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The ubiquity of amides throughout organic, biological and materials chemistry mandates the
development of more efficient methods for their synthesis.1 Conventional amide bond
formation utilizes acids and amines as coupling partners and relies on stoichiometric activating
agents for the acid functionality.2,3 A recent survey of process scale reactions cites a “...pressing
need for the development of catalytic environmentally friendly acylation processes.”4,5 We6

and others7 have recently illustrated that nucleophilic carbenes8 catalyze an internal redox
reaction whereby alpha reducible aldehydes provide alpha reduced ester derivatives under
catalytic conditions.9 Surprisingly, among the many nucleophiles reported to participate in this
process are only two amines: we6a have shown that aniline participates and Scheidt7b has shown
that a vinylogous imide could be used.10 Clearly, the salient features of this redox manifold, a
waste free catalyzed acylation, provide a strong impetus to identify a general solution to the
problem of NHC catalyzed amidation. Herein, we report one such solution relying on relay
catalysis by a nucleophilic carbene and a common peptide cocatalyst such as 1-hydroxy-7-
azabenzotriazole11 (HOAt).

Outside of aniline, our efforts at using amines as nucleophilies in the alpha redox reaction were
met with uniform failure. Since we had established that phenols are competent partners, we
hypothesized that the use of a cocatalyst such as HOAt could provide a relay shuttle.12,13 HOAt
should participate in the redox chemistry to generate activated ester which would undergo the
in situ amidation thereby regenerating the catalyst. The viability of a concerted catalytic system
using N-heterocyclic carbenes and HOAt to generate amides was investigated utilizing 2,2-
dichloro-3-phenylpropanal as the redox substrate and benzyl amine as the nucleophile. The
desired chemical transformation took place to afford the benzyl amide 2a in 93% yield (eq 1).
In the absence of HOAt, only minor amidation product is observed.14 A cocatalyst screen
revealed that 1-hydroxybenzotriazole (HOBt), 4-(dimethylamino) pyridine (DMAP),
imidazole and pentafluorophenol (PFPOH) are effective at promoting the reaction, affording
the desired amide products.
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Experiments that probe the scope of useful amine partners are summarized in Table 1. A variety
of primary and secondary amines partake in the reaction (entries 1-5, Table 1) to afford the
desired amide in good to excellent yields. Of particular interest is the generation of the Weinreb
amide 2f in 72% yield (entry 5, Table 1). Electron rich and poor aryl amines 2f-h (entries 6-8,
Table 1) also undergo the transformation readily to give the desired anilides in 82-87% yield.
Amino esters are also competent partners (entry 9, Table 1).

A variety of α-halo aldehydes are suitable partners in the alpha redox amidation. The reaction
is tolerant of branching at the α and β position: α,α-dichloro isovaleraldehyde provides 3 in
72% yield, and α-bromo cyclohexanecarboxaldehyde provides 4 in 80% yield (Figure 1).

One of the strengths of the redox amidation reaction manifold is that the appropriate choice of
alpha reducible aldehyde provides an opportunity for a waste free amidation. Treatment of
α,β-epoxy and aziridino aldehydes under the redox amidation conditions affords β-hydroxy
and β-amino amides (entries 1-3, Table 2) in good yields and excellent diastereoselectivities.
α,β-Unsaturated aldehydes provide the alkanamides in good yield (entries 4-5, Table 2).
Importantly, in each case, the only stoichiometric waste generated is derived from solvent;
even the base is used in catalytic amounts.

The catalytic cycle is postulated to initiate upon formation of carbene I, which undergoes
nucleophilic addition to the aldehyde, Scheme 1. Generation of the acyl azolium intermediate
II sets the stage for an acyl transfer event with co-catalyst III to furnish the activated
carboxylate IV. Nucleophilic attack by the amine affords the amide, and regenerates the co-
catalyst.

Experimental support for the proposed mechanism is provided by the use of chiral carbenes in
this process. The use of catalyst B leads to an asymmetric α-chloro amide synthesis in modest
ee (eq 2), validating the role of the carbene in controlling the protonation event. In contrast,
the use of B provides no selectivity in the kinetic resolution of α-methylbenzyl amine (eq 3).
In addition, the use of stoichiometric HOAt in absence of amine provides the HOAt ester IV
in 64% yield. Addition of BnNH2 generates the amide quantitatively.
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In summary, we have developed a waste-free amide bond forming reaction using alpha
reducible aldehydes and amines catalyzed by carbenes in conjunction with common peptide
additives as cocatalysts.
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Figure 1.
α-Haloaldehyde substrate scope.
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Scheme 1.
Proposed catalytic cycle.
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Table 1
Amine Scope

Entrya Yield(%)

1 89

2 85
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Entrya Yield(%)

3 73

4 89

5 72

6 87
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Entrya Yield(%)

7 82

8 83
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Entrya Yield(%)

9 85b,c

a
Catalyst A (20 mol %), HOAt (20 mol%), Et3N (1.2 eq), THF (0.5 M), t-BuOH (1.0 eq), 25 °C, 6 h, unless otherwise noted.

b
HOBt (20 mol%) and Et3N (2.1 eq) were used.

c
2:1 dr.
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Table 2
Atom-economical amidation

Entry Substrate Product Yield (%) dr

1 86a >19:1
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Entry Substrate Product Yield (%) dr

2 75a 15:1
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Entry Substrate Product Yield (%) dr

3 72a >19:1
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Entry Substrate Product Yield (%) dr

4 80b -
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Entry Substrate Product Yield (%) dr

5 82b -

a
A (10 mol %), imid. (10 mol %), DIPEA (30 mol %), t-BuOH (0.1 M), 40 °C, 24 h.

b
A (10 mol %), HOAt (10 mol %), DIPEA (10 mol%), THF (1.0 M), 45 °C.
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