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INTRODUCTION

One of the fundamental problems of nuclear phys�
ics lies in defining the properties of atomic nuclei
based on nucleon–nucleon interaction. However, an
atomic nucleus is such a complex system that several
models that describe different aspects of nuclear
dynamics necessarily emerge. Nucleon pairing is an
important manifestation of the properties of atomic
nuclei. In addition to a mean field formed by the inter�
action of all present nucleons, short�range nuclear
attractive forces, which lead to nucleon pairing, act
within an atomic nucleus. Such pairing of fermionic
nucleons produces quasiparticles that are governed by
Bose–Einstein statistics and this is manifested in the
effect of superfluidity in atomic nuclei.

Atomic nuclei, which constitute 99.9% of the bary�
onic matter in the Universe are bound systems that are
comprised of Z protons and N neutrons (Z + N = A,
where A is the mass number of a nucleus).

The dependence of the central interaction of a pair
of nucleons on the distance between them (r) is shown
in Fig. 1. Nuclear forces are short�range: as nucleons
are brought closer to each other, the attraction
becomes stronger and is maximized at r ≈ 0.8 fm, while
at r < 0.7 fm this attraction turns into repulsion. The
dependence shown in Fig. 1 takes only the central
forces into account. The interaction between nucleons
depends not only on the distance, but also on the spins
of nucleons, their mutual alignment, and their orbital
motion. Specifically, the only bound state of a pair of
nucleons (a deuteron) corresponds to a dominant state
with total angular momentum J = 1, orbital angular
momentum L = 0, and codirectional spins of nucle�
ons. The nucleon–nucleon interaction in atomic
nuclei is complicated further by its dependence on

neighboring nucleons: such an interaction in a vac�
uum differs from the interactions of nucleons in a
nuclear medium.

The properties and structure of an atomic nucleus
are highly dependent on the mass number (A) and on
the ratio between the number of protons and the num�
ber of neutrons in the nucleus. Since the discovery of
the atomic nucleus, considerable efforts have been
exerted to construct a general theory of the nucleus
that would cover the entire range of known nuclei and
have strong predictive power. This problem becomes
especially important in the present context, since
modern experimental techniques and instruments
allow one to gather data on exotic short�lived atomic
nuclei and extend the isotope chart into the region of
ultraheavy nuclei and nuclei with extreme ratios
between the number of protons and the number of
neutrons.
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Fig. 1. NN interaction in the 1S0 channel in the Argonne
v18 potential [1].
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The liquid�drop nuclear model is one of the funda�
mental models. Within the framework of this model,
the nucleus is considered to be a charged liquid drop.
This makes it possible to isolate the contributions of
volume, surface, and Coulomb energies in the nuclear
binding energy. This representation (with the inclu�
sion of the symmetry energy) formed the basis of the
semiempirical Bethe–Weizsácker formula [2, 3] for
the mass of atomic nuclei:

(1)

where M(N, Z) is the mass of an atomic nucleus com�
prised of Z protons and N neutrons, Ebind is the nuclear
binding energy (the minimum energy required to split
a nucleus into its constituent nucleons), and mn and mp

are the neutron and proton masses. Parameters a1, a2,
a3, and a4 correspond to the contributions of the vol�
ume and surface energies, the Coulomb interaction,
and the nuclear symmetry energy and are determined
from the experimental data. The authors of [3] calcu�
lated the following values of the coefficients a1, a2, a3,
and a4:

(i) The values of the coefficients a1 = 13.86 MeV
and a2 = 13.2 MeV were chosen in such a way so as to
reproduce the masses of 16O and 200Hg nuclei;

(ii) The Coulomb energy coefficient was deter�
mined from the empirical value of the radii of radioac�
tive nuclei

(iii) The symmetry energy coefficient a4 =
19.5 MeV was defined in such a way that the most sta�
ble nucleus with A = 200 had charge Z = 80.

It was immediately noticed [2, 3] that formula (1)
describes the nuclei with even Z and N. The nuclei
with odd A have larger masses and, consequently,
lower binding energies. The Bethe–Weizsácker for�
mula described the dependence of the binding fraction
ε(A) = Ebind(A)/A on the mass number A and provided
the means to explain the process of nuclear fission.
The liquid�drop model made it possible to describe the
excited states of nuclei as surface oscillations. How�
ever, the presence of “magic” N and Z values (N, Z =
2, 8, 20, 28, 50, 82, and 126), which increased the sta�
bility of the corresponding atomic nuclei in comparison
with their neighboring nuclei, and quantum properties,
such as nuclear spin and parity, were explained only
after the one�particle shell model was introduced [4].

The interaction of nucleons within a nucleus may
be presented as a sum of the mean self�consistent field
and the residual interaction. In the simplest one�par�
ticle shell model, nucleons travel independently of
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each other in the self�consistent field of a common
center of force. The residual interaction is taken to be
negligibly small and is ignored. The shell model of a
nucleus was proposed by analogy with the model of the
electron shells of an atom, as both nuclei and atoms
exhibit a certain “periodicity” of their properties that
may be explained by the filling of shells [3]. Strongly
bound systems, such as an alpha particle and a 16O
nucleus may be presented as completely filled s� and p�
shells. Solving the Schrödinger equation for a centrally
symmetric oscillatory potential, one obtains the fol�
lowing nuclear shell filling numbers for nucleons of
the same type: 2, 8, 20, 40, 70, and 112. The sequence
of filling number changes is altered in a spherical
potential with a radial dependence of the form of an
infinite rectangular well: 2, 8, 20, 34, 40, 58, 92, and
132. This representation made it possible to explain
the increased stability of systems with 2, 8, or 20 neu�
trons (or protons) [3].

The introduction of the spin–orbit interaction
VLS(L ⋅ S) into a self�consistent field made it possible
to determine the theoretical basis for the emergence of
the experimentally derived magic numbers 28, 50, 82,
and 126 and to correctly reproduce the quantum prop�
erties of ground and certain excited states of nuclei
that differ from the magic ones by a single nucleon [4].
The resultant Hamiltonian of the shell model is a sum
of one�particle Hamiltonians:

(2)

where Ti is the kinetic energy of the ith nucleon and
V(ri) is the mean self�consistent potential. The eigen�
value problem resolves itself to a set of independent
one�particle Schrödinger equations:

(3)

where ψi(ri) and �i are the eigen wavefunction and
energy of the ith nucleon. The complete wavefunction
of a nucleus is an antisymmetrized product of one�
particle wavefunctions, and the energy of a nucleus is
a sum of one�particle nucleon energies:

The ground state of doubly magic nuclei in the
one�particle shell model should have zero spin J and
positive parity P (JP = 0+). This agrees with the exper�
imental data. More than 800 known even–even nuclei
are peculiar in that all of them have their ground states
with spin and parity JP = 0+. This fact is the most strik�
ing evidence that the residual interaction plays an
important role and leads to pairing of nucleons of the
same type within an atomic nucleus.

The tendency of particles with spin s = 1/2 to form
bound pairs with total momentum J = 0 is observed in

H0 Ti V ri( ) VLS L S⋅( )+ +[ ],
i 1=

A

∑=

Ti V ri( ) VLS L s⋅( )+ +[ ]ψi ri( ) �iψi ri( ),=

E �i.

i 1=

A

∑=



MOSCOW UNIVERSITY PHYSICS BULLETIN  Vol. 69  No. 1  2014

NUCLEON PAIRING IN ATOMIC NUCLEI 3

various many�fermion systems. For example, this
effect lies in the basis of the description of supercon�
duction in solid�state physics [5, 6]. The interacting
fermions in this case are electrons that form Cooper
pairs. Since Cooper pairs have integer spins, they are
not governed by the Pauli principle and the system
manifests certain properties (superfluidity) that are
characteristic of many�particle bosonic systems. The
theory of pair correlations of a superconducting type
in atomic nuclei was constructed in [7–9] and set the
stage for extensive studies of the nuclear structure
based on a semimicroscopic approach.

Various properties of a nucleus that are not repro�
duced by the shell model are indicative of the presence
of the nucleon pairing effect (e.g., see the discussion in
[10–13]). The following facts suggest that the forces of
identical nucleon pairing play a significant role in
nuclear dynamics.

The ground states of all even–even nuclei have total
momentum JP = 0+.

The composition of the nuclei. It follows from the
analysis of the atomic nuclei chart that the most ener�
getically favorable states are nuclei configurations with
an even number of nucleons of the same type:

(i) Only four stable isotopes ( , , , and

) with odd proton and neutron numbers are
known;

(ii) Only a single stable isobaric nucleus is found for
a given odd mass number A; and

(iii) Two or more stable isobaric nuclei with even
proton and neutron numbers Z and N (even–even
nuclei) may exist for a given even mass number A.

The even–odd effect. Systematic studies of binding
energies Ebind(A) show that the following rule is ful�
filled for nuclei with odd mass numbers A:

(4)

In the scientific literature, this effect is called the
even–odd staggering (EOS) of binding energy. Figure 2
shows the dependence of the binding energy in iso�
baric nuclei with A = 132 on the nucleus charge. It is
seen clearly that the binding energies are split into
three groups of nuclei: the ones with even A (even N
and Z), the ones with odd A (even N and odd Z or odd
N and even Z), and nuclei with even A and odd N and
Z. The binding energies of even–even and odd–odd
nuclei differ by ~2 MeV. The dependence of the bind�
ing energy of a nucleus with an odd A number is
located between these dependences (the dashed line in
Fig. 2 corresponds to the averaged dependence on Z
for nuclei with A = 131 and A = 133). The magnitude
of the EOS effect is defined as the deviation of the
experimental binding energy value Ebind(N, Z) from
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the averaged binding energy value for neighboring
nuclei:

(5)

(if an odd A number is obtained by adding (subtract�
ing) a neutron) or

(6)

(if an odd A number is obtained by adding (subtract�
ing) a proton).

The EOS effect amounts to about 1 MeV in the A =
130–140 range.

The even–odd effect is manifested more clearly in
the dependence of the nucleon separation energy on
mass number A. The neutron separation energy (Bn)
equals the following:

(7)

Figure 3 shows the dependences Bn(A) in calcium
35–58Ca, tin 100–138Sn, and lead 179–220Pb isotopes. The
clearly manifested sawtooth nature of the dependence
points at the pairing interaction between nucleons.
The separation energy is increased due to the addi�
tional attraction of a pair of neutrons in the case of an
even neutron number.
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Fig. 2. Dependence of the binding energy of isobaric
nuclei with A = 132 on nucleus charge Z. Squares denote
the binding energy values in nuclei with even numbers N
and Z, while triangles correspond to odd–odd N and Z.
The dashed line corresponds to the averaged values for A =
131 and A = 133. Experimental data were taken from [14].
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Figure 4 shows a schematic representation of an
atomic nucleus with even numbers N and Z in the form
of a closed doubly magic core (N – 2, Z) and two
valence neutrons. If these valence neutrons did not
interact with each other, the separation energy of a
pair of neutrons Bnn(N, Z) in the nucleus (N, Z) would
be equal to twice the neutron separation energy in the
nucleus (N – 1, Z). The difference between the energy
of separation of two neutrons in the nucleus (N, Z) and
the doubled neutron separation energy in the nucleus
(N – 1, Z) results from the residual interaction of two
neutrons Δnn(N, Z) in nucleus (N, Z):

(8)

However, since an overall reduction in the separa�
tion energy Bn is observed when A is increased (Fig. 3),
the following averaged value would be more realistic:

(9)
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A comparison of relations (8) and (5) shows that
the EOS effect magnitude is actually equal to one half
of the pairing value of two neutrons:

(10)

Energy gap. At energies lower than 1.5 MeV, the
spectra of even–even nuclei exhibit a significantly
lower number of excited states than the spectra of
even–odd nuclei. The majority of these levels have a
collective nature and belong to rotational or vibra�
tional spectra.

Figure 5 shows the spectra of the low�lying states of
nuclei with even and odd A using the example of cal�
cium 42–45Ca isotopes. The lowest excited states in
even–even isotopes 42,44Ca are located in the energy
region E* > 1 MeV, while the lowest excited states in
odd isotopes 43,45Ca lie at 373 and 174 keV. This dis�
crepancy may be explained if one takes into account
the fact that the bond between paired nucleons has to
be severed in order to form the lowest one�particle
states in an even–even nucleus.

Moments of inertia. The moments of inertia of
even–even nuclei calculated theoretically within the
framework of the independent particle model are 2–
3 times higher than the experimental values. In addi�
tion to this, the moments of inertia of odd nuclei are
significantly higher than the moments of inertia of
neighboring even–even nuclei and the difference is
many times greater than the contribution from a single
additional nucleon. If the pairing effects are taken into
account, the theoretical values come into agreement
with the experimental ones. This is indicative of the
presence of a superfluid state of nuclear matter.

Deformations. In the independent particle model,
spherical ground states exist only in the nuclei with
completely filled shells. All the nuclei with incomplete
shells are deformed. However, it follows from the exper�
imental data that the nuclei in the vicinity of magic
nuclei also have spherical ground states. The transition
to an ellipsoid shape occurs when about a quarter of the
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Fig. 3. Dependence of the neutron separation energy (Bn) on neutron number N in Ca, Sn, and Pb isotopes (experimental data
were taken from [14]). The sawtooth dependence Bn(A) is explained by the nucleon pairing effect in atomic nuclei. An increased
variation of the neutron separation energy at N = 20, 28, 50, 82, and 126 is attributed to the filling of nuclear shells.
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nucleus (N, Z). Δnn is the pairing energy of two neutrons
above a closed magic core (N – 2, Z).
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vacancies in the last shell become filled. As the shell is
filled further, the deformation rapidly grows stronger
and is maximized when the shell is half filled.

Low�lying 2+ states. It is not possible to describe
the low�lying 2+ levels in nuclei in the vicinity of magic
numbers within the framework of the shell model
without pairing. These levels are in most cases
described as quadrupole oscillations in the nucleus.
This also points to the presence of strong correlations
between nucleons.

If the 2+ levels are to be interpreted as a manifesta�
tion of vibrational or rotational degrees of freedom,
the spectrum of a nucleus should contain a set of
excited states with a certain sequence of spin and par�
ity JP values and a certain ratio between the nucleus
excitation energies. Figure 6 shows two typical exam�
ples of spectra of a collective nature: a rotational one
and a vibrational one. Each spectrum has a certain
sequence of levels and a distinctive ratio between the
excitation energies. 

Figure 6a shows the spectrum of rotational states of
180Hf. In the case of a rotational spectrum, the nucleus
excitation energy is proportional to J(J + 1), and the
distance between the levels increases with J. The
experimental excitation energy values corresponding
to different levels are shown on the right and the results
of calculations within the framework of the simplest
rigid rotator model normalized to the energy of the
first excited state E(2+) = 93 keV are put in brackets. It
can be seen that the relationship E(4+)/E(2+) = (4 ×
5)/(2 × 3) = 3.33 holds true for low�lying excitations.

Figure 6b shows the spectrum of low�lying states of
114Cd. In the case of quadrupole oscillations, the

nucleus has an equidistant spectrum with a distinctive
sequence of levels. The energies of a group of levels
E(0+, 2+, 4+) and the first excited state E(2+) have a 2
: 1 relationship. Thus, neither the vibrational nor the
rotational spectra suggest that the E(4+)/E(2+) ratio is
significantly lower than 2. Figure 7 shows a chart of the
ratio of energies of the first excited states E(4+)/E(2+)
as a function of Z and N. Dark regions corresponding
to E(4+)/E(2+) < 2 form wide bands located along the
magic number lines. It can be seen from Fig. 8 that
entire chains of isotopes and isotones fall within the
E(4+)/E(2+) < 2 region. Excited states of an even parity
2+ and 4+ and a non�rotational and non�vibrational
nature are present in the nuclei that are located in the
vicinity of magic nuclei. As will be shown below, these
states also have a collective nature resulting from
nucleon pairing in the nuclei that have pairs of identi�
cal nucleons in the outer shell.

1. ESTIMATING THE PAIRING ENERGY 
VALUE USING THE EXPERIMENTAL DATA 

ON NUCLEAR�BINDING ENERGIES

The Bethe–Weizsácker formula (1) for a mass sur�
face reproduces the binding energy values of even–
even nuclei well. The correction for the even–odd
(EOS) effect is defined by the pairing interaction
energy and is introduced in the following way:

(11)Epair
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The parameters of analytical function δ(A) (11) are
determined by fitting the experimental values of the
even–odd effect Δn (5) and Δp (6).

The determination of Δn and Δp is based on the
assumption that the masses of nuclei exclusive of the
pairing effect are well described by a smooth function
of Z and N. The even–odd (EOS) effect magnitude Δn

calculated based on three experimental binding energy
values is then equal to the following:

(12)

However, this linear interpolation does not take into
account the mass surface curvature and it systemati�
cally overestimates the EOS magnitude.

The authors of [17] proposed a modified formula
that is averaged over four binding energy values. For an
even neutron number,

(13)

where Bn(N, Z) is the neutron separation energy in
nucleus (N, Z) (7). Relationship (13) is taken with an
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opposite sign if the neutron number N is odd. For an
even proton number,

(14)

Relationship (14) is also taken with a minus sign if Z is
odd.

Expression (13) essentially gives (N, Z) aver�
aged over nuclei (N, Z) and (N – 1, Z) and in effect
compensates for the systematic error:

Figure 9 shows schemes for calculating the even–
odd EOS effect using three or four nuclear binding
energy values Ebind and presents parabolae that corre�
spond to the binding energies in even–even (upper
curve) and odd–odd (lower curve) isotopes. The
dashed line corresponds to nuclei with odd A. It can be
seen that the mass surface curvature produces a sys�
tematic error in determining the distance between
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even–even and odd–odd surfaces if the calculation is
done according to formula (12) with the use of three

Ebind  values. The deviation that results from the
mass surface curvature is partially compensated if the
calculation is done according to formula (13) with the

use of four Ebind  values.

Since the determination of Δn, p from the experi�
mental data is used primarily for obtaining the analyt�
ical dependences of the pairing energy on the number
of nucleons, the authors of certain recent papers
applied even stronger smoothing using formulas that
take five [18–20] or six [21] experimental binding
energy values into account. An increase in the number
of Ebind values that are used produces no significant
influence on the EOS calculation result; however, the
expansion of the experimental data range while mov�
ing away from the stable nuclei region may require the
use of nuclear�binding energy values with significant
errors.

Various analytical dependences of function δ(A)
are known. Experimental data sets were at first fitted
with power�law dependences δ(A) = a/Ab. Depen�
dences A–3/4 [10, 12] and A–1/2 [11, 17] became widely
used. The authors of [22] made a comparison between
dependences δ(A) = 140/A, δ(A) = 36/A3/4, and
δ(A) = 10/A1/2 and showed that function δ(A) =
12/A1/2 produced a slightly better description of the
experimental data that were available then (in 1953).
As new experimental data on nuclei away from the sta�
bility line are gathered, new estimates of parameters of
the formula for the nuclear binding energy are pre�
sented. In order to take the alteration of the ratio
between the proton and neutron numbers into
account, the dependence on the relative neutron
excess in the nucleus [21, 23–25] is introduced into
the pairing�energy parameterization, or the EOS
effect is parameterized individually for protons and
neutrons [18, 19, 26]. The efforts to take microscopic
effects into account and describe a maximally wide
range of recent experimental data led to the develop�
ment of various models that describe the entire set of
experimentally determined nuclei masses with an
accuracy of 300–600 keV [26–28]. A comparative
review of different approaches was given in [29].
Dependence A–1/3 is most frequently used as a basic
power�law dependence in analytical formulae for the
pairing energy.

Figure 10 shows the experimental EOS effect mag�

nitudes  (13, 14) as functions of A. The experi�
mental data spread allows one to use various power�
law dependences with equal facility to take into
account the correction associated with nucleon pair�
ing in the determination of the nuclear binding energy
in the region of nuclei with A > 50.

It can be seen from (11) that the additional (with
respect to an even–even configuration) energy of an

Δn
3( )

Δn
4( )

Δn p,
4( )

odd–odd nucleus equals Δp + Δn ≈ 2Δ [17]. Conse�
quently, the pairing energy of two nucleons of the same
type is defined as follows:

(15)

(16)

These definitions match the equation for Δnn (9). Fig�
ure 11 shows the dependences of pairing energies of
two neutrons Δnn(N, Z) (15) in even–even magic
nuclei Ca, Sn, and Pb on the neutron number. The
shell structure of nuclei is clearly manifested in these
pairing energies. The pairing energy Δnn maxima that
are found at N = 20, 28, 82, and 126 correspond to
completely filled neutron shells of atomic nuclei.

2. NUCLEON PAIRING AT SHELL J

The issue of the successive filling of nuclear shells
has been discussed in detail in a number of mono�
graphs (e.g., [4, 11, 12, 30]).

The effect of the pairing of two nucleons arises as a
result of the short�range attractive nucleon–nucleon
interaction. A state with an overall total momentum
J = 0 is more energetically favorable for two nucleons
of the same type at subshell j with a given j1 = j2 = j.
This can be seen from the spatial distribution of den�
sity of states shown schematically in Fig. 12. It is evi�
dent that the distribution density overlap of two nucle�
ons is maximized at θ12 = 0, π (i.e., when |mj | are
equal). Since the Pauli principle forbids states with

Δnn N Z,( ) 2Δn
4( )=

=  Bn N Z,( ) 1
2
�� Bn N 1– Z,( ) Bn N 1+ Z,( )+( ),–

Δpp N Z,( ) 2Δp
4( )=

=  Bp N Z,( ) 1
2
�� Bp N Z 1–,( ) Bp N Z 1+,( )+( ).–

Fig. 9. Scheme for calculating the EOS (the distance
between parabolae with even and odd mass numbers A)

with the use of three ( ) experimental binding energy

values (12) of four ( ) binding energy values (13) .

Δn
3( )

Δn
4( )

N
Z = Const

Ebind
Δn

(4) N

N−2

N−1 N + 1

odd�even

odd�odd

even�even

Δn
(3)

(N)
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θ12 = 0 ( ), only the combination with θ12 = π

( ) is viable. This implies pairing with total
momentum J = 0.

The wavefunction of two nucleons in a spherically
symmetric potential may be written down in the fol�
lowing form:

(17)

where ψnlm(r) = Rnl(r)Ylm(θ, ϕ) is the spatial one�

particle wavefunction, Rnl(r) is its radial part, Ylm(θ, ϕ)
are the Spherical Bessel functions, and χ(s1s2 : S) and
ξ(τ1τ2 : T) are the spin and isospin contributions to the
wavefunction. The angular part in the l1 = l2, J = 0, and
MJ = 0 case is proportional to the Legendre polyno�
mial Pl(cosθ12):

(18)

where θ12 is the classical interpretation of an angle
between two vectors of nucleon momenta j1 and j2

bound in J. This interpretation indicates the extent of
wavefunction overlap [31]:

In the case of a short�range attractive interaction, two
nucleons tend to be positioned at an angle that corre�
sponds to the maximum possible spatial distribution
overlap.

The attractive δ�potential

(19)

is a limiting case of a short�range potential and allows
one to trace certain patterns characteristic of spectra
of two�particle nuclear states for given nucleon config�
urations. Since the interaction in the simplest case
does not depend on spin variables, the spatial and spin
variables may be separated. It is convenient to start the
analysis from the LS�coupling case. The complete
wavefunction of two nucleons with orbital momenta l1

and l2 Ψ(l1l2: LM, ST) (17) should be antisymmetric,
while the spatial wavefunction of two nucleons should
be symmetric: in the δ�interaction case, r1 = r2 and the
matrix element with δ�potential in dressings of two
antisymmetric functions would equal zero. Therefore,
the spin–isospin part should be antisymmetric:

mj1
mj2

=

mj1
–mj2

=

Ψ l1l2: LM ST,( )

=  ψn1 l1m1
r1( )ψn2 l2m2

r2( )χ s1s2 : S( )ξ τ1τ2 : T( ),
m1m2

∑

1
r
��

1–( )mYlm θ1 ϕ1,( )Yl m– θ2 ϕ2,( )
m l–=

l

∑

=  2l 1+
4π

�����������Pl θ12cos( ),

θ12cos
J J 1+( ) j1 j1 1+( )– j2 j2 1+( )–

2 j1 j2 j1 1+( ) j2 1+( )
�������������������������������������������������������������.=

V r1 r2,( ) V0δ r1 r2–( )–=

S = 0, T = 1 correspond to an nn or pp pair with
antiparallel spins, and

S = 1, T = 0 correspond to an np pair with codirec�
tional nucleon spins.

The matrix element of δ�interaction is an integral

(20)

where Ψl1l2:LM(1, 2) is a symmetric wavefunction

(21)

Taking the form of the δ�function in a spherical coor�
dinate system into account

we obtain the following for integral (20):

(22)

It follows directly from relationship (22) that the sum
l1 + l2 + L should, in accordance with the properties of
coefficients of summation of angular momenta, be
even. Therefore, the overall momentum of two nucle�
ons L may take on only even values if two nucleons are
situated at the same shell (l1 = l2 = l, n1 = n2 = n). The
energy shift ΔEL of a state with a certain L (an increase
in the nuclear binding energy in the presence of a
residual δ�potential) equals

(23)

where F0(nl) is a radial integral

If L = 0, relationship (23) is simplified:

The maximum energy shift is found at L = 0 and is
increased with increasing nucleon orbital momentum l.

l1l2LM〈 |V r1 r2,( ) l1l2LM| 〉

=  V0 Ψl1 l2:LM* 1 2,( )δ r1 r2–( )Ψl1 l2:LM 1 2,( ),∫–

Ψl1 l2:LM 1 2,( ) 1

2
����� l1m1l2m2 LM( )

m1m2

∑=

× ψn1 l1m1
r1( )ψn2 l2m2

r2( ) ψn2 l2m2
r1( )ψn1 l1m1

r2( )+( )

=  2
Rn1l1 r( )Rn2l2 r( )

r2
�������������������������������

× l1m1l2m2 LM( )Yl1m1
θ ϕ,( )Yl2m2

θ ϕ,( ).
m1m2

∑

δ r1 r2–( )
δ r1 r2–( )

r1r2

������������������δ θ1cos θ2cos–( )δ ϕ1 ϕ2–( ),=

2l1 1+( ) 2l2 1+( )
4π

���������������������������������� l1 l2 L

0 0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

2
Rn1 l1

2 r( )Rn2 l2

2 r( )

r2
���������������������������� r.d∫

ΔEL 2l 1+( )2 l l L

0 0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

2

V0F0 nl( ),–=

F0 nl( ) 1
4π
�����

Rnl
4 r( )

r2
����������� r.d∫=

ΔE0 2l 1+( )V0F0 nl( ).–=
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Energy shifts at L ≠ 0 and large l � L are described by
the following relationship [32]:

(24)

The characteristic spectrum of states of the (ll : LM)
configuration is shown in Fig. 13. As expected, the
state with L = 0 is the most sensitive to the short�range
interaction, while other levels are shifted only slightly.

ΔEL

ΔE0

�������� L 1–( )!!
L!!

�����������������⎝ ⎠
⎛ ⎞

2

.∼

As L is increased, the energy shift between levels tends
toward zero. The ratio of energies E(4+)/E(2+) in the
spectrum of excited states of a nucleus (where the ref�
erence energy is taken to be equal to the ground state
energy Egs(J = 0)) is, contrary to the rotational and
vibrational states, lower than 2:

E 4+( )

E 2+( )
������������

1 ΔE4–
ΔE2

��������������� 55
64
���� 4

3
��⋅ 1.15.= = =

0 50 100 150 200 250 300
A

1

2

3

4

5

6

Δn, MeV

(b)

C/A3/4

C/A1/2

C1 + C2/A

C/A1/3

C = 23.3 ± 0.2

C = 10.77 ± 0.06

C1 = 1.19 ± 0.02; C2 = 21.7 ± 0.5

C = 6.22 ± 0.04

1

2

3

4

5

6

Δp, MeV
(a)

C/A3/4

C/A1/2

C1 + C2/A

C/A1/3

C = 24.9 ± 0.1

C = 10.97 ± 0.06

C1 = 0.63 ± 0.03; C2 = 38.9 ± 0.7

C = 6.26 ± 0.04

0

Fig. 10. Different analytical dependences approximating the EOS effect. Upper panel:  values are determined using the

experimental data from [14], and dotted, solid, dash�and�dot, and dashed curves correspond to analytical dependences δ =
C/A⎯3/4, δ = C/A–1/2, δ = C/A–1/3, and δ = C1 + C2/A, respectively. The parameters were determined by approximating the

experimental data. Lower panel: the same for .

Δp
4( )

Δn
4( )
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In passing to the jj coupling, the expression for
energy shift at T = 1 is obtained by applying the stan�
dard angular momenta recoupling procedure:

(25)

The total momentum J runs through even values

(26)

In the T = 0 case (np pair), the total momentum
takes on odd values, and the energy shift for these val�
ues equals the following [30]:

(27)

The relative energy shift values ΔEJ/ΔE0 for nn and
pp pairs (T = 1) and j ranging from 5/2 to 13/2 are pre�

ΔEjj:J T = 1( )

=  1
2
��V0F0 nl( ) 2j 1+( )2 j j J

1/2 1/2– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

2

.–

JP 0+ 2+ 4+… Jmax
P

 = 2j 1–( )+( )., ,=

ΔEjj:J T = 0( ) 1
2
��V0F0 nl( ) 2j 1+( )2–=

× j j J

1/2 1/2– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

2

1 2j 1+( )2

J J 1+( )
�����������������+ .

sented in Table 1. Since the level splitting in a multiplet
depends only on the angular part and is defined by the
coefficients listed in Table 1, one may obtain the spec�
trum of low�lying states using an experimental
E(jj : Jmax) value. Figure 14 shows the spectrum of low�
lying excited states of 210Po. The experimental excita�
tion energy values [15] are shown on the right. The
results of calculating the multiplet energies on the
assumption that a pair of protons above the doubly
magic 208Pb core is in state 1h9/2 are put in brackets.
The calculation results are in a good agreement with
the experimental data. It should be noted that the
ground state of a pair of protons JP = 0+ could be
described more precisely as a complex of one�particle
configurations with eigenvalue differences that do not
exceed ΔE. In the case of 210Po, the main contribution
of configuration (1h9/2)

2π is supplemented with signif�
icant additions of other states:

Thus, the 210Po nucleus in its ground state is not a sys�
tem of independent particles, but a system of indepen�
dent particle pairs [13].

A low magnitude of splitting of levels with J = 2+,
4+, 6+, 8+ of the 210Po ground state multiplet allows
one to describe these levels as degenerate states of the
one�particle shell model in the pairing interaction
approximation. Racah studied the problem of N
degenerate states at shell j with a pairing interaction;
these studies resulted in the construction of the senior�
ity scheme [33]. The pairing interaction between
nucleons in this scheme acts only in the state of maxi�
mum correlation of the pair of valence nucleons (i.e.,
paired particles are particles with the maximum wave�
function overlap, ). Since the pairing
interaction Hamiltonian acts only on the state with
J = 0, it is shifted downward in energy and corre�
sponds to the state with seniority s = 0 (s is the number

Po
210

g.s.| 〉 c1 1h9/2( )J 0=
2π| 〉[ c2 2f7/2( )J 0=

2π| 〉+≈

+ c3 1i13/2( )J 0=
2π| 〉 …] Pb

208
g.s.| 〉.+

mj1
–mj2

=

5

2416 32 N

4

3

2

1

Δnn, MeV

Z = 20

64 80 N

1.0

0.5

Δnn, MeV

Z = 50

56 72 88 11296 128 N

2.5

1.5

1.0

Δnn, MeV

Z = 82

104 120 13620 28 36

(a) (b)

1.5

2.0

2.5

3.0

3.5 (c)3.0

2.0

Fig. 11. Neutron pairing energies Δnn in even–even (a) Ca (Z = 20), (b) Sn (Z = 50), and (c) Pb (Z = 82) isotopes. The pairing
energy Δnn maxima found at N = 20, 28, 82, and 126 correspond to completely filled neutron shells. The values of Δnn were deter�
mined using the data from [14].

j1

j2
θ12

Fig. 12. Schematic representation of the overlap of spatial
distributions of wavefunctions of two nucleons in state j1,
j2. The overlap is maximized at j1 = j2 and θ12 = 0, π.
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of unpaired particles). The other states are not shifted
and have s = 2. The pairing interaction spectrum is
shown in Fig. 15b. It can be seen that a downward shift
of the state with J = 0 creates an energy gap between
the ground state J = 0 and the first excited state J = 2+

of a pair of nucleons in an atomic nucleus.
Further development of the theory of pairing inter�

action of nucleons is associated with the Bardeen–
Cooper–Schrieffer (BCS) model [5] and the Bogoli�
ubov transformations [6]. The basis of eigen wavefunc�
tions in the BCS theory is a set of eigenstates of the
Hamiltonian H0 + hpair that includes both the shell
model Hamiltonian H0 (2) and the residual pairing
interaction hpair. The ground state of even–even nuclei
corresponding to this basis has a momentum JP = 0+

and is a “condensed” state. Since lower “one�parti�
cle” excited states are formed upon the pair break�
down, their energy should be higher than 2Δ. Such
excitations are called the quasiparticle ones and are
formed from particle and hole excitations relative to
the ground state of doubly magic nuclei. The energy of
a quasiparticle at shell j equals the following:

where �j is the one�particle energy in neglect of the
residual interaction (relationship (3)). One�particle
excited states formed as a result of the pair breakdown
in even–even nuclei are two�quasiparticle states (sim�
ilar to particle–hole states in doubly magic nuclei).
Such states lie above the minimum energy 2Δ (2  if
�j = 0).

�̃j �j
2 Δ2+ ,=

�̃j

The energy�gap parameter in the BCS theory is
related to the energies of the ground states of the
nuclei:

This means that the ΔBCS parameter corresponds to
the even–odd EOS effect and its definition matches
the definition of the pairing interaction energy Epair in
the Bethe–Weizsácker formula. Since the energy gap
parameter Δ in the BCS theory should not depend on
A, an attempt is made to separate the contributions of
the BCS pairing and many�particle effects in the EOS
parameterization. The role that the additional contri�
butions to EOS play has been actively discussed [34–
37]. The authors of [37] proposed a parameterization

1
2
�� E A 2+( ) E A( ) 2E A 1+( )–+( ) ΔBCS.≈

0
25/256

9/64
1/4

1 0

2
4
6
∞
L

ΔE0

Fig. 13. Spectrum of states of the (ll : LM) configuration.
Normalized values of the state energy shift |ΔEL/ΔE0 | cal�

culated in the l � L limit (relationship (24)) are shown on
the left.

Table 1. Relative energy shift value ΔEJ/ΔE0 in the case of a pair of valence protons or neutrons at subshell j

J = 0 2 4 6 8 10 12

j = 5/2 1 0.2285 0.0952

7/2 1 0.2381 0.1169 0.0583

9/2 1 0.2424 0.1259 0.0746 0.0403

11/2 1 0.2448 0.1305 0.0823 0.0531 0.0300

13/2 1 0.2461 0.1333 0.0866 0.0596 0.0403 0.0234

8+

6+

4+

2+

0+

1.51

JP

1.47 (1.50)
1.43 (1.42)

1.18 (1.23)

E*, MeV

0
210

84Po

Fig. 14. Spectrum of low�lying excited states of 210Po. The
experimental excitation energy values [15] are shown on
the right. The results of calculating the energies of the
ground state multiplet for the δ�potential normalized to

energy E*(8+) of the excited state  = 8+ are put in

brackets.

Jmax
P
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for EOS that takes the form of a sum of two sum�
mands:

(28)

where the constant C1 is related to the BCS effect and
the contribution inversely proportional to A effectively
takes the mean field influence into account. The pro�
cedure of fitting the parameters using different exper�
imental data groups and Δ definitions (13) and (14)
revealed that the contribution of the BCS pairing
interaction to EOS amounts to 75–80% [37]. Figure
10 shows analytical dependence (28) with the values of
coefficients C1 and C2 determined using the entire set
of currently known binding energy values.

3. GROUND STATE MULTIPLETS 
OF EVEN–EVEN NUCLEI

3.1. Multiplets of Nuclei with a Pair of Neutrons
or Protons above a Magic Core

The surface δ�interaction was introduced [30, 38–
41] as a simple scheme for calculating the structures of
atomic nuclei. A sole adjustable parameter character�
izing the interaction strength was determined either by
fitting the energy of the first excited state 2+ or from
the EOS effect magnitude fitting [31, 39]. The authors
of [42] analyzed nuclei with a pair of nucleons (holes)
above a magic core where the δ�interaction parameter
V(r1, r2) = –V0(A)δ(r1 – r2) was determined from an
experimental data set based on the excited states of
nuclei. Taking into account the dependence V0(A) =
v0A–2/3 for A > 20 (in the case of neutron pairs) and
A > 50 (in the case of proton pairs), the authors
obtained the following values of coefficient v0:

(29)

A more complex dependence on V0(A) was used for
light nuclei.

Δ C1 C2/A,+=

v0 protons( ) 11.4 0.9 MeV;±=

v0 neutrons( ) 10.3 1.4 MeV.±=

The values of energy E(Jmax)
fit of levels | jj : Jmax =

2j – 1〉 calculated in [42] using these coefficients are
listed in the fourth column of Table 2. The basic con�
figurations of a pair of valence nucleons or holes are
listed in the second column (quantum numbers nlj are
put in brackets, and indices 2π and 2ν indicate the
nucleon number and type). It is assumed that the main
contribution to the ground state multiplet is provided
by the states with a pair of nucleons at a shell that is the
closest to the filled core.

The last column of Table 2 lists the pairing energies
of nucleons of the same type Epair = ΔNN (the nucleon
type is indicated in brackets) calculated according to
formulas (15) and (16). It can be seen that the ground
state multiplet for hole configurations also matches in
magnitude the pairing energy of the corresponding
nucleons. The excitation energy E(Jmax)

pair values cal�
culated based on Epair are listed in the fifth column of
Table 2. The excitation energies E(Jmax)

pair agree well
with the experimental values. The largest discrepancy
is observed in the case of the neutron�excess nucleus
76Ni. The neutron�pairing energy for this nucleus is
determined with a significant error: Δnn(76Ni) = 1.97 ±
0.76 MeV.

The use of the experimental value of the pairing
energy of two nucleons Δnn (Δpp) as the ground state
energy shift E( jj : 0) in relationship (25) allows one to
refine the structure of the ground�state multiplet.
Table 3 presents the spectra of ground�state multiplets
for a pair of nucleons in state j = 9/2 calculated based
on the splitting magnitude (E(0+) – E(8+)) and the
experimental pairing energy value Epair = Δnn (Δpp). It
should be noted that the excitation energies of the
ground state multiplet obtained in the second calcula�
tion are in a good agreement with the experimental
values, including the ones that correspond to levels
with J = Jmax.

(a) (b) (c)

J = 0...Jmax J ≠ 0, s = 2

J = 0, s = 0 J = 0, s = 0

J = 6

s = 2
J = 4

J = 2

Fig. 15. Spectra of excited states of nuclei with two identical nucleons at shell j (a) in the shell model without the residual pairing
interaction, (b) in the seniority scheme with the pairing interaction, and (c) with δ�interaction.



MOSCOW UNIVERSITY PHYSICS BULLETIN  Vol. 69  No. 1  2014

NUCLEON PAIRING IN ATOMIC NUCLEI 13

3.2. Systematics of Low�Lying Excited States
of Atomic Nuclei

We have analyzed the pairing energies of two nucle�
ons and the splitting of nuclei ground state multiplets
as functions of filling the valence subshell with proton
or neutron pairs. Figures 16–19 show the spectra of
low�lying states of even–even nuclei. The core in all
the presented isotone and isotope chains is the doubly
magic nucleus 208Pb (Z = 82, N = 126). The multiplet
structure for two nucleons is clearly manifested in the
considered cases. Figure 16 shows the spectra of iso�
tonic nuclei with N = 126 for different proton numbers
Z. The isotones are indicated at the bottom of the fig�
ure and the basic valence nucleon configurations in
the shell model are indicated above the spectra. The
proton number at shell 1h9/2 varies from 2 to 8 (even

numbers). The multiplets of ground states (2+, 4+, 6+,
8+) converging to the proton pairing energy are visible
for the nuclei that have proton pairs at shell 1h9/2. The
multiplet structure does not change as proton pairs are
added and the multiplet splitting magnitude corre�
sponds to the pairing energy of two protons Δpp that
falls within the range from 1.593 ± 0.003 MeV to
2.09 ± 0.30 MeV. Isotones 210Po, 212Rn, 214Ra, and
216Th are described well by the seniority model in
which the structure of the multiplet with seniority s =
2 (JP = 2+, 4+, 6+, 8+) is retained as pairs of nucleons
with j = 9/2 are added and the states JP = 10+, 12+ with
an excitation energy of about 3 MeV are observed in
the case of four or six protons at the subshell for s = 4
[13, 30].

Table 2. Splitting of ground state multiplets of nuclei with a doubly magic core and a pair of valence nucleons (holes) of the
same type. The basic configurations of a pair of valence nucleons are listed in the second column. E(Jmax) is the excitation
energy of level Jmax (26): E(Jmax)exp are the experimental values taken from [15], E(Jmax)fit are the values from [42], and
E(Jmax)pair are the results of calculation in the δ potential approximation based on the pairing energy of two nucleons Epair

that was determined using the data from [14]

AX(N, Z) Basic config. E(Jmax)exp,
MeV [15]

E(Jmax)fit,
MeV [42]

E(Jmax)pair,
MeV Epair, MeV

18O(10, 8) (1d5/2)2ν 3.555 3.704 3.616 3.996 (nn)
18Ne(8, 10) (1d5/2)2π 3.376 2.517 3.424 3.784 (pp)
42Ca(22, 20) (1f7/2)2ν 3.189 3.317 3.137 3.333 (nn)
42Ti(20, 22) (1f7/2)2π 3.043 3.225 2.974 3.158 (pp)
46Ca(26, 20) (1f7/2)–2ν 2.974 2.938 2.874 3.052 (nn)
50Ti(28, 22) (1f7/2)2π 3.199 3.175 3.122 3.315 (pp)
54Fe(28, 26) (1f7/2)–2π 2.949 2.934 2.863 3.042 (pp)
76Ni(48, 28) (1g9/2)–2ν 2.420 2.996 1.888 1.967 (nn)
92Mo(50, 42) (1g9/2)2π 2.761 2.764 2.723 2.837 (pp)
98Cd(50, 48) (1g9/2)–2π 2.428 2.539 2.516 2.622 (pp)
130Sn(80, 50) (1h11/2)–2ν 2.435 2.312 2.264 2.334 (nn)
134Sn(84, 50) (2f7/2)2ν 1.247 1.497 1.218 1.293 (nn)
134Te(82, 52) (1g7/2)2π 1.691 1.656 1.693 1.798 (pp)
148Dy(82, 66) (1h11/2)2π 2.919 2.393 2.792 2.878 (pp)
210Pb(128, 82) (2g9/2)2ν 1.278 1.408 1.247 1.299 (nn)
210Po(126, 84) (1h9/2)2π 1.557 1.558 1.528 1.593 (pp)

Table 3. Ground state multiplets of 210Po(1h9/2)2π and 210Pb(2g9/2)2ν. Experimental data were taken from [15]

JP

EJP(210Po), MeV EJP(210Pb), MeV

exp. [15] calculated
based on E(8+)

calculated
based on Δpp

exp. [15] calculated
based on E(8+)

calculated
based on Δnn

8+ 1.56 1.53 1.28 1.25

6+ 1.47 1.50 1.47 1.20 1.23 1.20

4+ 1.43 1.42 1.39 1.10 1.17 1.14

2+ 1.18 1.23 1.21 0.80 1.01 0.98
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Fig. 16. Pairing energies Δpp (�) determined using relationship (16) and the data from [14] and the spectra of low�lying states for

isotonic nuclei with N = 126 and closed neutron shells (experimental data from [15, 16]). The multiplets of ground states (2+, 4+,
6+, 8+) converging to the proton pairing energy Δpp are visible for the nuclei having proton pairs at shell 1h9/2.

Fig. 17. Pairing energies Δnn (�) and Δpp (�) determined using relations (16) and (15) and the data from [14] for isotonic nuclei
with N = 128 and a pair of neutrons at shell 2g9/2. In contrast to isotones with N = 126 (Fig. 16), the multiplets of ground states

(2+, 4+, 6+, 8+) converge to the neutron pairing energy Δnn (�). The proton pairing energy corresponds to states 10+ in the nuclei
spectra. The experimental excitation energy values were taken from [15, 16].

The chain of isotonic nuclei with N = 128 shown in
Fig. 17 corresponds to the core of a doubly magic 208Pb
nucleus with a pair of neutrons in state 2g9/2 above the

closed shell added to it. The neutron pair in 210Pb
forms the ground state multiplet, whose structure is
also discernible in the remaining isotones 212Po, 214Rn,
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216Ra, and 218Th, with the pairing energy of two neu�
trons increasing from Δnn(210Pb) = 1.299 ± 0.003 MeV
to Δnn(218Th) = 1.99 ± 0.06 MeV and corresponding to
state 8+. This suggests that the configuration of 212Po
(and other isotones with N = 128) is based on the core
of 210Pb and not, as is usually assumed, on the core of
210Po. By analogy with 210Po, level JP = 8+ in the calcu�
lations concerning 212Po [30] was associated with the
proton configuration (1h9/2)

2. However, the correct
structure of the yrast band J = 0+–16+ as a coupling of
configurations (1h9/2)

2π × (2g9/2)
2ν could not be

obtained [30, 43]. The reason lies in the fact that this
band of states arises as a result of both the interaction
of protons with neutrons and the pairing interaction of
identical nucleons. The best match between the calcu�
lated structure of 212Po and the experimental data is
obtained when the component associated with the
alpha�clusterization of nucleons in an atomic nucleus
is taken into account [43, 44]. The pairing energy of
two protons varies within the range from Δpp(

212Po) =
1.841 ± 0.007 MeV to Δpp(

218Th) = 2.13 ± 0.03 MeV.
The value of Δpp in 212Po (and in the other isotones in
the chain) corresponds to the 10+ excitation level. This
may result from mixing of the multiplet of pairing
interaction of two protons with collective excitations.
It can be seen that the multiplet structure assumes a
shape that is characteristic of a rotational band as the
proton number increases. This is indicative of an
increasing deformation of the nucleus.

Figure 18 shows the spectra of excited states of
even–even lead isotopes 184–194Pb in which neutron
pairs are gradually removed from shell 1i13/2. Although

the spectra have a complex structure and the measure�
ment error is increased when moving away from stable
nuclei 204,206–208Pb towards proton�excess isotopes, the
correspondence between the pairing energy of two
neutrons Δnn and the excitation energy of level 12+ is
discernible. The nucleus deformation grows stronger
(and the rotational nature of the spectrum is mani�
fested more and more clearly) with decreasing neutron
number and increasing distance from the doubly
magic nucleus 208Pb. The neutron pairing energy
increases from Δnn(194Pb) = 2.45 ± 0.06 MeV to
Δnn(184Pb) = 2.86 ± 0.04 MeV.

The pairing effect is manifested more clearly when
subshell 2g9/2 in even–even lead isotopes 210,212,214Pb is
filled with neutrons (Fig. 19). The multiplet structure
does not change as a neutron pair is added in 210,212Pb
nuclei, and the excited state with Jmax = 8+ corre�
sponds to the pairing energy of two neutrons Δnn. By
analogy with the addition of proton pairs to 1h9/2 in
isotones with N = 126 (Fig. 16), it may be assumed
that excited states JP = 4+, 6+, 8+ should be observed in
the 214Pb isotope near the neutron pairing energy Δnn =
1.49 ± 0.08 MeV.

Figure 20 shows the spectra of low�lying excited
states of even–even tin (Z = 50) isotopes ranging from
120Sn to 130Sn. The (1h11/2) shell is gradually filled with
neutrons in these isotopes. The neutron pairing energy
Δnn is reduced from Δnn(120Sn) = 2.778 ± 0.001 MeV to
Δnn(130Sn) = 2.33 ± 0.02 MeV and corresponds to exci�
tation levels J = 10+. All the isotopes shown are char�
acterized by a wide energy gap between the ground
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Fig. 20. Multiplets of the ground state of neutron pairs at subshell 1h11/2 (2+, 4+, 6+, 8+, 10+) of tin isotopes (experimental data
from [15, 16]). Neutron pairing energies Δnn (�) were determined using the data from [14].
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state and the first excited one ( ). This may be inter�
preted as a manifestation of pairing forces and the first

excited state  may be treated as a level of the ground
state multiplet. On the other hand, relationship

E( )/E( ) ≈ 2 holds true for these Sn isotopes. This
is characteristic of vibrational spectra and allows one
to interpret the first excited state as single�phonon
vibrations. Such an interpretation of this state in effect
implies the presence of strong pairing between nucle�
ons [13].

3.3. Pairing np Interaction

The pairing of identical nucleons is usually ana�
lyzed. However, the possibility of proton–neutron
pairing follows from the charge independence of
strong interaction. Such interactions between two pro�
tons (Vpp), two neutrons (Vnn), and a proton and a neu�
tron (Vnp) should be identical. It is difficult to conduct
experimental studies of np�pairing, as only a small
number of nuclei in which the valence proton and the
valence neutron are in the same state above a core with
closed shells are known [31, 45]. One such nucleus is
that of 42Sc: this isotope has a 40Ca core with one pro�
ton and one neutron above it at shell 1f7/2. Figure 21
shows the spectrum of low�lying excited states of 42Sc
and the corresponding spectra of isobaric nuclei 42Ca
and 42Ti. The spectrum of excited states of the 42Sc iso�

21
+

21
+

41
+ 21

+

tope has a more complex structure of its excited states
than the spectra of even–even isotopes 42Ca and 42Ti.
A sequence of levels with isospin T = 1 and even values
of spin J (0+, 2+, 4+, 6+) that corresponds to multiplets
of states of isobaric nuclei 42Ca and 42Ti is discernible
in the spectrum of 42Sc. Table 4 lists the results of cal�
culating the levels of the (1f7/2)

2 multiplet using rela�
tionship (25) and taking the neutron pairing energy
Δnn(42Ca) = 3.33 MeV and the proton pairing energy
Δpp(

42Ti) = 3.13 MeV into account. The levels of a
multiplet of low�lying analog states in 42Sc with even
values of spin J and isospin T = 1 were calculated based
on the energy E(6+) = 3.24 MeV. In order to reproduce
this value for the splitting of the multiplet with T = 1,
one should assume the value of Δnp(T = 1) = 3.44 MeV.
This is close to the averaged value of identical nucleon
pairing in neighboring even–even nuclei:

(30)

According to [17], the energy of proton–neutron

pairing in a nucleus should be estimated as Δnp = (  +

). The np pairing value Δnp that were calculated
based on the experimental binding energies for an
odd–odd nucleus 42Sc equals 2.51 MeV. This value is
significantly lower than the splitting of the ground

Δnp Sc
42( ) 1

4
�� Δpp Ca

42( ) Δnn Ti
42( ) Δnn Ca

42( )+ +(=

+ Δpp Ti
42( ) ) 3.57 MeV.=

Δn
4( )

Δp
4( )

Fig. 21. Pairing energies of nucleons in state 1f7/2 Δpp (�) and Δnn (�) determined using the data from [14] and spectra of low�

lying excited states of 42Ca, 42Sc, and 42Ti (experimental data from [15, 16]). Indices above the spectra indicate the basic config�
urations of nucleon pairs above the doubly magic core. Analog states with T = 1 are connected with a dashed line. The np pairing
energy Δnp(42Sc) = 3.34 MeV (�) was determined from the splitting of multiplet E*(6+).
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state multiplet E(6+) = 3.24 MeV. Other approaches to
estimating the np�pairing energy (e.g., by averaging
over the nuclei with isospin T = 0 [46]) produce a value
that is too high (Δnp = 4.08 MeV). Thus, an estimate of
np�pairing for odd–odd nuclei in the state with isospin
T = 1 based on the neighboring even–even nuclei is
more realistic:

(31)

This relationship agrees with estimate (30).

The ground state multiplet levels with odd JP = 1+,
3+, 5+, 7+ located below the levels with even J are also
clearly visible in the spectrum of excited states of 42Sc.

Thus, a neutron–proton pair above the doubly
magic core in an odd–odd 42Sc nucleus forms a
ground state multiplet that consists of two groups of
levels: the ones with even spin J values and isospin T =
1 and levels with odd values of J and T = 0. The first
group with T = 1 consists of levels analogous to the lev�
els of multiplets of neighboring even–even isobaric
nuclei 42Ca and 42Ti. The interpretation of the position
of levels of the multiplet with T = 0 presents consider�
able interest in the context of analyzing the isospin
dependence of pairing forces and requires further
study.

CONCLUSIONS

The effect of nucleon pairing in atomic nuclei is a
striking manifestation of the quantum�mechanical
nature of these nuclei and has extensive theoretical
and experimental implications. The present work was
aimed at tracing the connection between the structure
of spectra of certain atomic nuclei and the effect of
nucleon pairing using the simplest models.

Various manifestations of the nucleon pairing effect
were mentioned in the introductory section. One of

Δnp N Z,( ) 1
2
�� Δnp N 1– Z 1+,( )(=

+ Δnp N 1+ Z 1–,( ) )

=  1
2
�� Δn N 1– Z 1+,( ) Δp N 1– Z 1+,( )+(

+ Δn N 1+ Z 1–,( ) Δp N 1+ Z 1–,( ) ),+

the most striking manifestations of this effect is found
in the fact that the ground state of all even–even nuclei
is the state JP = 0+. The short�range attractive forces
that act between a pair of nucleons form an energy gap,
which corresponds to the energy of breakdown of a
pair of nucleons, in the spectra of even–even nuclei.

Nucleon pairing is manifested in the nuclear bind�
ing energy and produces the so�called even–odd effect
(layering of the mass surface of nuclei with even and
odd A). Therefore, the pairing energy may be esti�
mated from the difference in nucleon separation ener�
gies for two neighboring nuclei. If the nucleon number
is even, additional energy corresponding to the pairing
energy is required to break down a pair.

We have compared different methods for determin�
ing the even–odd effect magnitude Δn and Δp based on
the experimental binding energy values and certain
analytical approximations. The calculation of Δn and
Δp using four experimental binding energy values
allows one to compensate for the systematic distor�
tions that arise due to the mass surface curvature. The
use of a greater number of experimental binding
energy values leads to no significant improvements in
the pairing energy calculations and may even lead to
an increase in the error of the even–odd effect deter�
mination due to the use of insufficiently accurate mea�
surements of binding energies of short�lived radioac�
tive nuclei when moving away from the stability line.

The simplest method for describing the effects of
nucleon pairing within the framework of the one�par�
ticle shell model consists in introducing the residual
interaction in the form of an attractive δ�potential.
The degenerate state of two identical nucleons (n1, l1,
j1) = (n2, l2, j2) in the presence of the residual interac�
tion is manifested as a multiplet of the ground state of
the nucleus. The splitting magnitude may be deter�
mined from the experimental binding energies of
atomic nuclei: Δnn = 2Δn and Δpp = 2Δp. The compari�
son of the excitation energy of the last level of the mul�
tiplet E(Jmax) with the even–odd effect magnitude
showed that the calculations of EOS based on three
experimental binding energy values systematically
overestimate its magnitude. The analysis of the spectra
of semimagic even–even nuclei showed that pairing

Table 4. Multiplets of a pair of nucleons in state 1f7/2 in isobars 42Ca, 42Sc, and 42Ti. Experimental data were taken from
[15]. Analog states with T = 1 are listed for 42Sc

JP
EJP(42Ca), MeV EJP(42Sc), MeV EJP(42Ti), MeV

exp. [15] calc. exp. [15] calc. exp. [15] calc.

3.19 3.14 3.24 3.24 3.04 2.97

2.75 2.94 2.82 3.04 2.68 2.79

2.42 2.54 2.49 2.62 2.40 2.41

61
+

41
+

22
+
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energies Δnn (Δpp) retain correspondence to the mul�
tiplet splitting, not only in the presence of a single pair
above the core, but also as the shell is filled with pairs
of identical nucleons. Thus, a unique correspondence
exists between the pairing energy calculated based on
the experimental binding energy values and the split�
ting of the ground state multiplet in the experimental
spectrum of excited states of the nucleus. This allows
one to predict, judging from the pairing energy value,
the presence of excited states with a certain JP in the
given region. The presence of a clearly manifested
ground state multiplet allows one to determine, judg�
ing from the pairing interaction energy measured
experimentally, the basic configuration of a pair pro�
ducing the prevalent contribution to the ground state.
Our calculations revealed a systematic overestimation
of the energies of states in a multiplet with small J rel�
ative to the experimental data. This discrepancy points
first and foremost at the necessity of taking the admix�
tures of other pair configurations in the ground and
excited states of nuclei into account. The entire body
of data on the chains of even–even isotopes and iso�
tones points at a connection between the pairing inter�
action and the collective degrees of freedom.

The question of the nature of the first excited state
2+ in even–even nuclei that lies below the pairing
energy is the most interesting one. On the one hand,
the first excited state 2+ should be in the ground state
multiplet, but calculations systematically overestimate
the value of its energy. On the other hand, the spectra
of low�lying levels in nuclei with Z < 20 have a marked
vibrational nature. The state of even–even nuclei with
a pair of nucleons above the doubly magic core is
spherically symmetric at J = 0. However, since the dif�
ference between the pairing energy and the deforma�
tion energy is small, collective excitations should be
easily triggered in such systems. Therefore, quadru�

pole oscillations may arise, and level  is a superpo�
sition of pairing correlations of nucleons and collec�
tive excitations. The analysis of nuclei systematics
allows one not only to isolate analog states in the
nuclear spectra, but also to reveal analogies in the
nucleon–nucleon pairing strength and specify the
isospin dependence of the pairing interaction.

The question of the strength of pairing forces that
act between a proton and a neutron Δnp presents con�
siderable interest [45–47]. A study of the multiplet of
analog states T = 1 in an odd–odd nucleus may pro�
vide the data on the nucleon pairing strength, and a
comparison of states with T = 1 and T = 0 may clarify
the isospin dependence of pairing forces. The results
of calculating the ground state multiplet of 42Sc were
presented, and it was shown that the pairing of a neu�
tron and a proton in state T = 1 is analogous to the
pairing of identical nucleons in the neighboring even–
even nuclei. The multiplet structure and the magni�
tude of its splitting suggest that np�pairing forces in

21
+

42Sc are of the same order of magnitude as the forces
that act between a pair of neutrons in 42Ca and a pair
of protons in 42Ti: Δnp(T = 1) = 3.44 MeV.
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