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Nucleon Superfluidity under the occurrence of kaon condensation in neutron star cores is inves
tigated. Due to a large proton mixing characteristic of the condensate, both of neutrons and protons 
can utilize the 3 H-pairing interaction, but the realization of these 3 H superfluids is unlikely unless the 
effective nucleon-mass parameter m*(=m'N/mN) is exceptionally larger than -0.7 at high densities. 

Superftuidity in neutron stars is of great interest not only from the viewpoint of 
quantum many-body problem in nucleon matter but also from neutron star phenomena 
such as the cooling and the glitches. In 1970's, we have shown by a realistic approach 
that neutrons and admixed protons in the core region of neutron stars are in the 3 P2-
superftuid of a new type and the 1 So-superfluid of a usuaf type, respectively, and these 
"core superfluids" are coexistent at the densities p~(0.7-3)po with po=0.17 nucleons 
/fm3 ~2.8Xl014g/cc being the standard nuclear density.u 

In recent years, however, the possibility of core superftuids at higher densities p 

<:3po has been attracting much attention in relation to the cooling problem of neutron 
stars; to be compatible with observations, we need the efficient cooling mechanism 
such as the pion- or the kaon-coolings expected to operate at p ;(: 3po and at the same 
time the role of nucleon superfluidity to suppress their too rapid cooling.2> This poses 
a challenging problem whether the existence of core superfluids can extend to p <: 3po 
under the situation that pion- or kaon-condensate occurs at these high densities. The 
aim of this paper is to investigate the case with kaon condensate under current 
interest. 

Characteristics of kaon-condensed phase 

In neutron stars, kaon condensation is expected to occur for p<;(3-4)po through 
the weak interaction process not to conserve strangeness, n;:! P + K-, and by the 
energy gain coming from the strong interaction, i.e., the so-called KN sigma term.3>-s> 
In this new phase, nucleons are described by the quasiparticle states, 7J and s, which 
are the superposition of neutron (n) and proton (p) states, i.e., I7J>=uln>+v1P>. IS> 
=u*lp>-v*ln> with lul2 +lvl 2 =1. Since u=l + O(Gw2

) and v=O(Gw) with the weak 
coupling constant Gw, they can safely be treated as pure neutron and proton states 
constituting two independent Fermi seas.7> In this sense, nucleon system under kaon 
condensate is very similar to that in a normal phase of usual neutron star matter. 

A distinguished point of this new phase is in a remarkabley large proton-mixing 
ratio Yp( =- ppfp, p= Pn + pp). This is due to that the charge neutrality condition is 
assured by K-, not by e- which causes a large energy increase. As an example, Yp 
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Fig. 1. Proton mixing ratio YP and Fermi energy 
of neutrons EF. and protons EFP in the kaon
condensed phase (solid lines) as compared with 
those in normal phase (dotted lines). p 

denotes the total density of nucleons and Po the 
standard nuclear density. On the left of the 
ordinate, the appearance range of 3 P2 or 'So 
superftuid. 
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Fig. 2. Phase shifts of two-nucleon scattering by 
use of the OPEG potential ('E-1 and 3 0-2M in 
the isospin triplet state).'"1•0 E'ilif(EF) is the 
scattering energy in laboratory system (Fermi 
energy). 

in the kaon-condensed phase calculated 
by Maruyama et aL8

> (the case denoted 
PM3 there, the condensed phase sets in 

at Pc~2.6 Po) are illustrated in Fig. 1. For reference, the YP in normal phase (usual 
neutron star matter) obtained by use of the effective two-nucleon interaction based on 
the Reid-soft-core potential9

> are also shown as a standard case. We remark a large 
difference in Yp; the Yp=(l0-50)% ((5-6)%) for the kaon-condensed (normal) phase. 
Therefore it is of interest how the difference in YP affects the occurrence of nucleon 
superfluids. 

The pairing interaction responsible for nucleon superfluidity depends on the 
density of neutrons (pn) and protons (pp). In usual neutron star matter, neutrons are 
a dominant component (Pn ~ p ), having high Fermi energy (EFn= li2(3;r2 Pn)312 /2mN ;;;:_50 
MeV, mN being the nucleon mass) and hence the Cooper pair of neutrons is formed 
primarily in the 3 Pz state which is most attractive at high scattering energies (E'ilil 
=4EFn;;:_2oO MeV), as seen in Fig. 2. By contrast, protons admixed are a small 
component (ppjp-;;;0.06) and so the Cooper pair utilizes the 1So-interaction most 
attractive at low scattering energies (Elv~8 =4EFp-;;;BO MeV). On the other hand, in 
the case with kaon condensate, the situation is different. Due to the large Yp, both 
of neutrons and protons are able to utilize the 3 Pz-interaction, which is understood 
from Fig. 1 showing the p-dependence of EFn and EFp, together with Fig. 2. Here, we 
study the 3 Pz-superfluid of neutrons and protons in this kaon-condensed phase. 
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3H+ 3Fz coupled gap equation 

In order to treat realistically the 3H-pairing, it is necessary to include the 3H-3F 2 

tensor coupling effect bringing about an important attraction to enhance the main 3 P2 

component of energy gap. Then the 3 H gap equation is coupled with the 3 Fz one 

through this tensor coupling (3 H + 3 Fz coupled gap equation) and is given explicitly 

(the case with mj=O, see Ref. 1) for details): 

where 

Llt(k)=- ;Jk'2dk'(k'l V 11 lk> jdk'{L1I(k')f(O)+L1B(k')g(O)}/Ek' 

+; fk'2dk'(k'l V31 lk> jdk'{L1I(k')g(O)+L13(k')h(O)}/Ek', 

L13(k)= +; fk'2 dk'<k'l V 13 lk> jdk'{L11(k')!(O)+L13(k')g(O)}/Ek' 

- ; fk' 2dk'<k'l V 33lk> jdk'{L11(k')g(O)+ L13(k')h(O)}/Ek', 

/(0)= 8
1
7r (1 +3cos2 0), 

g(O)=- /! (1-7cos2 0+5sin8sin30-10cos8cos30), 

h(O)=~ (13+4cos2 0+5sin0sin38+ 15cos0cos830), 

Ek'=./ €~,+ D 2(k') , 

D2(k')= ~ !( O)L112(k') + ~ h( O)L1l(k') + g( O)L11(k')L13(k') , 

gk,= c(k')- c(kF )=11}(k'2 - kF2)/2m't, 

<k'l V~'1lk>= Jr 2drjl'(k'r) V 1
'
1(r)jl(kr), 

V 1
'
1(r)= ~ (drC!J:l'jml1, 2) V(1, 2)Cifsuml1, 2), 

splnJ 
1 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

In these expressions, L11(k) and L13(k) are the energy gap functions of the 3 H- and 

the 3Fz-component, respectively, 0 denotes the polar angle of the momentum k, €k is 

a single-particle energy measured from the Fermi surface with kF the Fermi momen

tum. Also, V(1, 2) is a two-nucleon potential and CiJ suml1, 2) is a spin-angular part 

for the pair wave function with angular momenta, s, l, j, mi. in usual notations. The 

energy gap for the 3H+ 3F2 pairing is given by D(kF, k) in Eq. (6). Since D(kF, k) is 

angle-dependent, it is convenient to introduce the angle-averaged energy gap D(kF) 

defined by 
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(12) 

In the following, we discuss results in terms of the critical temperature given by 

(13) 

with LIJ(kF) in MeV. 
We solve this 3H+ 3F2 coupled gap equation numerically by an iterative tech

nique. As for V(1, 2), we adopt the OPEG 30-2M potential which is used in our 
previous work1

> and reproduces well the scattering phase shift for the 3 H two-nucleon 
state. The OPEG 3 0-2M is a slightly modified version of the OPEG 3 0-2 in Ref. 10) 
by changing only the depth of the spin-orbit core part (CV~= -100 MeV--+ -150 MeV) 
in order to improve the fit to 3H phase shift at high energies (£~8 :<:::300 MeV). In the 
calculation, we use the effective mass approximation for the single-particle energy 
c(k) given by the second equality in Eq. (8) with m"'N being the effective mass of a 
nucleon. We use the Yp of the kaon-condensed phase in Fig. 1 as a typical case (other 
cases in Ref. 8), PM1 and PM2 cases, give similar results). 

Results and discussion 

We show results for neutron (solid 
lines) and proton (dash-dotted lines) 3 H
superfluids in Fig. 3. The following 
points are remarked: (i) When the 
effective-mass parameter m*( = mt/mN) 
= 1, both neutron and proton 3 H· 
superftuids exist safely at p :<::: 3po (even 
for Po:<::: 6po), since Tc is by far larger 
than the internal temperature ~ 108 K in 
neutron stars. As m* gets smaller, Tc 
decreases significantly. (ii) For smaller 
m*( =0.75), both superftuids persist, but 
the existence of proton 3 H-superftuid is 
pushed to higher densities, p :<::: 3.5 po. 
For still smaller m*(=0.7), both 
superftuids disappear ( Tc < 108 K is not 
figured). (iii) By comparing the Tc for 
m*=0.75 in Fig. 3, between the case with 
(a solid line) and without kaon condensa
tion (a dotted line), we see that the 
kaon-condesed phase is more preferable 
for the neutron 3 P2-superftuid to occur at 
high densities. This comes from a smal
ler EFn caused by a larger YP in the kaon 
condensate. (iv) At lower densities (pc 
:Sp:S2.9po), proton superftuid is due to 

1 d0 

m*=l. 
n ---0-Tc I 

(K) 
I P,/' 
I / 0.8 
I I ,.--. :J== ...... I . 

10
9 v , 

Fig. 3. Critical temperature Tc for the 3 Pz
superfluid of neutrons (solid lines) and protons 
(dash-dotted lines) for several effective 
nucleon-mass parameter m*, calculated with 
the OPEG 3 0-2M potential. For m*:S0.70, Tc 
is by far lower than the internal temperature of 
neutron stars T,- 108 K and not figured. The 
dotted line. illustrates the Tc of neutron 3 Pz. 
superfluid in normal phase for reference and 
the dashed lines show the Tc of proton 1 So 
superfluid existing at the vicinity of the onset 
density Pc indicated by an arrow. 
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the 1So-pairing (dashed lines in Fig. 3) as in normal phase, but very soon (p~2.9po) is 
caused by the 3 H-pairing. This is because the most attractive pairing interaction 
changes from the 1 So to the 3 H as p and Yp increase (see Fig. 1). 

Concluding remarks 

The existence of superfiuid depends strongly on m*. The G-matrix calculation 
of dense nucleon matter suggests that m*>0.7 for p~3po is unlikely in the normal 
phase, especially for asymmetric nuclear matter with Yp~(0.2-0.5), and m::Sm~ 
:S(0.5-0.6) is probable. Therefore we conclude that both neutron and proton 
superfiuids under the kaon condensation is hard to be expected. This means that we 
cannot suppress the too rapid cooling if the kaon condensate takes part in neutron 
stars. Conversely, this might suggest the non-existence of kaon condensate in neu
tron stars discussed in Ref. 2), that is, the onset density of kaon condensation would 
exceed the central density of these neutron stars. Then, there arises a question; is 
there another possibility to give an efficient cooling mechanism together with nucleon 
superfiuids? We remark the following new phases realizable at high densities: One 
is a case with pion condensation leading to a rapid cooling. In the case of combined 
neutral and charged pion condensate (;r0 ;rc condensate), we have larger m*, m*~0.9 
for p=(3-5)po,n),I2

l and so can expect the nucleon superfiuids. The other is a case 
with hyperon matter generating an equally efficient cooling mechanism.13

l In this 
case, hyperon superfiuid has to be examined. Study on these possibilities is our 
forthcoming subject and will be reported elsewhere. 
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