Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus

Steven J.Projan, Soraya Moghazeh and Richard P.Novick

Department of Plasmid Biology, Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA

Received January 12, 1988; Accepted January 27, 1988
Accession no.X06627

ABSTRACT

pS 194 is a naturally occurring Staphylococcus aureus plasmid encoding streptomycin resistance. The plasmid has a copy number of about 25 per cell, and belongs to the inc 5 incompatibility group. The nucleotide sequence of pS 194 has been determined and consists of 4397 base pairs including four open reading frames potentially encoding proteins of greater than 100 amino acids. All four of these reading frames are on the same coding strand. The first reading frame, repE, encodes a 38 kd protein specifically required for pS 194 replication. The second open reading frame, str, encodes a 34 kd polypeptide required for streptomycin resistance, probably a streptomycin adenylyltransferase. The third potential polypeptide, rlx, would be 37 kd and is probably required for relaxation complex formation and plasmid mobilization by conjugative plasmids. The fourth, orfD, overlapping the $r l x$ reading frame, is potentially 27 kd , and may also be involved in mobilization.

INTRODUCTION

The streptomycin resistance plasmid pS194 was originally obtained from a clinical isolate of Staphylococcus aureus by S. Iordanescu (1). It is virtually indistinguishable from the three other known S. aureus plasmids conferring streptomycin resistance, namely pS169, pS177 and pUB109 (2) and all of these plasmids belong to the inc5 incompatibility group (2).

On the basis of a variety of observations, it is thought that pS 194 belongs to a family of closely related S. aureus plasmids of which pT181 is the prototype (3). The known members of this family share considerable base sequence homology (2), have similar overall functional organization (Projan, et al., in preparation) and replicate via an asymmetric rolling circle mechanism in which lagging strand initiation occurs only after leading strand replication is complete or nearly complete (4). They regulate copy number by means of short antisense transcripts that inhibit the translation of a trans-acting leading strand initiation factor (5).

Previous studies have identified the leading and lagging strand replication origins of pS194 and have demonstrated the existence of a trans-acting leading strand initiation factor, RepE, for this plasmid (Projan, et al., in preparation). A single regulatory countertranscript has been identified (5) and the streptomycin resistance determinant has been localized by the finding that interruption of the plasmid's unique HindIII site inactivates resistance (6).

All of the Sm^{r} plasmids of the pS 194 type form relaxation complexes (7) which are involved

Figure 1. Physcial map of pS 194 . Restriction sites indicated are predicted from the nucleotide sequence. repE is the gene for the plasmid encoded initiator protein, str is the streptomycin resistance determinant, $r l x A$ is a gene required for relaxation complex formation, orfD encodes a putative protein required for plasmid mobilization by conjugative plasmids, palA/RS S_{B} is the lagging strand origin of replication, cop is the copy control region, ori is the leading strand origin of replication. The arrows indicate the direction of transcription.
in conjugative mobilization (Archer and Projan, in preparation); the region of the plasmid involved in relaxation complex formation has also been localized (Projan, et al., in preparation).

In this paper, we present the pS194 nucleotide sequence which confirms that the plasmid is closely related to other members of the pT181 family and has a similar functional organization.

MATERIALS AND METHODS

Bacterial strains and plasmids.
The staphylococcal strains used are derivatives of strain NTCC 8325. (8).
Media and growth conditions.
CY broth was used for liquid cultures of S. aureus, and VY broth (9) was used for liquid cultures of B. subtilis. Cultures were shaken at $37^{\circ} \mathrm{C}$ (unless otherwise indicated) and monitored turbidometrically with a Klett-Summerson photoelectric colorimeter with a green filter. GL agar (S. aureus) (9) or TBAB agar (B. subtilis) (Difco) was supplemented with antibiotics as indicated.

XhoI
 TaqI

1
CTCGAGGGTMCAAGAACTAATGAAAATATAAAAAAAGATA 51
俗 LeuGluGlySerArgThrAsnGluAsnIleLysLysAspLysPheGlnAspTyrAspPheAlaPhePheValSerAspIleGluTyrPhe 101

151
ACACATGAAGAAAGTTGGTTAAGTTTATTTGGAGAATTATTGTTTATACAGAAACCAGAAGATATGGAATTATTCCCACCTGATTTAGAT ThrHisGluGluSerTrpLeuSerLeuPheGlyGluLeuLeuPheIleGlnLysProGluAspletGluLeuPheProProAspLeuAsp 201
TATGGTTACAGTTATATAATGTATTTTAAAGATGGCATAAAAATGGATATTACATTAATTAATTTAAAAGATTTAAATCGTTATTTTAGT TyrGlyTyrSerTyrileMetTyrPheLysAspglyIleLysMetAspIleThrLeuIleAsnLeuLysAspLeuAsnArgTyrPheSer

GATTCTGATGGTCTTGTAAAAATTTTAGTTGATAAAGATAATTTAGTAACTCAAGAAATTGTTCCAGATGACTCAAATTATTGGTTAAAA AspserAspglyLeuVailysilleLeuValAsplysAspAsnLeuValThrGlngluIleValProAspAspSerAsnTyrTrpLeulys 401
AAACCAACAGAACGAGAATTMTATGATTGCTGTAATGAGTTTTGGAGTGTCTCAACGTATGTAGCAAAGGGTGTTTTTAGAAGAGAAATA IysProThrGluArgGluPheTyrAspCysCysAsnGluPheTrpSerValSerThrTyrValAlaLysGlyValPheArgArgGluIle 451 - MboI 501
TTATTTGCTTTAGATCATTTTCAATAATATTTTACGTCCTGAATTATTAAGAATGATTTCTTGGTATATTGGCTTTTAATAGGGGTTTTGAT LeuPheAlaLeuAsplisPheAsnAsnIleLeuArgProGluLeuLeuArgMet IleSerTrpTyrIleGlyPheAsnArgGlyPheAsp 551

Ecori 601 AluI
TITAGTTTAGGAAAGAATTATAAGTTTATAAACAAATATTTAACTGATAAAGAATTCCAATATGCTITTAGCTACTTTTGAGATGAATGGA PheSerLeuGlyLysAsnTyrLysPheIleAsnLysTyrLeuThrAspLysGluPheAsnMetLeuLeuAlaThrPheGluMetAsnGly HindIII
651 AluI .
701
TATAGAAAGACATACCAATCTTTTAAGCTTTGTTGTGAATTATTTAAATATTATTCAAATAAAGTAAGTTGTTTAGGAAATTATAACTAT TyrArgLysThrTyrGlnSerPheLysLeuCysCysGluLeuPheLysTyrTyrSerAsnlysValSerCysLeuGlyAsnTyrAsnTyr

CCAAATTACGAAAAAAATATTGAGAATTTTATTCGTAATAATTATGAGAATTAATTTTATTAGCAACCACATTTTTTGGTTGCTTTTGTTT ProAsnTyrGluLysAsnIlegluAsnPheIleArgAsnAsnTyrGluAsn...end str
TGATTTTGAATTTGGTTTTTGAACTATGAGTGGCTAGCATTTTTTCCACTCATTTTTTGCGTTAGCAAAAACATAAAGGGTCTGGGATTAAT

CCCAGCAAGCCGGTATATTCAGAACGAAGTGGCTAGAATATACGACGCTTGCCAAACCACTATATTACTTGAGAAAATATAGATTATATT
AluI 1001 . . . 1051

ATAAGCTATATTTATGAAAAGGAATATTTTTCGTCAGAAAGGTGGTGGGACTTGTGAACGAACATAAAGATAATTTTGGCTAGCGATTTGT CTGTTGGGGGAAACCGTAAACCCAACCGCAAAGAGCCAAAȦCAAATTAGTTTCAGAGTGAGTGAACAGGAATATTCAAAGTTGAAACAGT 1101 CGGCAGAACMTTGATATGACAGTCCCT 1201 TaqI 1251
CGGCAGAACTTTGAATATGACAGTGCCTAATTTCGTTAAGAAAAAGGCACAAGGCAGTCGATTAGTGTCGCCAAAATTAGACAAAGAAA

$$
\begin{array}{lllll}
\text { TaqI } & \cdot & & \\
\text { Cla I } & \cdot & 1301 & \text { HinfI } & \text { Dde I }
\end{array}
$$

CGCGACAATCGATTGCCAAAGATTTAAGTCATTTGGGTAGTAATGTGAATCAGATTGCTAAGTGGTTTAATCAAAATAAAGATAAGGCTA
1351 . . . 1401

CACATTTACCAGAAGAGAAATATCATGATTTAGAAAAGCAATTTGATGATGTGAAAAAGGAGTTGCATAAGATATGGCAACAACTAAATT ---RBS-- MetAlaThrThrLysLe Start rlx
1451
 UGlyAsnThrIysSerAlaSerArgAlaileAsnTyrAlaGluGluArgAlaGluGluLysSerGlyLeuAsnCysAspValAspTyrAl

TAAATCATATTTTAAGCAAACTAGGGCGTTATATGGCAAAGAGAATGGTGTTCAAGCACATACAGTCATTCAATCTTTTTAAGCCTGGCGA aLysSerTyrPheLysGlnThrArgAlaLeuTyrGlyLysGluAsnGlyValGlnAlaHisThrValileGlnSerPheLysProglygl
AluI.
1651
AluI
1701

AGTAACAGCTAAAGAGTGTAATGAGATAGGTTTAGAATTAGCTAAAAAAATTGCACCAGATTATCAAGTTGCAGTTTATACACATACAGA uValThrAlaLysGluCysAsnGluIleGlyLeuGluLeuAlaLysLysIleAlaProAspTyrGlnValAlaValTyrThrHisThrAs 1751
CAAAGACCATTATCACAATCACATTATTATTAATTCAGTAAATTTAGAAACAGGCAACAAGTATCAGTCAAACAAAGAACAACGTGATTT plysAspHisTyrHisAsnHisIleIleIleAsnSerValAsnLeuGluThrGlyAsnLysTyrGlnSerAsnlysGluGlnArgAspPh 1801

MboI . 1851
TATAAAAAAGGCGAATGATCAGTTATGTGAAGAACGTGGTTTATCTGTGCCAGAAAAGTCATCAGAAATCAGATATACGTTGGCAGAACA eIleLysLysAlaAsnAspGInLeuCysGluGluArgGlyLeuSerValProGluLysSerSerGluIleArgTyrThrLeuAlaGluGl

Nucleic Acids Research

GAACATGATAGATAAAGATANAAGGTCATGGAAAAATGATATAAGATGGCAGTTGAMGANACAAAGGATAACGCAGTAGCGTTTGAAGA 1901 nAsnMetIleAsplysAspLysArgSerTrpLysAsnAspIleArgMetAlaValGluGluThrIysAspAsnAlaValAlaPheGluGl

2001
2051
ATTTAATACTITGCTANAAGNAAAGGTGTTGAAATCACGAGAGTAACGNANACAACGTAACGTATAGACACATTGAAGAAGATAAAAA uPheAsnThrLeuLeuLysGluLysGlyValGluIleThrArgValThrLysAsnAsnValThrTyrArgilsileGluGluAsplysLy
RaaI . . Hinfl 2101 . . TaqI . 2151

AGTACGTGGGANTAAGTTGGGCGATTCTTATGACANAGGAGTGATTGANATGGCTTTGCAATCGACANATTCAGACCAGAMCGAGAAGA sValArgGlyAanlysLeuGlyAspSerTyrAsplysGlyValileGluAenGlyPheAlaIleGluLyaPheArgArgGluArgGluGl ---RBS--MetAlaLeuGinSerArgAsnSerAspGiuAenGluLysL Start orfD

- TaqI 2201

DdeI
AGAACGAGAATACGATGAATATGCAGACACGTTCGAAGTTGACTGGGACGCATTCGCAGAAAATTCAGAAGACCTTTAGANAACGAAGAAT uGluArgGluTyrAspGluTyrAlaAspThrPheGluValAspTrpAspAlaPheAlaGluAsnSerGluAspLeuArgLysArgArgIl
 2251 . . AluI . . 2301
TGCAAGAACTGAAGAAACANACAAGCTAGTAATAAAATATATATCAGAGATGANAGAACAAGAGGACTTGAGACNAAAGGAATTGCAGG eAlaArgThrGluGluThrLysGlnAlaSerAenLysIleTyrIleArgAspGluArgThrThrGlyLeuGluArgLyeGlyIlealagl
 TaqI 2401
CAATCAAGTCGAGTTTGAANAAGACGACGGAGGACTTTCAAGGTAGAGGTAAAAAAGTCCATAATGATTTTGTTCGTTTGTTACAAAAGA YAsnGlnValGluPheGluLysAspAspGlyGlyLeuSerArg. . . end rlx
laIleLysSerSerLeulysiysThrThrGluAspPheGlnGlyArgGlyLysLysValHisAsnAspRheValArgLeuLeuGlnLysA
TaqI 2451 TaqI $\quad . \quad$ TaqI 2501 TaqI
ATTTAAATCGAGTGAATGCAGAAGATATTGAGATAGAGGTTCGANAGATGTTTATGGAGTTCGAGAAGAAATTCATTCGATGTTGCGTG snLeuAsnArgValAsnAlaGluAspIleGluIleGluValArgLysAspValTyrGlyValArgGluGluIleHisSerMetLeuArgG 2551
AAGTTAAACAATCACATGAACATTATCAAAAAAGACAAAAGCAATTATTTACTGGTATTGGTGCAATGTTATYAGTGTTTATGCTTTTTG luVailysGlnSerHisGluHisTyrGlnLysArgGlnLysGlnLeuPheThrGlyIleGlyAlaMetLeuLeuVaiPheMetLeuPheA 2651

DdeI
CTTTGATTATGACGATTGGCAGAGATTTTATGGGCTTTTTTACATGTAGATGTATTACAGAATGCCATAGCAAGCAAAATAAAGGCTTCTG laLeuIleMetThrIleGlyArgAspPheVetGlyPheLeuHisValAspValLeuGlnAsnAlaIleAlaSerLysIleLysAlaSerg 2701 . . Rsal . . 2751
AGGGCTTTATTTCAGTTTTATGGTACATTGCTTATGGTTTACCTTATATACTCGCTATAGGGCTATTTATTTGGTTGTATGAGTGGATAA luGlyPheIleSerValleuTrpTyrileAlaTyrGlyLeuproTyrileLeuAlaileGlyLeupheIleTrpLeuTyrGluTrpilea
2851 RsaI

GAGCAAGATTCCATGATTAAACAAAGTATGATCAGGCTTTTATGCCGAGAANATTTATTTTATATTGAGAAGTACCCTTAACTAAACTTGC rgAlaArgPhehisAsp. . .end orfD

$$
2901
$$

TaqI
RsaI
2951
AGACGAATGTCGCATAGCGTGAGTATTAGCCCGACCATTCGACAAGTTTTGGGTTTGTTAAGGGTACAGAGGCTCAATGTAAATAAAGCA
 3001
ATTGGAATAAAGCAACAAAGGGGGTTGAAGAAAATGAGTAAGAAGAAAAAGATTAATTTTAGCAATATCAATTGCTCAAGTAGTAGTGCAG
\qquad
. . . 3101 . DdeI

GCGTTAATACTTTATAACACTTATCAGCAATATAAATATTCTAAAAAATATTCAGCCTAATAAAAAAAGACTTAGTCTGAATAGACCAAG 3151 3201
CCTTTTGTTAGTGTTATATTAATATGCAAATAAAAAAACAAAAAAAGAAGTCGCTCACTCCCTGACCAAAGTTTGTGAATGCGACTTACC 3251

- Xba I

3301
TTAAAGANAACAGTTGGTGTTTTTTTCTTAATTTTTGTATATCTAGATATTAAACTGATATTGGTTTATTCTTCAAGATATATATTCGG TaqI
GTGAGCGACTTCTTYTAAACAAAATAAGGAGTCGATITTHIATGAGTANAAANGGAGAMGANATTCAGGCNNAACAAAGITTGGAAAAGGA --RBS--- MetSerlysLysAlaGluGluIleGlnAlaLysGlnSerLeuGluLysGl Start RepE

 HinfI. 3551
TATGACAATTGTTGGGAATCTTAATAAGNACNATGCTCACNANCTGTCTGANTTMMTGAGTATTGCGCCACANATTMGACTTTGGGATAT
 Dde I

 -LeuGlnThrlysPheLysAlaLysAlaLeuGlnGluLysValTyrileGluTyrisplysVallysAlahapalaTrphaphrghrghe 3701
TATGCGTGTTGAATTTMATCCTAATAAACTTACGCATGAAGANATGCTTTGGTTANAACNANACATCATTGACTACATGGAAGATGATGG nMetAxgVal GlupheAsnProAsnLysLeuThrHisGluGluNetLeuTrpLeuLysGlnAsnIleIleAspTyriketGluhsphapgl

```
    3801 . . . . 3851
TTTTACAAGATTAGATTTGGCTTTTGATTTTGAAGACGATTTGGAGCGATTATTATGCGATGACTGATAAATCAGTTAAGAAAACTATTTTT
yPheThrArgLeuAspLeuAlaPheAspPheGluAspAspLeuSerAspTyrTyrAlaMetThrAspLysSerValLysLysThrIlePh
    3901
    951
TTATGGTCGTAACGGTAAACCAGAAACAAAATATTTTGGTGTTCGTGACAGTGATAGATTTATTAGAATTTATAATAAAAAACAAGAACG
eTyrGlyArgAsnGlyLysProGluThrlysTyrPheGlyValArgAspSerAspArgPheIleArgIleTyrAsnlysLysGlngluAr
    4 0 0 1
TAAGGATAATGCAGACATTGAAGTTATGTCTGAACACTTATGGCGTGTAGAAATTGAATTAAAAAGAGATATGGTTGATTATTGGAACGA
gLysAspAsnAlaAspIleGluValMetSerGluHisLeuTrpArgValGluIleGluLeuLysArgAspMetValAspTyrTrpAsnAs
4 0 5 1 ~ . ~ . ~ . ~ . ~ 4 1 0 1 ~
TTGTTTTAATGATTTACATATTTTGAAACCAGATTGGTCTAGTTTAGAAAAAGTAAAAGACCAAGCAATGATTTTATATGCTAATTCATGA
pCysPheAsnAspLeuHisIleLeuLysProAspTrpSerSerLeuGluLysValLysAspGlnAlaMetIleTyrMetLeuIleHisGl
        RsaI 4151 . RsaI 0 0 4201
AGAAAGTACATGGGGTAAATTAGAAAGACGTACAAAAAATAAATACAGAGAAATGTTAAAAAGTATTTCAGAAATTGATTTAACGGACTT
uGluSerThrTrpGlyLysLeuGluArgArgThrLysAsnLysTyrArgGluMetLeuLysSerIleSerGluIleAspLeuThrAspLe
AATGAAATTGACTTTAAAAGAGAATGAAAAACAATTGCAAAAGCAGATTGAATTTTGGCAGCGTGAATTTAGATTTTTGGGAGTGAAAAAA uMetLysLeuThrLeuLysGluAsnGluLysGlnLeuGlnLysGlnIleGluPheTrpGlnArgGluPheArgPheTrpGlu...
CAATGAGGACTGAAAAAGAAATTTTAAATTTAGTTTCTGAATTTGCTTATCAACGAAGCAATGTAAAAATTATTGCT MetArgThrGluLysGluIleLeuAsnLeuVaiSerGluPheAlaTyrGlnArgSerAsnVallysileIleAla Start str
```

Figure 2. Complete nucleotide sequence of pS194 numbered from the unique XhoI site. Open reading frames of greater than 100 amino acid residues with their potential ribosome binding sites (RBS) are indicated. palA, RS_{B}, and t_{1} loci are described in text.

Tetracylcine (Tc), chloramphenicol (Cm), streptomycin (Sm) and erythromycin (Em) were used at 5 $\mu \mathrm{g} / \mathrm{ml}$ unless otherwise indicated.

Protoplast transformation was by the method of Chang and Cohen (10) as modified for S. aureus (11).

Isolation and analysis of plasmid DNA.

DNA was prepared and analyzed as described (12, 13). Copy numbers were determined by fluorimetric densitometry of ethidium-bromide stained agarose gels run with sheared whole-cell lysates of exponentially growing cultures (13).

Restriction mapping and cloning.

Restriction enzymes were purchased from Boehringer-Mannheim Biochemicals and New England Biolabs. For molecular cloning, specific fragments were extracted from polyacrylamide gels, phenol extracted, ethanol precipitated, and stored lyophilized prior to use (14). For ligations, samples were combined in approximately equimolar ratios and incubated with T4 DNA ligase (Collaborative Research) using a DNA concentration of at least $10 \mu \mathrm{~g} / \mathrm{ml}$ and a ligase concentration of 40 units/ml for fragments with complementary ends and 100 units $/ \mathrm{ml}$ for fragments with blunt ends. Incubation was at room temperature for 1 to 4 hours. Ligated samples were used to transform S. aureus protoplasts or B. subtilis or E. coli competent cells with selection for the appropriate antibiotic resistance marker. Transformants were screened for plasmid content and those carrying plasmids of the required size were used to prepare plasmid DNA for restriction analysis and, if necessary, sequencing.

DNA sequencing.

Determination of nucleotide sequences utilized the dideoxy chain-termination method (15) with isolated restriction fragments cloned into either mp18 or mp19 M13 vectors (16).

RESULTS AND DISCUSSION

A partial restriction map of pS 194 determined by digestion with restriction enzymes either singly or in combination was used to begin the sequencing of pS 194 . As the sequencing of the plasmid proceeded, refinements in the map were made. Two different strategies were employed. Initially, the restriction fragments generated by digestion with MboI, TaqI or Hinfl, were each cloned into M13mp18 or mp19. These were sequenced and a nearly complete, single-stranded sequence was assembled. A complete double-stranded sequence was generated by cloning to M13mp18 linear plasmid monomers cleaved by HindIII or ClaI digestion; oligodeoxynucleotides corresponding to regions where sequence information was incomplete were synthesized and used as sequencing primers. This has been shown to be an efficient method for generating a complete double-stranded sequence (17). A map of pS 194 identifying the regions involved in replication, streptomycin resistance, relaxation, and copy control together with positions of the four reading frames of significant size is shown in Fig. 1. Fig. 2 shows the sequence of pS 194 and the four reading frames described above.

The Replication Region

Cloning experiments have localized the pS194 leading strand replication origin to the 277 bp TaqI-F fragment, and have shown that the reading frame designated repE encodes a trans acting factor required for leading strand initiation. The TaqI-F fragment can support the replication of a plasmid carrying it providing a second plasmid carrying the repE reading frame is also present. As is the case with other related plasmids, the replication origin is located within the initiator protein coding sequence. As with pT181 and pC221, the copy number control region of pS194 is located just 5' to the rep protein coding sequence and it is similar to the copy control regions of these other two plasmids; deletions in this region cause an increase in copy number of 10 fold or more (Projan, unpublished), and we have identified a small antisense RNA species (countertranscript) that is encoded in this region and has a potential secondary structure similar to that predicted for the pC221 and pT181 countertranscripts (3). The start and end for this countertranscript are predicted by analogy with the other members of the family to be at positions 3280 and 3195 as indicated.

Most small S. aureus plasmids analyzed to date have in common a sequence called RS $_{B}$ (18). The $\mathrm{RS}_{\mathbf{B}}$ sequence was originally identified as a site of cointegrate formation between heterologous plasmids. It has subsequently been noted that this sequence is always found as part of an approximately 150 bp axis of dyad symmetry, palA (4). The palA elements of 8 different plasmids, including pS194, have pairwise base sequence homologies ranging from 35-88\%; the pS194 palA is most closely related (88% homologous) to that of pC194, an otherwise totally unrelated plasmid, and is

Figure 3. Agarose gel electropherogram of whole cell lysates. Lane 1: RN5343 (pE5); lane 2: RN5838 (pRN5202); lane 3: RN5170 (pRN5405); lane 4: RN5169 (pRN5404). Chromosome $=$ chromosomal DNA, SC = supercoiled plasmid DNA.
least closely related (41% homology) to that of pIM13, which is also unrelated. Several of the palA elements have been found to be interchangeable and we have verified this for pS 194 by cloning a Hinfl(2798-3360) fragment containing pS194 palA to pRN5202, a palA deletion derivative of pE5 (19). The pS194 palA element restored normal plasmid copy number and stability to the pE5 palA deletion derivative (see pRN5170, lane 3, Fig. 3), in the same manner as a restriction fragment carrying the pUB110 lagging strand origin (A. Gruss, personal communication; S. Projan, unpublished data) (see pRN5169, lane 4, Fig. 3).

Streptomycin Resistance

It has previously been observed that interuption of the HindIII site of pS194 inactivates streptomycin resistance (6). The HindIII site is located within a reading frame specifying a 34 kd peptide which is therefore assumed to encode a streptomycin resistance protein. The most probable start for this protein is an ATG codon at nucleotide positions 4323 to 4325 , which would place the ShineDalgarno sequence at 4308 to 4314 , just within the C-terminus of the repE reading frame. The str transcript would then originate within the repE reading frame or even further upstream, suggesting that the expression of repE and str may be coupled. As shown in Fig. 5, the predicted Str protein

```
pS194 1' MRTEKEILNLVSEFAYQRSNVKIIALEGSRTNENIKKDKFQDYDFAFFVSDIEYFTHEES
```



```
pJH1 1" MRSEKEMMDLVLSLAEQDERIRIVTLEGSRANINIPKDEFQDYDITYFVSDIEPFISNDD
        61' WLSLFGELLFIQKPEDMELFPPDLDYGYSYIMYFKDGIKMDITLINLKDLNRYFSDSDGL
        61" WLNQFGNIIMMQKPEDMELFPPE-EKGFSYLMLFDDYNKIDLTLLPLEELDNYL-KGDKL
        121' VKILVDKDNLVTQEIVPDDSNYWLKKPTEREFYDCCNEFWSVSTYVAKGVFRREILFALD
    .:.:.::: . .::: : : ..::. ::. :::::: :. :: ::. :.:::::.:
    119" IKVLIDKDCRIKRDIVPTDIDYHVRKPSAREYDDCCNEFWNVTPYVIKGLCRKEILFAID
    181' HFNNILRPELLRMISWYIGFNRGFDFSLGKNYKFINKYLTDKEFNMLLATFEMNGYRKTY
    ::.:.: : : : : : : : : : : : : : : : : : : : . ... . : : : . : : . 
179" HFNQIVRHELLRMISWKVGIETGFKLSVGKNYKFIERYISEDLWEKLLSTYRMDSYENIW
241' QSFKLCCELFKYYSNKVSCLGNYNYPNYEKNIENFIRNNYEN
239" EALFLCHQLFRAVSGEVAERLHYAYPEYDRNITKYTRDMYKKYTGKTGCLDSTYAADIEE
299" RREQ
```

Figure 4. Similarity between str of pS 194 and the $a \operatorname{adE}$ reading frame of S. faecalis plasmid pJH 1 . is homologous with the predicted AadE protein of the Streptococcus faecalis plasmid pJH1 (20). These two proteins have 48.9% amino acid identity and an additional 15% of conservative replacements. These proteins are not, however, detectably homologous to known Str proteins from Gramnegative bacteria. Just downstream from the end of the str reading frame is a sequence that resembles a ρ-independent terminator. This region, called t_{1}, has perfect homology with the corresponding region of both pT181 and pC221, immediately downstream from the reisistance determinants of these two plasmids.

Relaxation Complexes

Supercoiled pS194 DNA is relaxable by SDS, indicating that it exists largely as a protein-DNA relaxation complex (7).
pS194 and other relaxable plasmids such as pC221 are mobilized by conjugative S. aureus plasmids such as pG01 (21), whereas non-relaxable plasmids such as pT181 and pE194 are not (G. Archer, personal communication). The site of pC 221 relaxation has been mapped and a plasmid gene required for relaxation has been identified.

On the basis of sequence homology, it is suggested that the pS194 relaxation site and gene are correspondingly located (see Fig. 1). A fourth open reading frame, orfD, overlaps the rlx gene (Figs. 1 and 2). It is 56% homologous to the corresponding open reading frame of pC 221 at the amino acid level; the latter has recently been implicated in conjugative mobilization and it is considered likely that the same is true for pS 194 orfD.

ACKNOWLEDGMENTS

We thank Ms. D. Everett for expert secretarial assistance and Dr. Ellen Murphy and Dr. Serban Iordanescu for useful and stimulating discussions. This work was supported by Public Health Ser-
vice grant GM-33278 to S.J.P. and grant DMB-8503619 from the National Science Foundation to R.P.N. P.H.R.I. computer facilities used for sequence analysis were supported by National Science Foundation grant DMB-8502189 and by Public Health Service grant RR-02990.

REFERENCES

1. Iordanescu, S. (1976) Arch. Roum. Pathol. Exp. Microbiol. 35, 111-118.
2. Iordanescu., S., Surdeanu, M., Della Latta, P. and Novick, R. (1978) Plasmid 1, 468-479.
3. Projan, S. J., Kornblum, J., Moghazeh, S. L., Edelman, I., Gennaro, M. L. and Novick, R. P. (1985) Mol. Gen. Genet. 199, 452-464.
4. Gruss, A., Ross, H.F. and Novick, R.P. (1987) Proc. Natl. Acad. Sci. USA 84, 2165-2169.
5. Novick, R.P., Projan, S.J., Kumar, C.C., Carleton, S., Gruss, A., Highlander, S.K. and Kornblum, J. (1985) in Plasmids in Bacteria, , vol 30, Plenum Press, New York, p. 299320.
6. Gryczan, T., Shivakumar, A.G. and Dubnau, D. (1980) J. Bacteriol. 141, 246-253.
7. Novick, R. (1976) J. Bacteriol. 127, 1177-1187.
8. Novick, R. P. (1967) Virology 33, 155-166.
9. Novick, R.P. and Brodsky, R.J. (1972) J. Mol. Biol. 68, 285-302.
10. Chang, S. and Cohen, S.N. (1979) Mol. Gen. Genet. 168, 111-115.
11. Murphy, E. (1983) Plasmid 10, 260-269.
12. Novick, R.P., Murphy, E., Gryczan, T.J., Baron, E. and Edelman, I. (1979) Plasmid 2, 109129.
13. Projan, S.J., Carleton, S. and Novick, R.P. (1983) Plasmid. 9, 182-190.
14. Maxam, A. and Gilbert, W. (1980) Methods Enzymol. 65, 499-560.
15. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 54635467.
16. Messing, J. (1983) Methods in Enzymol. 101, 20-78.
17. Brenner, D.G. and Shaw, W.V. (1985) EMBO J. 4, 561-568.
18. Novick, R. P, Projan, S. J., Rosenblum, W. and Edelman, I. (1984) Mol. Gen. Genet. 195, 374-377.
19. Projan, S.J., Monod, M., Narayanan, C.S. and Dubnau, D. (1987) J. Bacteriol. 169, 51315139.
20. Caillaud, F., Trieu-Cuot, P., Carlier, C. and Courvalin, P. (1987) Mol. Gen. Genet. 207, 509-513.
21. Archer, G.L. and Johnston, J.L. (1983) Antimicrob. Ag. Chem. 24, 70-77.
