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We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector

and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors.

The calculation is carried out with the gauge configurations generated with Nf ¼ 2þ 1 dynamical

domain-wall fermions and Iwasaki gauge actions at � ¼ 2:13, corresponding to a cutoff a�1 ¼ 1:73 GeV,

and a spatial volume of ð2:7 fmÞ3. The up and down-quark masses are varied so the pion mass lies between

0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate

the form factors in the range of momentum transfers, 0:2< q2 < 0:75 GeV2. The vector and induced

tensor form factors are well described by the conventional dipole forms and result in significant

underestimation of the Dirac and Pauli mean-squared radii and the anomalous magnetic moment

compared to the respective experimental values. We show that the axial-vector form factor is significantly

affected by the finite spatial volume of the lattice. In particular in the axial charge, gA=gV , the finite-

volume effect scales with a single dimensionless quantity, m�L, the product of the calculated pion mass

and the spatial lattice extent. Our results indicate that for this quantity, m�L > 6 is required to ensure that

finite-volume effects are below 1%.

DOI: 10.1103/PhysRevD.79.114505 PACS numbers: 11.15.Ha, 11.30.Rd, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

The isovector nucleon form factors are probes for nu-

cleon structure associated with the isovector vector and

axial-vector currents, Vþ
� ¼ �u��d and Aþ

� ¼ �u���5d,

with up- and down-quark spinors u and d. From these

currents, four isovector form factors arise: the Dirac (F1)

and Pauli (F2) form factors from the vector current,

hpjVþ
� ðxÞjni ¼ �up

�

��F1ðq2Þ þ
���q�

2MN

F2ðq2Þ
�

une
iq�x;

(1)

where F1 is equivalent to FV and F2=ð2MNÞ to FT in the

isovector part of the vector and induced tensor form factors

in neutron � decay under the isospin symmetry, and they

are related to the Sachs electromagnetic form factors

GEðq2Þ ¼ F1ðq2Þ �
q2

4M2
N

F2ðq2Þ; (2)

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ; (3)

and the axial ðFAÞ and induced pseudoscalar ðFPÞ form

factors from the axial-vector current,

hpjAþ
�ðxÞjni ¼ �up½���5FAðq2Þ þ iq��5FPðq2Þ�uneiq�x:

(4)

We use the Euclidean metric convention as in the recent

RBC works [1,2]. Thus q2 stands for Euclidean four-

momentum squared and corresponds to the timelike mo-

mentum squared since q2M ¼ �q2 < 0 in Minkowski

space. Here q ¼ pn � pp is the momentum transfer be-

tween the proton (p) and neutron (n).
The vector-current form factors have been studied ex-

perimentally with high accuracy at both small (< 1 GeV2)

and large (> 1 GeV2) momentum transfers, through elec-

tron elastic scattering off proton and nuclei [3]. Early

experiments revealed that the proton is a composite particle

[4–7]: i.e. nonzero Pauli and Dirac mean-squared radii and

anomalous magnetic moments were measured among

other observables. Recent experiments have improved the
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accuracy of these form factors and deviations from earlier

perturbative QCD predictions have been observed [8,9].

As is well known, the isovector axial-vector current is

strongly affected by the spontaneous chiral symmetry

breaking in the strong interaction [10,11]. A consequence

for the nucleon is that the isovector axial charge gA de-

viates from the corresponding vector charge gV . These
isovector vector and axial-vector charges, respectively,

the vector and axial-vector form factors at the zero mo-

mentum transfer, are most accurately measured in neutron

beta decay experiments: gA=gV ¼ FAð0Þ=FVð0Þ ¼
1:2695ð29Þ [12]. Whether lattice QCD calculations can

accurately reproduce this ratio, gA=gV , is an important

test of lattice QCD.

The spontaneous breaking of chiral symmetry also

means that the corresponding form factors of the axial-

vector current are strongly coupled with the Nambu-

Goldstone particles, i.e. the pions. Using the axial Ward-

Takahashi identity and the pion-pole dominance assump-

tion on the induced pseudoscalar, one can derive the

Goldberger-Treiman relation [13], which relates the nu-

cleon mass (MN), the axial charge (gA), the pion decay

constant (F�), and the pion-nucleon coupling (g�NN):

MNgA ¼ F�g�NN . It is an interesting challenge for lattice

QCD if it can reproduce this relation.

The q2 dependence of the axial-vector form factor has

also been studied in experiments [14]. It again provides a

stringent test of QCD through a comparison of lattice QCD

calculations with such experiments. While recent experi-

ments report the induced pseudoscalar form factors

[15,16], it is less well known than the other form factors.

Hence this provides an excellent opportunity for lattice

QCD to play a leading role and guide future experiments.

In the past years, many lattice QCD studies have been

made for these isovector form factors in the above-

mentioned contexts [17,18]. Many earlier works [1,19–

22] were performed either in the quenched approximation,

neglecting dynamical sea-quark effects or were either lim-

ited to two dynamical flavors of Wilson fermion quarks

that explicitly violate chiral symmetry [23–25], limited to a

nonunitary combination of valence and sea quarks [26–29],

or just two dynamical flavors of domain-wall fermions

(DWFs) [2]. There has also been an increasing amount of

interest in the form factors of other baryons [27,30–33].

In this paper we present our results with more realistic

‘‘2þ 1 flavor’’ dynamical quarks: reasonably light and

degenerate up and down quarks and strange quark with a

realistic mass are all described by the DWF scheme [34–

38] that preserves the flavor and chiral symmetries suffi-

ciently. Earlier studies were often performed on small

spatial volumes (� ð2 fmÞ3) which are now widely re-

garded to be too small to accommodate a nucleon at light

quark masses that yield realistic axial charge [24,39]. We

use larger spatial lattice volume, as large as 2.7 fm across,

to better address the finite-size question.

The rest of the paper is organized as follows: We explain

our method of calculation in Sec. II. In Sec. III we first

summarize the numerical lattice QCD ensembles used for

this work. Then we discuss in detail the known systematic

errors in the relevant form factors calculated on these

ensembles. The numerical results are presented in

Sec. IV. Finally, we give the conclusions in Sec. V.

Since we vary only light quark mass in our simulation

while the strange quark mass is fixed, in the following we

call the light up and down-quark mass as quark mass, mf,

in the lattice unit, unless explicitly stated otherwise. We

note that some preliminary results from this study were

presented in Refs. [39–41].

II. METHOD

A. Two- and three-point functions

Following earlier studies with quenched and two dy-

namical flavors [1,2], we define the two-point function of

proton

CSðt� tsrc; pÞ ¼
1

4

X

~x

ei ~p� ~x Tr½P 4h0j�Sð ~x; tÞ ��Gð~0; tsrcÞj0i�;

(5)

where S is the index of the smearing of the quark operator

and tsrc is the time location of the source operator. The

projection operator P 4 ¼ ð1þ �4Þ=2 eliminates the con-

tributions from the opposite-parity state for p2 ¼ 0
[42,43]. We use the standard proton operator,

�SðxÞ ¼ �abcð½uSaðxÞ�TC�5d
S
bðxÞÞuScðxÞ; (6)

where C is the matrix of the charge conjugation, and a, b, c
are color indices, to create and annihilate proton states. In

order to improve the overlap with the ground state, we

apply Gaussian smearing [44] at the source, while at the

sink we employ both local and Gaussian-smeared opera-

tors, S ¼ L or G.
In this paper we measure the nucleon isovector matrix

elements for the vector and axial-vector currents,

hpjV3
�ðxÞjpi ¼ hpj �uðxÞ��uðxÞ � �dðxÞ��dðxÞjpi; (7)

hpjA3
�ðxÞjpi ¼ hpj �uðxÞ�5��uðxÞ � �dðxÞ�5��dðxÞjpi:

(8)

While we employ the local currents in most of the calcu-

lations, the point-split conserved vector current [38] is used

for the vector charge at the lightest quark mass which will

be described later.

In order to obtain the matrix elements, we define the

three-point function with the current J and the projector

P	
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CP 	

J�
ð ~q; tÞ ¼ 1

4

X

~x;~z

ei ~q� ~z

� Tr½P	h0j�Gð ~x; tsnkÞJ�ð~z; tÞ ��Gð~0; tsrcÞj0i�
(9)

¼ �JðqÞ � fðtsrc; tsnk; t;MN ; EðqÞ; qÞ þ � � � ; (10)

where tsnk is the sink time slice fixed as tsnk � tsrc ¼ 12,

and EðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
N þ ~q2

q

. The ellipsis denotes the higher

excited-state contributions, which can be ignored for long

time separations tsnk � t � tsrc. The time independent

part of �JðqÞ is a matrix element, which is a linear combi-

nation of the form factors we seek. The time dependent part

of fðtsrc; tsnk; t;MN ; EðqÞ; qÞ includes the kinematical fac-

tor and the normalization of the proton operator which we

Gaussian smear at both the source and sink. We employ the

sequential source method to reduce statistical fluctuations,

as in Refs. [20,45]. In the three-point function, initial and

final proton states carry ~q and zero momenta, respectively.

This is because the spatial momentum should be conserved

in the function as in the two-point function.

The time dependence of fðtsrc; tsnk; t;MN ; EðqÞ; qÞ is

removed by taking an appropriate ratio of the three- and

two-point functions [46]

RP	

J�
ðq; tÞ ¼ K �

CP 	

J�
ð ~q; tÞ

CGðtsnk � tsrc; 0Þ

�

CLðtsnk � t; qÞCGðt� tsrc; 0ÞCLðtsnk � tsrc; 0Þ
CLðtsnk � t; 0ÞCGðt� tsrc; qÞCLðtsnk � tsrc; qÞ

�

1=2
; (11)

where K ¼ MN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðqÞðMN þ EðqÞÞ
p

. The ratio R
P	

J�
should

display a plateau from which the matrix element we seek is

extracted.

For each of the vector or axial-vector currents, we first

obtain �JðqÞ in Eq. (10) which is a linear combination of

the form factors. For convenience, using the ratio R we

define

�V
4 ðq; tÞ ¼

RP 4

V4
ðq; tÞ

MNðMN þ EðqÞÞ ; (12)

�V
T ðq; tÞ ¼ � 1

2

�R
P 53

V1
ðq; tÞ

iq2MN

�
R
P 53

V2
ðq; tÞ

iq1MN

�

; (13)

for the vector current, and

�A
Lðq; tÞ ¼

R
P 53

A3
ðq; tÞ

MNðMN þ EðqÞÞ ; (14)

�A
Tðq; tÞ ¼ � 1

2

�R
P 53

A1
ðq; tÞ

q2q3
þ

R
P 53

A2
ðq; tÞ

q1q3

�

; (15)

for the axial-vector current. Here we also define q2 ¼
2MNðEðqÞ �MNÞ, and P 53 ¼ ð1þ �4Þ�5�3=2 implies

the z-direction is chosen as the polarization direction in

our calculation. In the plateau region of �Jðq; tÞ we deter-
mine the matrix elements of each current, �JðqÞ which has
the following relation to the form factors:

�V
4 ðqÞ ¼ F1ðq2Þ �

q2

4M2
N

F2ðq2Þ; (16)

�V
T ðqÞ ¼ F1ðq2Þ þ F2ðq2Þ; (17)

for the vector current the Sachs form factors Eqs. (2) and

(3), and

�A
LðqÞ ¼ FAðq2Þ �

q23
MN þ EðqÞFPðq2Þ; (18)

�A
TðqÞ ¼ MNFPðq2Þ; (19)

for the axial-vector current. In the following we use the

isovector part of the Dirac and Pauli form factors, F1;2,

rather than the vector and induced tensor form factors.

They are identical through the isospin symmetry except

the normalization of the Pauli form factor, F2 ¼ 2MNFT .

We will see that the signal of these combinations is rea-

sonable in Sec. IVB. Finally, respective form factors are

obtained by solving the sets of linear equations, (16) and

(17), or (18) and (19), at fixed q2.

B. Double-source method

We find the ensemble with the lightest quark mass of

mf ¼ 0:005 is much noisier than the ones with heavier

mass values: it is insufficient and takes an enormous

amount of calculation time to obtain reasonable statistical

error if we used only a single nucleon source/sink combi-

nation per configuration.

Fortunately, the time extent of the lattice, 64� a ¼
7:3 fm, is very large compared to the inverse of the nucleon

mass, M�1
N ¼ ð1:15 GeVÞ�1 ¼ 0:17 fm. Hence, we can

easily accommodate a pair of source/sink combinations on

each configuration without letting them interfere with each

other if the sources are separated by 32 units, as shown in

Fig. 1. We call this the double-source method.

The three-point functions are calculated with the se-

quential source method, and the sink operators are placed

12 time slices from their respective sources. The number of

the measurements is effectively doubled in this calculation

while the cost remains the same as one single source

measurement.
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III. ENSEMBLES

A. Statistics

The RBC-UKQCD joint (2þ 1)-flavor dynamical DWF

coarse ensembles [47] are used for the calculations. These

ensembles are generated with Iwasaki gauge action [48] at

the coupling � ¼ 2:13 which corresponds to the lattice

cutoff of a�1 ¼ 1:73ð3Þ GeV, determined from the ��

baryon mass [47].

The dynamical strange and up and down quarks are

described by DWF actions with the fifth-dimensional ex-

tent of Ls ¼ 16 and the domain-wall height of M5 ¼ 1:8.
The strange quark mass is set at 0.04 in lattice units and

turned out to be about 12% heavier than the physical

strange quark, after taking into account the additive cor-

rection of the residual mass, mres ¼ 0:003. The degenerate
light quark masses in lattice units, 0.005, 0.01, 0.02, and

0.03, correspond to pion masses of about 0.33, 0.42, 0.56,

and 0.67 GeV and nucleon masses, 1.15, 1.22, 1.39, and

1.55 GeV.

Two lattice volumes used are 163 � 32 and 243 � 64,
corresponding to the linear spatial extent of approximately

1.8 and 2.7 fm, respectively. The smaller volume ensem-

bles, calculated only with the heavier three light quark

masses, are used for a finite-volume study of the axial

charge and form factors discussed in Sec. IV. On the 163

ensembles we use 3500 trajectories separated by five tra-

jectories at mf ¼ 0:01 and 0.02, and by 10 at 0.03. The

main results are obtained from the larger volume ensem-

bles with the number of the configurations summarized in

Table I.

On the larger volume at the heavier three quark masses,

we make four measurements on each configuration with

the conventional single source method using tsrc ¼ 0, 16,
32, 48, or 8, 19, 40, 51. At the lightest mass the double-

source method is used, and two measurements on each

configuration are carried out using the source pairs of (0,

32) and (16, 48), or (8, 40) and (19, 51). We make an

additional two measurements on roughly half of the con-

figurations with another source pair. This means that we

make four, double-source measurements on almost half of

the configurations, while two, double-source measure-

ments are carried out on the remaining configurations.

We have checked the independence of these measurements

from each other by changing the block size in the jackknife

analysis, e.g., treating each source/sink measurement as

independent. None of these resulted in a significantly

different error estimate: typical results are shown in

Fig. 2. Thus in the following we treat the two double-

source measurements performed on a single configuration,

one with the source pairs of (0, 32) and (16, 48), and the

other with the source pairs of (8, 40) and (19, 51), as being

independent of each other.

TABLE I. Nconf , Nsep, and Nmeas denote the number of gauge

configurations, trajectory separation between each measured

configuration, and the number of measurements on each con-

figuration, respectively, on ð2:7 fmÞ3 volume. The table also

contains the pion and nucleon mass for each ensemble.

mf Nconf Nsep Nmeas m� [GeV] MN [GeV]

0.005 932a 10 4b 0.3294(13) 1.154(7)

0.01 356 10 4 0.4164(12) 1.216(7)

0.02 98 20 4 0.5550(12) 1.381(12)

0.03 106 20 4 0.6681(15) 1.546(12)

aThe total number of configurations is actually 646. We carry out
extra measurements on a subset of these (286 configurations) to
improve the statistics using different source positions.
bTwo measurements with the double-source method give effec-
tively four measurements.

0 10 20 30 40 50 60

t

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

FIG. 1. Two-point function with the double source at t ¼
ð0; 32Þ for mf ¼ 0:005.

1.5e-09

1.6e-09

1.7e-09

0.9

1

1.1

C
L
(10,0)

g
A

 at t=6

(a) (b) (c)

FIG. 2. For mf ¼ 0:005, nucleon propagator CLðt; 0Þ at t ¼
10, and axial charge gA ¼ C

P 53

A3
ð~0; tÞ=CP 4

V4
ð~0; tÞ at t ¼ 6 with

different jackknife analyses: (a) averaging four data with bin

size of 40 trajectories, (b) averaging four data with bin size of 10

trajectories, and (c) treating each measurement as independent

with bin size of 10 trajectories.
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In the following, in order to reduce possible autocorre-

lations at the larger volume the measurements are blocked

into bins of 40 trajectories each, with 20 trajectories at the

smaller volume. The statistical errors are estimated by the

jackknife method.

B. Correlation functions

The quark propagator is calculated with an antiperiodic

boundary condition in the temporal direction and periodic

boundary conditions for the spatial directions. We employ

gauge-invariant Gaussian smearing [44] at the source with

smearing parameters ðN;!Þ ¼ ð100; 7Þ, which were

chosen after a series of pilot calculations, as described in

Ref. [49]. For the calculation of the three-point functions,

we use a time separation of 12 time slices between the

source and sink operators to reduce effects from excited-

state contributions as much as possible.

To obtain the form factors at nonzero q2, we evaluate the
two- and three-point functions, Eqs. (5) and (9), with the

four lowest nonzero momenta: ~p ¼ 2�=L� ð0; 0; 1Þ, (0, 1,
1), (1, 1, 1), and (0, 0, 2), corresponding to a q2 range from
about 0.2 to 0:75 GeV2 on the large volume, while on the

small volume we use only the smallest two momentum

transfers, corresponding to q2 � 0:4 and 0:8 GeV2. All

possible permutations of the momentum including the

positive and negative directions are taken into account.

There are several choices for the definition of the mo-

mentum in the lattice calculation, e.g., pi ¼ 2�=L � ni,
sinð2�a=L � niÞ=a, or one determined from the measured

energy in the two-point function. Figure 3 shows that the

three energies with the different momentum definitions

reasonably agree with each other. In the following we

choose the continuum momentum definition pi ¼ 2�=L �
ni, since this simple definition gives smaller statistical

error for the energy than the measured one.

C. Systematic errors

There are two important sources of systematic error:

finite spatial size of the lattice and excited-state contami-

nation. Chiral-perturbation-theory-inspired analysis of the

former for meson observables suggests the dimensionless

product, m�L, of the calculated pion mass m� and lattice

linear spatial extent L, should be set greater than 4 to

ensure that the finite-volume correction is negligible below

1%, and the available lattice calculations seem to support

this. While our present parameters satisfy this condition, it

should be emphasized that such a practical criterion is not

known sufficiently for baryon observables. It is important

to check this through the present calculations, and it is

indeed an important purpose of this work.

On the other hand, one should adjust the time separation

between the nucleon source and sink appropriately so the

resultant nucleon observables are free of contamination

from excited states. The separation has to be made longer

as the quark masses decrease. In our previous study with

two dynamical flavors of DWF quarks [2] with a similar

lattice cutoff of about 1.7 GeV, we saw systematic differ-

ences between observables calculated with the shorter time

separation of 10, or about 1.16 fm, and longer 12, or

1.39 fm: the differences amount to about 20%, or 2 stan-

dard deviations. This would suggest that at the shorter time

separation of about 1.2 fm, the excited-state contamination

has not decayed sufficiently to guarantee correct calcula-

tions for the ground-state observables [41]. There is, how-

ever, a price to pay for the larger time separation as the

nucleon correlation function suffers from large statistical

noise at large times, especially with light quark masses.

Since the hadron masses are much lighter in the present

work than we considered previously (the lightest pion mass

is 0.33 GeV and nucleon 1.15 GeV) we decided to use the

separation of 12 lattice units, or about 1.4 fm.

0 0.05 0.1 0.15 0.2 0.25

p
2

0.7

0.8

0.9

p
i
=2πn

i
/L

p
i
=sin(2πn

i
/L)

meas. E(p)

FIG. 3 (color online). Measured nucleon energies in lattice

unit at mf ¼ 0:01. Estimated energies by continuum and lattice

momenta are also plotted.

0 2 4 6 8 10 12 14 16

t

0.4

0.5

0.6

0.7

0.8

0.9

Eff. mass of C
G

(t,0)

FIG. 4 (color online). Effective mass of the nucleon correlator

with Gaussian smearing applied at both source and sink, for

quark mass mf ¼ 0:005.
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While it is desirable to use a longer separation, it cannot

be made too long in practice without losing control of

statistical errors. In Fig. 4 we present the nucleon effective

mass at the lightest quark mass, mf ¼ 0:005. The nucleon

signal begins to decay at t ¼ 12, or about 1.4 fm: this is

about the longest distance we can choose without losing the

signal, and hence about as free of excited-state contami-

nation as we can achieve with the present statistics. As will

be shown in detail in this paper, the bare three-point

function signals for the form factors for this source-sink

separation of t ¼ 12 are acceptable. Whether this is a

sufficiently long separation between the source and sink

to guarantee correct calculations of ground-state observ-

ables remains a future problem.

IV. RESULTS

A. Vector and axial charges

Much of the results and discussion in this subsection

have appeared in Ref. [39]. We repeat them here for

convenience and to lay some of the ground work necessary

for discussion of the form-factor results that follow.

At zero momentum transfer the time component of the

vector form factor gives the vector charge, gV ¼ F1ð0Þ. For
our calculations at the heaviest three quark masses, we use

the four-dimensional local current. As a result, the value of

glatV , measured from the bare F1ð0Þ, deviates from unity and

gives the inverse of the renormalization, ZV , for the local

current. At the lightest quark mass, mf ¼ 0:005, we evalu-

ate the vector charge using the point-split conserved vector

current [38],V 4 as well. This is to alleviate a problem that

arises from the double-source method described in

Sec. II B: Conventionally the vector charge is calculated

from the ratio of the three-point function with the local

vector current to the two-point function with zero momen-

tum, as in Eq. (11); a strong correlation between the

denominator and numerator suppresses the statistical error

associated with such calculations. This correlation is lost in

the double-source calculation and results in larger statisti-

cal errors. Fortunately, the three-point functions of the

local and conserved currents are highly correlated, even

in this method. Therefore we evaluate the vector charge

from the ratio of the three-point functions glatV ¼
CP 4

V4
ð~0; tÞ=CP 4

V 4
ð~0; tÞ at mf ¼ 0:005. Figure 5 shows that

the error in this ratio is as small as that coming from the

single source calculation at mf ¼ 0:01.

A linear extrapolation to the chiral limit yields an accu-

rate estimate of glatV ¼ 1:3929ð17Þ, as shown in Fig. 6. This
corresponds to ZV ¼ 0:7179ð9Þ in the chiral limit and

agrees well with an independent calculation in the meson

sector [47], ZA ¼ 0:7161ð1Þ, up to the discretization error.

The axial charge is calculated from the ratio of the

vector and axial-vector form factors gA ¼ FAð0Þ=F1ð0Þ:
This ratio gives the renormalized axial charge since the

vector and axial currents, V� and A�, share a common

renormalization thanks to the good chiral symmetry prop-

erties of DWF, up to a small discretization error of Oða2Þ.
The plateaus of gA computed on volume V ¼ ð2:7 fmÞ3

are shown in Fig. 7. We checked that consistent results are

obtained by either fitting or averaging over appropriate

time slices, t ¼ 4–8, and also by fitting the data symme-

trized about t ¼ 6. The data can be symmetrized because

the source and sink operators are identical in the limit of

large statistics. We note that the statistics at our lightest

mass is the largest we know of for comparable simulation

parameters in the literature. Results obtained from the fit

using the unsymmetrized data, presented in the figure with

1 standard deviation, are employed in the analysis. These

results are compiled in Table II.
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Figure 8 shows that the ð2:7 fmÞ3 data are almost inde-

pendent of the pion mass (squared) except for the lightest

point which is about 9% smaller than the others. A set of

the results obtained with a smaller volume, ð1:8 fmÞ3
shows a similar downward behavior, albeit with relatively

larger statistical uncertainties. An earlier two-flavor calcu-

lation by RBC [2] with spatial volume ð1:9 fmÞ3 and

1=a ¼ 1:7 GeV showed a clear downward behavior, but

it sets in at heavier pion mass.

We suspect that this pion mass dependence driving gA
away from the experimental value is caused by the finite

volume of our calculation. Similar behavior was observed

in quenched DWF studies [1,20] and was predicted in a

model calculation [50]. However, for pion masses close to

our lightest point such a sizable shift is not observed when

V is larger than about ð2:4 fmÞ3, not only in the quenched

case, but also the 2þ 1 flavor, mixed-action calculation in

[26] and their updated results [29]. Both the results of

quenched [1,20] and mixed-action [29] calculations on

larger volumes are presented in Fig. 8. On the other

hand, our results suggest that a volume of V ¼ ð2:7 fmÞ3
is not large enough to avoid a significant finite-volume

effect on gA when m� � 0:33 GeV in dynamical fermion

calculations. It is worth noting that the bending of the axial

charge comes from only the axial-vector part FAð0Þ, since

the vector part F1ð0Þ does not have such a pion mass

dependence (see Fig. 6).

In order to more directly compare the various results, we

plot gA against the dimensionless quantity, m�L, in the top
panel of Fig. 9. We find that the 2þ 1 flavor results on both
volumes reasonably collapse onto a single curve that

monotonically increases with m�L; in other words, they

exhibit scaling in this variable. The two-flavor results [2]

display a similar behavior which is also evident in dynami-

cal two-flavor (improved) Wilson fermion calculations as

shown in the middle panel [24,27,51] for the unitary points


sea ¼ 
val, with various volumes ð0:95–2:0 fmÞ3, pion

masses 0.38–1.18 GeV, and gauge couplings. While the

trend is similar in the quenched DWF case [1,20] with pion

masses in the range 0.39–0.86 GeV and 1=a ¼ 1:3 GeV
(see bottom panel), the scaling is violated for the point with

smallest m�L on V ¼ ð2:4 fmÞ3. The lightest point does

not follow the ð1:8 fmÞ3 data: they differ by 2.5 standard

deviations (�) at m�L� 5, suggesting that there are non-

universal terms that depend separately on m� and V. In
particular, this effect may be due to the presence of a

quenched chiral log [52]. From Ref. [52], the size of the

effect at this mass can readily explain the discrepancy

observed with the dynamical m�L scaling. Note, at this

mass, but going to V ¼ ð3:6 fmÞ3, no finite-volume effect

is detected in the quenched case as can be seen in Fig. 8.

The mixed-action, 2þ 1 flavor result with a similar

volume [26,29], is denoted by the left triangle in the top

panel. We plot their recent result at our lightest point [29].

At heavy pion masses the results are statistically consistent

with our larger volume data and essentially independent of

m�L. At m�L� 4:5 the mixed-action result, however, is

larger than ours by (a combined) 2:1� and lies between our

lightest result and the quenched DWF result with ð2:4 fmÞ3
volume [20] (the up triangle in the figure).
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FIG. 7 (color online). Plateaus of gA. V ¼ ð2:7 fmÞ3 andmf ¼
0:005, 0.01, 0.02, and 0.03, from top to bottom.

TABLE II. Summary of axial charge, gA, for both volumes.

mf 0.005 0.01 0.02 0.03

ð2:7 fmÞ3 1.073(39) 1.186(36) 1.173(36) 1.197(30)

ð1:8 fmÞ3 N=A 1.066(72) 1.115(58) 1.149(32)
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lations. Recent Nf ¼ 2þ 1 DWF by LHP [29] is also plotted.
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A possible explanation of the differences is that it is

simply a dynamical fermion effect as discussed in

Ref. [39]. While the mixed-action result at m�L� 4:5
has come down from higher value with larger error (the

previous result was consistent with the quenched result at

the similar m�L), the explanation using the systematic

error [53,54] of the partially quenched effect of the

mixed-action results might be valid in the present data. If

the sea quark is effectively heavy, a mixed-action calcu-

lation will be closer to the quenched case. Mixed-action

chiral perturbation theory reveals the presence of partially

quenched logs whose size is consistent with the observed

effect [55,56], as in the quenched theory. We should note

that the preliminary result obtained by LHP [29] at the

same simulation parameter as our lightest point appears

inconsistent with our result (see Fig. 8). Wewill discuss the

difference later in this section.

For the chiral extrapolation of gA, we attempt to include

the finite-volume effect in our data. While the pion mass

dependence of gA, including the finite-volume effect, has

been investigated in the small scale expansion (SSE)

scheme of heavy baryon chiral perturbation theory

(HBChPT) [24], the size of the finite-volume effect on V ¼
ð2:7 fmÞ3 predicted in SSE is less than 1% in our pion mass

region. The correction is much too small to account for the

observed finite-volume effect in our data. This suggests

that the finite-volume effect in HBChPT, which is esti-

mated by replacing all loop integrals by summations, is not

the leading finite-volume effect in gA, as in the "
0 [57] and

" [58] regimes. We also note that our attempts to fit the

mass dependence of the data to HBChPT failed, which is

likely due to the heavier quark mass points being beyond

the radius of convergence of ChPT [2,47,59].

Instead of the SSE formula, we assume the following

simple fit form, including the finite-volume effect in a way

that respects the scaling observed in the data:

Aþ Bm2
� þ CfVðm�LÞ; (20)

with fVðxÞ ¼ e�x, and where A, B, and C are fit parame-

ters. The third term corresponds to the observed finite-

volume effect, taken as a function of m�L only, and

vanishes rapidly towards the infinite volume limit, L !
1, at fixed pion mass. The same m�L dependence appears

in one of the finite-volume effect contributions in Ref. [60].

We note that this simple form is used to estimate the finite-

volume effects in the data but not the value of gA in the

chiral limit at fixed L. In the end, we choose this simplest

form, in part, because the fit result at the physical point is

not sensitive to the particular choice of fVðxÞ, as discussed
below.

In Fig. 10 we see that the 2þ 1 flavor data are described
very well by this simple fit (�2=d:o:f: ¼ 0:57), using data

computed on both volumes simultaneously. The L ! 1
extrapolation (solid line) in turn allows an extrapolation to
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the physical pion mass (m� ¼ 135 MeV), gA ¼ 1:19ð6Þð4Þ,
where the first error is statistical. The second error is an

estimate of the systematic error determined by comparing

this result with that from fits using different choices of

fVðxÞ, e.g., the full form in [60], x�3, andm2
�e

�x=x1=2. The
latter is similar to HBChPT when m�L � 1 [24,61,62].

The results of some of the fit forms are summarized in

Table III. The extrapolated value is not sensitive to the

choice of fV and is consistent with a linear fit to the three

heaviest points on the larger volume, gA ¼ 1:17ð6Þ. The
present data are insufficient to determine the detailed form

of fV , but do allow a reasonable estimate of the finite-

volume effect.

We also fit our data, with and without the fV term, to the

two-loop formula from HBChPT [59] and find that the

extrapolated result is less than 1 and that the fits are

generally unstable. This is due to the many unknown low

energy constants which cannot be determined accurately

from only four data points, even if some of them are fixed.

More importantly, though the two-loop formula extends

the range of applicability of the chiral expansion, it is still

only large enough to include our lightest point, as demon-

strated in Ref. [59]. The systematic error arising from the

difference of the renormalization constants for A� and V�

is much smaller than the quoted systematic error. From the

fit result with fVðxÞ ¼ e�x, we estimate that if one aims to

keep finite-volume effects at or below 1%, then for m� ¼
0:33 GeV, spatial sizes of 3.5–4.1 fm (m�L � 5:9–6:9) are
necessary.

As mentioned, our lightest result on ð2:7 fmÞ3 differs

from the preliminary findings from LHP [29] shown in

Fig. 8 by 1:8�. These calculations are carried out with the

same parameters except for the operator smearing and the

time separation between the source and sink operators,

�t ¼ tsink � tsrc. So, while it is possible that this difference
is simply due to the limited statistics in the preliminary

result in [29], there is the possibility that this difference is

due to a systematic error stemming from contaminations of

higher excited states. These contaminations will be negli-

gible when the time separation of the two nucleon opera-

tors in the three-point function, Eq. (9), is large enough.

The large separation, however, causes the statistical error

of the three-point function to increase. Thus, we employ a

time separation of �t ¼ 12, as described in Sec. II, while

LHP uses �t ¼ 9. While further investigation of this dif-

ference is desirable, it is beyond the scope of this paper.

Although there may be a systematic difference between

our result and the result of LHP at the lightest quark mass

on the ð2:7 fmÞ3 lattice, all recent results [29,63] (before

chiral extrapolation) with dynamical quarks are about 10%

smaller than the experimental value. In order to make a

precise test of (lattice) QCD with the axial charge, further

study of the systematic errors as the quark mass is de-

creased towards the physical point is required on large

volumes.

B. Form factors of the vector current

In this subsection we discuss the isovector part of the

Dirac and Pauli form factors, F1ðq2Þ and F2ðq2Þ. In Fig. 11
we present the ratios of the three- and two-point functions,

TABLE III. Fit results of gA, together with the extrapolated result at m
phys
� ¼ 135 MeV. In the

last row, the linear fit result using only the three heavier points at V ¼ ð2:7 fmÞ3 is presented.

fV A B C �2=d:o:f: m
phys
�

e�m�L 1.187(57) �0:12ð14Þ �8:1ð3:9Þ 0.60 1.187(55)

ðm�LÞ�3 1.226(70) �0:05ð15Þ �11:3ð5:2Þ 0.47 1.225(67)

m2
�e

�m�L=
ffiffiffiffiffiffiffiffiffiffi

m�L
p

1.148(46) �0:09ð12Þ �75ð41Þ 0.80 1.150(44)

N=A 1.172(58) 0.05(1.7) — 0.17 1.173(55)
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�V
4 and�V

T defined in Eqs. (12) and (13), at the quark mass

mf ¼ 0:01 for each momentum transfer. We find excellent

plateaus in the middle time region between the nucleon

source and sink operators at t ¼ 0 and 12 for the smaller

momenta, while the plateau at ~q / ð2; 0; 0Þ is not as well
behaved and has a larger error. This is interpreted as simply

a statistical fluctuation. In order to remove this wiggle, we

would need more statistics at this momentum. To deter-

mine the values of the ratios, we perform a constant fit

in the time interval, t ¼ 4–8, for all momentum

combinations.

The form factors are obtained by solving the linear

equations (16) and (17),

F1ðq2Þ ¼
�V

4 ðqÞ þ ��V
T ðqÞ

1þ �
; for all q; (21)

F2ðq2Þ ¼
�V

T ðqÞ ��V
4 ðqÞ

1þ �
; for q � 0; (22)

where � ¼ q2=ð4M2
NÞ. All the values of the two form

factors are shown in Table IV.

1. Dirac form factor F1ðq2Þ
Let us now turn our attention to the momentum depen-

dence of the Dirac form factor. In Fig. 12 we present the

form factor at each quark mass normalized by the respec-

tive values at zero momentum transfer.

Phenomenologically the form factor is described by the

conventional dipole form,

F1ðq2Þ ¼
1

ð1þ q2=M2
1Þ2

; (23)

whereM1 is the dipole mass for this form factor, and fits to

experimental data give M1 ¼ 0:857ð8Þ GeV [12]. In order

to test the dipole form using our lattice results, for conve-

nience we define an effective dipole mass

Meff
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=F1ðq2Þ
p

� 1

v

u

u

t : (24)

Figure 13 shows that the effective dipole mass at mf ¼
0:01 is almost flat against q2. This means that the form

factor is well explained by the dipole form Eq. (23) in the
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FIG. 12 (color online). The Dirac form factor, F1ðq2Þ, normal-

ized to unity at q2 ¼ 0.
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FIG. 13. Effective dipole mass Meff
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together with the experimental result [12,23]. The result of the

dipole fit (solid line) with 1 standard deviation (dashed line) is

also presented.

TABLE IV. Form factors of vector, axial-vector currents on

ð2:7 fmÞ3. All form factors are renormalized.

mf q2 ½GeV2� F1ðq2Þ F2ðq2Þ FAðq2Þ 2MNFPðq2Þ
0.005 0.0 1.0000(11) N/A 1.073(39) N/A

0.198 0.785(19) 2.20(13) 0.959(34) 13.32(91)

0.383 0.622(22) 1.716(97) 0.892(39) 7.42(51)

0.557 0.505(28) 1.40(10) 0.754(41) 5.27(42)

0.723 0.516(53) 1.36(16) 0.792(65) 4.71(53)

0.01 0.0 1.0000(10) N/A 1.186(33) N/A

0.199 0.787(17) 2.38(15) 0.994(37) 13.00(90)

0.385 0.641(22) 1.71(12) 0.854(37) 7.48(44)

0.562 0.524(31) 1.34(11) 0.719(39) 5.01(42)

0.731 0.506(49) 1.19(13) 0.701(57) 3.95(46)

0.02 0.0 1.0000(15) N/A 1.174(37) N/A

0.200 0.805(20) 2.40(15) 1.005(33) 12.3(1.2)

0.390 0.686(32) 2.08(13) 0.890(38) 9.04(73)

0.573 0.599(49) 1.80(13) 0.839(48) 7.06(70)

0.748 0.443(37) 1.31(14) 0.668(47) 3.84(59)

0.03 0.0 1.0000(11) N/A 1.196(30) N/A

0.201 0.8302(99) 2.79(12) 1.038(28) 12.74(88)

0.394 0.700(15) 2.302(92) 0.912(32) 9.68(62)

0.580 0.595(22) 2.00(12) 0.838(40) 6.81(61)

0.760 0.500(31) 1.54(15) 0.704(50) 4.55(73)
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q2 region where we measure. The figure also shows that the

effective mass is consistent with the dipole fit result as

expected.

We estimate the Dirac root-mean-squared (rms) radius

from the dipole mass obtained by the fit as

hr21i1=2 ¼
ffiffiffiffiffiffi

12
p

M1

; (25)

whose results are presented in Table V. Figure 15 shows the

pion mass dependence of our results for the rms radius.

Here we also compare with other lattice calculations and

the experimental value. Our results show a near-linear

dependence in the pion mass squared which is quite differ-

ent from the axial charge in Sec. IVA. This suggests that

the Dirac form factor is less sensitive to the finite-volume

effect than gA, and this is confirmed by an analysis of our

results obtained on a smaller volume ð1:8 fmÞ3, shown in

Fig. 14. The smaller volume results are summarized in

Table VI. Our results can be fit linearly and extrapolated

to a value 27% smaller than experiment, 0.797(4) fm. Other

lattice calculations [1,2,22,23,25] show similar trends. The

recent results of the mixed-action calculation [29] are also

statistically consistent with our data and fit line.

This quantity is expected to logarithmically diverge in

HBChPT [64–66] at the chiral limit: such a behavior will

help in bringing our present extrapolated results closer to

experiment. However, our results atm� > 0:33 GeV fail to

reveal such a logarithmic divergence. A naive determina-

tion of the HBChPT parameters at the physical point give

the logarithmic contribution shown in Fig. 15 by the solid

line. Future work will require simulations to be performed

at lighter quark masses, e.g., m� < 0:2 GeV, if such loga-
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tively, at each quark mass.
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FIG. 15 (color online). Dirac rms radius hr21i1=2 determined

from a dipole fit. The dashed line with error band represents a

linear extrapolation of our results. Square, up triangle, diamond,

left triangle, and down triangle denote two-flavor [2] and

quenched DWF [1], two-flavor and quenched Wilson [23], and

mixed-action [29] calculations, respectively. A prediction from

HBChPT with the experimental result [12,23] is also plotted.

TABLE V. Dirac and Pauli rms radii hr21i1=2, hr22i1=2, and anomalous magnetic moment

F2ð0Þ ¼ �p ��n � 1. The linear fit results at m
phys
� ¼ 135 MeV are also presented.

mf 0.005 0.01 0.02 0.03 m
phys
�

hr21i1=2 [fm] 0.564(23) 0.548(24) 0.520(31) 0.485(16) 0.584(23)

hr22i1=2 [fm] 0.578(60) 0.690(61) 0.536(21) 0.537(38) 0.636(57)

F2ð0Þ 2.82(26) 3.40(35) 3.11(21) 3.55(19) 2.75(28)

TABLE VI. Form factors of vector, axial-vector currents on

ð1:8 fmÞ3. All form factors are renormalized.

mf q2 ½GeV2� F1ðq2Þ F2ðq2Þ FAðq2Þ 2MNFPðq2Þ
0.01 0.0 1.000(27) N/A 1.066(72) N/A

0.430 0.621(52) 1.42(23) 0.580(93) 3.2(1.4)

0.812 0.46(14) 0.89(50) 0.380(70) 1.83(68)

0.02 0.0 1.000(14) N/A 1.115(58) N/A

0.437 0.705(38) 2.03(17) 0.749(49) 6.16(97)

0.833 0.501(36) 1.14(14) 0.504(47) 2.70(38)

0.03 0.0 1.0000(6) N/A 1.149(32) N/A

0.441 0.686(18) 1.91(10) 0.787(29) 6.56(70)

0.848 0.522(23) 1.258(70) 0.574(30) 3.48(30)
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rithmic effects are to be seen in lattice results of the Dirac

radius.

2. Pauli form factor F2ðq2Þ
Figure 16 shows the momentum-transfer dependence of

our results for the Pauli form factor at each quark mass.

These values are tabulated in Table IV. The form factor is

renormalized by F1ð0Þ.
This form factor can also be described by the conven-

tional dipole form,

F2ðq2Þ ¼
F2ð0Þ

ð1þ q2=M2
2Þ2

; (26)

with M2 ¼ 0:78ð2Þ GeV and F2ð0Þ ¼ 3:705 89 extracted

from fits to experimental data. In contrast to the Dirac form

factor, there are two parameters, the overall strength F2ð0Þ
and the dipole massM2: the former gives the isovector part

of the anomalous magnetic moment,�p ��n � 1, and the

latter the Pauli mean-squared radius, hr22i ¼ 12=M2
2, as in

the Dirac case. We fit the form factor with these two

parameters.

To check reliability of the dipole fit, we measure the

ratio of the Sachs electric and magnetic form factors,

Eqs. (2) and (3),

GMðq2Þ
GEðq2Þ

¼ �V
T ðqÞ

�V
4 ðqÞ

; (27)

which exhibits a mild q2 dependence [1,49]. At zero mo-

mentum transfer, we obtain 1þ F2ð0Þ from the ratio.

Figure 17 shows that the result for GEðq2Þ=GMðq2Þ � 1
at q2 ¼ 0, obtained via a linear fit in q2, is consistent with
the determination from a dipole fit of F2ðq2Þ.

In Fig. 18 we present the anomalous magnetic moment

of the nucleon, determined by the dipole fit presented in

Table V, together with some other lattice QCD calculations

and the experimental value. Our present results slightly

decrease with the pion mass, in agreement with previous

lattice calculations [1,23]. They extrapolate well linearly in

the pion mass squared and result in a value 26% smaller

than the experiment. This result at the physical pion mass is

consistent with those of previous calculations [1,19] using

a linear fit.

We present in Fig. 19 the result of the Pauli rms radius.

These results are obtained from a dipole fit and summa-

rized in Table V. Some other lattice QCD calculations

[1,23] are also plotted in the figure for comparison. We
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with the ratio of electric and magnetic form factors
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find the lightest point to be slightly smaller than the results

at the other quark masses, albeit with a large error. Thus,

we consider this pion mass dependence is due to statistics,

not a finite-volume effect as in the axial charge, and this is

confirmed by our results from the smaller volume simula-

tions in Fig. 20. The results are reasonably fitted by a linear

function of the pion mass squared, and we obtain hr22i1=2 ¼
0:64ð6Þ fm at the physical pion mass. This result again is

27% smaller than the experimental value, 0.88(2) fm.

Here again the quantity is expected to diverge as 1=
ffiffiffiffiffiffiffi

m�
p

in the chiral limit in HBChPT [64–66], however our results

do not indicate such divergence. In contrast to the Dirac

radius case, perhaps because of the larger statistical errors,

HBChPT can simultaneously fit the experiment and our

data. The fit inspired by a prediction [64],

A
ffiffiffiffiffiffiffi

m�
p

�

1þ Bm� þ Cm� log

�

m�

�

��

; (28)

where A, B, and C are free parameters (A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2AMN=8�F
2
�F2ð0Þ

q

in HBChPT), � is the scale and fixed

to 1 GeV for simplicity, gives a larger

�2=d:o:f:ðdegrees of freedomÞ ¼ 3:4. We cannot obtain a

reasonable �2=d:o:f: without fixing the coefficient A using

the experimental values. We need further light quark mass

calculation with better statistics to test the prediction in the

lattice QCD calculation.

C. Form factors of the axial-vector current

In this subsection we show the form factors obtained

from the axial-vector currents, FAðq2Þ and FPðq2Þ. They
are extracted from the ratios of three- and two-point func-

tions defined in Eqs. (14) and (15). Figure 21 shows that the

typical plateaus of the ratios with the A3 component of the

current at mf ¼ 0:01 are reasonably flat in the middle time

region between the source and sink operators. We plot the

ratios �A
Lðq3 ¼ 0; tÞ and �A

Lðq3 � 0; tÞ separately, since

�A
Lðq3 � 0; tÞ contains both form factors, while �A

Lðq3 ¼
0; tÞ contains only FAðq2Þ. It is worth noting that there is no
�A

Lðq3 ¼ 0; tÞ in the case of ~q / ð1; 1; 1Þ. �A
Tðq; tÞ has a

slope in the range t ¼ 1–8 with large statistical errors as

shown in the bottom panel of Fig. 21. We consider the

slope to be caused by poor statistics in the data. The values

of the matrix elements for all the ratios are determined by

constant fits with the range of t ¼ 4–8.
Using the relations Eqs. (18) and (19), the two form

factors are determined through the following equations

which depend on the spatial momentum transfer in the

three-point function:

FAðq2Þ ¼
(

�A
Lðq3 ¼ 0Þ for n ¼ 0; 1; 2; 4

�A
Lðq3 � 0Þ þ q2

3

MNðMNþEðqÞÞ�
A
TðqÞ for n ¼ 3

; (29)

FPðq2Þ ¼
(

�A
TðqÞ=MN for n ¼ 2; 3

MNþEðqÞ
q2
3

ð�A
Lðq3 ¼ 0Þ ��A

Lðq3 � 0ÞÞ for n ¼ 1; 4
; (30)
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FIG. 20 (color online). Comparison of F2 with larger and

smaller volumes denoted by closed and open symbols, respec-

tively, at each quark mass.

0 0.1 0.2 0.3 0.4

m
π

2
[GeV

2
]

0.4

0.6

0.8

1

1.2
N

f
=2+1 DWF (2.7fm)

N
f
=2 DWF (1.9fm)

N
f
=0 DWF (3.6fm)

N
f
=2 Wilson (1.9fm)

N
f
=0 Wilson (3.0fm)

HBChPT
experiment

〈r
2

2
〉
1/2

[fm]
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where n ¼ ~q2 � ðL=2�Þ2. The results for the two form

factors are summarized in Table IV.

1. Axial-vector form factor FAðq2Þ
Figure 22 shows the axial-vector form factor at each

quark mass, which is renormalized by the Dirac form

factor at zero momentum transfer, ZV ¼ 1=F1ð0Þ. This
renormalization is valid due to the good chiral properties

of DWF. At zero momentum transfer, the result at mf ¼
0:005 is smaller than the other masses which corresponds

to the bending of gA discussed in Sec. IVA. Furthermore,

the q2 dependence of the results at the lightest quark mass

is milder than the other masses.

In the following we focus only on the momentum-

transfer dependence of the axial-vector form factor: We

normalize the form factor by its value at zero momentum

transfer, respectively, for each quark mass. Figure 23

shows the results after these normalizations,

FAðq2Þ=FAð0Þ. For the heavier three masses, the results

tend to decrease with quark mass while the dependence

is opposite for the lightest mass. Similar to the vector-

current form factors, the experimental axial-vector form

factor is also traditionally considered to be fitted well by
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FIG. 22 (color online). The axial-vector form factor, FAðq2Þ,
renormalized by ZV ¼ 1=F1ð0Þ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

q
2
[GeV

2
]

0.4

0.5

0.6

0.7

0.8

0.9

1

m
f
=0.005

m
f
=0.01

m
f
=0.02

m
f
=0.03

experiment

F
A

(q
2
)/F

A
(0)

FIG. 23 (color online). The axial-vector form factor, FAðq2Þ,
normalized at q2 ¼ 0. The dashed line denotes a fit to experi-

mental data.
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the dipole form,

FAðq2Þ
FAð0Þ

¼ 1

ð1þ q2=M2
AÞ2

; (31)

with the experimental data giving a best fit of MA ¼
1:03ð2Þ GeV [14] for the axial-vector dipole mass. The

experimental fit is shown by the dashed line in Fig. 23.

If the dipole form is valid in the entire q2 region, we can
extract the effective axial dipole mass,

Meff
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FAð0Þ=FAðq2Þ
p

� 1

v

u

u

t (32)

at each nonzero value of q2. Figure 24 shows that the

effective dipole mass at mf ¼ 0:01 is reasonably flat.

This means that the form factor behaves as a dipole, as in

the cases of the Dirac and Pauli form factors. We fit the

form factor with the dipole form, and the fitted dipole mass

is consistent with the effective one, as shown in Fig. 24 by

the solid line with the 1 standard deviation (dashed lines).

Figure 24 shows that the lightest quark mass data is also

well explained by the dipole form, although the results do

not approach the experimental value.

The axial rms radius is determined from the dipole mass,

hr2Ai1=2 ¼
ffiffiffiffiffiffi

12
p

=MA; (33)

and is 0.666(14) fm in the experiment. The calculated axial

rms radius from the fits is shown in Fig. 25 plotted as a

function of the pion mass squared. The results are summa-

rized in Table VII. While the result increases as the pion

mass decreases, the lightest result significantly decreases.

This pion mass dependence is similar to that observed in

the axial charge in Fig. 8. This, however, is not clear in

FAðq2Þ renormalized by ZV ¼ 1=F1ð0Þ obtained on our

smaller volume as shown in Fig. 26: the data at the lightest

quark mass on the smaller volume shows a significant

deviation from the larger volume result, but the statistical
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est point (striped circle). Square, up triangle, diamond, and left

triangle denote two-flavor [2] and quenched DWF [1], and two-

flavor and quenched Wilson [27] calculations, respectively. The

star denotes the experimental result [14].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

q
2
[GeV

2
]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

m
f
=0.01

m
f
=0.005

experiment

M
A

eff
[GeV]

FIG. 24 (color online). Effective dipole massMeff
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(dashed line) is also presented.

TABLE VII. Axial charge rms radius hr2Ai1=2, nucleon-pion coupling g�NN , and induced

pseudoscalar coupling gP. g�NN is calculated with the definition equation (37) and

Goldberger-Treiman (GT) relation equation (38) denoted as def. and GT in the table, respec-

tively. The linear fit results at m
phys
� ¼ 135 MeV obtained without the lightest quark mass are

also presented.

mf 0.005 0.01 0.02 0.03 m
phys
�

hr2Ai1=2 [fm] 0.366(36) 0.469(21) 0.423(25) 0.413(17) 0.493(33)

g�NN (def.) 8.53(82) 10.38(94) 11.1(1.3) 12.0(1.1) 9.5(1.6)

g�NN (GT) 11.84(45) 13.12(47) 12.66(78) 13.56(57) 12.79(79)

gP 6.71(60) 8.45(71) 10.31(88) 11.93(93) 6.6(1.2)
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errors are too large to allow for a more quantitative

comparison.

Here, we similarly suspect this behavior of the larger

volume to be caused by a large finite-volume effect. A

similar behavior is also seen in previous two-flavor results

as presented in Fig. 25. DWF [2] and Wilson [27] fermion

calculations on a smaller volume ð1:9 fmÞ3 have similar

pion mass dependences, but the radius begins to decrease at

heavier pion mass. Once again, this behavior is quite

similar to the case of the axial charge. Moreover, previous

quenched results obtained on large volumes [1,23] do not

exhibit such strong pion mass dependence, which is also

shown in Fig. 25. Figure 27 shows the same results of the

rms radii, but plotted as a function of m�L. The scaling of

the rms radius with m�L is not as compelling as the axial

charge case, but from the figure we estimate that m�L > 6
is required to obtain the axial charge rms radius without

significant finite-volume effects. Needless to say, other

systematic errors, e.g., due to heavier quark mass than

the physical one, should be removed to reproduce the

experimental value.

The lightest pion mass data is omitted in the following

chiral extrapolation, because we cannot rule out a large

systematic error due to the finite volume of the simulations

as discussed above. A linear fit to the heaviest three quark

masses and extrapolation to the physical pion mass yields

hr2Ai1=2 ¼ 0:49ð3Þ fm. The fit result is presented in Fig. 25

and reproduces 73% of the experimental value.

2. Induced pseudoscalar form factor FPðq2Þ
The induced pseudoscalar form factor, FPðq2Þ, is ex-

pected to have a pion pole, so its momentum-transfer

dependence should be different from the other form fac-

tors. At the lightest quark mass this form factor is sus-

pected to have a large finite-volume effect, since it is

obtained from the matrix element of the axial-vector cur-

rent together with the axial-vector form factor, as discussed

in the previous subsection.

Figure 28 shows 2MNFPðq2Þ renormalized with ZV ,

plotted against the momentum transfer squared at each

quark mass. We immediately notice that this form factor

has a much larger q2 dependence than the other form

factors. In addition, the results from all quark masses

appear to be consistent with the experimental data [15].

Note that our statistical error is much smaller than the

experiment.
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experimental result [14] and its 1 standard deviation.
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The induced pseudoscalar form factor is related to the

axial-vector form factor through the so-called partially

conserved axial-vector current (PCAC) relation which is

a manifestation of spontaneously broken chiral symmetry.

In the traditional PCAC current algebra with pion-pole

dominance (PPD), the PPD form,

FPPD
P ðq2Þ ¼ 2MNFAðq2Þ

q2 þm2
�

; (34)

is obtained at m� � 0. The denominator on the right-hand

side of this relation corresponds to the pion pole. We

investigate the validity of this relation in our results

through a quantity,

	PPD ¼ ðq2 þm2
�ÞFPðq2Þ

2MNFAðq2Þ
: (35)

If the relation holds we obtain unity for this quantity at all

q2. Figure 29 shows 	PPD calculated using our lattice

results for FA and FP. There is no significant q2 depen-

dence, and while the values are close to unity, they are

systematically less than one. We fit these results by a

constant for each quark mass, whose results are presented

in Fig. 29 and Table VIII. While all the fit results are

consistent with the experimental data [15,16,67] within

the larger error of the experiments, they are about 10%–

20% smaller than the prediction of the PPD form.

We should note that the quantity at the lightest quark

mass looks similar to the others, but FAðq2Þ at mf ¼ 0:005

is suspected to have a large finite-volume effect as dis-

cussed in the last subsection. This means that FPðq2Þ at
mf ¼ 0:005 is expected to suffer from a similarly sized

effect at the same quark mass. Thus, it appears that the two

large finite-volume effects cancel in this ratio.

We check the consistency of the pole mass in FPðq2Þ
with the measured pion mass at each quark mass by

observing that the pole mass is given by

ðmpole
FP

Þ2 ¼ 2	PPDMNFAðq2Þ
FPðq2Þ

� q2; (36)

where we use the fact that 	PPD � 1 in our data. Figure 30

shows that the ratio ½mpole
FP

=m��2 is reasonably consistent

with unity and has no large q2 dependence except for the

lightest quark mass point, which has large statistical error.

The values obtained from a constant fit are presented in

Table VIII. This consistency suggests that FPðq2Þ does

indeed have a pion-pole structure, which is consistent

with the PPD form, however 	PPD � 1 in our data. We

confirmed that m
pole
FP

and 	PPD obtained from a monopole

fit of 2MNFA=FP are reasonably consistent with the above

results, but have larger errors.

The pion-nucleon coupling is related to the induced

pseudoscalar form factor via the relation

g�NN ¼ lim
q2!�m2

�

�ðq2 þm2
�ÞFPðq2Þ

2F�

�

; (37)

where F� ¼ 92:4 MeV. Combining the above relation

with the PPD form, Eq. (34), we obtain the Goldberger-

Treiman (GT) relation [13],

g�NNF� ¼ MNgA: (38)

In this relation we assume FAð0Þ � FAð�m2
�Þ. As such it
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FIG. 30 (color online). Ratio of the pole mass in FPðq2Þ and
measured pion mass.
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TABLE VIII. 	PPD and m
pole
FP

.

mf 0.005 0.01 0.02 0.03

	PPD 0.833(25) 0.837(29) 0.903(32) 0.873(31)

½mpole
FP

=m��2 1.044(39) 1.009(19) 0.940(24) 0.977(20)
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suffers from a small mismatch in momentum transfer.

Nevertheless, if we substitute the experimental values for

the quantities, we obtain g�NN ¼ 12:9.
Figure 31 shows two calculations for the�NN coupling,

g�NN: one uses the definition of g�NN and another the GT

relation at each quark mass, plotted against the pion mass

squared. In determining g�NN , we use the measured pion

decay constant at each quark mass from Ref. [47]. Results

for g�NN from both methods are given in Table VII. From

Fig. 31, we observe that g�NN obtained from both methods

displays only a mildm2
� dependence, with the exception of

the lightest mass results which show a significant down-

ward shift away from the trend set by the three heavier

mass values. This of course is another manifestation of the

large finite-size effect observed in the axial charge (see

Sec. IVA). Hence, for the chiral extrapolation we simply

employ a linear fit form and exclude the lightest mass

point. We obtain the results at the physical pion mass,

g�NN ¼ 9:5ð1:6Þ from the definition equation (37), and

g�NN ¼ 12:8ð8Þ from the GT relation equation (38). The

value obtained using the GT relation agrees with a recent

estimation of the coupling g�NN ¼ 13:3ð9Þ obtained from

forward�N scattering data [68], and also with the previous

result, g�NN ¼ 11:8ð3Þ, from a quenched simulation per-

formed using the Wilson action [27] estimated by the GT

relation. The result from the definition equation (37), on

the other hand, is consistent with a quenched DWF deter-

mination, g�NN ¼ 10:4ð1:0Þ [1], obtained from FPð�m2
�Þ.

Rigorously speaking, the GT relation is not valid in our

data, since our data do not satisfy the PPD form due to

	PPD � 0:85. Thus, the difference between the two deter-

minations of g�NN can be explained by 	PPD. Further study

of the GT relation is an important future work, since the

relation should be satisfied in the chiral limit, and at zero

momentum transfer.

The induced pseudoscalar coupling for muon capture on

the proton, gP ¼ m�FPðq2cÞ where q2c ¼ 0:88m2
�, is de-

fined with the muon massm� and the induced pseudoscalar

form factor FP at the specific momentum transfer where

the muon capture occurs, pþ�� ! nþ ��.

Since FPðq2Þ has significantly large pion mass and

momentum-transfer dependences due to the pion pole,

we subtract this contribution before performing the mo-

mentum transfer and chiral extrapolations. To do this, we

first define the quantity with pion-pole subtraction by

�F Pðq2Þ ¼ ðq2 þm2
�ÞFPðq2Þ (39)

at each q2 and then extrapolate this to the required mo-

mentum transfer q2c. The induced pseudoscalar coupling is

estimated by the normalization factor with the physical

pion mass

gp ¼ m�

�FPðq2cÞ
q2c þ ðmphys

� Þ2
; (40)

where m
phys
� ¼ 135 MeV, at each quark mass as shown in

Fig. 32. The figure shows that the result is almost linear as a

function of the pion mass squared and decreases toward the

experimental result for the three heavier mass values.

Again the lightest mass result is an exception caused by

the finite-volume effect in gA, as discussed in Sec. IVA.

The result at the physical pion mass, presented in

Table VII, is obtained from a linear fit to the heaviest three

pion masses and is consistent with the recent experiment

[16] and analysis [67]. This result also agrees with the
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0 0.1 0.2 0.3 0.4

m
π

2
[GeV

2
]

8

12

16

M
N

g
A

/F
π

[(q
2
+m

π

2
)F

P
(q

2
)/2F

π
]
q

2
=-m

π

2

experiment

g
πNN

FIG. 31 (color online). Two measurements of the �NN cou-

pling with the Goldberger-Treiman relation and definition of

g�NN . The experimental value [68] is indicated by the star. The

dashed lines with error band present linear extrapolations of our

data without lightest point.

TAKESHI YAMAZAKI et al. PHYSICAL REVIEW D 79, 114505 (2009)

114505-18



previous quenched DWF result [1], while it disagrees with

a quenched Wilson determination [27,69] which is almost

half of the experimental value.

V. CONCLUSIONS

We have studied the isovector nucleon form factors with

Nf ¼ 2þ 1 flavors of dynamical quarks using the domain-

wall fermion action at a lattice cutoff of a�1 ¼ 1:73 GeV.
The form factors are calculated with four light quark

masses, corresponding to a lightest pion mass, m� ¼
0:33 GeV, and with momentum transfers down to q2 �
0:2 GeV2.

We have found the axial charge decreases significantly

at the lightest quark mass point on the larger volume while

the effect sets in for heavier quark mass on the smaller

volume. By comparing our results with those using differ-

ent volumes, numbers of flavors, and lattice fermions as a

function of the single variable m�L, we conclude that this
downward trend is caused by the finite volume used in our

calculation. The fact that such an effect is absent in

quenched and partially quenched mixed-action studies on

large volumes may be explained by the presence of un-

physical logarithms.

We have fit the data to several forms, including finite-

volume effects, and obtain gA ¼ 1:19ð6Þð4Þ, where the first
and second errors are statistical and systematic, respec-

tively, which is 7% smaller than the experimental value. In

our estimation, a spatial volume of V 	 ð3:5 fmÞ3 is re-

quired to keep the finite-volume effect at or below 1% at

m� ¼ 0:33 GeV. Hence lattice calculations should con-

tinue to push down the quark mass and increase the volume

with m�L > 6. Detailed analyses of the quark mass and

finite-volume dependence is desirable to understand the

systematic deviation from the experiment.

Our lattice results for the form factors of the vector

current are well fit by the standard dipole form. We have

evaluated the root-mean-squared radii and the difference of

the anomalous magnetic moment between the proton and

neutron from the dipole fits. The radii and the anomalous

moment are well explained by a linear function of the pion

mass squared. In the radii we have not observed divergent

quark mass behaviors predicted by HBChPT. Besides the

divergent behavior, the pion mass dependences for the

observables are quite consistent with other lattice QCD

calculations including the recent results of LHP. Because

of the linear behavior, we have concluded that the form

factors of the vector current are less sensitive to the finite-

volume effect in contrast to the axial charge. Although both

Dirac and Pauli rms radii approach to the experimental

values as the pion mass decreases, the values extrapolated

by the linear form at the physical pion mass underestimate

the experiments by about 25%. Future work will involve

simulating at lighter quark masses to search for the non-

analytic behavior predicted by HBChPT.

The axial-vector form factor is also well described by

the dipole form, even at the lightest quark mass, where the

axial charge, FAð0Þ, is suspected to have a large finite-

volume effect. The axial charge radius, obtained from the

dipole fit, has a downward tendency as a function of the

pion mass squared, which drives the radius away from the

experimental value. We have considered this dependence

to be caused by the finite volume of our simulation, as in

the case of the axial charge. We observe that our results

seem to scale as m�L, as do previous calculations using

several volumes. We have concluded that the form factors

of the axial-vector current are more sensitive to the finite

volume than those of the vector current from the observa-

tions of the finite-volume effects.

We have checked the pion-pole structure in the induced

pseudoscalar form factor with our simulations. We have

found that the pion-pole dominance form describes our

data well, with the exception that 	PPD < 1. Taking into

account that 	PPD � 1, the pole mass of the induced pseu-

doscalar form factor reasonably agrees with the measured

pion mass.

For a precision test of QCD from nucleon matrix ele-

ments, we have identified several problems that first need

to be overcome, such as finite-volume systematic errors in

the axial charge and the form factors of the axial-vector

currents, and the underestimation of the radii of the form

factors of the vector current. Further lighter quark mass and

larger volume calculations are essential to solve the prob-

lems, and such simulations are underway. Besides the

comparisons with the experimental values, it is also im-

portant future work to study why 	PPD deviates from unity.
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