18a = 1.7 fm to pub-
lished results. We show results from Ref. [54] extracted
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FIG. 22. Neutron magnetic Sachs form factor as a function
of the momentum transfer. We show with squares the sum of
connected and disconnected contributions, with the plateau
result for ts = 14a = 1.3 fm for the connected and for ts =
10a = 0.9 fm for the disconnected. The band is a fit to the
dipole form. The black points show experimental data from
Refs. [45–50].
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FIG. 23. Comparison of Gu−d
E (Q2) between results from this

work (circles) denoted by ETMC and from the LHPC taken
from Ref. [54] (squares). The dashed line shows the parame-
terization of the experimental data.

from the summation method using three sink-source sep-
arations from 0.93 to 1.39 fm for their ensemble at the
near-physical pion mass of mπ =149 MeV. We note that
their statistics of 7752 are about six times less than ours
at the sink-source separation we use in this plot (see Ta-
ble II).

In Fig. 24 we plot our results for Gu−d
M (Q2) from the

plateau method using ts = 14a = 1.3 fm and compare
to those from LHPC. At this sink-source separation the
statistics are similar, namely 7752 for the LHPC data and
9248 for the results from this work, however their errors
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FIG. 24. Comparison of Gu−d
M (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.
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FIG. 25. Comparison of Fu−d
1 (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.

are larger, possibly due to the fact that the summation
method is used for their final quoted results. Within
errors, we see consistent results at all Q2 values.

In Figs. 25 and 26 we compare our results for the
isovector Dirac and Pauli form factors Fu−d

1 (Q2) and

Fu−d
2 (Q2) with those from Ref. [54]. We use Eq. (6)

to obtain Fu−d
1 (Q2) and Fu−d

2 (Q2) from Gu−d
E (Q2) and

Gu−d
M (Q2) extracted from the plateau method at the

same sink-source separations used in Figs. 23 and 24.
As in the case of Gu−d

E (Q2) and Gu−d
M (Q2) we see agree-

ment between these two calculations. We also note that
the discrepancy with experiment of Gu−d

M (Q2) at low Q2

values carries over to Fu−d
2 (Q2).

For the isoscalar case, we compare the connected con-
tributions to the Sachs form factors with Ref. [54] in
Figs. 27 and 28. The agreement between the two lattice
formulations is remarkable given that the results have not
been corrected for finite volume or cut-off effects. The
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FIG. 26. Comparison of Fu−d
2 (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.
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FIG. 27. Comparison of Gu+d
E (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.

gauge configurations used by LHPC were carried out us-
ing the same spatial lattice size as ours but with a coarser
lattice spacing yielding mπL = 4.2 compared to ours of
mπL = 3. Although the LHPC results for the isovector
magnetic form factor at low Q2 are in agreement with ex-
periment, they carry large statistical errors that do not
allow us to draw any conclusion as to whether the origin
of the discrepancy in our much more accurate data is due
to the smaller mπL value.
For the radii and magnetic moment, we compare our

result to recent published results, which are available for
the isovector case, from Refs. [51–54]. We quote their val-
ues obtained before extrapolation to the physical point,
using the smallest pion mass available. In Fig. 29 we
see that the two results at physical or near-physical pion
mass, namely the result of this work and from LHPC,
are within one standard deviation from the spectroscopic
determination of the charged radius using muonic hydro-
gen [2].
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FIG. 28. Comparison of Gu+d
M (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.
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FIG. 29. Our result for 〈r2E〉
u−d at mπ =130 MeV (cir-

cle) compared to recent lattice results from LHPC [54] at
mπ = 149 MeV (square), PNDME [52] at mπ = 220 MeV
(triangle), the Mainz group [51] at mπ = 193 MeV (diamond)
and ETMC [53] (pentagon). We show two error bars when
systematic errors are available, with the smaller denoting the
statistical error and the larger denoting the combination of
statistical and systematic errors added in quadrature. The
vertical band denoted with µH is the experimental result us-
ing muonic hydrogen from Ref. [2] and the band denoted with
CODATA is from Ref. [57].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r2

M u d [fm2]

ETMC 2013, m = 213 MeV

PNDME 2014, m = 220 MeV

LHPC 2014, m = 149 MeV

Mainz 2015, m = 193 MeV

ETMC, m = 130 MeV (this work)

PD
G

FIG. 30. Comparison of results for 〈r2M 〉u−d with the notation
of Fig. 29. The experimental band is from Ref. [57].
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FIG. 31. Comparison of results for the isovector nucleon mag-
netic moment µu−d with the notation of Fig. 29.
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FIG. 32. Comparison of Gp
E(Q

2) between results from this
work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of the experimental data.

A similar comparison is shown in Fig. 30 for the mag-
netic radius. We see that all lattice results underestimate
the experimental band by at most 2σ, with the exception
of the LHPC value that used the summation method.
Similar conclusions are drawn for the isovector magnetic
moment GM (0) = µu−d = µp − µn, which we show in
Fig. 31.

B. Comparison of proton form factors

Published lattice QCD results for the proton form fac-
tors at physical or near-physical pion masses are available
from LHPC [54]. We compare our results in Figs. 32
and 33 for the proton electric and magnetic Sachs form
factors respectively. We see agreement with their results
and note that their relatively larger errors at small Q2

for the case of the magnetic form factor are consistent
with both the experimentally determined curve and our
results.
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FIG. 33. Comparison of Gp
M (Q2) between results from this

work (circles) and Ref. [54] (squares). The dashed line shows
the parameterization of experimental data.

V. SUMMARY AND CONCLUSIONS

A first calculation of the isovector and isoscalar elec-
tromagnetic Sachs nucleon form factors including the dis-
connected contributions is presented directly at the phys-
ical point using an ensemble of Nf = 2 twisted mass
fermions at maximal twist at a volume of mπL ≃ 3.
Using five sink-source separations for GE(Q

2) between
0.94 fm and 1.69 fm, we confirm our previous find-
ings that excited state contributions require a separation
larger than ∼1.5 fm to be sufficiently suppressed. For
the case of GM (Q2) we use three sink-source separations
between 0.94 fm and 1.31 fm and observe that for the
isovector no excited state effects are present within statis-
tical errors, while for the connected isoscalar, the largest
separation of ts = 1.31 fm is sufficient for their suppres-
sion. Our results for both the isovector and isoscalar
GE(Q

2) lie higher than experiment by about a standard
deviation. This may be due to small residual excited
state contamination since this difference is found to de-
crease as the sink-source separation increases. Our re-
sults for Gu−d

M (Q2) at the two lowest Q2 values under-
estimate the experimental ones but are in agreement for
Q2 > 0.2 GeV2. Volume effects are being investigated
to determine whether these could be responsible for this
discrepancy.
The isoscalar matrix element requires both connected

and disconnected contributions, the latter requiring an
order of magnitude more statistics. We have com-
puted the disconnected contributions to Gu+d

E (Q2) and

Gu+d
M (Q2) for the first four non-zero momentum trans-

fers up to Q2 = 0.28 GeV2 and find that their magni-
tude is smaller or comparable to the statistical error of
the connected contribution. We include the disconnected
contributions to combine isovector and isoscalar matrix
elements and obtain the proton and neutron electromag-
netic Sachs form factors at the physical point.
We have used two methods to fit the Q2-dependence



17

TABLE VII. Our final results for the isovector (p − n),
isoscalar (p + n), proton (p) and neutron (n) electric radius
(〈r2E〉), magnetic radius (〈r2M 〉) and magnetic moment (µ).
The first error is statistical and the second a systematic due
to excited state contamination.

〈r2E〉 [fm
2] 〈r2M 〉 [fm2] µ

p-n 0.653(48)(30) 0.536(52)(66) 4.02(21)(28)

p+n 0.537(53)(38) 0.394(82)(42) 0.870(60)(39)

p 0.589(39)(33) 0.506(51)(42) 2.44(13)(14)

n -0.038(34)(6) 0.586(58)(75) -1.58(9)(12)

of our data, both a dipole Ansatz and the z-expansion.
These two methods yield consistent results, however the
latter method yields parameters with larger statistical
errors. Using the dipole fits to determine the electric and
magnetic radii, as well as the magnetic moment, we find
agreement with other recent lattice QCD results for the
isovector case, and are within 2σ with the experimental
determinations. Our result for the proton electric charge
radius 〈r2E〉p = 0.589(39)(33) fm2, is two sigmas smaller
than the muonic hydrogen determination [58] of 〈r2p〉 =

0.7071(4)(5) fm2, which may be due to remaining excited
state effects or volume effects, which will be investigated
further.

Our final results are collected in Table VII. We plan
to analyze the electromagnetic form factors using both

an ensemble of Nf = 2 twisted mass clover-improved
fermions simulated at the same pion mass and lattice
spacing as the ensemble analyzed in this work but with
a lattice size of 643 × 128, yielding mπL = 4 as well as
with an Nf = 2 + 1 + 1 ensemble of finer lattice spacing.
In addition, we are investigating improved techniques for
the computation of the disconnected quark loops at the
physical point. These future calculations will allow for
further checks of lattice artifacts and resolve the remain-
ing small tension between lattice QCD and experimental
results for these important benchmark quantities.
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Appendix A: Tables of Results

TABLE VIII. Results for the isovector GE(Q
2) using the plateau method for five sink-source separations and the summation

and two-state fit methods fitted to all separations. Results where the operand of the square root in Eq. 9 becomes negative are
denoted with “NA”.

Q2 [GeV2]
Plateau, ts [fm] Summation Two-state

0.94 1.13 1.31 1.50 1.69 [0.94, 1.69] [1.13, 1.69]

0.000 0.9982(08) 0.998(2) 0.996(41) 1.003(4) 1.006(8) 1.000(6) -

0.074 0.8460(31) 0.832(6) 0.826(11) 0.819(15) 0.841(23) 0.798(20) 0.849(18)

0.145 0.7337(34) 0.713(6) 0.703(12) 0.701(16) 0.711(24) 0.664(21) 0.717(17)

0.214 0.6423(45) 0.618(8) 0.598(15) 0.615(21) 0.608(29) 0.556(26) 0.617(19)

0.280 0.5753(54) 0.553(10) 0.549(19) 0.514(24) 0.521(36) 0.483(35) 0.535(22)

0.345 0.5222(43) 0.503(7) 0.497(15) 0.461(19) 0.478(26) 0.435(26) 0.474(16)

0.407 0.4761(49) 0.456(8) 0.450(17) 0.391(20) 0.378(30) 0.357(30) 0.407(19)

0.527 0.4000(62) 0.380(12) 0.379(22) 0.326(31) 0.291(39) 0.283(49) 0.334(24)

0.584 0.3676(57) 0.353(10) 0.365(22) 0.265(27) 0.287(37) 0.269(42) 0.296(22)

0.640 0.3500(67) 0.338(13) 0.339(25) 0.256(35) 0.260(53) 0.229(52) 0.292(25)

0.695 0.3273(72) 0.320(13) 0.303(26) 0.236(31) 0.219(43) 0.208(54) 0.279(26)

0.749 0.284(11) 0.282(20) 0.343(47) 0.138(68) NA NA 0.181(46)

0.802 0.2847(85) 0.262(16) 0.215(28) 0.196(49) 0.12(21) 0.058(79) 0.203(35)

0.853 0.2707(81) 0.273(15) 0.257(34) 0.144(33) 0.156(52) 0.160(74) 0.186(35)

TABLE IX. Results for the isovector GM (Q2) using the plateau method for three sink-source separations and the summation
and two-state fit method fitted to all separations.

Q2 [GeV2]
Plateau, ts [fm] Summation Two-state

0.94 1.13 1.31 [0.94, 1.31] [0.94, 1.31]

0.074 3.225(36) 3.220(54) 3.230(99) 3.18(18) 3.292(82)

0.145 2.841(28) 2.807(38) 2.832(70) 2.73(13) 2.847(54)

0.214 2.538(26) 2.505(38) 2.596(67) 2.53(13) 2.546(54)

0.280 2.288(26) 2.281(39) 2.262(75) 2.23(13) 2.294(59)

0.344 2.098(21) 2.042(31) 2.037(55) 1.85(11) 2.033(46)

0.407 1.941(19) 1.873(32) 1.899(56) 1.67(12) 1.863(45)

0.526 1.665(20) 1.611(35) 1.583(70) 1.37(15) 1.593(50)

0.583 1.565(17) 1.515(31) 1.469(64) 1.29(14) 1.483(40)

0.640 1.481(22) 1.420(39) 1.304(77) 1.14(17) 1.354(53)

0.694 1.387(20) 1.339(37) 1.219(68) 1.12(17) 1.299(52)

0.748 1.330(25) 1.275(54) 1.23(14) 0.99(29) 1.247(58)

0.800 1.218(21) 1.128(44) 0.999(83) 0.86(22) 1.063(77)

0.852 1.173(20) 1.140(46) 1.054(98) 0.98(23) 1.116(46)
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TABLE X. Results for the connected contribution to the isoscalar GE(Q
2) using the plateau method for five sink-source

separations and the summation and two-state fit methods fitted to all separations. Results where the operand of the square
root in Eq. 9 becomes negative are denoted with “NA”.

Q2 [GeV2]
Plateau, ts [fm] Summation Two-state

0.94 1.13 1.31 1.50 1.69 [0.94, 1.69] [1.13, 1.69]

0.000 0.999(0) 1.000(1) 0.999(1) 1.000(2) 1.004(3) 1.000(2) -

0.074 0.870(1) 0.863(2) 0.855(4) 0.852(5) 0.839(9) 0.834(7) 0.874(16)

0.145 0.768(2) 0.755(3) 0.746(5) 0.746(6) 0.738(10) 0.721(9) 0.756(16)

0.214 0.688(2) 0.671(4) 0.657(7) 0.665(9) 0.670(15) 0.638(11) 0.672(12)

0.280 0.624(2) 0.609(4) 0.600(9) 0.588(12) 0.585(18) 0.570(15) 0.603(12)

0.345 0.567(2) 0.552(3) 0.544(7) 0.535(10) 0.532(16) 0.508(12) 0.537(12)

0.407 0.524(2) 0.506(4) 0.499(9) 0.476(10) 0.467(17) 0.446(14) 0.487(11)

0.527 0.450(3) 0.429(6) 0.413(13) 0.430(21) 0.373(29) 0.362(24) 0.412(11)

0.584 0.421(3) 0.408(6) 0.398(14) 0.387(19) 0.361(26) 0.356(23) 0.381(10)

0.640 0.399(4) 0.385(7) 0.357(16) 0.369(26) 0.318(40) 0.308(29) 0.357(10)

0.695 0.375(4) 0.358(8) 0.322(15) 0.321(20) 0.270(29) 0.247(26) 0.338(10)

0.749 0.352(5) 0.339(12) 0.328(31) 0.336(93) NA NA 0.314(16)

0.802 0.331(5) 0.302(10) 0.261(20) 0.306(41) 0.235(176) 0.189(40) 0.286(12)

0.853 0.315(5) 0.304(11) 0.275(24) 0.265(31) 0.227(55) 0.239(42) 0.278(11)

TABLE XI. Results for the connected contribution to the isoscalar GM (Q2) using the plateau method for three sink-source
separations and the summation and two-state fit method fitted to all separations.

Q2 [GeV2]
Plateau, ts [fm] Summation Two-state

0.94 1.13 1.31 [0.94, 1.31] [0.94, 1.31]

0.074 0.756(10) 0.760(17) 0.771(26) 0.777(54) 0.781(25)

0.145 0.669(8) 0.660(13) 0.674(21) 0.644(40) 0.671(19)

0.214 0.602(8) 0.593(13) 0.601(22) 0.584(44) 0.597(19)

0.280 0.551(8) 0.544(12) 0.546(23) 0.547(46) 0.544(19)

0.344 0.501(6) 0.484(10) 0.488(18) 0.448(36) 0.483(15)

0.407 0.465(6) 0.451(10) 0.463(18) 0.412(38) 0.455(15)

0.526 0.402(6) 0.386(11) 0.373(21) 0.339(50) 0.380(18)

0.583 0.377(5) 0.360(10) 0.370(20) 0.334(47) 0.357(14)

0.640 0.360(6) 0.339(12) 0.309(22) 0.293(52) 0.325(17)

0.694 0.334(6) 0.323(11) 0.308(21) 0.291(55) 0.324(16)

0.748 0.317(8) 0.304(16) 0.315(38) 0.332(90) 0.302(22)

0.800 0.299(6) 0.280(13) 0.249(25) 0.258(74) 0.269(22)

0.852 0.280(6) 0.275(13) 0.268(28) 0.284(73) 0.270(17)
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