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Introduction 

Nucleotide diversity in eight genes related to wood formation was investigated in 

two pine species, Pinus pinaster and P. radiata. 

The nucleotide diversity patterns observed and their properties were compared 

between the two species according to the specific characteristics of the samples 

analysed. 

A lower diversity was observed in P. radiata compared with P, pinaster. In particular, 

for two genes (Pp?, a glycin-rich protein homolog and CesA3, a cellulose synthase) the 

magnitude of the reduction of diversity potentially indicates the action of nonneutral 

factors. For both, particular patterns of nucleotide diversity were observed in P. pinaster 

(high genetic differentiation for Pp? and close to zero differentiation associated with 

positive Tajima's D-value for CesA3). In addition, KORRIGAN, a gene involved in 

cellulose-hemicellulose assembly, demonstrated a negative Tajima's D-value in 

P. radiata accompanied by a high genetic differentiation in P. pinaster. 

The consistency of the results obtained at the nucleotide level, together with the 

physiological roles of the genes analysed, indicate their potential susceptibility to 

artificial and/or natural selection. 
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breeding programmes have provided the forest industry with 

improved genotypes for wood production (e.g. 30% realized 

Identification of genes controlling quantitative trait variation genetic gain for the volume of the bole in Pinm pimster; 

is one of the great challenges of the post-genomic era. This Alazard Bi Raffin, 2003). The introduction of criteria towards 

knowledge is important not only for biomedicine but also wood quality selection is now considered as an important 

for ariculture. In this latter field, such information would objective to ensure the sustainability of the wood market 
V 

provide a way to manage and use the genetic variability in 

breeding and gene conservation programmes. The availability 

of markers linked to economically and ecologically relevant 

traits would be of particular interest in long-lived forest trees 

species such as conifers. Such tools would enhance the 

efficiency- of artificial selection by reducing the duration of 

breeding cycles and increasing the genetic gain in each cycle. 

They would also provide criteria to manage Functional genetic 

diversity, which is key to preserving adaptability of forest 

trees to their changing environment. Traditional forest tree 

through the availability of raw material well suited to end-use 

products (Pot et a l ,  2002). 

Wood property quantitative trait loci (QTLs) have been 

identified in many forest tree species, attesting the existence of 

major gene effects controlling part of the variation of wood 

and its end-use properties (Bradshaw & Stettler, 1995; 

Grattapaglia et a l ,  1996; Kumar et a l ,  2000; Lerceteau a a l  , 
2000; Arcade etal ,  2002; rvloran etal ,  2002; Neale etal ,  

2002; Brown et dl., 2003; Markussen et al., 2003). Co- 

localizations of QTLs and candidate genes (Moran et al ,  2002; 
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Brown et ab, 2003; Chagn4 et al,  2003) have also been reported. 

However, given the large confidence intervals generally asso- 

ciated with QTls (Mangin et d, 1994), these findings did 

not permit their validation. Complex trait dissection allowing 

the identification of individual genes is currently underway 

through association studies in humans and model animals 

(e.g. Drosophih). Recently Thornsberry et al(2001) have suc- 

cessfidly transferred this approach to plants. In theory, association 

studies should be performed at a whole-genome level (also 

known as a genome scan); however, due to the specific features 

of conifers (short distance linkage disequilibrium (Brown 

et a l ,  2004; Neale & Savolainen, 2004) and extremely large 

genome size ( u ' B h i y a  et al, 1993))) a candidate-gene approach 

is the only possible way to understand the molecular basis 

underlying quantitative variation in these species. 

Wood formation includes four major steps: cell division, 

cell expansion, secondary cell wall formation and cell death. 

These steps involve expression of a number of structural 

genes, coordinated by transcription factors, mainly involved 

in the biosynthesis of polysaccharides (cellulose: 40-50% of 

dry wood; hemi-cellulose: 25%; and pectins), lignins (25- 

35%), and cell wall proteins. A number of genes that deter- 

mine cell wall composition and cell shape have been identified 

by classical biochemical analysis (e.g. lignification genes, 

reviewed in Whetten e t d ,  1998)) and more recently by the 

application of the genomic tools such as gene or protein 

expression profiling (Plomion et a l ,  2000; Heraberg et al,  

2001; Le Provost etal, 2003; Gion etal, 2005) and the 

screening of large collections of Arabihpsis thdliana mutants 

(Fagard et al ,  2000; Mouille e.t dl, 2003). 

Several studies have shown that wood structure and com- 

position are influenced by environmental changes (Liphschitz 

& Waisel, 1970; Barber et al., 2000). The extent of these 

modifications has also been shown to be genetically regulated 

(Rozenberg et aL, 2002), suggesting the potential functional 

role ofxylogeneic genes in forest trees adaptation (Costa et al., 

1998; Riccardi et al,  1998). In this context, it is possible that 

nucleotide diversity of these genes and their homologs in pine 

are involved in genetic variation ofwood properties and, as such, 

may be subject to natural selection pressures in pine species. 

For this study, eight candidate genes were selected based on 

their likely involvement in the determination of wood prop- 

erties. Three were homologous to ArabidoPJis thdliana cell 

wall mutant genes specifically involved in the cellulose and 

hemicellulose bios ynthesis (a membrane-bound endo- 1,4- 

beta-glucanase, KOIUilGN, and two cellulose synthases, 

CE'S43 and CESA.4). Five expressional candidate genes were 

also analysed. These genes have been identified through dif- 

ferential expression studies between different types of wood 

characterized by distinct chemical composition and structure 

(reviewed in Plomion et dl., 200 1). Pp2 (MYB-like transcrip- 

tional factor), Pp4 (ACC oxidase) and PpG (2% ribosomal 

gene) have been identified as being up-regulated in early 

wood, whereas Ppl (glycine-rich protein homolog) was found 

to be up-regulated in late wood-forming tissue (LR Provost 

et dl., 2003). I)rl (unknown function protein) was isolated from 

wood forming tissue in I? radiatd (S. Cato, unpublished data). 

In the present study, nucleotide variation of these eight 

genes was analysed within and between two pine species: 

Pinaspindsterfit. and Enus rdiata D.don, both ofwhich are 

economically and ecologically important. Both species are 

currently the target for conservation efGorts, and the accurate 

determination of their genetic structure at the functional level 

would help refine conservation strategies. 

Rpindsterhas a highly fragmented distribution over 4 Mha in 

the ivediterranean basin. This natural range includes highly 

variable climatic conditions, from more than 1000 mm rain- 

fall in Tova (Corsica) to less than 100 mm in Oria (Spain), 

and soil structure that varies from sandy dunes to shallow 

rocky soils. The genetic structure of the species has been 

described using several sets of markers (reviewed in Burban & 

Petit, 2003) and reveals 18 geographically structured races 

belonging to three major groups: an Atlantic group, compris- 

ing populations from western France and the greater part of 

Spain and Portugal; a Mediterranean group, consisting of all 

eastern European populations, and including eastern Spanish 

populations up to Andalucia and the small stand of Punta 

Cires in Morocco; and a North African group comprising all 

the other African populations. Because of the fragmentation 

of its natural range, maritime pine exhibits a relatively high 

genetic differentiation among populations at nuclear markers 

in comparison to other conifer species. A high level of genetic 

differentiation was also observed for survival, adaptation to 

different climatic conditions, growth and phenology, resist- 

ance to insects and drought tolerance (reviewed in Gondez- 

Martinez et dl, 2002). 

I? radiutu grows naturally in five locations: M o  Nuevo, 

Monterey and Catnbria on the Californian mainland coast and 

Guadalupe and Cedros islands off the coast of Baja California. 

These five locations d s e r  substantially from each other with 

respect to soil, elevation, temperature, rainfall and ecosystem 

associates. At the genetic level, significant differen tiation was 

observed between the difGerent populations (ranging between 

0.1 19 and 0.26, depending on the type of markers and the 

populations considered; Moran et al,  1988; Wu et dl., 1999; 

Karhu, 2001). Although the natural range of R rddiata is 

extremely small, it is the world's most widely planted fast- 

growing softwood species. It is cultivated on a commercial 

scale in Australia, Chile, South Africa and New &a(and. 

The objectives of this study were twofold. The first was to 

study the patterns of nucleotide diversity of the eight chosen 

candidate genes in I? rddiatu and I? pinaster. More explicitly, 

we described for the first time in these two species, the type 

(SNP vs INDEL), nature (silent vs nonsynonymous) and 

genomic location (coding vs noncodine) of nucleotide polymer- 
phisms. The second goal was to investigate whether nucle- 

otide diversity patterns were compatible with neutral models 

or not. 



Table 1 List of Pinus pinaster and Pinus radiata populations 

Species County Population 
Altitude Sample 

Latitude Longitude (rn) sizea Crou pb 

P. pinaster Tunisia Tabarka 
France Corsica Porto Vecchio 

Corsica Vivario 
Corsica Zonza 
Aquitaine Castets 
Aquitaine Mimizan 
Aquitaine Souston 
Aquitaine Hourtin 
Aquitaine Medoc 

Portugal Leiria Mata 
Leiria Velha 

Morocco Punta Cires 

Tamjout 
P. radiata New Zealand NZ breeding 

population (land race) 

Mediterranean 
Mediterranean 
Mediterranean 
Mediterranean 
Atlantic 
Atlantic 

Atlantic 
Atlantic 
Atlantic 
Atlantic 
Atlantic 
Atlantic 

North African 
At70 Nuevo 
and Monterey 

"Number of megagametophytes analysed per gene. For CesA3, a wider sample was studied. The sample size analysed for each population for 
this gene is indicated in parentheses. 
b ~ .  pinasfer groups based on Burban & Petit (2003); P. radiata groups based on Burdon e ta / .  (1997a,b). 

Materials and methods 

Plant material and DNA extraction 

v4.1.4 (Genecodes, Inc, Ann Arbor. Michigan USA). Primer 

pairs (Table 3) were designed from the consensus sequence 

using PRIMER 3 (Rozen & Skaletsky, 2000). 

PCR products were sequenced using the Big Dye termina- 

Haploid megagametophytes, a maternal tissue surrounding tor kit (hersham Bioscience, Uppsala, Sweden) and an ABI 

the diploid embryo in conifer seeds, were harvested &om germi- 3 100 automatic sequencer (Applied Biosystem, Foster City, 

nated seedlings just before the seed coat was cast ofE Genomic CA, USA) according to the manufacturers' specifications. A 

DNA was extracted as described by Plomion et al. (1995). I? single sequence was obtained per megagametophyte for each 

pimster nucleotide diversity was assessed using megagameto- candidate gene. Singleton polymorphisms were verified through 

phytes collected from natural stands across the species natural re-sequencing of the affected megagametophyte sample. 

range (Table 1). Twenty-four gametes from 13 provenances 

belonging to the three main groups identified by Baradat and 
Landscape of nucleotide diversity 

Marpeau (1988) were included in this exploratory analysis. In 

a second step, for one of the genes (CesA3) the sample size was Sequence alignment and nucleotide polymorphism detection 

extended to 9 1 megagametophytes (Table 1). I? rdhtanucleotide were performed with SEQUENGHER v4.1.4. Each polymorphic 

diversity was estimated using 23 megagametophytes collected site was visually checked on the chromatograms in order to 

from individual trees of the New Zealand breeding population distinguish true polymorphisms from scoring errors. The use 

(Forest Research, Rotorua, New Laland). Previous studies, based of haploid tissues greatly facilitated the sequence analysis, 

on monorerpene analysis (Burdon et al, l997a) and morphological allowing the direct definition of the haplotypes (multilocus 

traits (Burdon et al., 1997b) have shown that the local race was combinations of polymorphisms) without cloning or using an 

introduced from the USA duriig the 19th century and mostly expectation maximization (EM) algorithm (Long et aL, 1995). 

derived from the M o  Nuevo population, with some admixture Basic parameters including the number ofsingle nucleotide 

from the Monterey population, polymorphisms (SNPs) , insertion-deletions (INDELs), 

synonyIlnous (S) and nonsynonymous (NS) mutations were 

calculated using the SITE software (Hey & Weley ,  1997). 
Primer design, PCR amplification and DNA sequencing 

Nucleotide diversity was estimated as (based on the 

For each gene, a BLAST search (Altschul et al., 1997) was first number of segregating sites; Watterson, 1975) and E (based on 

run to identify homologs in pine expressed sequence tag the average number of nucleotide differences per site between 

(EST) databases available at http://cbi.labri. &/outils/SAh..l/ sequences; Nei, 1987). These parameters were computed with 

COMPLETE/index.php for Rpindste and http://hngen.org/ SITE, without considering INDELs, at three dzferent levels: 

Projects/Pine/Pine.htm for Rntu taeh (Table 2). From the (i) the whole sequenced region; (ii) noncoding regions 

multiple alignments of the retrieved sequences, a consensus (including introns, 3' and 5' untranslated ~ g i o n s  (UTRs)); and 

sequence was thcn derived for each candidate using SEQUENCHER (iii) coding regions, subdivided in two components - S and NS. 
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Table 2 Summary of the studied genes 

Gene ID Function 

Number of homologs with pine 
Base pairs screened EST (E-value < 1-lo) 

Accessiona Total Exon lntron 3' UTR p.pinarterb P. taedac 

CesA3 
CesA4 

PPI 
PP2 
PP4 
PP6 
Pr l  

membrane-bound end041 -4)-P- 
glucanase (EC:2.4.1.12) 

cellulose synthase (EC2.4.1 . I  2) 
cellulose synthase (EC:2.4.1 . I  2) 
glycine-rich protein homolog 
MYB-like trmscriptional factor MBFI 
ACC oxidase 
25s rRNA gene 
unknown protein 

aAccession n um ber deposited in dbSTS 
bSearch performed at http://cbi.labri.fr/outils/SAMlCOMPLETE/index.php 
5earch performed at http://fungen.org/Projects/Pine/Pine.htm 

Table 3 List of primer pairs and amplification conditions 

Primer pairs Amplification conditions 

Gene ID Forward primer Reverse primer Ta PC) M$' ( m ~ )  

KORRICAN 

CesA4 
CesA3aa 
CesA3ba 

PP? 
PP2 
PP4 
Pp6aa 
Pp6ba 
Pr l  

CCAGCACTATCCTCTTTTAACC 
ACATCTTCCTCAATCCCTCC 
GCTTTCACAACTCCTTTGCC 
CATTCGTTCGAGTCTCTCCC 
GAGTTCTCAAGCCATGTCGC 
AACACATCATCCATCTCCCC 
CAACATCTACCCTCCTTCCC 
TTTTGATCCTTCCATGTCCG 
AAATTCAACCAACCGCCG 
ATCCCATCGGACTTGCAC 

TATTCCCCCACTATCACCCC 
CCAAACTTCACTCTCACATCC 
CTATGCCACTCTTTCCAGCC 
TAACACACCAAGAGGCCACC 
TAACACACCAACAGGCACC 
ACAGATCGTCATTCATCCCC 
TGAAATTCCTAACATGCTCCC 
CAATCTCACTCCATCGTCGC 
CTTTTAACAGATCTCCCGCC 
CATCTCAGCCTCCGTTTCC 

-- - 

aFor Pp6 and CesA3, two primer pairs were designed. 

The number of haplotypes and the haplotype diversity were 

calculated using the DNMP software (Rozas & Rozas, 1999). 

Tests for selection were performed to estimate whether the 

considered genes followed the model of neutral evolution 

(Kirnura, 1983) or not. Tajima's Dtest, based on the allelic 

distribution (Tajima, 1989), was carried out using ARLEQUIN 

2,000 software (Shneider eta,!, 2000). As implemented in 

this software, significance of this test was tested by generating 

random samples under the hypothesis of neutrality and popula- 

tion demographic equilibrium. This test was performed assuming 

the absence of recombination, making it conservative, 

Levels of difierentiation (&) between Corsican and Aquitaine 

populations were estimated for all the studied genes with the 

analysis of molecular variance (AMOVA) (Excoffier et a,!, 1 992) 

differentiation for some of them, linkage disequilibrium (LD) 

was only computed for Ce& for which a larger sample size 

was available. Given the absence of significant differentiation 

for this gene, LD between polymorphic sites was estimated 

using the whole set of sequence with DNASP. Fisher's exact 

tests and Bonferroni correction for multiples tests were 

computed to determine whether the detected associations 

were significant or not. 

Total divergence between Ppimter and P rddiat~ estimated 

as the average number of nucleotide substitutions per site, was 

finally calculated using DNASP. 

as implemented in the ARLEQUIN 2.000 s o b a r e  (Schneider 
Nucleotide variation at the intraspecific level 

et id, 2001). In addition, dif5erentiation among all the studied 

populations was also estimated for CesA3. Sequence data for almost the complete set of gametes were 

Considering first the small number of sequences analysed obtained for six out of the eight genes analysed. For PpI and 

for most of the genes, and second the existence of significant Pp2, only 12 and 14 high-quality sequences, respectively, were 
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Table 4 Pattern of nucleotide variation 

Pinus pinaster Gene ID 1CORRIGAN CesA3 CesA4 Pp? pP2 pP4 Pp6 Pr? Total 

Number of sequences 
INDEL 
SNP 

Total 
sa 
Singleton 
n 

@w.. 
Tqi ma's D 

Noncoding 
S 
n 

@ w 

Coding 
Total 

S 
7c 

@w 

n 

@w 

Nonsynonymous 
S 
n 

@w 

Number of haplotypes 
Haplotype diversity 

(SE) 

Pinus radiata Gene ID KORRIGAN CesA3 CesA4 Pp7 pP2 pP4 Pp6 Pr? Total 

Number of sequences 
INDEL 
SNP 

Total 
sa 
Singleton 
n 

@, 

Tqima's D 
Noncoding 

S 
n 

@ w 

Coding 
Total 

S 
n 

@ w 

Synonymous 
S 
n 

@w 
Nonsynonymous 

S 
7C 

@w 

Number of haplotypes 
Haplotype diversity 

(SE) 

aNumber of SNPs; b~ignificant Tajima's D-value (P < 0.05). 
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Table 5 Fg estimates between Corsican and Aquitaine populations In respect to I? pi~aster, the probability of detecting poly- 

Gene F5t 

CesA3 

KORRlCAN 

PP? 

PP2 

PP4 
Pr? 

All (31 polymorphic sites) 
C, AFLP-SSR (Mariette et a/. 2001 ) 

morphic loci was probably maximized considering: (i) the 

scattered sample used in our study covering the three main 

groups of diversity; (ii) the moderate level of genetic differen- 

tiation at the neutral level between geographical provenances 

(Gn = 0.14-0.17; Petit et al, 1995) for isozpes, proteins and 

terpenes, with populations from France, Portugal, Corsica, 

Spain, Italy, Sardinia; and (iii) the rather low difFerentiation 

within provenances (GST = 0.04 for isozymes, cpSSR, nuclear 

SSR and AFLP markers, within Spain, Portugal, Aquitaine 

and Corsica: Mariette et a l ,  2001; Gonzdez-Maru'nez et a l ,  

aSignificant test. 2002; Ribeiro et al ,  2002). However, it is important to note 

that the North African group, which constitutes a singular 

these NS fixed differences were moderately radical regarding 

the amino acid modification (Grantham, 1974): two sites in 

Pp2 (modifications SER to ARG and GLY to ARG) and one 

site in Pp4 (VAL to SER). 

Under neutral evolution, interspecific divergence is expected 

to be proportional to intraspecific nucleotide diversity. 

Comparison of divergence and nucleotide diversity revealed 

that only Pr l  diverged from this pattern. However, due to the 

small size of the fragment analysed (1 13 bp), no particular 

hypothesis could be provided. A wider exploration of the 

diversity of this gene will be required before any conclusion 

can be drawn. 

mitochondrial lineage, with highly differentiated populations, 

was under-represented in this study and probably led to an under- 

estimation of the nucleotide diversity of some of the genes. 

Concerning I? radiata, as reported in the Material and 

Methods section, the sample used in this study corresponds to 

the first generation of the New Zealand breeding population, 

which derived from the Ario Nuevo population with some 

admixture from the Monterey population. Johnson and 

Lipow (2002) showed that first-generation seed orchards 

retain most of the genetic diversity present in the natural pop- 

ulations from which they were derived. As a consequence, the 

results obtained for I? radiata should reflect the nucleotide 

diversity present in its ancestral populations. Indeed, using 

nuclear and chloroplast microsatellite loci, no significant 

changes in diversity were found between the five natural pop- 

ulations of l;' radiata, and the current New Zealand breeding 

populations (T. Richardson, Forest Research, New Zealand, 
Adequacy between the sampling strategy and SNP 
detection probability 

pers. comm.). It is, however, important to note that, accord- 

ing to the selection criteria used to select the first-generation 

The probability Pof  detecting the two alleles at a SNP locus breeding population (i.e. growth and form), some of the genes 

depends on three parameters: (i) the number ofgametes sampled, controlling these traits could have been submitted to artificial 

N; (ii) the frequency of the rare allele in the population, p; selection events leading to a reduction in their diversity. 

and (iii) the organization of gene diversity, In the absence 

of differentiation among populations, P = 1 - (1 - p)Y In the 
Nucleotide diversity in wood formation related genes 

present study, for each species, on average 21 gametes were - - 
sequenced for each DNA fragment, resulting in a detection Polymorphic sites were found in almost all the genes analysed, 

probability of 89Oh for a rare allele frequency of 10%. providing the basis to initiate association studies to test the 

Table 6 Fixed differences between Pinus 

pinaster and Pin us radiata and estimates of SNP 

total divergence D (x,y) 
Number Coding Coding 

Gene ID of INDELs Noncoding synonymous nonsynonymous D (x ,y )  

KORRlCAN 3 
CesA3 0 
CesA4 1 

PPl 0 
PP2 0 
PP4 0 

PP6 0 
Pr? 0 
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Table 7 Estimates of nucleotide diversity in different species 

Species 

Pinus pinaster 
Pinus radia ta 
Pinus taeda 
Pinus taeda 
Pinus taeda 

Pinus sylvestris 
Pinus sylvestris 
Cryptomeria japonica 
Pseudotsuga menziesii 
Populus tremula 
Quercus petraea 
Glycine max L. Merr. 

Arabidopsis thaliana 
Beta vulgaris 
Zea mays 

Zea mays 

Number 
of loci 

Number of 
genotypes 

Length Coverage of the Total nucleotide 
(bp) natural distribution diversity (x) Reference 

4 746 yes 
4 746 no 

17 580 yes 
NA NA 
10 116 yes 

4 136 yes 
2 045 yes 

I0 158 yes 
NA NA 
6188 no 
3 083 yes 

76 000 no, restricted to ancestors 
of North American cultivars 

- Yes 
18002 no 
6 935 no, restricted to US elite 

maize breeding pool 
NA yes 

this study 
this study 
Brown etal. (2004) 

Neale & Savolainen (2004) 

5. C. GonzAlez-Martinez, CIFOR-INIA, 
Madrid, pers. comm. 
Garcia-Gil et a/. (2003) 

Dvornyk et a/. (2002) 

Kado et a/. (2003) 

Neale & Savolainen (2004) 

lngvarsson (2005) 

1. Derory, INRA Pierroton, pers. comm. 
Zhu et a/. (2003) 

reviewed in AguadC (2001) 

Schneider et a/. (2001 ) 

Ching et a/. (2002) 

reviewed in White & Doebley (1 999) 

NA, data not available. 

involvement of these genes in the variability of the traits of 

interest. The availability of haploid tissue enabled the 

definition of the different haplotypes, allowing a reduction 

of the polymorphic sites to be genotyped. For instance in Z? 

pinaster, only 21 markers (SNPs and INDELs) will have to be 

genotyped to define the haplotypic composition, instead of 

the 32 polymorphic sites discovered. This subset of SNP tags 

was defined exclusively based on the haplotypes observed in 

the studied sample. Although linkage disequilibrium analysis 

would allow a reduction of this SNP tag set, such analysis was 

not performed, given the high differentiation observed for 

some of the analysed genes and the small sample size of each 

population analysed. 

In spite of the exploratory nature of this study, limited to a 

restricted set of genes, it is interesting to note that the results 

obtained here agree with previous nucleotide surveys in coni- 

fers (Table 7). Although comparative diversity analyses using 

allozymes have shown that conifers are among the most genet- 

ically diverse organisms (Hamrick & Godt, 1990), nucleotide 

data do not support this statement. Indeed, the nucleotide 

diversity of conifers is higher than in humans but lower than 

in Zeu mays. Interestingly, the nucleotide diversity levels 

reported in broadleaved trees such as PopuZus or Quercm are 

also significantly higher than in conifers (Table 7); the reasons 

for this divergence remain to be found. 

Lower diversity in P. radiata: consequences of neutral 
process or genes controlling traits submitted to selection 

A trend towards lower nucleotide diversity was observed for 

Z? rdiutu compared with I! finaster. This result is consis tent 

with our previous knowledge regarding the populations analysed. 

Although I! pinaster is characterized by a large geographic 

distribution, the natural range of Z? radiata is extremely small. 

In addition, the populations analysed in this study covered 

different ranges of the distribution according to the con- 

sidered species. For I! pinuster, almost the whole geographic 

distribution was analysed, whereas for Z? r d i a t ~  only a subset 

of the total variation was analysed. As a consequence, the 

lower nucleotide diversity observed for I? radiata agrees with 

its lower population effective size compared with Z? pinaster. 

Although a lower diversity is expected in Z? dia tn .  under 

a neutral model of evolution, two genes (Ppl and CesA3) 

presented an abnormally strong reduction of diversity in this 

species. A plausible hypothesis would be the concomitant effects 

of the smaller population effective size combined to the exist- 

ence of natural andlor artificial selection acting on these genes. 

Such a scenario would have lead to the elimination of some 

alleles, resulting in an unusually low diversity level. Several 

concomitant results in Z? pinaster support this hypothesis. 

For Ppl in Z? pinaster, a higher differentiation than at 

the neutral level was observed. Such a differentiation pattern 

would be consistent with a 'diversifying selection' acting at 

this locus in Rpinuster. Evidence of selection at the molecular 

level for this gene would be consistent with its physiological 

role: Ppl is a glycine-rich protein (GRP) that has been shown 

to be differentially expressed between differentiating xylem 

associated with different types of wood characterized by dif- 

ferent physical and chemical properties; in other words, early 

vs late wood (Le Provost et al ,  2003) and opposite vs com- 

pression wood (Mona et aL, 1998; Zhang et al., 2000; Le 

Provost et ul, 2003). Cell wall GRPs are localized in vascular 

Nezu Phytologirst (2005) 167: 10 1-1 12 www.newphytologist.org O New Phytologirt (2005) 
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tissues and are thought to provide elasticity as well as tensile 

strength during vascular development (Cassab, 1998). Poly- 

morphism~ inducing variation of these properties would def- 

initely affect the adaptation of the tree to its environmental 

conditions and thus be preferentially fixed in certain condi- 

tions. In the case of R r~diata, according to the negative 

genetic correlations often reported between growth and wood 

quality in conifers (Rozenberg & Cahalan, 199E Pot etal,, 

2002), the reduction of diversity observed may have resulted 

from the artificial selection on growth applied to the New 

Zealand land race. 

The absence of differentiation observed for CesA.3 in R p k -  

aster compared with the significant level observed for neutral 

markers (Petit et dl, 1995) provides a strong indication of bal- 

ancing selection acting on this gene. The positive Tajima's D- 

values reported for this gene for the whole area of distribution 

and for the Aquitaine provenance tend to confirm this 

hypothesis. Indeed, such values would not be expected in the 

case of no differentiation. Furthermore, the relatively high 

haplotype structure observed for this gene (high haplotype 

diversity, low number of haplotypes compared with the 

number of polymorphic sites, high level of linkage disequili- 

brium) also indicates the same tendency toward the action of 

balancing selection. These hypotheses of possible deviations 

from neutrality for CesA3 are consistent with its role in cellu- 

lose biosynthesis. Cellulose is one of the major components of 

the cell wall. In temperate zones, climatic variation during the 

annual course of the vascular cambium give rise to early wood 

formed early during the growing season, and late wood 

formed in late summer. This environmental pressure could 

strongly affect the major change in cellulose content recog- 

nized between these two types of wood. 

As in the case of Ppl, the reduction of diversity observed for 

CesM in R radiatd would be consistent with the involvement 

of this gene in the genetic determinism of wood quality, a trait 

negatively correlated to growth. 

KORRIGAN, a gene involved in polysaccharides 
biosynthesis, as a putative target of natural selection 

Several results that include a high differentiation between 

Corsican and Aquitaine populations in I! pinaster and a 

significant negative Tajima's Dvalue in R r~diata suggest 

lirORRIGANas a potential target of selection in these species. 

The high differentiation observed in Rpinasteris consistent 

with the existence of diversi&ng selection that would have lead 

to the prevalence of different haplotypes, as a consequence of 

their role in local adaptation to the particular environmental 

conditions encountered. 

In 2 r&tq the significant negative Tajima's D-value may 

result from a past selection event on this gene, or may be a 

recent one, which would be consistent with the relatively strong 

haplotype structure (only four haplotypes for 18 sequences 

and five polymorphic sites). Thus the excess of rare frequency 

polymorphisms would be consistent with a hitchhiking event 

in the R rddidta population. An alternative neutral hypothesis 

would be the recent expansion of the New Zealand breeding 

population. 

The role of KORRIGANis consistent with deviation from 

neutrality, Indeed, KORRIGANis involved in the biosynthesis 

of cellulose, the main compound of the cell wall and whose 

amount is genetically controlled (&&I& Buijtenen, 1989; Pot 

et dl,, 2002; Sewell et dl, 2002), and which provides strength 

and flexibility to plant tissue. It encodes a P-1,4 endogluca- 

nase, which catalyses the cleavage of the cellodextrin from the 

sistosterol cellodextrin (Nicol et aI, 1998; Peng et al., 2002) 

before the proper synthesis of the cellulose microfibrils by the 

cellulose synthase complex. Its importance in this pathway 

has already been underlined. It is indeed strongly differentially 

expressed between early and late wood, presenting an over- 

expression in late wood which is characterized by a higher pro- 

portion of cellulose (accession AL750476 in LR Provost, 2003). 

Recent studies tend to confirm the central role of this gene 

in the genetic variability of cell wall composition. Indeed, sig- 

nificant relationships between KORRIGAN polymorphisms 

and polysaccharides content were detected (coincident with 

QTLs in a three-generation outbreed pedigree; Pot, 2004). 

Also a significant association was observed in the R pinaster 

first-generation breeding population between one K O M -  

GRN SNP and cellulose content (I?. Garnier-Gtrd, pers. 

cornrn.). These observations reveal the potential importance 

of this gene in the variability of polysaccharide content, a trait 

that may be subjected to natural selection pressures. 

Conclusion and perspectives 

This exploratory study allowed the identification of polymor- 

phisms in eight wood formation related genes in I! pindster 

and I! rdidtd. This information is currently used in association 

studies to test their involvement in the phenotypic variability 

of economically important traits linked to wood structure and 

chemical composition in these two species. 

The analysis of the patterns of nucleotide diversity obtained 

at the intra and interspecific levels provided some indications 

on adaptative evolution at the molecular level for KORRI- 
GAN, Ppl and CcsA.3. These interpretations are consistent 

with the demonstrated physiological role of these genes, and 

with recent data obtained in QTL mapping experiments and 

association studies. 
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