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Abstract

We extract the individual contributions from u and d quarks to the Dirac and Pauli form
factors of the proton, after a critical examination of the available measurements of elec-
tromagnetic nucleon form factors. From this data we determine generalized parton dis-
tributions for valence quarks, assuming a particular form for their functional dependence.
The result allows us to study various aspects of nucleon structure in the valence region. In
particular, we evaluate Ji’s sum rule and estimate the total angular momentum carried by
valence quarks at the scale µ = 2 GeV to be Ju

v = 0.230+0.009
−0.024 and Jd

v = −0.004+0.010
−0.016.
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1 Introduction

Together with parton distributions, electromag-
netic form factors are among the most important
quantities that provide information about the in-
ternal structure of the nucleon. Their experimen-
tal determination has entered the realm of pre-
cision physics. Generalized parton distributions
(GPDs) combine and enlarge the different types
of information contained in ordinary parton den-
sities (PDFs) and form factors, but they remain
much less well known experimentally. After pi-
oneering measurements at DESY and Jefferson
Lab, the upcoming energy upgrade at Jefferson
Lab will significantly advance the determination
of GPDs in the valence quark region, whereas
measurements at COMPASS will explore the re-
gion of sea quarks and gluons with momentum
fractions between 10−2 and 10−1. For reviews of
the many facets of GPDs we refer to [1, 2, 3, 4].

GPDs can be extracted from hard exclusive pro-
cesses like deeply virtual Compton scattering and
meson production. In complement, one can con-
strain the GPDs for valence quarks indirectly via
the sum rules that connect them with electromag-
netic form factors. This requires an ansatz for the
functional form of the GPDs and in this sense is
intrinsically model dependent, but on the other
hand it can reach values of the invariant momen-
tum transfer t much larger than what can con-
ceivably be measured in hard exclusive scatter-
ing. We performed such an indirect determina-
tion some time ago [5]. Since then, there have
been significant improvements in the experimen-
tal determination of the electromagnetic form fac-
tors, and we find it timely to investigate how this
progress impacts on the extraction of GPDs and
of important quantities such as the total angular
momentum carried by quarks in the proton. This
is the purpose of the present work.

In section 2 we briefly recall some essentials
about form factors and GPDs and introduce our
notation. A critical discussion of the form fac-
tor data used in our analysis is given in section 3,
where we also provide a simple and precise param-
eterization of the selected data. In section 4 we
estimate the contribution of strange quarks to the
form factors. Section 5 describes how we combine

the experimental results on proton and neutron
form factors in order to extract Dirac and Pauli
form factors for individual quark flavors, which
are most closely connected with GPDs. Our fit
of the GPDs to the form factor data, including
a number of variants that allow us to investigate
systematic uncertainties, is described in sections 6
and 7. In particular, we evaluate Ji’s sum rule and
thus obtain an estimate for the total angular mo-
mentum carried by u and by d quarks minus the
corresponding contribution from antiquarks. Us-
ing our extracted GPDs, we explore in section 8 a
number of further connections, namely the axial
form factor, wide-angle Compton scattering, chro-
modynamic lensing and GPDs at nonzero skew-
ness. We summarize our findings in section 9 and
list various numerical results in two appendices.

2 Basics and notation

To begin with, let us recall some basics about
the electromagnetic form factors of the nucleon.
Experimental results are typically expressed in
terms of the Sachs form factors Gp

M (t), Gp
E(t) and

Gn
M (t), Gn

E(t), where t is the squared momentum
transfer to the proton. Several measurements de-
termine the ratio of electric and magnetic form
factors, which is commonly written as

Ri(t) = µiG
i
E(t)/Gi

M (t) (1)

with i = p, n for the proton and the neutron. The
magnetic moments µp and µn normalize this ratio
to unity at t = 0.

For convenience the magnetic form factors are
often divided by the conventional dipole form

Gi
dipole(t) =

µi[
1 − t/(0.71 GeV2)

]
2

(2)

with i = p, n. Plotting this ratio allows one to
discern details in the data over a wide range of
t, since the ratios Gi

M/Gi
dipole show only a mild

variation, unlike the form factors themselves.

The Dirac and Pauli form factors, F i
1 and F i

2,
are related to the Sachs form factors by

Gi
M = F i

1 + F i
2 , Gi

E = F i
1 +

t

4m2
F i
2 , (3)
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where m is the nucleon mass and again i = p, n.
One can further decompose

F p
i = euF

u
i + edF

d
i + esF

s
i ,

Fn
i = euF

d
i + edF

u
i + esF

s
i , (4)

where F q
i denotes the contribution from quark fla-

vor q to the form factor F p
i of the proton. Here

i = 1, 2 and eq is the electric charge of the quark
in units of the positron charge. It is instructive to
rewrite (4) as

2F p
i + Fn

i = F u
i − F s

i ,

2Fn
i + F p

i = F d
i − F s

i . (5)

To the extent that the strangeness contributions
F s
1 and F s

2 can be neglected, one can hence recon-
struct the form factors for u and d quarks from
the electromagnetic form factors alone. We will
return to the issue of strangeness form factors in
section 4. For brevity we will refer to the set of
F q
i as “flavor form factors” in this work. We will

also use self-explaining abbreviations

F u−s
i = F u

i − F s
i , F u+d

i = F u
i + F d

i (6)

etc. for linear combinations of these form factors.
The flavor form factors can be written in terms

of GPDs at zero skewness. For each quark flavor
we have the sum rules

F q
1 (t) =

∫ 1

0
dxHq

v (x, t) ,

F q
2 (t) =

∫ 1

0
dxEq

v(x, t) (7)

with

Hq
v (x, t) = Hq(x, 0, t) + Hq(−x, 0, t) ,

Eq
v(x, t) = Eq(x, 0, t) + Eq(−x, 0, t) , (8)

where Hq(x, ξ, t) and Eq(x, ξ, t) denote the pro-
ton GPDs for unpolarized quarks of flavor q in
the standard notation [2]. The combinations (8)
correspond to the difference of quarks and anti-
quarks (as it must be for the electromagnetic form
factors) and in this sense can be called “valence
GPDs”. For positive x one recovers the usual
quark and antiquark densities as Hq(x, 0, 0) =
q(x) and Hq(−x, 0, 0) = −q̄(x).

We will also need the combination

H̃q
v (x, t) = H̃q(x, 0, t) − H̃q(−x, 0, t) (9)

for the difference of longitudinally polarized
quarks and antiquarks, as well as the antiquark
distributions

H q̄(x, t) = −Hq(−x, 0, t) ,

E q̄(x, t) = −Eq(−x, 0, t) ,

H̃ q̄(x, t) = H̃q(−x, 0, t) . (10)

With these definitions, the isovector axial form
factor of the nucleon can be written as

FA(t) =

∫ 1

0
dx

[
H̃u

v (x, t) − H̃d
v (x, t)

]

+ 2

∫ 1

0
dx

[
H̃ ū(x, t) − H̃ d̄(x, t)

]
. (11)

The sea quark contribution does not drop out in
this sum rule since the axial form factor has pos-
itive charge parity and thus corresponds to the
sum and not the difference of quark and antiquark
contributions. The value of FA at t = 0, the axial
charge, is well known from β-decay experiments.

3 Data selection

The determination of the electromagnetic nucleon
form factors has not only a long history but re-
mains at the forefront of experimental research.
With quoted uncertainties typically in the percent
region, the consistency between different measure-
ments and the control of the theory underlying
them have become nontrivial issues, as we shall
see. In this section we discuss the selection of data
used in our subsequent analysis and point out
open problems and discrepancies between data
sets. Earlier overviews and discussions of form
factor data can be found in [6, 8, 7], and for Gn

E

also in [27].

A synopsis of the default data set that we use
in later sections is given in table 1. Several of
these data do not have separated statistical and
systematic errors. To have a uniform treatment,
we add those errors in quadrature for the data
sets where they are available.
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−t [GeV2] references

Gp
M 0.017 – 31.2 [9]

Rp 0.069 – 0.138 [9]

0.246 – 8.49 [10] – [19]

Gn
M 0.071 – 0.235 [20, 21]

0.1 – 4.77 [22] – [24]

Rn 0.142 – 3.41 [25] – [34]

Gn
E 0.0389 – 1.644 [35]

r2En 0 [36]

Table 1: Overview of our default data set. More
information about the data on Rp, Gn

M and Rn is
given in tables 2, 3 and 4.

3.1 Proton form factors

One of the main observables for the extraction of
the proton form factors is the unpolarized elastic
ep cross section, from which Gp

M and Gp
E may be

obtained by a Rosenbluth separation. About a
decade ago it has become evident that the effects
of two-photon exchange are substantial in this ex-
traction method [37], especially for Gp

E but at the
precision level also for Gp

M . Two-photon exchange
must hence be described accurately, which is non-
trivial because it involves the proton structure in a
way that is even more complex than for the one-
photon exchange term from which one wants to
extract the form factors. For a review of this sub-
ject we refer to [38].

A second method uses the correlation between
the polarizations of the beam electron and either
the proton target or the scattered proton, i.e. the
processes ~p(~e, e′p) or p(~e, e′~p ). This is typically
found to be less sensitive to two-photon effects.
However, it gives access only to the ratio Rp, so
that information from the ep cross section remains
indispensable for the separate determination of
Gp

M and Gp
E .

There exist several global analyses that combine
Rosenbluth separation and polarization data, plus
in some cases the ratio of e+p and e−p cross sec-
tions. Most of them include a parameterization
of two-photon exchange terms, whose parameters
are fitted to data. This approach has been taken
e.g. in [39, 40, 41, 42]. By contrast, the analy-
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Figure 1: Data for Gp
M from the global analyses

AMT 07 [9], Arrington 05 [39] and Qattan 12 [42],
along with two fits from the global analysis by
Alberico et al. [40]. The form factor is divided by
the dipole parameterization (2).

sis in [9] uses two-photon exchange terms calcu-
lated in dynamical models, including an estimate
of their uncertainties. A comparative discussion
of the different methods can be found in [41].

For our data set we use the Gp
M results from the

analysis [9] of Arrington, Melnitchouk and Tjon
(hereafter referred to as AMT 07). This set covers
the t range from 0.007 to 31.2 GeV2. We omit the
two data points with the lowest t values, which
have huge errors and would not affect any our fits
(but spoil the legibility of plots), and remain with
data in the range from 0.017 to 31.2 GeV2.

A comparison of the results for Gp
M extracted

in [9, 39, 42] is shown in figure 1, as well as two
fits proposed in [40]. Here and in the following

5



we plot form factors and their ratios against
√
−t

rather than against the more common variable −t,
which permits a clearer view of the data at low t,
where the density of measurements is highest. We
observe that the error bars of AMT 07 are signif-
icantly smaller than those of [39] and [42], which
reflects that in [39, 42] the size of two-photon ex-
change effects was fitted to the data rather than
provided as an external, albeit model dependent,
input. Given the good agreement between AMT
07 and the other analyses, including the central
fit curves of [40], we think that the AMT 07 data
may be taken as a representative of the current
best knowledge of Gp

M . We will later cross check
our results by using instead the values for Gp

M

obtained in [39] (Arrington 05), see section 6.4.

Let us now turn to the electric proton form fac-
tor. Rather than the values from the above global
fits, we select in this case results for the ratio Rp

measured with the recoil polarization method or
with a polarized proton target, i.e. with p(~e, e′~p )
or ~p(~e, e′p). The recoil polarization data cover a
range of −t from 0.246 to 8.49 GeV2, and the po-
larized proton data from 0.162 to 1.51 GeV2. To
have some coverage at lower −t, we use in addi-
tion the values of Rp with −t = 0.069, 0.098 and
0.138 GeV2 from the analysis of AMT 07 [9].

An overview of the data sets is given in table 2,
and the corresponding values of Rp are shown
in figure 2. We see that for

√
−t between 0.5

and 0.9 GeV the recent data from JLab Hall A
(Paolone 10, Ron 11 and Zhan 11) show a clear
systematic discrepancy with earlier data. Let us
emphasize that this discrepancy concerns not only
the polarized target data from MIT Bates (Craw-
ford 07) but also the two data points of the Hall
A recoil polarization measurement of Punjabi 05
in this t range, as well as older recoil polarization
data (which have however relatively large errors).
We also note a discrepancy at

√
−t ≈ 1.2 GeV be-

tween polarized target data (Jones 06) and recoil
polarization (Punjabi 05), which is however less
significant at the scale of the errors. To the best
of our knowledge, the origin of these discrepancies
is currently not understood. We sincerely hope
that future investigations will clarify the experi-
mental situation, which is quite unsatisfactory as
it stands.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

√−t  [GeV]

Rp

recoil 99-02
Hall C 05-06
Hall A 05
Hall A 10-11
AMT 07
pol. target 06-07

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

√−t  [GeV]

Rp

Hall A (Punjabi 05)
Hall A (Ron 11)
Hall A (Zhan 11)
Hall A (Paolone 10)
AMT 07
pol. targ. (Crawford 07)
pol. targ. (Jones 06)

Figure 2: Results for Rp from the data sets in
table 2. The polarized target data (empty white
squares or diamonds) are not used in our default
data set. Inner error bars indicate statistical un-
certainties when those are given separately.

Including all of the above data in least-square
fits would not be useful in our opinion, since with-
out modifications this fitting method is not de-
signed to cope with manifestly inconsistent data
sets. Lacking better criteria, we have chosen to
include the more recent measurements in our de-
fault data set, which is composed of all recoil po-
larization data in table 2 and the three points of
AMT 07 mentioned above. Note that this set still
includes a tension in the data, since we have not
removed the two points of Punjabi 05 with

√
−t

below 0.9 GeV. In section 6.4 we will investigate
as an alternative the data set obtained by remov-
ing the measurements of Paolone 10, Ron 11 and
Zhan 11 and by adding the polarized target data
of Jones 06 and Crawford 07.
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Rp = µpG
p
E/G

p
M

process −t [GeV2] reference facility remarks

p(~e, e′~p ) 0.38 – 0.50 Milbrath 99 [10] MIT Bates

0.373 – 0.441 Pospischil 01 [11] MAMI A1

0.32 – 1.76 Gayou 01 [12] JLab Hall A

3.50 – 5.54 Gayou 02 [13] JLab Hall A

0.49 – 3.47 Punjabi 05 [14] JLab Hall A

1.13 MacLachlan 06 [15] JLab Hall C

5.17 – 8.49 Puckett 10 [16] JLab Hall C

0.8, 1.3 Paolone 10 [17] JLab Hall A

0.246 – 0.474 Ron 11 [18] JLab Hall A updates [43]

0.298 – 0.695 Zhan 11 [19] JLab Hall A

~p(~e, e′p) 1.51 Jones 06 [44] JLab Hall C

0.162 – 0.591 Crawford 07 [45] MIT Bates

Table 2: Measurements of Rp obtained with recoil polarization or with a polarized target (last two
rows).

3.2 Neutron form factors

The magnetic form factor of the neutron can be
determined from the cross section ratio of the
quasi-elastic processes d(e, e′n) and d(e, e′p), and
also from scattering polarized electrons on polar-
ized 3He. The relevant data sets are listed in ta-
ble 3 and shown in figure 3. We do not use re-
sults of the MIT Bates measurement [48, 49] of
3−→He(~e, e′), which has rather large errors and would
not influence our analysis.

Looking at the deuterium measurements at√
−t just below 1 GeV, we observe an abrupt

change between the data of Anklin 98 and Kubon
02 on one hand and the Hall B data (Lachniet 09)
on the other. We do not consider this a physi-
cally plausible behavior and suspect a consistency
problem between these measurements (which were
using the same process), but we have not found
any discussion of this issue in the literature. We
also observe that the two data points of Anklin 98
for

√
−t between 0.7 and 0.8 GeV are systemati-

cally higher than the data of Anderson 07, which
connect smoothly with those of Hall B. Since the
Anderson 07 points are extracted from 3He and
thus have entirely different theoretical and sys-

tematic uncertainties than the Hall B measure-
ment, we consider this as a strong argument in
favor of the more recent data. We hence decided
to discard the points with −t = 0.504, 0.652 and
0.784 GeV2 from Anklin 98 and the points with
−t = 0.359 and 0.894 GeV2 from Kubon 02. We
keep, however, the point with −t = 0.235 GeV2

from Anklin 98 and the points with −t = 0.071
and 0.125 GeV2 from Kubon 02, which are consis-
tent with other data in the same t region.

We remark that the global fit by Kelly [50] used
the full data sets of Anklin 98 and Kubon 02,
whereas the results of Anderson 07 and Lachniet
09 were not available at the time of that fit. As a
consequence, the Kelly parameterization for Gn

M

faithfully reproduces the older data but is in clear
conflict with the newer ones, as seen in figure 3.

The electric neutron form factor Gn
E has been

extracted from a series of polarization measure-
ments using deuterium or 3He, which are com-
piled in table 4. In the approximation of van-
ishing final state interactions, these experiments
directly measure Gn

E/G
n
M and obtain Gn

E by using
a value for Gn

M as external input. This is problem-
atic since the used values are not always in good
agreement with the current experimental deter-

7



Gn
M

process −t [GeV2] reference facility remarks

d(e, e′n), d(e, e′p) 0.111 Anklin 94 [22] NIKHEF, PSI

0.235 – 0.784 Anklin 98 [20] MAMI, PSI used partially

0.071 – 0.894 Kubon 02 [21] MAMI, PSI used partially

0.985 – 4.773 Lachniet 09 [23] JLab Hall B

3−→He(~e, e′) 0.1 – 0.6 Anderson 07 [24] JLab Hall A updates [46, 47]

Table 3: Data sets for the determination of Gn
M .

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  0.5  1  1.5  2

√−t  [GeV]

GM
n / Gdipole

nAnklin 94
Anklin 98
Kubon 02
Anderson 06
Lachniet 09
Kelly fit

Figure 3: Data for Gn
M divided by the dipole

parameterization (2). The data points with open
triangles (Anklin 98 and Kubon 02) are not used
in our fits. Inner error bars indicate statistical
uncertainties.

mination of Gn
M , especially if they are computed

from the dipole parameterization (2) or from the
Kelly parameterization [50]. To circumvent this
bias, we use Rn as input for our data selection;
values of Gn

E then result from our selection and
analysis of the Gn

M data. The papers [27, 31, 34]
directly quote results for Rn, whereas in the other
cases we have calculated Rn from the quoted re-
sults for Gn

E , using the Gn
M values and their er-

rors as specified in the experimental papers. The
resulting values and errors of Rn are given in ap-
pendix A for reference.

As an independent source of information we
take the values of Gn

E extracted from the deuteron
quadrupole form factor in Schiavilla 01 [35], which

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

√−t  [GeV]

Rnd (recoil pol.)
d (pol. target)
He (pol. target)
d (t20) and fit for GM

n

Figure 4: Data for Rn. The open (white) sym-
bols correspond to data for Gn

E together with Gn
M

taken from the fit described in section 3.4. Inner
error bars indicate statistical uncertainties.

uses as input the measurement of the polarization
observable t20 and provides data points with −t
from 0.0389 to 1.644 GeV2. These data have rela-
tively large errors and are shown in figure 7 below.
Taking the fit for Gn

M that will be described in
section 3.4, we can compute Rn from these data.
As can be seen in figure 4, the result agrees well
with Rn extracted from the the measurements in
table 4.

We note that the smallest value of
√
−t for

which we have a precise determination of Rn (from
Herberg 99 and Geis 08) is about 0.4 GeV. It is
therefore highly welcome that entirely indepen-
dent information about the small-t behavior of
Gn

E is provided by the squared charge radius of

8



Rn = µnG
n
E/G

n
M

process −t [GeV2] reference facility remarks

d(~e, e′~n)p 0.15, 0.34 Herberg 99 [25] MAMI A1

0.3 – 0.79 Glazier 05 [26] MAMI A1 updates [51]

0.447 – 1.45 Plaster 06 [27] Jlab Hall C updates [52]

~d(~e, en)p 0.21 Passchier 99 [28] NIKHEF

0.495 Zhu 01 [29] JLab Hall C

0.5, 1.0 Warren 04 [30] JLab Hall C

0.142 – 0.415 Geis 08 [31] MIT Bates

3−→He(~e, e′n) 0.67 Bermuth 03 [32] MAMI A1 updates [53]

0.35 Rohe 05 [33] MAMI A3 updates [54, 55]

1.72 – 3.41 Riordan 10 [34] JLab Hall A

Table 4: Data sets for the determination of the neutron form factor ratio Rn.

the neutron, which is defined by

r2nE = 6
dGn

E

dt

∣∣∣∣
t=0

(12)

and can be measured in scattering a neutron beam
off the shell electrons in a nuclear target. We use
the value quoted in the 2012 Review of Particle
Physics [36],

r2nE = −(0.1161 ± 0.0022) fm2 , (13)

which has been stable since its first listing in the
2002 edition of the same review. In principle we
might have also included in our data selection the
electric charge radius of the proton as determined
from atomic physics, but the present controversy
concerning the value of this radius prevented us
from following this path. We will briefly discuss
this in section 6.5.

3.3 A note on the dipole parameteriza-

tion

When plotting Gp
M and Gn

M we follow common
practice and divide by the dipole parameteriza-
tion

F (t) =
F (0)(

1 − t/M2
dip

)
2

(14)

of these form factors. As already emphasized, this
is a matter of pure convenience, with the value

M2
dip = 0.71 GeV2 fixed by convention. As is evi-

dent from figures 1 and 3, neither Gp
M nor Gn

M is
particularly well described by this parameteriza-
tion.

One may ask whether a good description of
these form factors can be achieved with a differ-
ent value of the dipole mass, at least in a certain
range of t. To investigate this question, we define
the effective dipole mass

M2
eff(t) =

−t√
F (0)/F (t) − 1

, (15)

which is t independent and equal to the dipole
mass for a form factor with the shape (14). From
the plots of this quantity in figure 5 we see that
within their currently known precision, neither of
the magnetic form factors is well represented by
a dipole form in any interval that starts at t =
0. Somewhat amusingly, the dipole law with its
conventional mass value approximately describes
Gn

M in the region of
√
−t between 1 and 2 GeV,

as is already visible in figure 3.

3.4 A global form factor fit

Although the main goal of our study is the deter-
mination of the GPDs Hq

v and Eq
v from the form

factors with the help of the sum rules (7) (see sec-
tion 6), there is some interest in having a simple
parameterization of the form factor data. This
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Figure 5: Effective dipole masses as defined in (15) for Gp
M and Gn

M , evaluated from our data set.

parameterization can serve as a baseline for com-
parison with our GPD fits, for the interpolation
of data or for the convenient evaluation of cross
sections. An example for the latter is the eval-
uation of the Bethe-Heitler process, which plays
a special role in connection with deeply virtual
Compton scattering.

We find that a good representation of the data
is possible if we represent the form factor combi-
nations (5) as the product of two fractional power
laws:

F q−s
i (t) =

F q−s
i (0)

(1 − aiq t/piq)
piq (1 − biq t/qiq)

qiq

(16)

with q = u, d and i = 1, 2. This ansatz makes
no assumption about the size of the strangeness
contributions, but if they are neglected, then (16)
directly parameterizes the flavor form factors F u

i

and F d
i . The sum aiq + biq is equal to the loga-

rithmic derivative of F q−s
i at t = 0. We note in

passing that one has (1 − at/p)−p → exp(at) for
p → ∞.

At variance with other approaches, we do not
impose the asymptotic behavior F q

i ∼ 1/t2 or
F q
2 ∼ 1/t3 that is predicted by dimensional count-

ing. This is in line with the physical assumption
behind our GPD fit discussed later, namely that
the hard-scattering mechanism that gives rise to
dimensional counting behavior is not relevant for
the electromagnetic form factors in the t region

where there is data. In this spirit, our global fit
aims at describing the existing data and at ex-
trapolating them over a limited range, but it has
no ambition to describe the form factors in an
asymptotic regime of large t.

A fit to our default set of form factor data, in-
cluding the squared neutron charge radius, pro-
vides the parameters compiled in table 5. The
corresponding values of χ2

min are listed in table 6.
With the exception of q1u − p1u the differences
qiq − piq of powers were kept fixed in order to ob-
tain a stable χ2 fit, their values have been opti-
mized by varying them in steps of 0.5 and moni-
toring the change of χ2

min for the individual form
factors, so as to achieve a uniformly good descrip-
tion of all observables as much as possible.

In terms of χ2 the fit is very good as table 6
reveals, with the minimal χ2 being always smaller
than the number of data points. Plots comparing
the fit with data are shown in section 6.3. With a
total of 16 parameters and the ansatz (16) we can
thus obtain an excellent description of all the form
factor data we have selected. The low χ2 of our fit
does not imply that we have over-parameterized
the data: as explained earlier, systematic uncer-
tainties are included in the errors on the form fac-
tor data, so that their statistical point-to-point
fluctuations are not as large as suggested by the
errors. We note that a simpler fit with all qiq−piq
set to zero give still a rather good description of
the data, with a global χ2

min = 182.9. It does,
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aiq + biq biq piq qiq − piq

F u−s
1 3.116 ± 0.102 1.122 ± 0.101 0.347 ± 0.061 1.527 ± 0.110

F d−s
1 3.184 ± 0.103 1.638 ± 0.242 0.278 ± 0.119 3.5

F u−s
2 3.192 ± 0.060 0.122 ± 0.034 1.812 ± 0.110 2.5

F d−s
2 3.478 ± 0.149 1.649 ± 0.250 0.296 ± 0.100 2.5

Table 5: The parameters of the global fit (16) to our default data set. Parameters without quoted
errors are kept fixed in the fit.

total — Gp
M — Rp Gn

M Rn Gn
E r2nE

χ2
min 122.3 28.8 1.8 52.7 20.4 15.3 3.4 0.0

data points 178 48 6 54 36 21 12 1

Table 6: Total and partial values of χ2
min for the global power law fit specified by (16) and the

parameters in table 5. For Gp
M the first value is for the data with −t < 10 GeV2 and the second value

for −t > 10 GeV2.

however, systematically overshoot the very precise
Gp

M data for −t below 1 GeV2 and correspond-
ingly has a large partial χ2

min = 73.4 for the 48
data points of Gp

M with −t < 10 GeV2.

Since we have a complete set of Sachs form fac-
tor data only up to −t = 3.41 GeV2, the individ-
ual flavor form factors of our global power law fit
can only be considered reliable up to this t value.
On the other extreme, we have data only for Gp

M

in the range 8.5 GeV2 < −t < 31.2 GeV2. In this
range F u−s

1 as given by our fit contributes more
than 70% to G p

M compared with the other flavor
form factors. The same is true for the default
GPD fit to be discussed in section 6.3. The re-
sults of these two fits differ by at most 17% for all
−t < 31.2 GeV2. In this sense, we may regard our
fit for F u

1 as reasonably reliable over this t range.

4 Strangeness

Although virtual ss̄ pairs may not be rare in the
proton, the strangeness form factors F s

1 (t) and
F s
2 (t) are expected to be small, because they de-

scribe the difference between the distributions of
strange quarks and antiquarks. This is evident
from the corresponding sum rules (7) and should
not be surprising because the electromagnetic cur-

rent probes the local excess of quarks over anti-
quarks (or of antiquarks over quarks).

Since the proton has no net strangeness, the
strange PDFs satisfy

∫ 1

0
dx

[
s(x) − s̄(x)

]
= 0 (17)

and the strange Dirac form factor is normalized
as

F s
1 (0) = 0 . (18)

By contrast, the strange Pauli form factor at t =
0 is equal to the strangeness magnetic moment,
F s
2 (0) = µs, and can be nonzero.
In recent years there has been an enormous ac-

tivity to determine the strangeness form factors
Gs

M and Gs
E from parity violating elastic scat-

tering, see e.g. [56, 57, 58, 59, 60, 61, 62, 63].
Despite this effort it is not yet clear whether
or not the strange form factors are significantly
nonzero, as can be seen in figure 6. Likewise,
recent global fits of parton densities [64, 65] do
not provide unambiguous evidence for a nonzero
difference s(x) − s̄(x). While the MSTW 2008
result [64] for this quantity is compatible with
zero within errors, this is not the case for the
analysis of NNPDF 2.2 [65]. Lattice QCD re-
sults [66, 67, 68, 69, 70] have much smaller er-
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Figure 6: Data for the strangeness form factors
by HAPPEX [59, 61], A4 [62] and G0 [63], to-
gether with lattice QCD results by Leinweber [67],
Wang [69] and Doi [70]. Our model predictions
are shown as solid and dashed lines and labeled
by the PDF set used in the model.

rors than the form factor measurements and the
PDF analyses. Several lattice determinations ob-
tain a nonzero value of µs (see below), but Gs

M

and Gs
E at finite t are typically compatible with

zero within uncertainties, as shown in figure 6.
For an estimate of the strangeness contributions

we therefore take recourse to a model. Following
our previous work [71] we parameterize the GPD
Hs

v in similar way as the u and d quark GPDs in
[5] and in the present paper:

Hs
v(x, t) =

[
s(x) − s̄(x)

]

× exp
[
tα′

s(1 − x) log (1/x)
]
. (19)

In the exponent we set α′
s = 0.95 GeV−2. Accord-

ing to the study in [71], a variation of this value in
the range 0.85 GeV−2 < α′

s < 1.15 GeV−2 would
not significantly change our results for F s

1 . The
PDFs in the ansatz (19) are taken either from
MSTW 08 [64] or from NNPDF 2.2 [65] and are
evaluated at the scale µ = 2 GeV. With the sum
rule (7) one can then compute the Dirac form fac-
tor F s

1 . In the region −t < 36 GeV2, the result
can be parameterized as

F s
1 (t) =

−ct

(1 − at/p)p (1 − bt/q)q
(20)

with an accuracy better than 2.5%, where p = 2
and

a = 4.54 GeV−2 , b = 1.79 GeV−2 ,

c = 0.136 GeV−2 , q = 4.8 (21)

for MSTW, whereas p = 1 and

a = 2.22 GeV−2 , b = 0.722 GeV−2 ,

c = 0.0244 GeV−2 , q = 1.92 (22)

for NNPDF.
For the strange Pauli form factor a similar pa-

rameterization cannot be exploited, because the
forward limit of the relevant GPD is completely
unknown. We must therefore pursue a different
strategy in this case. Lattice simulations quote
the following values for the strangeness magnetic
moment:

µs = −0.046 ± 0.019 [66] ,

= −0.066 ± 0.026 [68] ,

= −0.017 ± 0.025 ± 0.007 [70] , (23)

and we adopt the value µs = −0.046 from [66],
which is consistent with the other two determina-
tions. There are also estimates of µs from dif-
ferent variants of the constituent quark model.
Results obtained before 2000 are typically an or-
der of magnitude larger than the lattice results
(23), whereas more recent calculations, e.g. in
[72, 73, 74], provide results in fair agreement with
them.

For the t dependence of F s
2 , we adopt a vector

meson dominance ansatz. With three poles cor-
responding to the φ(1020) meson and its excited

12



reference −t quantity experimental model result

[GeV2] value MSTW NNPDF

HAPPEX [57] 0.477 Gs
E + 0.392Gs

M 0.014 ± 0.022 0.0032 −0.00056

A4 [58] 0.108 Gs
E + 0.106Gs

M 0.071 ± 0.036 0.0057 −0.00078

HAPPEX [60] 0.099 Gs
E + 0.080Gs

M 0.030 ± 0.028 0.0061 −7 × 10−5

HAPPEX [61] 0.109 Gs
E + 0.090Gs

M 0.007 ± 0.013 0.0063 −0.00016

Table 7: Experimental values and model results for linear combinations of strangeness form factors.

states φ(1680) and φ(2170) [36] we have 1

F s
2 (t) = µs

3∑

i=1

ai
m2

i − t
. (24)

For lack of better knowledge, we require F s
2 to de-

crease asymptotically like 1/t3 as suggested by di-
mensional counting. Together with the normaliza-
tion condition at t = 0, this gives the constraints

∑

i

ai/m
2
i = 1 ,

∑

i

ai = 0 ,

∑

i

ai
∑

j 6=i

m2
j = 0 , (25)

which imply

ai =
m2

1m
2
2m

2
3∏

j 6=i

(m2
i −m2

j )
(26)

for the residues. With the mass values from [36]
we obtain a1 = 2.115 GeV2, a2 = −4.113 GeV2

and a3 = 1.998 GeV2. The first parameter is re-
lated to the tensor coupling between the φ(1020)
and the nucleon as

gTφNN = µsf1a1/m
2
1 . (27)

With f1 = 13.4 from the electronic decay width
of the φ(1020) meson, we obtain

(gTφNN )2/(4π) = 0.13 , (28)

1We emphasize that φ(1020) and its excited states
are necessary to obtain a proper large t behavior of the
strangeness form factors. This sheds doubt on analyses
that obtain the dipole behavior of isosinglet form factors
(Gp

M+G
n

M , Gp

E+G
n

E or F p
1
+F

n
1
) by a conspiracy of ω and

φ exchange without excited states. See also our discussion
in section 3.1 of [71].

which is consistent with a dispersion analysis of
nucleon-nucleon scattering [75]. We note in pass-
ing that for −t < 5 GeV2 our parameterization
of F s

2 can be approximated by a dipole form (14)
with M2

dip = 1.13 GeV2 with 11% accuracy.

Combining our models for F s
1 and F s

2 we ob-
tain the Sachs form factors shown in figure 6.
Both models are consistent with experiment and
with lattice results, except for a discrepancy be-
tween the MSTW model and the lattice points of
Leinweber and Doi at −t = 0.1 GeV2. Further-
more, our model results are in good agreement
with the data listed in table 7, except for the
A4 measurement, where our values are about 2
standard deviations away from the experimental
value. We note that the combination of the lat-
tice results [70] for Gs

M and Gs
E at −t = 0.1 GeV2

gives Gs
E +0.106Gs

M = 0.0006±0.0031 (if we add
errors in quadrature), which is in better agree-
ment with our model results and in tension with
the A4 value.

Comparing our strangeness form factors with
the power-law fit of F u−s

i and F d−s
i described in

section 3.4, we find that the ratios |F s
i /F

u
i | and

|F s
i /F

d
i | are below 6% for

√
−t < 1 GeV2 and be-

low 12% for
√
−t < 2 GeV2. With the interpo-

lated set of flavor form factors described in the
next section, we find that our strangeness form
factors are at most of the size of the errors on
F u
i and F d

i . In this respect the strangeness con-
tribution may be neglected when discussing the
flavor decomposition of the form factors, at the
present level of accuracy. We will return to the
strangeness form factors in section 6.4.
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5 Interpolated data

5.1 Determination of flavor form fac-

tors

The valence quark GPDs Hq
v and Eq

v are con-
strained by the flavor form factors through the
sum rules (7). In order to exploit all available in-
formation we will directly fit the GPDs to the data
on the Sachs form factors. Nevertheless, we find
it useful to extract also the experimental values
of the flavor form factors, which may be regarded
as the form factor set that is most suitable for
an interpretation in terms of quark and antiquark
densities. This extraction will allow us to verify
whether the different GPDs obtained in a global
fit satisfy the sum rules (7) with uniform quality.
It can also be used to test simple functional forms
for the flavor form factors. This may be of use
for lattice QCD studies, which typically require a
parameterization of simulation results for the ex-
trapolation to the physical values of parameters.
Finally, form factor fits are not guaranteed to re-
produce local structures in the data, because the
flexibility of the assumed parameterization might
be insufficient for the structure in question. By
contrast, the directly extracted flavor form fac-
tors retain local structures present in the data.

For the determination of the flavor form fac-
tors, the four Sachs form factors are needed at
the same set of t values. This is in general not the
case for the available data, since each measure-
ment has its own criteria for a suitable choice of
bins in t. We therefore need an interpolation pro-
cedure. As basic set of t values we choose those
of the electric neutron form factor Gn

E and of the
associated form factor ratio Rn. Compared to the
other form factors or ratios, these observables are
measured at the smallest number of t values. In
this way we avoid having more interpolated data
points for the other observables than are actually
measured. We omit a few data points for Gn

E ,
because there are Rn measurements at exactly or
approximately the same value of t. We thus ob-
tain a basic set of 27 values of −t between 0.039
and 3.41 GeV2. For these values we interpolate
Gp

M , Gn
M and Rp using cubic splines.

In figure 7 the resulting interpolated data points
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Figure 8: The ratio Gn
E/G

p
E , evaluated with our

set of interpolated data.

are compared to the measured ones. The data
on the magnetic from factors of proton and neu-
tron are well represented by the interpolated set.
For the ratio Rp of electric and magnetic proton
form factors, we again see the tensions between
different measurements for

√
−t between 0.6 and

1.0 GeV. Following our discussion in section 3,
we use the precise recent Hall A data [17, 18, 19]
for interpolating Rp, as well as the older Hall A
measurement [14] for the high-t region. We finally
check the compatibility between the original data
on Gn

E and on Rn, which are both part of the in-
terpolated form factor set. To this end we take
our interpolated values of Gn

M and compute Rn

when Gn
E is measured and vice versa. As can be

seen in figure 7, there is good agreement within
the uncertainties.

An interesting observation can be made from
the set of interpolated data. We see in figure 8
that Gn

E ≪ Gp
E at low t, as one may expect,

whereas with increasing
√
−t the ratio Gn

E /Gp
E

increases and becomes of order 1 as
√
−t ap-

proaches 2 GeV. This finding may be taken as
a hint at a zero crossing in the isovector combina-
tion Gp

E −Gn
E of electric form factors.

From the interpolated Sachs form factors we
compute the flavor form factors using (3) and
(5), where the strangeness contributions are ne-
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glected.2 The errors of the flavor form factors are
evaluated from those of the uncorrelated Sachs
form factors or form factor ratios with the help of
Gaussian error propagation.3 In the same man-
ner we can compute any combination of the flavor
form factors, including its errors. Our results for
F u
i and F d

i are compiled in appendix A and shown
in figure 9. One can see that F d

2 is negative while
the other three form factors are positive, and that

F d
1 < F u

1 , F d
2 ≃ −F u

2 . (29)

These properties reflect the normalization of the
form factors at t = 0,

F u
1 (0) = 2 , F d

1 (0) = 1 ,

F u
2 (0) = κu , F d

2 (0) = κd , (30)

where κq is the contribution of quarks with flavor
q to the anomalous magnetic moment of the pro-
ton (κu = 1.67 and κd = −2.03 if strangeness is
neglected). One may also notice that with increas-
ing −t the ratio F d

1 /F
u
1 decreases, while F d

2 /F
u
2

stays rather flat (see figure 14 below). The de-
crease of F d

1 /F
u
1 was already visible in the flavor

form factors extracted from our earlier work, see
[76, 77], and its relation to the large-x behavior
of the parton densities was pointed out in [5]. We
will take up the discussion of the flavor form fac-
tors in sections 6.3 and 7.1.

In figure 9 we also show the flavor form factors
obtained with the global power-law fit described
in section 3.4, neglecting again the strangeness
contributions. Evidently, this fit describes the fla-
vor form factors very well. The results of the fit
are also decomposed into the contributions from
the individual Sachs form factors to a given flavor
form factor. We notice that in the cases of the d-
quark form factors strong cancellations among the
various contributions occur, whereas F u

1 is dom-
inated by the proton form factors, with the neu-

2If one does not wish to neglect these contributions, one
can simply re-interpret the form factors Fu

i and F d
i of this

section as Fu−s
i and F d−s

i , as discussed in section 2.
3Strictly speaking, the values of Rp are not independent

of the results for Gp

M in the global analysis [9], because that
analysis used several of the Rp measurements contained in
our data set. Since we have no possibility to take this
correlation into account, we treat the data for Rp and G

p

M

as uncorrelated.

tron form factors providing only small contribu-
tions. These observations tell us that the interpo-
lated F u

1 data are quite stable against modifica-
tions of the Sachs form factors. The d-quark form
factors, on the other hand, are rather sensitive
to modifications of the data. One may also no-
tice that the contribution to F u

1 from Gn
E , which

is only measured up to −t = 3.41 GeV2, is very
small. Therefore, the power-law fit as well as the
GPD fits described in section 6 are still reliable
at −t above 3.4 GeV2. By contrast, the contri-
butions of Gn

E to the other flavor form factors, in
particular those for d-quarks, are rather impor-
tant and, hence, our fits to these form factors are
to be taken with due caution at large t.

Recently, two extractions of the flavor form fac-
tors have been published [42, 78]. The results for
F u
1 and F d

1 obtained in [42] are rather similar to
ours. The same holds for F u

2 , with slightly larger
differences. For −F d

2 , however, the values in [42]
are systematically larger than ours by up to 10%
for −t around 1 GeV2 and smaller by a similar
amount for −t around 3.2 GeV2. To understand
this discrepancy, we note that [42] uses a fit for
Gn

M that includes the new Hall B data [23] but
also the older data sets Anklin 98 and Kubon 02
[20, 21] that we partially discard for the reasons
discussed in section 3.2. As can be seen in figure 9,
the impact of Gn

M is largest on the d-quark form
factors; for F d

1 the difference between our values
and those of [42] is less visible because the overall
errors on it are larger than for F d

2 .

Comparing our flavor form factors with those
extracted in [78], we find again rather similar val-
ues for F u

1 and F d
1 . For F u

2 , however, the points
of [78] are below ours by up to 15% for −t around
1 GeV2, whereas for −F d

2 they are above ours by
a similar amount in the same t range. These dis-
crepancies are significant at the scale of the quoted
errors in the two analyses. Their main origin is
that [78] uses the Kelly parameterization [50] for
Gn

M and for the proton form factors. Apart from
being in conflict with the Hall B data on Gn

M , this
parameterization closely follows the older data on
Rp and thus lies significantly above the recent Hall
A results [17, 18, 19] for −t below 1 GeV2. In
[78] only the errors of Gn

E and Rn are taken into
account while the uncertainties of the Kelly pa-
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Figure 9: The flavor combinations of the Dirac form factors, scaled by |t| and plotted versus
√
−t.

The individual contributions from the proton (neutron) Sachs form factors, computed from the power-
law fit of section 3.4, are shown as magenta dashed (blue dotted) lines. The solid lines represent the
sum of the individual contributions.

rameterization of the other Sachs form factors are
ignored. Therefore the errors of the flavor form
factors quoted in [78] are smaller (for F u

2 and F d
2

even substantially smaller) than ours. We finally
stress that, in contrast with [42] and [78], we use
only data points and no parameterizations to con-
struct our interpolated data set.

5.2 Simple fits to form factors

Lattice QCD studies often require simple param-
eterizations of form factors for the purpose of in-
terpolation and extrapolation. A representation
like the one used in our global power-law fit (16)
can normally not be used for this purpose, be-

cause it involves 4 parameters per form factor.
We can use our interpolated data set to investi-
gate which functional forms are suitable to de-
scribe the electromagnetic form factors. In addi-
tion to the dipole form (14), we will consider the
general power law

F (t) =
F (0)(

1 − t/M2
p )p

(31)

and as a special case also a tripole form, i.e. (31)
with p = 3. As another extension of the dipole
parameterization we consider the product of two
single poles,

F (t) =
F (0)(

1 − t/M2
a )

(
1 − t/M2

b )
. (32)
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A summary of our fits is given in table 8. For
each form factor we fit 27 data points in the range
0.039 GeV2 ≤ −t ≤ 3.41 GeV2.

Let us first discuss the Sachs form factors in
the isospin basis, i.e. the combinations Gu±d

M and

Gu±d
E . They form the most natural basis from the

point of view of t-channel exchanges and of ana-
lytic continuation to positive t, as is e.g. discussed
in section 4.2 of [2]. A dipole or a product of two
poles may hence appear as a natural candidate to
describe these form factors. We find that a dipole
form describes our interpolated values for Gu−d

M

with an accuracy better than 5%. On the scale of
the errors on Gu−d

M , this is however a poor descrip-
tion, and the associated χ2

min is very high as we
see in table 8. That Gu−d

M cannot be described by
a dipole within its uncertainties is confirmed by
a plot of the corresponding effective dipole mass
(see section 3.3) in figure 10. A product of two
poles gives a better description, but still with a
χ2
min almost twice as big as the number of data

points.

The isosinglet combinations Gu+d
M and Gu+d

E

have larger error bars than Gu−d
M , and we find

that they can be described reasonably well by a
dipole. In both cases, a product of two poles,
which has one more free fit parameter, gives an
even better description. As for Gu−d

E , we find that
a dipole form gives a reasonable description up
to

√
−t = 1.3 GeV but badly fails to reproduce

the two data points with
√
−t = 1.57 GeV and

1.85 GeV, as is reflected in the accuracy and χ2
min

given in table 8. This is not too surprising if we re-
call that this form factor may have a zero around√
−t = 2 GeV, as we observed when commenting

on figure 8. A two-parameter fit of Gu−d
E to the

product of two poles is unstable.

Turning now to the Dirac and Pauli form factors
in the isospin basis, we find that F u+d

1 is reason-
ably well described by a dipole, and even better
by the product of two poles. By contrast, a dipole
form is unable to describe F u−d

1 . The product of
two poles permits a description with 6% accuracy,
which has however still a large χ2

min. A general
power-law fit is slightly worse for this form factor,
which has very small errors. The isotripolet Pauli
form factor F u−d

2 is also known with high preci-
sion. We find a very poor description by a dipole
fit, and an even worse one by a tripole form, whose
asymptotic t behavior corresponds to the dimen-
sional counting prediction for F u−d

2 (and is ob-
viously irrelevant for the t range in question). A
general power law does better in comparison, with
an accuracy of about 6% but still a bad χ2

min. The
isoscalar combination F u+d

2 has rather large er-
rors and is equally well described by a dipole and
a tripole fit. A similar situation has often been
found in lattice studies, when the errors on the
simulation did not permit to draw strong conclu-
sions on the t dependence of certain form factors.

Turning finally to the flavor basis, we observe
that a dipole fit gives a rather poor description for
F u
1 , F d

1 and F d
2 . The general power law (31) works

however very well in all three cases. It works also
very well for F u

2 , where the fitted power is close
to 2, so that a dipole fit is adequate in this excep-
tional case.

In conclusion, we have not found a simple “one
fits all” functional form that would describe either
the Sachs or the Dirac and Pauli form factors in
the isospin basis. The only ansatz that gives a
uniformly good description of all form factor data
for −t up to 3.4 GeV2 is to fit the flavor form
factors to the general power law (31) with its two
free parameters.
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form factor —— dipole —— —— two poles ——

accuracy χ2
min accuracy χ2

min

Gu−d
M −4.5% to 2.5% 197.9 −4.5% to 2.0% 49.1

Gu+d
M −8.0% to 5.5% 15.3 −4.5% to 4.0% 6.7

Gu+d
E −5% to 13% 20.8 −9% to 9% 13.5

Gu−d
E −75% to 10% 63.1

form factor —— dipole —— —— two poles ——

accuracy χ2
min accuracy χ2

min

F u+d
1 −5.0% to 9.5% 36.4 −5.0% to 8.0% 27.3

F u−d
1 −12% to 29% 946 −5.5% to 6.5% 69.2

F u−d
2 −19% to 4% 433

F u+d
2 −7.5% to 5.5% 24.2

form factor —— power law —— —— tripole ——

accuracy χ2
min accuracy χ2

min

F u+d
1 −4.5% to 9.0% 30.9

F u−d
1 −6% to 8% 105

F u−d
2 −6.5% to 5.5% 113 −7% to 28% 1037

F u+d
2 −6.5% to 5.5% 17.2

form factor —— dipole —— ——— power law ———

accuracy χ2
min accuracy χ2

min p

F u
1 −7% to 14% 138 −4.0% to 5.5% 17.9 1.13 ± 0.03

F d
1 −50% to 10% 54.0 −19% to 16% 13.0 2.81 ± 0.18

F u
2 −12.5% to 8.5% 15.0 −5.0% to 10.0% 9.6 2.16 ± 0.07

F d
2 −24% to 8% 30.0 −8.5% to 7.5% 11.2 2.38 ± 0.10

Table 8: Quality of fits to our interpolated form factor data with different simple functional forms.
For each form factor, 27 data points are fitted. As “accuracy” we define the smallest and largest
value of (1− fit/data). If a field is left empty, no stable fit of acceptable quality could be found. The
column “power law” refers to the form (31) and the column “two poles” to (32). The last column in
the last table gives the value of p in the power-law fit.
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6 GPD fit

6.1 Fit ansatz and positivity

Let us now briefly describe our ansatz for the
GPDs, which will be used in our fits to the form
factors. We largely follow the approach of our
earlier work [5] and refer to it for a more detailed
motivation and discussion. The main feature of
our ansatz is an exponential t behavior

Hq
v (x, t) = qv(x) exp

[
tfq(x)

]
,

Eq
v(x, t) = eqv(x) exp

[
tgq(x)

]
, (33)

with an x dependent width specified by the profile
functions fq(x) and gq(x). For polarized quarks
we assume

H̃q
v (x, t) = ∆qv(x) exp

[
tfq(x)

]
, (34)

where for lack of better knowledge we take the
same t dependence as for Hq

v (see section 8.1).
The above forms refer to a definite renormaliza-
tion scale µ, which we take equal to 2 GeV unless
stated otherwise.

An intuitive interpretation of GPDs at zero
skewness can be given in impact parameter space,
where we define

qv(x, b2) =

∫
d2∆

(2π)2
e−ib∆Hq

v (x,−∆2) ,

eqv(x, b2) =

∫
d2∆

(2π)2
e−ib∆Eq

v(x,−∆2) . (35)

qv(x, b2) is difference of densities for quarks and
antiquarks with momentum fraction x at a trans-
verse distance b from the proton center, with both
the parton and the proton being unpolarized. The
average impact parameter associated with this
density difference is

〈b2〉qx =

∫
d2b b2 qv(x, b2)∫

d2b qv(x, b2)
= 4fq(x) . (36)

The corresponding density difference for longitu-
dinally polarized partons is

∆qv(x, b2) =

∫
d2∆

(2π)2
e−ib∆ H̃q

v (x,−∆2) , (37)

whereas for unpolarized partons in a proton po-
larized along the x-axis one has [79]

qXv (x, b) = qv(x, b2) − by

m

∂

∂b2
eqv(x, b2) . (38)

Transverse polarization of the proton thus induces
a sideways shift in the distribution of partons.
The average amount of this shift is

〈by〉qx =

∫
d2b by qXv (x, b2)∫
d2b qXv (x, b2)

=
1

2m

eqv(x)

qv(x)
. (39)

The interpretation as a density difference re-
quires qXv (x, b) ≥ 0 when the antiquark contri-
bution is negligible. This implies a bound on
∂/(∂b2) eqv(x, b2), which becomes even stronger if
we include information about polarized quarks.
In a region where antiquarks can be neglected, we
then have [81]

b2

m2

[
∂

∂b2
eqv(x, b2)

]2

≤
{[

q(x, b2)
]2 −

[
∆q(x, b2)

]2}
. (40)

With (33) and (34), the validity of (40) for all b
at a given x is equivalent to [5]

[
eqv(x)

]
2

8m2
≤ exp(1)

[
gq(x)

fq(x)

]3 [
fq(x) − gq(x)

]

×
{[

qv(x)
]2 −

[
∆qv(x)

]2}
. (41)

Note that (41) requires strict inequality gq(x) <
fq(x) of the profile functions, except for values of
x where eqv(x) = 0. As we will see, the positivity
bound on eqv(x) severely constrains our fits.

As a word of caution, we note that the density
interpretation and the associated positivity con-
ditions do not strictly hold in QCD. This is be-
cause the ultraviolet renormalization that makes
the GPDs well defined and leads to their µ depen-
dence involves subtractions that can in principle
invalidate positivity. We nevertheless require the
above conditions to hold, so that a density inter-
pretation is possible for the results of our fits. The
technical implementation of the positivity condi-
tions is discussed in the next subsection.

We now specify our ansatz (33) and (34). For
qv(x) we take a selection of up-to-date parton den-
sities, which is discussed in section 6.2, and for
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the polarized densities ∆qv(x) we choose the re-
cent determination [80]. All these distributions
are defined with NLO evolution and evaluated at
scale µ = 2 GeV. For eqv(x), we make the ansatz

eqv(x) = κqNq x
−αq(1 − x)βq

(
1 + γq

√
x
)
, (42)

which has proven to work well for the parameter-
ization of ordinary parton densities. The normal-
ization factor Nq ensures that

∫ 1

0
dx eqv(x) = κq (43)

as required by (7). The values of κu and κd are
computed from the measured magnetic moments
of proton and neutron and the assumed value for
the strangeness contribution κs = µs. The γq de-
pendent term in (42) is new compared with [5] and
significantly improves our fits, as we will discuss
in sections 6.3 and 6.4.

For the profile functions fq(x) and gq(x) we as-
sume the form [5]

fq(x) = α′
q (1 − x)3 log(1/x) + Bq (1 − x)3

+ Aqx(1 − x)2 ,

gq(x) = α′
q (1 − x)3 log(1/x) + Dq (1 − x)3

+ Cqx(1 − x)2 . (44)

The parameters α′
q, Bq and Dq control the small-x

behavior of these functions, whereas their behav-
ior at large x is controlled by Aq and Cq. The fac-
tors of (1−x) in fq(x) ensure that 〈b2〉qx ∼ (1−x)2

in the limit x → 1, which follows from requiring
a finite transverse size of the proton in that limit
(see section 7.3).

At small x, the log(1/x) term in gq(x) gives a
t-dependent contribution to the power behavior
Eq

v(x, t) ∼ x−(αq+tα′

q), in accordance with simple
Regge phenomenology. A corresponding state-
ment holds for Hq

v (x, t) if the forward densities
qv(x) have a power behavior at small x.

6.2 Selection of parton densities

An important feature of our ansatz (33) is that
for the forward limit of Hq

v (x, t) we can use the
valence quark densities obtained in global PDF

analyses. As we shall see, current PDF deter-
minations exhibit notable differences for the va-
lence quark densities uv(x) and dv(x), especially
in the regions of small or large x. Since these re-
gions are of some importance in the sum rules (7)
(see section 7.1), we have explored several recent
PDF determinations in our fits. They are all de-
fined at NLO, evaluated at µ = 2 GeV, and listed
in table 9. The numerical values for all parton
densities have been obtained with the routines of
the LHAPDF interface [82], version 5.8.8. From
now on we will denote the PDF sets only by the
acronyms of their authors (ABM, CT, etc.) since
we only use one set from each group.

As already mentioned in the previous subsec-
tion, the power behavior at small x, which is sug-
gested by simple Regge phenomenology, is an im-
portant ingredient of the physical motivation for
our GPD ansatz. We shall see in section 7.1 that
the power behavior of the GPDs at large x is
closely related to the large-t behavior of the form
factors. We have therefore taken a closer look at
the behavior of the parton densities at small and
at large x. To quantify this behavior, we fit the
PDFs to effective power laws

qv(x) ∼ x−αeff
q for 10−3 < x < 10−2

∼ (1 − x)β
eff
q for 0.65 < x < 0.85 . (45)

The effective powers we obtain are given in ta-
ble 9. In all cases the accuracy of the fit is better
than 5%. Our choice of x intervals in the fits
comes from the requirements that they should be
of importance in the sum rules (7) and that the
PDFs should indeed follow an approximate power
law behavior. If we fit the small-x behavior for
10−4 < x < 10−3 then the effective powers de-
crease by 0.0 to 0.02, with the following excep-
tions: for CT αeff

d decreases by 0.04, for NNPDF
αeff
d decreases by 0.05, and for MSTW αeff

d de-
creases by 0.08 and αeff

u by 0.10
As it is evident from the effective powers in

table 9, there is a significant variation between
different PDF sets, and we must conclude that
neither the small-x nor the large-x behavior of
the valence quark distributions is presently known
with certainty. This is also seen in the plots of
the different PDFs in figure 11. We further ob-
serve that the spread between different PDF sets
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PDF ref. αeff
u αeff

d βeff
u βeff

d

ABM 11 nf = 4 [83] 0.33 0.34 3.5 5.0

CT 10 [84] 0.39 0.42 3.4 3.6 2.7

GJR 08 VF [85] 0.54 0.53 3.8 4.9

HERAPDF 1.5 [86] 0.33 0.33 4.2 4.8

MSTW 2008 [64] 0.54 0.29 3.5 5.9

NNPDF 2.2 [65] 0.43 0.28 3.5 4.5

Table 9: The PDF sets used in our analysis and the effective powers for their behavior at small and
large x as defined in (45). All PDFs are evaluated at scale µ = 2 GeV. The two values of βeff

d for the
CT 10 set correspond to separate fits in the ranges 0.65 < x < 0.75 and 0.75 < x < 0.85.

is larger than the error bands of the individual
PDFs, which is not surprising since the latter re-
flect parametric errors of the PDF fits but not
systematic uncertainties of the fitting procedure.
Rather than the errors on a given PDF set, we
will hence use the variation from different sets in
order to estimate the uncertainty induced on our
analysis of GPDs and form factors.

Returning to table 9, we observe that in the
MSTW and NNPDF sets there is a significant dif-
ference in the effective powers for u and d quarks
at small x, which we consider to be in tension with
usual Regge phenomenology. At large x, we find
that the d quark distribution of the CT analysis
has a rather peculiar behavior: it does not follow
an approximate power behavior over a significant
range in x, and for x>∼ 0.8 it is significantly larger
than in any other PDF set (including the earlier
set CTEQ 6M [87] of the same collaboration).

For our default GPD fit we have chosen the
ABM set. With the GJR set, our fit gives a value
of α in the parameterization of eqv(x) that we con-
sider at the limit of what is plausible from Regge
phenomenology, and our fit with the HERAPDF
set turns out to have a relatively large χ2 com-
pared with the other PDFs.

Let us note that for extremely large x, say above
0.9, some (although not all) PDFs obtained with
the LHAPDF interface behave unexpectedly, ei-
ther by not being monotonic in x or by becoming
negative. Since the PDFs are extremely small in
that region, this may be due to numerical insta-
bilities, which would explain that the problems

occur mostly for dv(x). We have however not
investigated this issue further. In any case, the
results of global PDF fits for such large x must
be regarded as extrapolations, since there is no
experimental data constraining them in that re-
gion. This is illustrated by the fact that already
at x = 0.9 the PDF sets we have chosen exhibit
a spread of almost a factor 4 for uv(x) and an
even larger spread for dv(x). Luckily, the uncer-
tainty in this x region does not affect our analysis
in a significant way, since such values of x do not
dominate the integrals over GPDs that give form
factors in the t range where there is data. We will
quantify this in section 7.1.

Let us now specify how we implement the condi-
tions from positivity in our GPD fits. We require
the validity of (41) for x > 0.15, since for smaller
x antiquarks are found to become important in
the forward parton densities. At large x, where
it is plausible to neglect antiquarks, two types of
problem complicate using the positivity bound.

• As described in the previous paragraph, there
are numerical instabilities in the parton den-
sities. To stay away from this region we do
not enforce the bound (41) for x > 0.9. We
do however require gq(x) < fq(x) in that re-
gion, since this bound is independent of the
PDFs.

• With the polarized PDFs of [80] and some
of the unpolarized PDF sets, the requirement
|∆qv(x)| < qv(x) is not satisfied for very large
x. Specifically, we find ∆uv(x) > uv(x) for
the sets GJR (x > 0.78) and HERAPDF
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Figure 11: The valence densities of u quarks (top) and d quarks (bottom) for the PDF sets specified
in table 9.

(x > 0.72), whereas −∆dv(x) > dv(x) for
ABM (x > 0.83), GJR (x > 0.82), HER-
APDF (x > 0.69), MSTW (x > 0.71) and
NNPDF (x > 0.91). This is not too sur-
prising, since positivity in conjunction with
those unpolarized PDFs was not enforced in
the DSSV extraction [80], and it does not
represent a physics problem given the overall
uncertainties on the parton densities in the
relevant x region.

To circumvent this problem at a technical
level, we set the polarized PDFs to zero in
the bound (41) for those values of x where
|∆qv(x)| > 0.9qv(x).

6.3 The default fit

We now have all elements needed for our fit of
GPDs to the form factor data. In this section
we discuss what we consider our best fit, where
in particular we set the strangeness form factors

F s
1 and F s

2 to zero. Different variants of this fit
are presented in the next section. Compared with
our analysis [5] we have significantly extended the
form factor data used in the fit. This allows for
a larger number of free parameters and for a si-
multaneous fit of Hq

v and Eq
v (with q = u, d) to all

data. In [5] we had instead first computed Dirac
and Pauli form factors from the experimental re-
sults and then performed separate fits of Hq

v and
Eq

v .

Nevertheless, we cannot allow all parameters in
(42) and (44) to vary independently. Fits with
too many free parameters do not only give very
large parameter uncertainties but also tend to vi-
olate the positivity constraints. To limit the num-
ber of free parameters, we appeal to Regge phe-
nomenology. Assuming that the small-x behav-
ior of both Eq

v and Hq
v is dominated by the lead-

ing meson trajectories, namely those of the ρ and
the ω, and that those trajectories are degenerate,
we obtain that to first approximation the small-x
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powers (αq + tα′
q) in Eq

v should be equal for u and
d quarks. They should also be equal to the anal-
ogous powers in Hq

v , which is why we have taken
the same parameters α′

q in the profile functions
fq and gq, see (44). The t dependent part of the
small-x power for Hq

v is not a fit parameter but a
property of the PDFs in our ansatz, and for the
ABM parameterization we take in our default fit
the effective powers αq

eff are nearly equal for u and
d quarks.

We emphasize that the equality of the small-x
powers in Eu

v , Ed
v , Hu

v and Hd
v is not expected to

be exact. The meson trajectories are not exactly
degenerate and Regge phenomenology allows for
subleading trajectories and Regge cuts, which can
all lead to different effective powers when the
GPDs are approximated by a single power law in
a certain x range. Moreover, one cannot expect to
find the literal values of meson trajectories in the
small-x behavior of GPDs or PDFs. Indeed, par-
ton distributions are subject to scale evolution,
which changes the effective x powers, although
rather slowly as long as a single power law gives
a good description over a large interval in x.

Our approach is thus to take equal small-x pow-
ers as long as our fit does not require otherwise.
We thus set

αu = αd = α (46)

for the small-x powers in the forward functions
euv and edv, given that we do not find significantly
better fits if we allow αu and αd to differ.

On the other hand we find that, together with
the abundant and precise low t data on several
form factors, the very precise value (13) of the
squared neutron charge radius r2nE requires some
deviation from full degeneracy of the small-x pow-
ers. With α′

u = α′
d we obtain poor partial χ2 val-

ues for r2nE and for the Rn data. A good descrip-
tion can however be obtained with a slight isospin
breaking of the form α′

u > α′
d. We therefore take

α′
u − α′

d = 0.1 GeV−2 (47)

in our fits. A further increase of α′
u − α′

d yields
an even better χ2, but we do not consider a large
isospin splitting to be physically motivated.

Let us now discuss the parameters γu and γd in
the forward functions euv (x) and edv(x), which are

new compared with our study [5]. We have varied
these parameters independently in steps of 1 and
selected the values

γu = 4 , γd = 0 (48)

for our default fit. Compared with setting both
γu and γd to zero, this decreases the overall χ2

by about 30 units, with most significant improve-
ments for Gp

M and Gn
M . Taking γu even larger

improves the χ2 only slightly and leads to larger
fitted values of α. We thus retain (48) as a com-
promise between a good χ2 and parameters in line
with Regge phenomenology. If we take either γu
or γd as free fit parameters, then they have large
errors of order 50% while χ2 improves only mod-
erately compared with (48).

We observe that all our fits are very significantly
influenced by the positivity constraints, in accord
with our previous analysis [5]. In particular, we
find that if we leave βu and βd (or one of them) as
free parameters, then their fitted values are very
low (βu = 3.5 and βd = 1.6 if both are left free).
This badly violates the positivity bound (41). To
circumvent this problem, we perform fits for fixed
values of βu and βd on a grid with step size 0.05.
The resulting values of χ2 are given in table 10.
We see that the minimum of χ2 in the (βu, βd)
plane occurs at the boundary of the region allowed
by our positivity conditions, with values

βu = 4.65 , βd = 5.25 . (49)

We label this fit as ABM 1 and refer to it as our
“default fit” in the remainder of this work. It
yields the parameters

α′
d = (0.861 ± 0.026) GeV−2 ,

α = 0.603 ± 0.020 (50)

and the values in table 11. We consider (50) to
be consistent with expectations from Regge phe-
nomenology. The value of α is somewhat large
compared with the intercepts of the leading me-
son trajectories, but we deem it still acceptable.
We shall further discuss the parameters α and βu,
βd in section 6.4.

The parametric uncertainties in the fit are of
reasonable size, with the most precisely deter-
mined parameters being α, α′

d (and hence α′
u), Au
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βu

4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05

5.20 — — — — — 221.9 222.0 222.2 222.3

5.25 221.2 221.4 221.6 221.7 221.9 222.0 222.2 222.3 222.4

5.30 221.3 221.5 221.7 221.9 222.0 222.2 222.3 222.4 222.5

5.35 221.4 221.6 221.8 222.0 222.1 222.3 222.4 222.5 222.6

5.40 221.6 221.8 221.9 222.1 222.3 222.4 222.5 222.7 222.8

βd 5.45 221.7 221.9 222.1 222.2 222.4 222.5 222.6 222.8 222.9

5.50 221.8 222.0 222.2 222.3 222.5 222.6 222.8 222.9 223.0

5.55 221.9 222.1 222.3 222.4 222.6 222.7 222.9 223.0 223.1

5.60 222.0 222.2 222.4 222.6 222.7 222.8 223.0 223.1 223.2

5.65 222.1 222.3 222.5 222.7 222.8 222.9 223.1 223.2 223.3

5.70 222.2 222.4 222.6 222.8 222.9 223.1 223.2 223.3 223.4

5.75 222.3 222.5 222.7 222.9 223.0 223.1 223.3 223.4 223.5

Table 10: Values of χ2 for fits with the same setting as our default fit (ABM 1). Underlined
values indicate the overall minimum and the one-sigma contour. Positivity is violated in the fits with
βd = 5.2 and βu ≤ 4.85, as well as for all fits with βd ≤ 5.15 or βu ≤ 4.6.

q u d

Aq 1.264 ± 0.050 4.198 ± 0.231

Bq 0.545 ± 0.062 0.206 ± 0.073

Cq 1.187 ± 0.087 3.106 ± 0.249

Dq 0.333 ± 0.065 −0.635 ± 0.076

Table 11: Parameters of the profile functions fq
and gq (see (44)) in our default fit. All quantities
have the unit GeV−2.

and Ad. In general there are strong correlations
between all parameters. We can obtain an uncer-
tainty estimate on βu and βd using the criterion
∆χ2 = 1. This gives an asymmetric contour in the
(βu, βd) plane, which is marked in table 13. We
see that the large-x powers of eqv are determined
with reasonable although not very high precision.

When computing GPDs we use standard linear
error propagation for the free parameters in the
fit; the necessary matrix is given in appendix B.
We use a simplified procedure to propagate the
errors on βu and βd into GPDs and observables
that are derived from them. Namely, we com-
pute the quantity in question for each of the 7

fits that have ∆χ2 = 1 w.r.t. the default fit in
table 10 and compare the result with the value
obtained with the default fit. If the difference is
larger than what is obtained with standard error
propagation for the free parameters in the default
fit, we retain it for the error estimate. A more
elaborate procedure would also scan the fits with
∆χ2 < 1 in the (βu, βd) plane, but we refrain from
doing so for the sake of simplicity. We find that
the uncertainties due to the variation of βq are
not important for the electromagnetic form fac-
tors, whose error is therefore given by standard
error propagation for the free fit parameters. The
variation of βq is however relevant for the second
and third x-moments of GPDs (including the an-
gular momentum sum rule), for the shift sq(x) to
be discussed in section 7.3 and for the model esti-
mate of the Sivers distributions in section 8.3. In
those cases, changes in eqv(x) due to the variation
of βq are not compensated by changes in the pro-
file functions gq(x), in constrast to what happens
for the electromagnetic form factors to which the
GPDs are fitted.

We note that our default fit corresponds to a
local but not the global minimum of χ2 in the
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(βu, βd) plane. The global minimum is also as-
sumed at the boundary of the βq values allowed
by positivity, namely at the largest possible βu.
We find it at βu = 18.85 and βd = 5.25. It has
χ2 = 209.8, which is about 11 units smaller than
in our default fit. At the global minimum we find
that gu(x) is nearly zero at x ∼ 0.3. Both because
of this and because of the very high value of βu,
we do not consider this fit to be physically plau-
sible and retain the local minimum of χ2 at the
low end of the allowed βq values instead.

Let us now see how well our default fit de-
scribes the data. Its overall χ2 is 221.2 for 178
data points. Partial χ2 values are given in ta-
ble 13 below, and plots in figure 12. For the sake
of discussion we split the Gp

M data into a low-t
and a high-t sample, with their boundary being
at −t = 10 GeV2. We find that the fit provides a
very good description of the neutron form factors,
i.e. of Gn

M , Gn
E and Rn, and also of Gp

M at large
t. The description is still fair but less optimal for
Gp

M at low t and for Rp, with partial χ2 values
of about 1.7 and 1.5 per data point, respectively.
As shown in figure 12 the fit slightly overshoots
the very precise Gp

M data for
√
−t < 0.7 GeV, and

for Rp it fails to reproduce the fine details of the
data with

√
−t < 1 GeV. We find the same two

shortcomings in all of our alternative GPD fits to
the same data set, as we will see in section 6.4.
It is not impossible to describe these data more
precisely, as is demonstrated by the power-law fit
of section 3.4, which achieves partial χ2 values of
0.6 and 1 per data point for Gp

M at low t and for
Rp, respectively. We conclude that our GPD fits,
with the significant constraints in parameter space
imposed by positivity, reach their limits of preci-
sion here, and we must postpone a resolution of
this shortcoming to the future. We note that the
low-t data for Rp are still subject to experimental
debate, as discussed in section 3.1.

In figure 13 we compare our default GPD fit
(as well as our power-law fit) with our interpo-
lated data set for the Dirac and Pauli form fac-
tors, both in the quark flavor basis and in the
isospin basis. Good agreement can be observed in
all cases. We note that the isosinglet Pauli form
factor F u+d

2 is very small due to a strong cancel-
lation between u and d quarks and therefore has
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Figure 14: Results of our fits for the ratios of the
Dirac and Pauli form factors for d and u quarks,
normalized to unity at t = 0. Data and curves are
as in figures 12 and 13.

large relative errors. Our interpolated data set
suggests that it may have a zero crossing at

√
−t

around 2 GeV, but more precise data is needed for
a definite conclusion.

In figure 14 we finally show the ratios of Dirac
and Pauli form factors for u and d quarks. As al-
ready mentioned in section 5.1, we have a strong
decrease of this ratio for the Dirac form factors,
whereas for the Pauli form factors it stays nearly
flat. In our default GPD fit (but not in the
power-law fit) we obtain a decrease of |F d

2 /F
u
2 |

for
√
−t > 1.5 GeV, which is not suggested by the

data but consistent within their errors. It will be
interesting to see the behavior of this ratio with
data for larger −t.
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Figure 12: Results of our fits for the Sachs form factors or their ratios. The dashed lines show the
power-law fit described in section 3.4 and the bands show the default GPD fit described in the present
section. The data points correspond to the default data set specified in table 1.
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Figure 13: Results of our fits for the flavor form factors, which are obtained by interpolation as
described in section 5.1. All form factors are scaled with |t|. The dashed lines show the power-law
fit described in section 3.4 and the bands show for the default GPD fit. The data for the isotriplet
combinations F u−d

1 and F u−d
2 are shown as open squares.
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6.4 Variations of the default fit

We have performed a number of alternative fits to
explore the dependence of our results on several
choices we have made in the fitting procedure. A
brief description of the different alternative fits is
given in table 12, and the corresponding values
of χ2 can be found in table 13. For all fits de-
scribed in the following, we find again that a local
minimum of χ2 in the (βu, βd) plane is taken at
the boundary of values allowed by the positivity
conditions, as was the case for our default fit.

Let us first discuss the alternative fits using the
same PDFs as the default fit. We remark that a
fit with γu = γd = 0 has severe problems with
positivity. Specifically, it tends to have Au < Cu

and thus to violate the condition gq(x) < fq(x),
except for rather large values βu ≥ 6.20 and βd ≥
5.95. Given this and the significantly larger χ2

already mentioned in the previous subsection, we
conclude that the data clearly prefer a nonzero γu
and do not consider this parameter setting any
further.

We now discuss the other fits in turn, referring
to their labels in table 12.

ABM 2. In this fit we set γd = 4, i.e. equal to
γu. The description of the data is globally as
good as for the default fit ABM 1, with some
improvement for Gp

M and a somewhat worse
χ2 for Rp. The fitted value α = 0.654±0.017
is relatively high, which is why we prefer the
fit ABM 1 (where α = 0.603 ± 0.020) as our
default.

ABM 3 and 4. In these fits we include the mod-
els for the strangeness form factors described
in section 4, taking either the strangeness
PDFs of MSTW or of NNPDF (all other par-
ton density sets we consider have s(x) = s̄(x)
and hence cannot be used to model F s

1 ). The
global description of the data is just slightly
worse than for fit ABM 1, where strangeness
is neglected, with a slight preference for the
variant using the NNPDF densities in the
model for F s

1 . An exception is the poor de-
scription of the neutron charge radius in the
case of ABM 3. We note that we get a more
satisfactory result with α′

u −α′
d = 0.2 GeV−2

in this case.

Overall, we conclude that the influence of the
small strangeness form factors in our fit is
visible in the details but does not change the
overall picture significantly. This is in line
with our findings discussed at the end of sec-
tion 4.

ABM 5. In this fit we omit the recent Hall A
data for Rp, namely the sets Paolone 10, Ron
11 and Zhan 11, and instead include the po-
larized target data of Jones 06 and Crawford
07 (see table 2). As can be seen in figure 2,
this removes the tension between the recent
Hall A data and earlier JLab measurements
that is present in our default data set. The
fit ABM 5 describes the alternative data set
for Rp very well, with a χ2 of less than 1 per
data point. It also gives a significantly im-
proved (although not perfect) description of
Gp

M at low t. Only for the neutron charge
radius does the description become notably
worse compared with fit ABM 1. The data
on Rp thus has a clear impact on our fits,
which confirms the urgency for experimental
clarification of the tensions between the cur-
rent data sets.

ABM 6. To investigate the impact of the Gp
M

data on our fit, we take as an alternative
data set the results of Arrington 05 [39],
which covers the range 0.141 GeV2 ≤ −t ≤
9.121 GeV2. To have data at higher −t, we
include the results of our default set, AMT
07 [9], for −t ≥ 9.848 GeV2. The Arrington
05 extraction has significantly larger errors
than the one of AMT 07 for the reasons dis-
cussed in section 3.1, and we correspondingly
find a very small χ2 of 0.4 per data point
for the low-t data on Gp

M . The description
of the other data sets is not much changed
compared with fit ABM 1, except for a slight
improvement for Rp.

The dependence of χ2 on the choice of
(βu, βd) is much less pronounced in fit ABM
6 than in all other fits, so that those param-
eters are less well determined. Clearly, the
high precision of the data on Gp

M we adopted
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fit βu βd remarks

ABM 1 4.65 5.25 default fit (see section 6.3)

ABM 2 5.05 5.80 γd = γu = 4

ABM 3 4.55 5.20 with strangeness (MSTW)

ABM 4 4.60 5.25 with strangeness (NNPDF)

ABM 5 4.40 5.00 alternative data for Rp

ABM 6 4.95 5.50 alternative data for Gp
M

ABM 0 4.35 5.10 as ABM 1 but at scale µ = 1 GeV

CT 4.60 4.15

GJR 4.65 5.10

HERAPDF 4.70 5.35

MSTW 4.65 5.90 α′
u − α′

d = 0

NNPDF 4.70 5.15

Table 12: Overview of our GPD fits. All fits have γu = 4, γd = 0, α′
u − α′

d = 0.1 GeV−2 and PDFs
evaluated at µ = 2 GeV unless stated otherwise.

total — Gp
M — Rp Gn

M Rn Gn
E r2nE

data points 178 48 6 54 36 21 12 1

ABM 1 221.2 79.7 3.8 78.8 29.5 24.1 3.2 2.1

ABM 2 219.2 71.1 4.4 85.9 27.7 25.0 3.2 1.9

ABM 3 230.5 81.5 2.9 76.7 29.7 31.1 3.2 5.5

ABM 4 225.0 79.2 3.9 81.1 29.0 26.1 3.0 2.7

ABM 5 a 166.4 64.5 1.9 40.8 30.5 22.0 2.9 3.7

ABM 6 b 139.3 14.9 4.0 63.8 27.2 23.8 3.1 2.4

ABM 0 198.1 77.1 2.3 65.6 27.1 20.9 3.1 1.9

CT 212.6 75.7 2.9 75.6 28.3 24.5 3.2 1.4

GJR 189.7 64.3 3.5 70.9 27.0 19.6 3.3 1.1

HERAPDF 254.5 83.4 10.6 96.4 33.3 25.7 3.3 1.7

MSTW 167.9 53.1 2.9 63.1 24.4 17.9 4.9 1.6

NNPDF 196.6 72.6 3.9 73.2 27.5 15.4 4.0 0.0

power law 122.3 28.8 1.8 52.7 20.4 15.3 3.4 0.0

a 172 data points, 48 for Rp b 174 data points, 44 + 6 for Gp
M

Table 13: Partial and total values of χ2 for the GPD fits and for the power-law fit of section 3.4.
The first value for Gp

M refers to the data with −t < 10 GeV2 and the second value to the data with
−t > 10 GeV2.
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in our default fit is of great importance for a
precise determination of the GPDs.

ABM 0. In this fit we take the PDFs from the
ABM set, but evaluate them at scale µ =
1 GeV instead of 2 GeV. The electromagnetic
form factors are scale invariant and can be
described by the sum rules (7) with GPDs
at any scale, but of course it does matter at
which scale we make the functional ansatz for
GPDs specified in section 6.1.

Compared with fit ABM 1, the description
of the data in fit ABM 0 is improved signifi-
cantly for Gp

M at low t and for Rp, with lit-
tle change for the other observables. Since
the usual PDFs at µ = 1 GeV are deter-
mined only indirectly (data corresponding to
such a low scale is not included in the PDF
analyses in order to limit the importance of
higher-twist corrections), we prefer the fits
with µ = 2 GeV as our default.

We have also repeated the fit with the other
PDF sets discussed in section 6.2, neglecting the
strangeness form factors and fixing γu = 4, γd = 0
as in our default fit.

For all PDFs we find that α′
u−α′

d = 0.1 GeV−2

clearly improves the description of r2nE and of Rn

compared with α′
u − α′

d = 0. An exception is the
fit with the PDFs of MSTW, where this param-
eter setting makes the fit slightly worse, so that
we take α′

u = α′
d in this case. This exception is

not implausible, since the MSTW set already has
a large isospin breaking between αeff

u and αeff
d (see

table 9). A further isospin breaking in the profile
functions of Hq

v and Eq
v is then visibly not pre-

ferred by the fit.

Whereas the fit with the HERAPDF densities
describes the form factor data less well than the
fit ABM 1, the variants using CT, GJR, MSTW
or NNPDF have lower values of χ2. Like in the
default fit, the description is least optimal for Gp

M

at low t and for Rp, whereas the other observables
are described very well (except for the fit using
HERAPDF, which undershoots the Gp

M data at
high t). As spelled out in section 6.2, we choose
the fit using the ABM set as our default, where
the behavior of both qv(x) and eqv(x) at small and

at large x corresponds best to the physical picture
underlying our parameterization of the GPDs.

The parameters of the profile functions ob-
tained in our GPD fits are shown in figure 15 (the
results for α can be found in figure 20 below).
Clearly, the parametric uncertainties on fq(x) and
gq(x) in a given fit are smaller than their varia-
tion due to choosing different PDFs and to other
choices made in the fit. This also illustrates the
strong correlation between the forward limit and
the t dependence of Hq

v (x, t) in a fit to the form
factors using the sum rule (7). Nevertheless, cer-
tain parameters turn out to be relatively stable
against variations in the fit, namely

1.08 GeV−2 < Au < 1.32 GeV−2 ,

1.02 GeV−2 < Cu < 1.30 GeV−2 ,

0.68 GeV−2 < α′
d < 0.90 GeV−2 , (51)

with the range of α′
u being shifted to larger values

by 0.1 GeV−2. Also, a clear hierarchy between
the profile functions for u and d quarks at high
x is seen throughout all fits, with Ad > Au and
Cd > Cu. We also find Dd < 0 and Du > 0 in all
cases. By contrast, the variation in the values of
Ad is appreciable.

Let us now investigate the variation of the for-
ward limit eqv(x) in our fits. To investigate its
behavior at small and large x we have performed
the same type of fits as for the PDFs in (45), with
a power behavior

eqv(x) ∼ x−αeff
q for 10−3 < x < 10−2 ,

∼ (1 − x)β
eff
q for 0.65 < x < 0.85 . (52)

For our default fit ABM 1 we find

αeff
u = 0.526 , αeff

d = 0.622 ,

βeff
u = 4.72 , βeff

d = 5.44 , (53)

where all effective power laws describe eqv(x)
within 2% for the stated x ranges. We did the
same exercise for the results of our alternative
GPD fits.

In all cases except for fit ABM 2 we find that
αeff
d differs from α by at most 0.02, whereas αeff

u

is smaller than αeff
d by about 0.1. The slight

difference between αeff
d and α is due to the fac-

tor (1 − x)βd in the parameterization of edv(x),
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Figure 15: Parameters of the profile functions and their errors obtained in the fits described in
table 12. Not shown are the results of fit ABM 0, which refers to GPDs at a different scale µ. Only
the error bars for fit ABM 1 include the uncertainty that results from varying βu and βd, which is
computed as described in section 6.3.

whereas for u quarks the extra factor
(
1 + γu

√
x
)

with γu = 4 is responsible for the large differ-
ence between αeff

u and α. For fit ABM 2, where
γu = γd = 4 we find αeff

u ≈ αeff
d ≈ 0.58, which is

smaller than the fitted value of α by about 0.07.
Since fits ABM 1 and ABM 2 describe the data
nearly equally well, we cannot conclude whether
or not the data favor a slight isospin breaking be-
tween the effective small-x powers in euv (x) and
edv(x).

The range of the effective powers in the different
fits is

0.52 < αeff
u < 0.60 ,

0.58 < αeff
d < 0.70 . (54)

A comparison with their analogs for the PDFs in

table 9 reveals that, for both u and d quarks, αeff
q

is clearly larger in eqv than in qv for all our fits
(except for the fit with MSTW PDFs, where the
effective powers in euv and uv nearly equal).

Turning to the large-x behavior, we observe
that βeff

q is slightly smaller than βq, by at most
0.1 for u quarks and at most 0.2 for d quarks, so
that the parameter βq gives a good representation
of the behavior of eqv(x) at large but not extremely
large x. The effective power is larger in eqv than in
qv, with a larger difference for u quarks. In both
qv and eqv the effective power of (1 − x) is larger
for d quarks than for u quarks (with the excep-
tion of eqv in the fit using the CT PDFs, whose
large-x behavior we find problematic as discussed
in section 6.2).
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rpM [fm] rnM [fm] rpE [fm] r2nE [fm2]

ABM 1 0.832 ± 0.002 0.854 ± 0.004 0.838 ± 0.003 −0.1129 ± 0.0019

power law 0.868 ± 0.006 0.887 ± 0.012 0.917 ± 0.013 −0.1161 ± 0.0022

PDG 2012 0.777 ± 0.016 0.862+0.009
−0.008 0.8775 ± 0.0051 −0.1161 ± 0.0022

Table 14: Magnetic and charge radii of the proton and neutron obtained in our fits, compared with
the values quoted in the Review of Particle Physics (PDG 2012) [36]. We have added in quadrature
the statistical and systematic uncertainties given for rpM in PDG 2012.

The effective large-x power for eqv is however
not always larger then the one for qv by 1 unit
or more, as is suggested by the positivity bound
(41), where the factor depending on the profile
functions fq and gq behaves like (1−x)2 at large x.
This illustrates that considerations based on the
mathematical limit x → 1 cannot always be taken
literally in the region 0.65 < x < 0.85, which is
of relevance in the integrals that yield the electro-
magnetic form factors.

6.5 A note on nucleon radii

From our fits to the nucleon form factors we can
evaluate the associated radii. The values we ob-
tain are given in table 14. The magnetic radii of
proton and neutron are defined as

r2iM =
6

Gi
M (0)

dGi
M (t)

dt

∣∣∣∣
t=0

(55)

with i = p, n. They are compared with their val-
ues given in the Review of Particle Physics 2012
(PDG 2012) [36], which are based on the same
method as we use here, i.e. on fits of the magnetic
form factors measured in elastic electron-nucleon
scattering. We observe reasonable agreement for
rnM but a clear discrepancy for rpM . We do not
consider this discrepancy to be a serious short-
coming of our fits. A precise determination of the
radii requires form factor measurements at t as
small as possible in order to determine the local
derivative at t = 0, together with excellent control
over theoretical uncertainties in the form factor
extraction and in the fit from which the deriva-
tive is extracted. These requirements are clearly
not satisfied in our fits, which aim at a global de-
scription of all electromagnetic form factors in the

full t region where data is available, rather than at
a precise description in the vicinity of t = 0. We
do, however, note that the value for rpM quoted
by PDG 2012 and reproduced in our table is based
on a single experiment [88], which uses a strongly
simplified treatment of two-photon exchange in
the extraction, and which obtains a significantly
smaller result than previous determinations (see
the full listing in [36]).

The proton charge radius is defined as

r2pE = 6
dGp

E(t)

dt

∣∣∣∣
t=0

. (56)

We observe a significant discrepancy for this ra-
dius between our two fits in table 14 and between
our fits and the value given by PDG 2012. We
note that the PDG value is a combination of de-
terminations from the Lamb shift in electronic hy-
drogen and from measurements of Gp

E in ep scat-
tering. It is fully consistent with the result

rpE = (0.8779 ± 0.0094) fm (57)

obtained from the Lamb shift in electronic hydro-
gen alone (see figure 2 in [89]), but in strong dis-
agreement with the very precise value

rpE = (0.84184 ± 0.00067) fm (58)

that has been extracted from the Lamb shift in
muonic hydrogen [90]. The origin of this discrep-
ancy is currently unclear, see the discussion and
references in [89]. Given this unresolved problem,
we have refrained from using a value of rpE as
independent input to our form factor fits.

Our results for the squared neutron charge ra-
dius, defined in (12), are also given in table 14.
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fit bu1 [fm] bd1 [fm] bu2 [fm] bd2 [fm]

ABM 1 0.627 ± 0.003 0.638 ± 0.003 0.717 ± 0.004 0.693 ± 0.004

power law 0.697 ± 0.011 0.704 ± 0.011 0.705 ± 0.007 0.736 ± 0.016

Table 15: Average impact parameters (59) for the flavor form factors F q
i computed from our fits.

Here the PDG 2012 value, which is obtained from
neutron scattering off the shell electrons in nu-
clear targets, is used as a data point in our fits.
As it happens, the power law fit reproduces this
value perfectly, whereas the default GPD fit does
not. As mentioned above, we do not consider this
to be a serious problem, given the global nature
of our fits.

For the flavor form factors we can define average
impact parameters by

b2qi =
4

F q
i (0)

dF q
i (t)

dt

∣∣∣∣
t=0

(59)

with i = 1, 2 and q = u, d. Notice the
difference between the factor 4 in these two-
dimensional quantities and the factor 6 in the
three-dimensional radii discussed above. The def-
inition (59) is analogous to the one of the impact
parameter 〈b2〉qx in (36) but includes an average
over the momentum fraction x. The results of
our fits are given in table 15 for reference. As
discussed above, they should not be taken as pre-
cision determinations of these quantities, and the
discrepancies between the two fits within their re-
spective parametric errors should not be regarded
as a problem.

7 Properties of the fit

In this section we take a closer look at the GPDs
we have extracted from the form factor data. Un-
less stated otherwise, the results shown are ob-
tained with the default fit ABM 1.

7.1 Sensitive x range

To begin with, we investigate which region of x is
most important in the form factor integrals (7).
We follow our previous work [5] and introduce a

form factor xmin(0)

F u
1 1.5 × 10−3

F d
1 9.2 × 10−4

F u
2 2.5 × 10−4

F d
2 3.6 × 10−5

Table 16: xmin for the flavor form factors at t = 0,
evaluated from the default fit ABM 1.

minimal and a maximal value of x by

∫ xmin(t)

0
dxKq

v(x, t) =

∫ 1

xmax(t)
dxKq

v(x, t)

= 0.05F q
i (t) (60)

for each of the GPDs Kq
v = Hq

v , E
q
v . The x range

from xmin to xmax accounts for 90% of the flavor
form factor F q

i in the sum rule. For x < xmin

and x > xmax the GPDs are obviously not well
determined in our analysis. A typical value of x
in the integrals is given by the median

∫ xmed(t)

0
dxKq

v(x, t) = 0.5F q
i (t) . (61)

In figure 16 we show these quantities for the four
flavor form factors. We observe strong correla-
tions between x and t. The form factor data
at small (large) t determine the GPDs at small
(large) x. One also sees in figure 16 that the x
regions where the GPDs are best determined are
rather narrow and even shrink with increasing −t.
For

√
−t = 6 GeV the sensitive x values are be-

tween 0.6 to 0.9, while xmax at t = 0 is between
0.25 and 0.45 depending on the form factor. The
values of xmin at t = 0 are very small and given
in table 16.

The strong x – t correlation is a consequence of
our parameterization of the GPDs. Their forward
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Figure 16: Sensitive (white) and insensitive (shadowed) regions of x for the flavor from factors in
the default fit. The upper and lower shaded x-regions each account for 5%, the white regions for 90%
of the form factor integrals in (7). The thick solid lines represent the median values of x.

limits are singular as x−α which is explicit for Eq
v

and hidden in the PDFs for Hq
v . The values of

the Regge intercept α range from 0.33 to 0.62 for
our default fit. The profile functions, on the other
hand, provide factors x−tα′

. Combining both x-
factors one has a Regge behavior with a linear
trajectory in the exponent of x which crosses zero
at t0 = −α/α′. This happens near −t = 0.5 GeV2

and turns the singular behavior at x = 0 for small
t into a zero of the GPD at x = 0 for larger t.
For yet larger t, each of the GPDs develops a pro-
nounced maximum at an x value that increases
with −t. This behavior is responsible the x – t
correlation we observe. In figure 17 we show as an
illustration the GPDs at −t = 0.3 and 6.0 GeV2.

We are now in a position to investigate the
large-t behavior of the flavor form factors. Since
it is controlled by the large-x behavior of the
GPDs, we can approximate their forward lim-
its by (1 − x)β and the profile function by the
third term A(1 − x)2. (For simplicity we use
here the same notation for Hq

v and Eq
v and drop

sub- and superscripts on β and A.) At suffi-
ciently large t the integral F (t) =

∫
dxK(x, t)

can be evaluated in the saddle-point approxima-
tion, obtained by minimizing the exponent in
K ∼ exp

[
β log (1 − x) + tA(1 − x)2

]
with respect

to x. One finds [5]

F (t) ∼ (−t)
−(1+β)/2

(62)
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Figure 17: The valence quark GPDs at zero skewness and −t = 0.3 or 6 GeV2. They have been
obtained in the default fit and refer to the scale µ = 2 GeV.

with the saddle point being at

xs = 1 −
√
β
/√

−2tA . (63)

We see that the saddle point lies in the so-called
soft region

1 − x ∼ Λ/
√
−t (64)

with Λ of hadronic size, where for sufficiently large
t the active parton carries most of the proton’s
momentum while all spectators are soft. The
dominance of this soft region has been assumed
by Drell and Yan [91] (see also [81]) in order to
derive the famous relation between the large-t be-
havior of the form factors and the large-x behavior
of the deep inelastic structure functions.

The derivation of (62) requires the relevant
GPD to behave like (1 − x)β exp

[
tA(1 − x)2

]
in

the sensitive x region and to be sufficiently peaked
around the saddle point xs. Let us see how well
(62) works quantitatively, restricting ourselves to
the region

√
−t < 6 GeV where form factor data

is available. From tables 9 and 12 we obtain the
following powers of 1/(−t):

2.25 for F u
1 , 3.00 for F d

1 ,

2.83 for F u
2 , 3.13 for F d

2 . (65)

Both F u
1 and F u

2 are well described with these
powers when

√
−t > 4 GeV, whereas for F d

1 and
F d
2 the prediction (62) works only qualitatively.

In our fit result for F d
1 we find a power of 3.35

when
√
−t > 4 GeV, whereas for F d

2 we see a clear
power-law behavior only above

√
−t = 4.5 GeV,

with the power being 4.2. Regarding their ab-
solute size, we see in figure 18 that the d quark
form factors are suppressed compared to their u
quark counterparts for

√
−t > 2.5 GeV or so. A

consequence of this suppression is that

Fn
i ≈ ed

eu
F p
i (66)

at large t. Our results approach this behavior
slowly; for

√
−t > 4 GeV is holds within 10%.
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Figure 19: The first three moments of the GPDs obtained in our default fit ABM 1. For better
visibility of the higher moments, hq10 and eq10 have been scaled with 1/3.
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Figure 18: The flavor form factors scaled by t2

and shown in units of GeV4, calculated from our
default fit ABM 1.

7.2 Mellin moments and Ji’s sum rule

We have determined the GPDs Hq
v and Eq

v by fit-
ting their integrals over x to the form factors F q

1

and F q
2 of the electromagnetic current. We now

use these GPDs to compute higher moments in x.
In figure 19 we show the moments

hqn0(t) =

∫ 1

0
dxxn−1Hq

v (x, t) ,

eqn0(t) =

∫ 1

0
dxxn−1Eq

v(x, t) , (67)

for n = 1, 2, 3. In keeping with a standard nota-
tion [2, 3], the second subscript 0 indicates that
the GPDs are evaluated at zero skewness.

The third moments hq30 and eq30 are form factors
of a twist-two operator containing two covariant
derivatives [2, 3]. The second moments hq20 and
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eq20 are not directly connected to local operators,
since the form factors of the relevant twist-two
operator with one covariant derivative correspond
to the sum and not to the difference of quark and
antiquark contributions. In other words, the mo-
ments hq20 and eq20 give the valence contributions
(i.e. the difference of quark and antiquark contri-
butions) to the form factors of a twist-two oper-
ator, which happens to be the quark part of the
energy-momentum tensor.

In figure 19 we observe a strong decrease of
the moments with the index n, which can be un-
derstood from the rather strong decrease of the
GPDs with x. Moreover, we find that decrease
of the moments with −t becomes slower as n in-
creases. Within our ansatz, this is naturally ex-
plained by the decrease of the profile functions
with x, which results in a weaker t slope for the
moments that are dominated by higher values of
x. The same trend has been observed in lattice
calculations of GPD moments, see e.g. [92] and the
review [93]. We refrain, however, from a quantita-
tive comparison with lattice results, since recent
studies [94, 95] suggest that in lattice computa-
tions of GPD moments it is more involved than
previously assumed to achieve full control over the
extrapolation to the physical pion mass and over
the removal of contributions from excited nucleon
states.

We now take a closer look at the second mo-
ments at t = 0. For Hq

v they just give the mo-
mentum fraction carried by the parton species
in question. The corresponding numbers for the
PDF sets used in our analysis are shown in ta-
ble 17. We see that these momentum fractions are
known with reasonable accuracy, although there
is a notable spread between the different PDF
sets. We can also assess the importance of sea
quark contributions in the momentum sum rule.
The numbers in table 17 show that the second
moment of the distribution 2(ū + d̄), i.e. the mo-
mentum fraction carried by the non-strange sea
is comparable to the momentum fraction due to
the valence d quark distribution. The contribu-
tion from strange quarks and antiquarks appears
to be relatively unimportant.

The second moments of Eq
v are given in table 18.

In the first row we give the results of fit ABM 1

with errors computed as described in section 6.3
(i.e. including the variation of βu and βd). A more
conservative uncertainty estimate is given in the
second row, where we take the central values of fit
ABM 1 and determine the error from the spread
of values from fits ABM 2 to ABM 6 and from the
fits with the alternative PDF sets in table 12. The
only notable source of uncertainty not included in
this estimate is the bias from our functional ansatz
for the GPDs themselves, which we cannot assess
within our present study. A graphical display of
the second moments obtained in the different fits
is shown in figure 20. We find that eu20(0) and
ed20(0) are determined rather well. Their sum is
found to be very small; within its error it may be
positive or negative.

In the third row of table 18 we give the sec-
ond moments from fit ABM 0, which refers to
the lower scale µ = 1 GeV. The uncertainties are
computed as for the first row, including again the
variation of βu and βd. The moments eu20(0) and
ed20(0) are larger in absolute magnitude than at
µ = 2 GeV, which is in line with what is expected
from scale evolution. The isosinglet combination
eu+d
20 (0) remains very small.
According to Ji [96], the sum

2Jq
v = hq20(0) + eq20(0) (68)

of second moments gives two times the angular
momentum carried by quarks of flavor q, minus
the corresponding antiquark contribution. Its val-
ues for our different fits are shown in figure 20
and listed in table 19 with error estimates anal-
ogous to those in table 18. We find that at
µ = 2 GeV valence u quarks carry about half of

fits 2Ju
v 2Jd

v

ABM 1 0.460+0.006
−0.010 −0.007+0.008

−0.006

all fits 0.460+0.018
−0.048 −0.007+0.021

−0.033

ABM 0 0.560+0.009
−0.010 −0.019+0.009

−0.009

Table 19: Results for the total angular momen-
tum of quarks minus the contribution from an-
tiquarks according to Ji’s sum rule. For further
explanations see table 18.
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PDF u− ū d− d̄ 2ū 2d̄ 2(ū + d̄) s + s̄ s− s̄

ABM 0.297 0.115 0.062 0.077 0.139 0.035 0

CT 0.287 0.118 0.058 0.072 0.130 0.040 0

GJR 0.280 0.116 0.064 0.080 0.144 0.021 0

HERAPDF 0.284 0.105 0.074 0.091 0.165 0.044 0

MSTW 0.282 0.115 0.064 0.076 0.140 0.033 0.0019

NNPDF 0.290 0.124 0.059 0.074 0.133 0.020 0.0029

Table 17: Second moments of the parton densities specified in table 9, given at scale µ = 2 GeV.

fits eu20(0) ed20(0) eu+d
20 (0) eu−d

20 (0)

ABM 1 0.163+0.010
−0.006 −0.122+0.008

−0.006 0.041+0.008
−0.010 0.284+0.012

−0.012

all fits 0.163+0.018
−0.032 −0.122+0.028

−0.033 0.041+0.011
−0.053 0.284+0.040

−0.060

ABM 0 0.204+0.009
−0.010 −0.156+0.009

−0.009 0.048+0.006
−0.010 0.360+0.017

−0.017

Table 18: Results for second moments of Eq
v at t = 0. The central values in the rows labeled ABM 1

and “all fits” correspond to the default fit and refer to µ = 2 GeV, with two different error estimates
as described in the text. The last row gives the moments obtained from the fit ABM 0 and refers to
µ = 1 GeV.
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Figure 20: Results for the second moments of GPDs at t = 0 and for the parameter α from the GPD
fits specified in table 12. Only the error bars for fit ABM 1 include the uncertainty that results from
varying βu and βd, which is computed as described in section 6.3.
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the nucleon spin. By contrast, the contribution
of valence d quarks is very small, even consistent
with zero, as a result of the cancellation between
hu20(0) and eu20(0). Let us emphasize that we can-
not separately determine the contributions from
antiquarks to the nucleon spin in our analysis. If
the second moments of the PDFs are any guid-
ance, then this contribution may not be negligi-
ble.

Within errors, our numbers for Ju
v = Ju−ū

and Jd
v = Jd−d̄ are consistent with the results in

[97], where these quantities are estimated using a
model dependent connection between GPDs and
Sivers distributions (see section 8.3). Our num-
bers are also close to the corresponding values
of Ju+ū and Jd+d̄ obtained in lattice calculations
[93], although such a comparison should be taken
with care given the comments we made earlier in
this section. An overview of other determinations
of Ju+ū and Jd+d̄ can be found in [98].

7.3 Impact parameter distributions

In section 6.1 we explained how the GPDs
Hq

v (x, t) and Eq
v(x, t), after Fourier transforma-

tion to impact parameter space, give information
about the spatial distribution of partons with mo-
mentum fraction x in the impact parameter plane.
Let us now see how this plays out quantitatively
for our default fit ABM 1.

The impact parameter b introduced in sec-
tion 6.1 gives the distance of a parton from the
center of the proton, where the center is deter-
mined by the transverse positions of all proton
constituents, weighted with their momentum frac-
tion [79]. The impact parameter of a parton with
x close to 1 thus tends to coincide with the cen-
ter of the proton, and a better quantity to assess
the overall proton size in that case is the distance
b/(1− x) between the struck parton and the cen-
ter of all spectator partons in the transverse plane.
Following [5], we introduce the average

dq(x) =

√
〈b2〉qx

1 − x
=

2
√

fq(x)

1 − x
. (69)

of this distance. It is plausible to require that the
proton remains of finite transverse size for configu-
rations where one parton has momentum fraction
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Figure 21: The average distance dq between the
active quark and the cluster of spectators for u
and d quarks, and the average shift sq of this dis-
tance along y in a proton polarized along the x
direction.

x → 1, which implies that 〈b2〉qx ∼ (1−x)2 in that
limit as we anticipated in section 6.1.

In figure 21 this distance is shown for u and d
quarks. The values of dq appear reasonable for an
estimate of the transverse size of the proton. In
consistency with our earlier analysis [5], we find
that dd is clearly larger than du for medium to
large x. The comparison of the relevant param-
eters Au and Ad in the profile function (see sec-
tion 6.4) shows that this trend is seen in all our
GPD fits. Due to the term with α′

q log(1/x) in the
profile function, the distance between the struck
quark and the cluster of spectators growths loga-
rithmically when x goes to zero.
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In analogy to (69) we introduce the average size

sq(x) =
〈by〉qx
1 − x

=
1

2m

eqv(x)

qv(x)

1

1 − x
(70)

of the shift in the distance between the struck
quark and the spectator system that is induced
by transverse proton polarization. As is seen in
figure 21, this shift is significantly nonzero and
larger in size for d quarks than for u quarks. For
x → 1 the numerical values we find for sq are very
uncertain, which is due to the corresponding un-
certainties in the parton densities we discussed in
section 6.2. We therefore limit the plot of sq to
the region x < 0.9.

Observing that the r.h.s. of the positivity bound
(41) assumes its maximum for gq(x)/fq(x) = 3/4
and omitting ∆qv(x), we obtain the bound

|sq(x)| < 0.38 dq(x) . (71)

We note that the weaker bound |sq(x)| ≤ 0.5 dq(x)
can be derived directly from the general form (40),
independently of our exponential ansatz (33) for
the t dependence of the GPDs, see [81]. For our
default fit we find that in the interval 0.15 <
x < 0.9 the ratio |sq(x)|/dq(x) is below 0.16 for u
quarks and below 0.27 for d quarks, so that the
bound (71) on the displacement of quarks due to
transverse proton polarization is far from satu-
rated in the x region where it should be applica-
ble.

In the phenomenology of deeply virtual Comp-
ton scattering (DVCS) and of hard exclusive me-
son production, a Regge-type approximation of
the profile function fq, namely

fR(x) = α′
R log(1/x) + BR (72)

is frequently used. In figure 22 we compare
the distance du obtained with this approximation
and its counterpart calculated from the profile
function (44) in our default fit. We also show
the separate contributions of the Regge terms[
α′
u log(1/x)+Bu

]
(1−x)3 and of the large-x term

Aux(1 − x)2 in fu(x). The Regge-type approxi-
mation fR agrees well with fu at small x, which is
expected from their definitions (small deviations
are due to the slightly different parameters in fR
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Figure 22: Comparison of the distance du eval-
uated with the Regge-type profile function (72)
(thin solid line) and with fq in our default fit
(thick solid line). We also show the separate con-
tributions from the Regge terms (dashed) and the
large-x term (dotted) in fq, as specified in the
text. The Regge-type profile function is evaluated
with the parameters α′

R = 0.9 GeV−2 and BR = 0
taken from [100].

and our fit). For growing x the Regge-type ap-
proximation increasingly deviates from the dis-
tance evaluated with our profile function fu, and
in the limit x → 1 it increases as 1/(1−x), which
is clearly an unphysical behavior. The form (72)
is thus suitable at small x but should not be used
in the large-x region.

8 Applications

8.1 Axial form factor

The axial form factor of the nucleon, FA(t), is re-
lated by the sum rule (11) to the quark helicity de-
pendent GPDs. Data on the axial form factor are
scarce (mainly limited to −t < 1 GeV2) and show
a considerable spread, see for instance the review
[101]. The measurement [102], which covers the
largest t-range, namely 0.1 GeV2 < −t < 3 GeV2,
is presented in form of a dipole parameteriza-
tion FA(t) = FA(0)/(1− t/M2

A)2 with parameters
FA(0) = 1.23 ± 0.01 and MA =

(
1.05+0.12

−0.16

)
GeV.
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Figure 23: The axial form factor FA of the nu-
cleon. The data [102] are represented by their
dipole parameterization as a yellow band. The
GPD result is evaluated with the default fit for
fu(x) and fd(x) and the polarized PDFs from [80].
The dashed line represents our result for FA in-
cluding an estimate of the sea quarks, as explained
in the text.

In view of this situation we do not attempt to fit
the GPDs for polarized quarks to the data on the
axial form factor. Instead, we use the ansatz (34)
for H̃q

v (x, t) with the profile functions fu(x) and
fd(x) fixed by our fit of the unpolarized GPDs.
The polarized parton distributions ∆qv for va-
lence quarks are taken from the analysis of DSSV
[80], as we already did when evaluating the posi-
tivity constraint (41).

With this ansatz for H̃q
v the axial form factor is

evaluated from the sum rule (11), neglecting the
antiquark contribution for the time being. The
results are compared to the dipole fit of [102] in
figure 23. One sees that our simple model of H̃q

v

is compatible with experiment, although it is at
the lower edge of the large uncertainty band of
the dipole fit.

In order to get a feeling for the possible size
of the antiquark contribution in the sum rule for
FA, we use the parameterization (34) also for
the polarized sea quark distribution H̃ q̄. Admit-
tedly, this is an ad hoc ansatz and should not be
over-interpreted. Since the isotriplet combination
∆ū(x) − ∆d̄(x) of forward densities is not very

small in the DSSV analysis, the effect of the sea
quarks on the axial form factor is noticeable for
−t below 1 GeV2. The agreement with the dipole
fit improves within this estimate, as is seen in fig-
ure 23.

A more general ansatz than (34) is the expo-
nential form H̃q

v (x, t) = ∆qv(x) exp
[
tf̃q(x)

]
with

a profile function of its own. The density inter-
pretation of the impact parameter distributions
qv(x, b2)±∆qv(x, b2) for valence quarks with def-
inite helicity implies the bound f̃q(x) ≤ fq(x)
in the region where antiquarks can be neglected.
Taking f̃q(x) < fq(x) instead of f̃q(x) = fq(x)
would increase the integral giving the axial form
factor and could thus improve the agreement with
the dipole fit, especially at higher t. We will,
however, not pursue this possibility in the present
work.

8.2 Compton form factors

As argued in [103, 104], the amplitude for wide-
angle Compton scattering (i.e. Compton scatter-
ing at large values of the Mandelstam variables
s, t and u) factorizes into a hard subprocesses
γq → γq and form factors given by the 1/x mo-
ments of GPDs:

RV =
∑

q

e2q

∫ 1

0

dx

x

[
Hq

v (x, t) + 2H q̄(x, t)
]
,

RT =
∑

q

e2q

∫ 1

0

dx

x

[
Eq

v(x, t) + 2E q̄(x, t)
]
,

RA =
∑

q

e2q

∫ 1

0

dx

x

[
H̃q

v (x, t) + 2H̃ q̄(x, t)
]
. (73)

This factorization, which bears some similarity
to the handbag factorization of DVCS, is formu-
lated in a symmetric frame where the skewness
ξ is zero. The form factors are mildly scale de-
pendent as discussed in [5]. We evaluate these
Compton from factors from our default fit of the
valence-quark GPDs at the scale µ = 2 GeV, tak-
ing again the ansatz (34) for H̃q

v . The results and
their parametric uncertainties are shown in fig-
ure 24 for −t > 2 GeV2. They are rather similar
to those obtained in our previous work [5], ex-
cept that RT in the present analysis is somewhat
larger at small t and falls off slightly faster as −t
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Figure 24: The Compton form factors evaluated
from our default fit at the scale µ = 2 GeV. They
are scaled by t2 and shown in units of GeV4.

increases. The sea quark contribution to these
form factors can be safely neglected since we are
only interested in the large t region (c.f. our es-
timate of the sea quark contribution to the axial
form factors in section 8.1).

In the handbag approach, the unpolarized cross
section for wide-angle Compton scattering reads
[104]

dσ

dt
=

πα2
em

s2
(s− u)2

−us

[
R2

V (t) − t

4m2
R2

T (t)

+
t2

(s− u)2
R2

A(t)

]
. (74)

In figure 25 we plot this quantity for s = 10.92
and 20 GeV2 and compare with the Hall A data
[105] from JLab. The theoretical results include
next-to-leading order QCD corrections [5, 106]
and an estimate of the uncertainties due to the
finite proton mass as specified in [107]. The latter
uncertainties are responsible for the error bands,
because the parametric errors on the Compton
form factors resulting from our GPD fit are rather
small. Despite the fact that the agreement with
the Hall A data is not perfect, in particular in the
forward hemisphere, we consider our result as a re-
markable success: in a parameter-free calculation
the deviations between experiment and theory are
less than about 30%.
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Figure 25: The Compton cross section at s =
10.92 and 20 GeV2, evaluated from the Compton
form factors shown in figure 24. The data points
for s = 10.92 GeV2 are from [105].

Another interesting quantity is the correlation
parameter ALL (KLL) between the helicities of
the incoming photon and the incoming (outgo-
ing) proton [106, 108]. As a consequence of the
neglect of quark masses, one has ALL = KLL

in the handbag approach. To a good approxi-
mation, the correlation parameters are given by
the ratio of RA/RV times a known factor. There
is a measurement of KLL for s = 6.9 GeV2 and
−t = 4 GeV2 [109], but we deem the correspond-
ing value −u = 1.1 GeV2 to be too low for apply-
ing the handbag approach. The situation should
improve with future measurements of Compton
scattering at higher energies.

8.3 Chromodynamic lensing and the

Sivers distribution

The Sivers distribution quantifies the anisotropy
in the transverse-momentum distribution of un-
polarized partons inside a proton that is polar-
ized in the transverse plane. Its very existence
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offers deep insights into the dynamics of partons
in QCD: the distribution is naively time-reversal
odd and can only be nonzero due to interactions
of the spectator partons that single out a direc-
tion in time [110]. These interactions play a role
in every type of parton distribution; technically
they are described by Wilson lines if one works in
a covariant gauge [111].

We have already seen that in a transversely po-
larized proton there is a sideways shift in the spa-
tial distribution of partons, which is described by
the term with eqv(x, b2) in (38). The idea of chro-
modynamic lensing [112] is that this anisotropy
in transverse space induces an anisotropic distri-
bution of the transverse parton momentum via
the spectator interactions just mentioned. These
interactions are of non-perturbative nature, and
to date the lensing effect cannot be computed
from first principles in QCD. It can however
be explored in simple model calculations, where
typically the spectator system is approximated
by a diquark and its interactions are treated as
gluon exchange in perturbation theory, see e.g.
[113, 114].

In the recent study [97] an ansatz for the lens-
ing effect was used to compute GPDs from a phe-
nomenological extraction of the Sivers distribu-
tions. In this work we take the opposite approach
and combine a simple model for chromodynamic
lensing with our fit result for the distribution
eqv(x, b), thus obtaining an estimate for the Sivers
distribution of valence u and d quarks. A useful
quantity for this purpose is the first k2T moment
of the Sivers function, defined as

f
⊥(1), q−q̄
1T (x) =

∫
d2k

k2

2m2
f⊥, q−q̄
1T (x,k2) , (75)

where we abbreviate

f⊥, q−q̄
1T (x,k2) = f⊥, q

1T (x,k2) − f⊥, q̄
1T (x,k2) (76)

and use the standard definition of the Sivers dis-
tribution [115]. We take a model that involves
a scalar diquark and perturbative one-gluon ex-
change [113], which gives

f
⊥(1), q−q̄
1T (x)

= −παsCF
1

2m2

∫
d2l

(2π)2
1

l2 + m2
g

× l2

1 − x
Eq

v

(
x,− l2

(1 − x)2

)

= −
∫

d2b
bj

2m2
Ij
(

b

1 − x

)
∂eqv(x, b2)

∂b2
. (77)

The so-called lensing function thus reads

Ij(b) = 2παsCF
∂

∂bj

∫
d2l

(2π)2
e−ibl

l2 + m2
g

= −αsCF
bj

b2
[
bmgK1(bmg)

]
, (78)

where b =
√
b2. We note that the expression in

squared brackets tends to 1 for mg → 0. These
results follow from equations (87), (89) and (90)
in [113] if we introduce a mass mg in the gluon
propagator and if we change eq es → −g2CF =
−4παsCF , as is appropriate when going from an
Abelian gluon model to color SU(3) with a color
singlet target. We allow for a gluon mass in order
to explore non-perturbative effects at least in a
very simple fashion. With our exponential ansatz
(33) for the t-dependence of Eq

v , we obtain

f
⊥(1), q−q̄
1T (x)

= −αsCF
(1 − x)eqv(x)

8m2gq(x)
χ

[
m2

g gq(x)

(1 − x)2

]
, (79)

where the auxiliary function

χ(z) = 1 − zez
∫ ∞

1

du

u
e−uz (80)

behaves like 1 − z log(1/z) for z → 0 and like
1/z for z → ∞. With the definition (69) of the
distance function dq(x) this implies

∣∣f⊥(1), q−q̄
1T (x)

∣∣ ≤ αsCF

2m2d2
q (x)

fq(x)

gq(x)

eqv(x)

1 − x
. (81)

In our numerical study we set αs = 1, bearing in
mind that the typical scale of the one-gluon ex-
change is non-perturbative, as can easily be seen
in (77). Even without a small αs, the k2T moment
of the Sivers function is suppressed by the factor
1
/[

2m2d2
q (x)

]
, given that the distance dq(x) is

significantly larger than the Compton wavelength
1/m ≈ 0.2 fm of the proton (see figure 21).

The model leading to (79) does not include
evolution effects, neither for the Sivers function
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nor for eqv (the two types of function actually
evolve quite differently). We evaluate (79) at scale
µ = 1 GeV rather than at µ = 2 GeV, so as to be
closer to the non-perturbative region that is nat-
ural for the model. We hence use the distribution
eqv obtained in the fit ABM 0 (see table 12) rather
than the one from our default fit. The result is
shown in figure 26 for three representative values
of the gluon mass mg. It is compared with the
recent extraction [116] of the Sivers distribution
from semi-inclusive deep inelastic scattering data.
We observe overall agreement in sign and order
of magnitude between our model results and the
phenomenological extraction, but there are clear
discrepancies as well, most notably for the rela-
tive size of u and d quark distributions and for
the detailed shape in x. As a word of caution we
note that the extraction in [116] (as well as any
other current extraction of the Sivers function)
is subject to important theoretical uncertainties.
Our overall assessment is however that the simple
model for chromodynamic lensing we have used
cannot be expected to yield precise predictions.

8.4 Skewness dependence

The sum rules relating GPDs to electromagnetic
form factors do not contain information about the
dependence of the GPDs on the skewness param-
eter ξ. We have therefore used these sum rules at
ξ = 0, see (7) and (8), because at this point GPDs
admit a density interpretation after Fourier trans-
form to impact parameter space. Furthermore,
the t = 0 limit of Hq

v is then given by the usual
PDFs. In this section we explore the GPDs that
are obtained from our default fit together with a
model ansatz for the ξ dependence.

As is well known [117, 118], GPDs admit an
integral representation in terms of double distri-
butions k(ρ, η, t).4 For valence quarks one can
write5

4It is common to write the arguments of the double dis-
tribution as k(β, α, t). We changed notation here because
α and β are already used otherwise.

5In general, the integration extends over −1 < ρ < 1
and |ρ| − 1 < η < 1 − |ρ|. Its restriction to ρ > 0 for
valence quarks has been proposed in [119].
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Figure 26: The first k2T moment of the Sivers
function for valence u and d quarks, evaluated
at the scale µ = 1 GeV and multiplied with x.
The bands represent the results of the model
(79) together with our fit ABM 0, and the solid
lines show the recent phenomenological extraction
[116].

Kq
v(x, ξ, t) =

∫ 1

0
dρ

∫ 1−ρ

ρ−1
dη

× δ(ρ + ξη − x) kqv(ρ, η, t) , (82)

where Kq
v = Hq

v , E
q
v as before. A useful prop-

erty of this representation is that, without any
restriction on the double distributions, it ensures
the polynomiality property of the resulting GPDs,
which is required by Lorentz covariance, see e.g.
[2, 3]. From (82) it also follows that Kq

v(x, ξ, t) =
0 for x ≤ −ξ. An often used model for the double
distribution, suggested long ago by Radyushkin
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and Musatov[120], is to assume

kqv(ρ, η, t) = Kq
v(ρ, 0, t)w(ρ, η) (83)

with a weight function that generates the ξ-
dependence of the GPDs and is normalized as

∫ 1−ρ

ρ−1
dη w(ρ, η) = 1 . (84)

The form

w(ρ, η) =
3

4

(1 − ρ)2 − η2

(1 − ρ)3
(85)

has been used in many phenomenologically analy-
ses of DVCS and exclusive meson production, see
e.g. [1, 100, 121, 122].

With the help of the δ function we can perform
the integral over η in (82). Inserting the ansatz
specified by (83) and (85) we obtain

Kq
v(x, ξ, t) =

3

4ξ3

∫ ρmax

ρmin

dρ

1 − ρ
Kq

v(ρ, 0, t)

×
(

1 + ξ − 1 − x

1 − ρ

)(
1 − x

1 − ρ
− 1 + ξ

)
(86)

with integration boundaries

ρmin =





0 for x ≤ ξ ,

x− ξ

1 − ξ
(1 − x) for x > ξ ,

ρmax = x +
ξ

1 + ξ
(1 − x) . (87)

The expression in the second line of (86) is zero at
the integration boundaries and has its maximum
at ρ = x.

In figure 27 we show Eq
v obtained in the model

just described at various values of the skewness
ξ. The GPD Hq

v looks similar in shape. We see
in the figure that the valence-quark GPDs exhibit
a pronounced maximum (or minimum) at a value
of x between 0 and ξ. Note that in this region
the integral in (86) extends down to ρ = 0, where
Kq

v(ρ, 0, t) is singular for small enough t according
to our discussion in section 7.1. With this behav-
ior of the GPDs, the dominant contribution to the
convolution integrals in the amplitudes of DVCS
and exclusive meson production is accumulated in
the vicinity of x ≈ ξ.
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Figure 27: The valence GPD Eq
v at the scale

µ = 2 GeV for selected values of ξ. We set −t to
its minimum value −t0 = 4ξ2m2/(1−ξ2) that can
be achieved in a physical process at given ξ.

Let us now discuss the behavior of the GPDs
in the limit x → 1 at fixed ξ and t. For small
enough (1−x) the integration in (86) extends over
a narrow interval around ρ = x, so that we need to
know the behavior of the zero-skewness GPDs for
x → 1 at fixed t. With our ansatz in section 6.1
we have Kq

v(ρ, 0, t) ≈ Kq
v(ρ, 0, 0) ≈ c (1 − ρ)β in

that limit. Inserting this approximation in (86),
we can easily perform the ρ integral and obtain

Kq
v(x, ξ, t) ≈ c (1 − x)β

3

2β(β − 1)(β − 2)

× 1

ξ3

[
1 + ξ(β − 1)

(1 + ξ)β−1
− 1 − ξ(β − 1)

(1 − ξ)β−1

]
. (88)

For ξ ≪ 1 this simplifies to

Kq
v(x, ξ, t) ≈ c (1 − x)β

×
[

1 + 1
10 (β + 1)(β + 2) ξ2 + O(ξ4)

]
, (89)
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i.e. the GPD at finite ξ is larger in absolute value
than in the forward limit, which it approaches
smoothly. We see that in the limit x → 1 our
ansatz yields a t-independent GPD for all values
of ξ, which (as in the case of zero skewness) is
necessary for having a finite average size of the
proton. Note that with the Regge-type approxi-
mation (72) for the profile function, the GPD at
nonzero skewness contains a factor exp[tBR] and
thus remains t-dependent for x → 1.

In the limit x → 1 at fixed ξ and t there is a pre-
diction that the dominant graphs describing the
GPDs are such that, starting from a three-quark
configuration of the proton, all longitudinal mo-
mentum is transferred to a single quark by per-
turbative gluon exchange [123]. This generalizes
the corresponding statement for the x → 1 limit
of the ordinary PDFs [124]. The analysis in [123]
predicts a power behavior

Hq
v (x, ξ, t) ≈ (1 − x)3 aqv(ξ)

Eq
v(x, ξ, t) ≈ (1 − x)5 bqv(ξ) (90)

with a dependence on ξ but no dependence on t.
The t-independence in this prediction is consistent
with the finite-size requirement discussed above.
As we see in (88), the behavior (90) follows if
qv(x) ∼ (1 − x)3 and eqv(x) ∼ (1 − x)5 for x → 1.
For the valence PDF qv(x) this is just the behavior
predicted by dimensional counting.

The prediction in (90) must be taken with due
caution, since among other things it does not take
into account the change of the large-x behavior in-
duced by DGLAP evolution; for a more detailed
discussion we refer to section 3.5 in [5]. We saw in
section 6.2 that the phenomenologically extracted
valence PDFs approximately follow a power law in
(1 − x) at large x. As discussed there, we cannot
determine the corresponding power for the math-
ematical limit x → 1, but we can instead fit such
a power for small but finite (1−x). The resulting
powers for u quarks are typically between 3 and
4 at the scale µ = 2 GeV and thus not very far
from the above prediction. By contrast, the ef-
fective large-x power for d quarks is significantly
larger (except for the CT parton densities). As
for eqv(x), we find from table 12 that the large-x
powers obtained in our GPD fits range from 4 to

6. All in all, we do not find strong evidence for
the quantitative validity of the prediction (90), at
least not at µ = 2 GeV.

9 Summary

We have performed a detailed review of the data
on electromagnetic nucleon form factors and—
with an ansatz for the functional dependence—
used them to determine the GPDs Hq

v and Eq
v for

unpolarized valence quarks.
We find that the quality of the experimental

data is clearly important for the quantitative ex-
traction of GPDs. A resolution of the incon-
sistencies between several data sets on the ratio
Rp = µpG

p
E/G

p
M at low t (all dating from after

2000) is of highest urgency in this respect. We
also point out inconsistencies in the data on Gn

M

between [20, 21] and more recent measurements
at Jefferson Lab. We decided to discard the data
points in [20, 21] that are in conflict with the more
recent results and caution against the use of pa-
rameterizations that fit the older data. Finally,
our fits show that the precision of Gp

M , the best
known among all form factors, is of great impor-
tance for the determination of GPDs. Quanti-
tative control over two-photon exchange contri-
butions is crucial in this respect, and measure-
ments of the ratio of elastic e+p and e−p cross
sections [125, 126, 127] will hopefully bring fur-
ther progress to this area. We find that the inclu-
sion of the very precisely measured squared neu-
tron charge radius has a clear impact on fits of the
form factors, whereas our global fits of the nucleon
form factors in the full available t range are not
well suited to determine with precision the charge
or magnetic radii, i.e. the derivatives of form fac-
tors at t = 0. A resolution of the discrepancies
between the determinations of the proton charge
radius from the Lamb shift in either electronic or
muonic hydrogen would be highly welcome, as it
would allow one to include this radius as an ex-
tra constraint in the determination of the form
factors.

The electromagnetic nucleon form factors re-
ceive contributions from strange quarks and anti-
quarks, which are small but remain poorly known.
Estimating their size, we find that they start to be
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quantitatively relevant at the present level of pre-
cision, but that their neglect does not change the
qualitative picture. Experimentally, the strange
form factors can be determined in parity violat-
ing electron-nucleon scattering, but it is not clear
to us whether in the foreseeable future this can
be brought to a sufficient level of precision and
be extended over a significant range in t. Per-
haps more help will come from determinations in
lattice QCD, once the present systematic uncer-
tainties in those extractions can be brought under
quantitative control. If one is willing to make a
model ansatz for the GPDs, one can connect the
strange Dirac form factor F s

1 with the difference
s(x) − s̄(x) of parton distributions. This differ-
ence is poorly known at present, but significant
progress in their determination can be expected
in forthcoming years from the production of W
and Z bosons at the LHC.

We have used the available data on the nu-
cleon form factors to extract an interpolated set of
data for the Dirac and Pauli form factors in the
quark flavor basis, i.e. F u

1 , F
d
1 , F

u
2 andF d

2 . The
t-range over which all form factors can be deter-
mined is currently limited by the measurement
of the electric neutron form factor or of the ra-
tio Rn = µnG

n
E/G

n
M . Measurements for −t above

3.4 GeV2 after the 12 GeV upgrade at Jefferson
Lab will be of immediate interest in this respect.
They might in particular reveal whether any of
the isosinglet combinations F p

2 +Fn
2 or Gp

E +Gn
E

has a zero crossing at −t around 4 GeV2. Our fits
strongly suggest that Gp

M is dominated by F u
1 at

large t, so that F u
1 may be regarded as reasonably

well known up to −t of order 30 GeV2.

The flavor form factors we have extracted ex-
hibit several clear trends. F d

1 decreases signifi-
cantly faster with −t than F u

1 , a behavior that is
naturally explained by the Feynman mechanism,
given that the PDF for d quarks decreases sig-
nificantly faster with x than the one for u quarks.
Interestingly, we do not see the same trend for the
Pauli form factors: the ratio F d

2 /F
u
2 remains quite

flat in the region of −t up to 3.4 GeV2, where we
have information from the data. It will be most
interesting to see in future data whether this trend
continues for higher −t.

Using our interpolated data set, we have investi-

gated several one- and two-parameter fits to indi-
vidual form factors and their linear combinations.
We find that a satisfactory description of all form
factors up to −t = 3.4 GeV2 is possible with a
power-law F (t)/F (0) = (1 − t/M2)−p in the fla-
vor basis of the Dirac and Pauli form factors. A
dipole form works only well in a few cases. Using
the product (16) of two power laws for each flavor
form factor, we obtain an excellent global fit to
all form factor data in their available t range.

The current form factor data, together with a
slight extension of the ansatz for GPDs developed
in [5], allow for a significant advance in the deter-
mination of GPDs compared with our previous
work. As we already observed in [5], the fit of the
GPD is significantly constrained by the positivity
requirements that arise from the relation between
zero-skewness GPDs and parton densities in im-
pact parameter space. We perform a global fit of
all form factor data and find significant correla-
tions between the different parameters describing
the GPDs. Independent information about the
distributions Eu

v and Ed
v , whose forward limits are

unknown, would be most helpful. In the future
this might be provided by the determination of
higher moments of GPDs in lattice QCD, and by
measurements of exclusive processes (which are,
however, described by GPDs at finite skewness
and thus add a further kinematic dependence that
needs to be modeled successfully). We note that
the electromagnetic form factors provide indirect
constraints on GPDs at high values of t, which will
conceivably never be accessible in hard exclusive
scattering processes.

We performed fits of the GPDs using several
PDF sets for the forward limit of Hq

v and with sev-
eral settings regarding parameters and the data
selection. The spread of the GPDs due to these
variations is more important than the parametric
errors of the individual fits. An improved knowl-
edge of the valence PDFs, especially at small and
at large x, will be of great use and can be expected
from forthcoming measurements at the LHC or at
Jefferson Lab.

Despite the present uncertainties, certain fea-
tures are common to all our fits and can hence
be regarded as firm results under the hypothesis
that our basic ansatz for the functional form of
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the GPDs is adequate. In particular, we find that
Eq

v decreases faster with x than Hq
v , although not

very much for d quarks. The data on Gn
E and the

associated squared radius r2nE favor a small split-
ting between the effective Regge slopes α′

q for u
and d quarks, which we take to be equal in Hq

v

and Eq
v . We also find that the effective Regge in-

tercept αq is larger in Eq
v than in Hq

v in all our fits.
By contrast, we cannot conclude whether the data
prefers different parameters αq in Eq

v for u and d
quarks.

From the t-dependence of the fitted GPDs we
can compute the average squared impact param-
eter of valence quarks at given x and find it to be
clearly larger for d quarks than for u quarks when
x is above 0.3. The sideways shift sq(x) in the
average impact parameter induced by transverse
proton polarization (which is proportional to Eq

v

at t = 0) is found to be 0.1 fm for u quarks and
−0.17 fm for d quarks at x = 0.1 . It decreases in
absolute size as x increases.

Evaluating Ji’s sum rule with out fitted GPDs,
we can extract the total angular momentum car-
ried by quarks of a given flavor minus the corre-
sponding contribution from antiquarks. We find

Ju
v = 0.230+0.009

−0.024 , Jd
v = −0.004+0.010

−0.016 (91)

at a scale µ = 2 GeV, where the uncertainties re-
flect all variations we allowed in our fits. The total
angular momentum carried by sea quarks cannot
be determined with information from the electro-
magnetic form factors. We note that from cur-
rent PDF determinations one finds that the non-
strange sea carries about 15% of the longitudinal
proton momentum at µ = 2 GeV.

We have used our fitted valence GPDs for unpo-
larized quarks to study a variety of related quan-
tities. Assuming a simple model for the GPDs
of longitudinally polarized quarks, where their t-
dependence is taken to be equal to the unpolarized
case, we can evaluate the isotriplet axial form fac-
tor FA(t) of the nucleon and find it to be at the
lower edge of the uncertainty band from the ex-
perimental extraction of this quantity. A slower
decrease with t of the polarized GPDs, as well as
the contribution of polarized sea quarks, could in-
crease FA(t) and improve the agreement with the
data, which themselves remain rather imprecise

and limited in t. Also for this quantity, advances
in lattice computations will be of great interest.

Evaluating the form factors that describe wide-
angle Compton scattering in the handbag ap-
proach, we obtain agreement with the data at the
30% level for s ≈ 11 GeV2, which we consider to
be a success for a parameter free calculation, given
the uncertainties of the handbag approach itself in
this kinematic region.

Combining our GPDs with a simple model
for chromodynamic lensing, we can estimate the
Sivers distributions for valence u and d quarks.
Comparing the results with a recent phenomeno-
logical determination of these distributions, we
find overall agreement in sign and magnitude but
clear differences in the details. We think that the
model of the lensing effect, which uses a simple
quark-diquark picture and one-gluon exchange, is
the most important source of uncertainty in this
comparison.

Finally, we have combined our fitted zero-
skewness GPDs with the double distribution
ansatz of Musatov and Radyushkin in order to
compute the valence GPDs at finite skewness.
These results can be used as an input for phe-
nomenological analyses of hard exclusive scatter-
ing processes, in particular for the kinematics of
current and future fixed-target experiments.

In conclusion, the improvements in the mea-
surement of the electromagnetic form factors over
the last decade has significantly advanced our
ability to perform a model-dependent extraction
of the GPDs for unpolarized valence quarks. Fur-
ther significant progress can be expected for the
next decade from the measurement of form fac-
tors, parton densities, and hard exclusive pro-
cesses and from lattice calculations. This will
hopefully also enable us to get a firmer grip on
the model dependence due to assuming a func-
tional form of the GPDs.
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A Tables of form factors

In table 20 we give the values and errors of Rn

for the data set we have selected. Except for the
entries from Plaster 05, Geis 08 and Riordan 10,
which directly quote results on Rn, we have com-
puted this ratio from Gn

E and the assumed value
of Gn

M for the reasons explained in section 3.2.

In table 21 we list the results for the flavor form
factors we have extracted from our default data
set as explained in section 5.1.

B Matrices for computing fit er-

rors

In this appendix we give the information that is
needed to compute parametric errors for our de-
fault fit ABM 1 and for the power-law fit of sec-
tion 3.4. A convenient proceduce to propagate er-
rors is the so-called Hessian method used in mod-
ern PDF determinations, see e.g. [64, 128]. We
briefly describe this method and then list the rel-
evant matrices.

Let us introduce the column vector p of the n
original fit parameters, as well as the vector of
transformed parameters z defined by

p− p0 = Ez , (92)

where p0 is the set of parameters that minimizes
χ2. The matrix E satisfies

E ET = V (93)

with the standard covariance matrix V for the pa-
rameters p. The deviation of χ2 from its minimum
value is then given by

∆χ2 = (p− p0)
T V −1 (p− p0) = zT z , (94)

The error on a function f of the parameters, as
given by linear error propagation, can be written

as

∆f =

√√√√
n∑

i=1

[
∂f(p)

∂zi

]2

p=p0

=

√√√√
n∑

i=1

[
f(p+

i ) − f(p−
i )

2

]2
, (95)

where the parameter set p±
i is specified by the

condition
(p±

i − p0)j = ±Eji . (96)

In the second step of (95) we have approximated
the derivative by a difference quotient, which is
consistent in the region where linear error propa-
gation is adequate. The vector given by the ith
column of the matrix E thus gives the amount by
which the central values of the parameters need
to be shifted to obtain a set of parameters on the
∆χ2 = 1 contour.

In table 22 we give the matrix ED for the de-
fault GPD fit (ABM 1) and the matrix EP for the
power law fit of section 3.4. The order of entries in
the matrices corresponds to the following vectors
of parameters:

pD =




Au

Ad

Bu

Bd

Cu

Cd

Du

Dd

α′
d

α




, pP =




au1 + bu1
bu1

ad1 + bd1
bd1

au2 + bu2
bu2

ad2 + bd2
bd2
pu1
pd1
pu2
pd2

qu1 − pu1




. (97)

The central values of the fit parameters are given
in (50) and table 11 for the GPD fit, and those of
the power-law fit are given in table 5.
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−t [GeV2] Rn error reference

total stat.

0.21 0.1108 0.0260 0.0252 Passchier 99

0.495 0.1334 0.0201 0.0177 Zhu 01

0.5 0.1517 0.0121 0.0095 Warren 03

1.0 0.2457 0.0350 0.0292

0.15 0.0706 0.0122 0.0095 Herberg 99

0.34 0.1485 0.0212

0.30 0.1140 0.0132 0.0126 Glazier 04 a

0.59 0.1566 0.0240 0.0230

0.79 0.1992 0.0395 0.0383

0.447 0.1444 0.0175 0.0170 Plaster 05 b

1.132 0.2506 0.0218 0.0210

1.450 0.3616 0.0353 0.0344

0.35 0.1112 0.0083 Rohe 05

0.67 0.1763 0.0258 Bermuth 03

0.142 0.0505 0.0078 0.0072 Geis 08

0.203 0.0695 0.0093 0.0084

0.291 0.1022 0.0135 0.0127

0.415 0.1171 0.0189 0.0182

1.72 0.273 0.0361 0.020 Riordan 10

2.48 0.412 0.0600 0.048

3.41 0.496 0.0813 0.067
a gives asymmetric errors; we have symmetrized by

taking the maximum of the two errors
b values from Table IX, “FSI+MEC+IC+RC”

Table 20: Values of Rn measured in polarization experiments on deuterium or 3He. References for
the data sets are given in table 4.
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−t[GeV2] F u
1 F d

1 F u
2 F d

2

0.039 1.810 ± 0.039 0.908 ± 0.034 1.471 ± 0.059 −1.833 ± 0.056

0.088 1.610 ± 0.032 0.815 ± 0.048 1.251 ± 0.044 −1.565 ± 0.071

0.142 1.414 ± 0.027 0.681 ± 0.017 1.104 ± 0.036 −1.352 ± 0.043

0.156 1.392 ± 0.037 0.705 ± 0.056 1.044 ± 0.045 −1.347 ± 0.070

0.203 1.241 ± 0.026 0.588 ± 0.016 0.972 ± 0.033 −1.133 ± 0.038

0.243 1.148 ± 0.036 0.560 ± 0.048 0.857 ± 0.040 −1.092 ± 0.052

0.291 1.023 ± 0.016 0.475 ± 0.014 0.798 ± 0.030 −0.948 ± 0.049

0.300 1.020 ± 0.016 0.478 ± 0.014 0.780 ± 0.054 −0.937 ± 0.103

0.340 0.979 ± 0.018 0.468 ± 0.019 0.696 ± 0.039 −0.890 ± 0.068

0.350 0.924 ± 0.051 0.416 ± 0.026 0.719 ± 0.061 −0.832 ± 0.065

0.415 0.862 ± 0.014 0.375 ± 0.015 0.626 ± 0.028 −0.740 ± 0.046

0.447 0.831 ± 0.012 0.368 ± 0.013 0.577 ± 0.025 −0.711 ± 0.041

0.495 0.759 ± 0.011 0.320 ± 0.013 0.523 ± 0.021 −0.643 ± 0.036

0.500 0.758 ± 0.010 0.327 ± 0.009 0.513 ± 0.020 −0.648 ± 0.035

0.590 0.668 ± 0.010 0.272 ± 0.013 0.445 ± 0.018 −0.564 ± 0.033

0.623 0.640 ± 0.010 0.259 ± 0.014 0.413 ± 0.016 −0.546 ± 0.028

0.670 0.612 ± 0.010 0.243 ± 0.012 0.378 ± 0.016 −0.513 ± 0.026

0.790 0.524 ± 0.010 0.198 ± 0.015 0.326 ± 0.014 −0.421 ± 0.023

1.000 0.438 ± 0.014 0.160 ± 0.012 0.244 ± 0.016 −0.310 ± 0.018

1.132 0.372 ± 0.008 0.124 ± 0.007 0.223 ± 0.010 −0.255 ± 0.014

1.177 0.372 ± 0.009 0.132 ± 0.015 0.191 ± 0.010 −0.262 ± 0.018

1.401 0.279 ± 0.012 0.080 ± 0.017 0.170 ± 0.013 −0.188 ± 0.018

1.450 0.279 ± 0.008 0.090 ± 0.007 0.155 ± 0.009 −0.189 ± 0.010

1.644 0.247 ± 0.012 0.071 ± 0.018 0.125 ± 0.012 −0.149 ± 0.018

1.720 0.231 ± 0.011 0.058 ± 0.007 0.118 ± 0.011 −0.131 ± 0.008

2.480 0.139 ± 0.003 0.028 ± 0.004 0.062 ± 0.004 −0.072 ± 0.005

3.410 0.087 ± 0.002 0.013 ± 0.003 0.035 ± 0.002 −0.037 ± 0.003

Table 21: The flavor form factors we obtain by interpolation of the data, as explained in section 5.1.
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[93] Ph. Hägler, Phys. Rept. 490 (2010) 49 [arXiv:0912.5483].

[94] G. S. Bali et al., Phys. Rev. D 86 (2012) 054504 [arXiv:1207.1110].

[95] J. R. Green et al., arXiv:1209.1687.

[96] X. D. Ji, Phys. Rev. Lett. 78 (1997) 610 [hep-ph/9603249].

[97] A. Bacchetta and M. Radici, Phys. Rev. Lett. 107 (2011) 212001 [arXiv:1107.5755].

[98] A. Bacchetta and M. Radici, PoS QNP 2012 (2012) 041 [arXiv:1206.2565].

[99] R. L. Jaffe, hep-ph/9602236.

[100] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 53 (2008) 367 [arXiv:0708.3569].

[101] V. Bernard, L. Elouadrhiri and U. G. Meissner, J. Phys. G 28 (2002) R1 [hep-ph/0107088].

[102] T. Kitagaki et al., Phys. Rev. D 28 (1983) 436.

[103] A. V. Radyushkin, Phys. Rev. D 58 (1998) 114008 [hep-ph/9803316].

[104] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Eur. Phys. J. C 8 (1999) 409 [hep-ph/9811253].

57

http://lhapdf.hepforge.org
https://www.desy.de/h1zeus/combined_results/herapdftable


[105] A. Danagoulian et al. [Jefferson Lab Hall A Collaboration], Phys. Rev. Lett. 98 (2007) 152001
[nucl-ex/0701068].

[106] H. W. Huang, P. Kroll and T. Morii, Eur. Phys. J. C 23 (2002) 301 [Erratum-ibid. C 31 (2003)
279] [hep-ph/0110208].

[107] M. Diehl, T. Feldmann, H. W. Huang and P. Kroll, Phys. Rev. D 67 (2003) 037502 [hep-
ph/0212138].

[108] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Phys. Lett. B 460 (1999) 204 [hep-ph/9903268].

[109] D. J. Hamilton et al. [Jefferson Lab Hall A Collaboration], Phys. Rev. Lett. 94 (2005) 242001
[nucl-ex/0410001].

[110] S. J. Brodsky, D. S. Hwang and I. Schmidt, Phys. Lett. B 530 (2002) 99 [hep-ph/0201296].

[111] J. C. Collins, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004].

[112] M. Burkardt, Nucl. Phys. A 735 (2004) 185 [hep-ph/0302144].

[113] S. Meissner, A. Metz and K. Goeke, Phys. Rev. D 76 (2007) 034002 [hep-ph/0703176].

[114] L. Gamberg and M. Schlegel, AIP Conf. Proc. 1374 (2011) 309 [arXiv:1012.3395].

[115] A. Bacchetta, U. D’Alesio, M. Diehl and C. A. Miller, Phys. Rev. D 70 (2004) 117504 [hep-
ph/0410050].

[116] M. Anselmino, M. Boglione and S. Melis, Phys. Rev. D 86 (2012) 014028 [arXiv:1204.1239].

[117] D. Müller, D. Robaschik, B. Geyer, F. M. Dittes and J. Hořeǰsi, Fortsch. Phys. 42 (1994) 101
[hep-ph/9812448].

[118] A. V. Radyushkin, Phys. Lett. B 449 (1999) 81 [hep-ph/9810466].

[119] A. V. Belitsky, D. Müller and A. Kirchner, Nucl. Phys. B 629 (2002) 323 [hep-ph/0112108].

[120] I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 61 (2000) 074027 [hep-ph/9905376].
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