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ABSTRACT

We can determine the effects of many possible
sequence variations in transcription factor binding
sites using microarray binding experiments. Analysis
of wild-type and mutant Zif268 (Egr1) zinc fingers
bound to microarrays containing all possible central
3 bp triplet binding sites indicates that the nucleotides
of transcription factor binding sites cannot be
treated independently. This indicates that the current
practice of characterizing transcription factor
binding sites by mutating individual positions of
binding sites one base pair at a time does not provide
a true picture of the sequence specificity. Similarly,
current bioinformatic practices using either just a
consensus sequence, or even mononucleotide
frequency weight matrices to provide more complete
descriptions of transcription factor binding sites, are
not accurate in depicting the true binding site specifi-
cities, since these methods rely upon the assumption
that the nucleotides of binding sites exert inde-
pendent effects on binding affinity. Our results
stress the importance of complete reference tables
of all possible binding sites for comparing protein
binding preferences for various DNA sequences. We
also show results suggesting that microarray
binding data using particular subsets of all possible
binding sites can be used to extrapolate the relative
binding affinities of all possible full-length binding
sites, given a known binding site for use as a starting
sequence for site preference refinement.

INTRODUCTION

The DNA binding site preference of transcription factors is
commonly described using a consensus sequence, even though
one sequence cannot accurately depict the binding site preferences.

More recently, mononucleotide frequency weight matrices
have been introduced as a more accurate way of describing the
DNA sequence specificities of transcription factors (1). A few
researchers have even applied oligonucleotide weight matrices in
an attempt to capture neighbor-dependent information (2–4).
Such weight matrices, and even consensus sequences, are often
used to search genomes for potential binding sites for tran-
scription factors and thus to identify the genes regulated by
these factors (5,6).

However, the use of binding site weight matrices to identify
potential new target sites for binding by the transcription factor
makes the assumption that the nucleotides of the DNA binding
site can be treated independently in evaluating potential new
matches to the matrix (1). Therefore, we performed analyses to
determine whether this independence assumption is valid. In
addition, we probed the practical question of whether one can
predict new sites on the basis of a few known sites. For this
analysis, we generated a probability distribution over all potential
sequences using a hidden Markov model (HMM) (7) derived
from a weight matrix created from a few sites. Since the statistical
properties of HMMs are quite well understood (8), they
provide us with a solid statistical foundation from which to
draw conclusions about nucleotide interdependence. However,
even when contained within the structure of a HMM, this use of
binding site weight matrices makes the assumption that individual
nucleotides, or groups of nucleotides, within the DNA binding
site can be treated independently (1).

Prior analysis of DNA binding site selections using optimized
zinc finger proteins provided evidence for context-dependent
effects in zinc finger recognition (9). More recently, analysis
of the binding of Salmonella bacteriophage repressor Mnt to
DNA sequences carrying all possible dinucleotide combinations
at positions 16 and 17 of the 21 bp binding site indicated that
interactions of Mnt with nucleotides at these positions are not
independent (10).

We present compelling evidence that the assumption that
nucleotides of DNA binding sites can be treated independently
is problematical in describing the true binding preferences of
transcription factors. Therefore, the use of a completely specified
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reference table is desirable for depicting these binding prefer-
ences accurately. Furthermore, binding site weight matrices
are often based upon only a few known binding sites (5,6),
many of which may be identical, making the resulting weight
matrix not much better than a consensus sequence.

Microarrays containing all possible 3 bp binding sites for the
variable zinc finger were used to quantitate the binding site
preferences of a collection of mouse Zif268 mutants selected
from a phage display library of the second finger (11). A phage
display library, prepared by randomizing critical amino acid
residues in the second of three fingers of the mouse Zif268
domain (Fig. 1), provided a rich source of zinc finger proteins
with variant DNA binding specificities (12). Analysis of the
microarray binding data led to the discovery that the nucleotides
of a transcription factor binding site exert significant inter-
dependent effects on the DNA binding affinity of the transcription
factor. Furthermore, we provide evidence that extrapolating
particular subsets of binding sites can determine not only the
preferential full-length binding site, but also the approximate
rank ordering of those sequences bound with the highest affinities.

MATERIALS AND METHODS

Calculation of Ka
app values

For each Zif variant being examined, each of the DNA
concentration-normalized fluorescence intensities was
expressed as a fraction of the total fluorescence intensity of the
64 different DNA sequences per replicate on the microarrays.
These signal intensities correlated well with a hyperbolic
function of the Kd

app values, based on fractional occupancy.
Therefore, for each variant Zif phage a calibration curve was
constructed by determining the Kd

app values of a few represent-
ative sequences that spanned the range of relative fluorescence
intensities on the microarrays spotted with all different triplet
binding sites for finger 2. These calibration curves were used
to interpolate the Kd

app values for the remaining sequences on
the microarrays (11).

The calibration curves were calculated using the average
fluorescence intensities from all nine replicates spotted on the

microarrays. The average calibration curve for each variant
was then used to calculate the individual Kd

app values for each
of the individual spots on the microarrays. The Ka

app of
each spot was determined from 1/Kd

app. The individual Ka
app

data for each of the nine replicates for each of the five Zif268
variants are available at http://arep.med.harvard.edu/Bulyk/
NAR2002supplementary/.

Significance testing

The significance of the various interdependence metrics, as
well as the significance of differences between the observed
Ka

app values and Ka
app values extrapolated from subsets of

binding sites, was calculated using the two-tailed non-pooled
t-test (13), where

t = (x1 – x2)/√[(s1
2/n1) + (s2

2/n2)]
with degrees of freedom

∆ = [(s1
2/n1) + (s2

2/n2)]
2/[(s1

2/n1)
2/(n1 – 1) + (s2

2/n2)
2/(n2 – 1)]

Because multiple hypotheses were tested to determine the
statistical significance of the difference between the observed
and calculated Ka

app values of a number of triplet sequences for
each Zif268 variant, measures were taken to ensure that indi-
vidual tests were not counted as statistically significant simply
because of the probability of achieving a false positive at a
particular significance cut-off. For example, if 20 individual
comparisons are evaluated using α = 0.05, the expected
number of Type I errors (i.e. false positives) is 1. The Bonferroni
correction is a method developed to deal with problems arising
from multiple tests (14).

We used the modified Bonferroni method to correct for
multiple hypothesis testing (15). Briefly, the individual
comparisons were rank ordered from most to least significant.
For the most significant difference, a significance cut-off α′ was
used, such that α′ = α/k, where k is the number of cases tested.
If the most significant difference was found to be statistically
significant using α′, then we proceeded to the second most
significant difference and used

α′ = α/(k – 1)
If this test was found to be statistically significant, then we
proceeded to the third most significant difference and used

α′ = α/(k – 2)
We proceeded in this manner until the test case was found not
to be statistically significant. All lower ranking tests were then
also not statistically significant.

For our significance testing we used an initial α = 0.05,
which corresponded to α′ = 0.000781 for the highest ranking
test case if 64 individual comparisons are being evaluated.

Hidden Markov model design and decoding

HMMs can be thought of as models that generate sequences of
symbols, such as nucleotides, with a certain probability distri-
bution. Since the total probability of all sequences in the distri-
bution must sum to one, the probability of one cannot increase
without causing a corresponding decrease in another (16).
HMMs have an extensive history of use in computer science
dating to the 1960s (17) and have recently been applied to a
variety of biological linear sequence analysis problems
(16,18–23).

Our HMM was designed to model a sequence of DNA
containing both DNA binding sites and background DNA. As
input, it takes a set of known binding sites, hereafter referred to

Figure 1. Model depicting interactions between the Zif268 phage display
library and the DNA used in microarray binding experiments. The three zinc
fingers of Zif268 (F1, F2 and F3) are aligned to show contacts to the nucleotides of
the DNA binding site as inferred from the crystal structure of Zif268 and bio-
chemical experiments. The zinc finger amino acid positions are numbered
relative to the first helical residue (position 1). The randomized positions in the
α-helix of the second finger are circled. DNA base pairs marked N were fixed
as particular sequences (11). © Copyright (2001) National Academy of Sci-
ences of the USA.
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as the training set, and their corresponding Ka
app values; the

model outputs the posterior probability of a particular nucleotide
being in a binding site. Each position in the binding site is
assigned a state, referred to as a ‘match’ state, with emission
probabilities equal to the weight table entry corresponding to
that position. The match states transition linearly to each other
with transition probabilities of one. An ‘insert’ state is created
that emits the nucleotides at background probability, with tran-
sitions to itself and the first match state. The last match state
transitions with probability one to the insert state. A silent
(non-emitting) start state transitions to both the first match
state and the insert state, allowing for the possibility of the
sequence starting with a binding site. While our analysis
employed only zero and first order models, the design can be
generalized to higher orders, up to two less than the length of
the binding site in question.

For the zero order model, a mononucleotide position weight
matrix is created from the training set, with weights equal to
the respective binding affinities of the sites. For example, the
‘A’ entry in the first position is calculated by summing all sites
of the form ‘ANN’ found in the training set. Next, a pseudo-
count is added to each entry, in proportion to the corresponding
background frequency of the nucleotide, for a total addition of
one; this allows for the possibility that a test site contains a
mononucleotide not found in any of the training sequences.
Once all of the weights are calculated, they are normalized
such that the weights for each position sum to one. A diagram
of a zero order model is shown in Figure 2.

In the first order (dinucleotide) model, each state depends on
the previous state, as shown in Figure 3. Every position in the
binding site corresponds to four states in the model; one for
each nucleotide in each position. Instead of having an emission
distribution over all nucleotides, each match state emits only
one nucleotide. Again, the match states transition in a strictly
linear fashion. For example, the four states corresponding to
the first position of the binding site transition only to the four
states corresponding to the second position of the binding site.
Transition probabilities between the states are specified by
normalizing the dinucleotide frequencies plus a pseudo-count.
For example, if the dinucleotide CA were found across positions
one and two of a binding site, it would affect the transition
probability between the first position ‘C’ match state and the
second position ‘A’ match state. In addition to the match states,
four insert states are constructed in a similar fashion, with tran-
sitions among themselves corresponding to the background
frequency and transitions to the first position match states. The
four match states in the last position transition to the insert
state. Again, a silent start state is created that transitions to both
the insert states and the first position match states.

Posterior probability P of the nucleotide at position i being in
match state k given a specific sequence x can be calculated by
means of a dynamic programming algorithm:

P = [fk(i)bk(i)]/P(x)
where

fk(i) = ek(xi)�l[alkfl(i – 1)]
bk(i) = �l[aklel(xi)bl(i + 1)]
P(x) = �l fl(L)

k and l can be any state, fk(i) is the probability of the sequence
x from the beginning (position 1) up to position i with the
restriction that the ith state is k, el(xi) is the emission probability of
the nucleotide at position i from state l, akl is the transition
probability from state k to state l, L is the last position in the
sequence x, bk(i) is the probability of the sequence x from
position i to the end (L) with the restriction that the ith state is
k and P(x) is the probability of the sequence x being generated
by the model (8). The posterior probability of a given nucleotide
xi being in a binding site is simply the summation of the posterior
probability of the given position i over all match states k.

RESULTS

Mononucleotide weight matrices

We evaluated the possibility of using the microarray binding
data to calculate an accurate binding site weight matrix by
comparing the observed Ka

app for each of the 64 triplets on the
microarray with the Ka

app values calculated from mononucleotide
Ka

app values. The observed Ka
app values were determined from

microarray fluorescence intensity data (see Materials and
Methods). In order to do this comparison, the mononucleotide
Ka

app at each of the three positions of the central triplet was
calculated by summing all the individual Ka

app values for
sequences containing that nucleotide. For example, for
comparing the observed versus calculated Ka

app for the triplet
ACG, the Ka

app of A at position 1 was determined from the sum
of the Ka

app values of all 16 ANN triplets. Similarly, the Ka
app of

C at position 2 was determined from the sum of the Ka
app values

of all 16 NCN triplets and the Ka
app of G at position 3 was

determined from the sum of the Ka
app values of all 16 NNG

Figure 2. Zero order HMM using an alphabet of two nucleotides (A,T) for clarity.
Circles represent states; arrows represent transitions. The numbers alongside
the arrows specify transition probabilities. The emission distribution for each
state (except for the silent start state) is contained within each circle. If this
were a real zero order model, the four emitting states would contain distributions
over all four nucleotides. Adapted from Durbin et al. (8).

Figure 3. First order HMM using an alphabet of two nucleotides (A,T) for clarity.
Circles represent states; arrows represent transitions. The letter inside each circle
is the only nucleotide emitted by that state (at 100% probability). To represent the
full first order model, there would be four states for each position. Adapted
from Durbin et al. (8).
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triplets. We then determined whether the Ka
app values calculated

by multiplying the mononucleotide Ka
app values for the three

positions of the triplets (1NN × N2N × NN3) were essentially
the same as the observed Ka

app values.
Using a non-pooled t-test adjusted for multiple hypothesis

testing using the modified Bonferroni method to evaluate the
statistical significance of the 64 observed versus calculated
Ka

app values, we determined that there is a statistically significant
interdependence between the three mononucleotide positions
of the triplet binding site for finger 2. The correlation
coefficients between the individual observed Ka

app values and
the Ka

app values calculated according to a mononucleotide
weight matrix derived from the same protein binding micro-
array data are shown in Table 1. The correlation coefficients
between the ranks determined from the individual observed
Ka

app values and the ranks determined from the Ka
app values

calculated according to a mononucleotide weight matrix
derived from the same protein binding microarray data are
shown in Table 2. Although the overall correlation coefficients
between the sets of observed Ka

app values and the sets of calculated

Ka
app values were quite high (between 0.69 and 1.0), the rank

correlation coefficients were only between 0.5 and 0.8.
These analyses indicate that the mononucleotides of tran-

scription factor binding sites do not exert independent effects
on binding. There are a number of possible hypotheses for this
observation. For example, a substitution of one particular base
pair in a transcription factor DNA binding site might alter the
packing of a DNA binding domain into the major and/or minor
grooves of the DNA. Moreover, a single base pair substitution
might also affect the local DNA structure and thus the geometry
of various functional groups of the DNA binding site available
for interaction with a transcription factor DNA binding
domain.

Dinucleotide weight matrices

We evaluated two additional variations for calculating weight
matrices using the Ka

app data. These additional variations
(12N × NN3 and 1NN × N23) grouped together two of the three
nucleotides of the triplet binding site and treated only the
remaining nucleotide as independent. For example, for
comparing the observed versus calculated Ka

app for the triplet
ACG using 12N × NN3, the Ka

app of the dinucleotide AC at
positions 1 and 2 was determined from the sum of the Ka

app

values of all four ACN triplets and the Ka
app of G at position 3

was determined from the sum of the Ka
app values of all 16 NNG

triplets. Likewise, for comparing the observed versus calcu-
lated Ka

app for the triplet ACG using 1NN × N23, the Ka
app of A

at position 1 was determined from the sum of the Ka
app values

of all 16 ANN triplets and the Ka
app of the dinucleotide CG at

positions 2 and 3 was determined from the sum of the Ka
app

values of all four NCG triplets.
As for the mononucleotide weight matrices, using a non-

pooled t-test adjusted for multiple hypothesis testing to evaluate
the statistical significance of the 64 observed versus calculated
Ka

app values, we determined that there is a statistically significant
interdependence between the positions of the triplet binding
site for finger 2. The correlation coefficients between the indi-
vidual observed Ka

app values and the Ka
app values calculated

using 12N × NN3 and 1NN × N23 data derived from the same
protein binding microarray data are shown in Table 1. The
correlation coefficients between the ranks determined from the
individual observed Ka

app values and the ranks determined from
the Ka

app values calculated according to a mononucleotide
weight matrix derived from the same protein binding micro-
array data are shown in Table 2. For four out of five Zif268
variants, one of these dinucleotide frequency calculations gave
higher rank correlation coefficients than considering mono-
nucleotide frequencies alone. Only for wild-type Zif268 did
considering dinucleotide frequencies yield essentially the same
correlation coefficient as did mononucleotide frequencies.
However, for the four variants for which considering dinucleotide
frequencies gave better approximations of Ka

app values, which
dinucleotide yielded higher correlation coefficients varied. For
LRHN, RGPD and REDV consideration of the first dinucleotide
(12N) frequencies yielded higher rank correlation coefficients,
while for KASN consideration of the second dinucleotide
(N23) frequencies yielded a higher rank correlation coefficient.

This suggests that for these three Zif variants the mono-
nucleotides of the first dinucleotide as well as the second
dinucleotide exert cooperative effects on binding. However, it
appears that the extent of cooperativity of various dinucleotides of

Table 1. Correlation coefficients between observed Ka
app values and those

calculated by a microarray data-based weight matrix 1NN × N2N × NN3
assuming complete positional independence (1*2*3), between observed Ka

app

values and those calculated by a microarray data-based weight matrix 12N × NN3
assuming interdependence between nucleotide positions 1 and 2 (12*3) and
between observed Ka

app values and those calculated by a microarray data-
based weight matrix 1NN × N23 assuming interdependence between
nucleotide positions 2 and 3 (1*23)

Zif268 variant Observed Ka
app

versus 1*2*3
Observed Ka

app

versus 12*3
Observed Ka

app

versus 1*23

Wild-type 0.975 0.986 0.988

LRHN 0.790 1.000 1.000

RGPD 0.896 0.947 0.946

REDV 1.000 1.000 1.000

KASN 0.691 1.000 1.000

Table 2. Correlation coefficients between ranks calculated from the observed
Ka

app values and those calculated by a microarray data-based weight matrix
1NN × N2N × NN3 (1*2*3), between ranks calculated from the observed Ka

app

values and those calculated by a microarray data-based weight matrix 12N × NN3
(12*3) and between ranks calculated from the observed Ka

app values and those
calculated by a microarray data-based weight matrix 1NN × N23 (1*23)

Only those triplets with observed signal intensities above background were
used in determining the correlation coefficients of the calculated versus
observed ranks: for wild-type Zif268 and the mutant REDV these were the top
15 triplets, for LRHN the top 13 triplets, for RGPD the top 17 triplets and for
KASN all 64 triplets.

Zif268 variant Observed versus
1*2*3 rank

Observed versus
12*3 rank

Observed versus
1*23 rank

Wild-type 0.793 0.792 0.714

LRHN 0.773 0.760 0.830

RGPD 0.730 0.700 0.761

REDV 0.698 0.666 0.758

KASN 0.532 0.599 0.573
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a binding site is not a constant rule, even for variants of a single
transcription factor that differ in just a portion of the DNA
binding domain (for the Zif268 variants, only finger 2 of a
three finger Cys2His2 zinc finger DNA binding domain was
mutated). Consideration of dinucleotide frequencies improved
the rank correlation coefficients for most of the Zif268 variants
as compared to consideration of mononucleotide frequencies
alone and provided fairly good approximations of the rank
ordering of the binding sites. Nevertheless, the rank correlation
coefficients after consideration of dinucleotide frequencies
were still less than 0.8 for four out of five of the Zif268 variants.
This indicates that there is some higher order level of nucleotide
interdependence in DNA binding sites and further stresses the
importance of complete reference tables of all possible binding
sites for comparing protein binding preferences for various
DNA sequences.

Positive and negative controls

In order to verify that our analyses were capable of detecting
mononucleotide, dinucleotide or trinucleotide interdependence,
we created four types of positive and negative controls that
exhibited these different types of nucleotide interdependence.
Mean correlation coefficients resulting from the six types of
analyses on the five types of controls, as averaged over 1000
independent sets of each control, are displayed in Web table 1 at
http://arep.med.harvard.edu/Bulyk/NAR2001supplementary/.
As expected, the different types of analyses resulted in high
correlation coefficients when used to analyze the controls
designed with the corresponding types of nucleotide inter-
dependence and lower correlation coefficients when used to
analyze controls designed with other types of interdependence.

Predictive value of the hidden Markov models

Very rarely have experimental Ka
app data been available for a

large number of possible DNA binding sites for a given DNA
binding protein. Therefore, we decided to restrict the training
set of binding site sequences and test the predictive ability of
the zero order and first order HMMs. Our first test used 60% of
the sites to construct the model and analyzed the remaining
40%; the second test used 80% of the sites to construct the
model and analyzed the remaining 20%. The remaining sites
(i.e. either 40% or 20% of the sites, respectively) were strung
together to form one contiguous sequence, with 50 random
nucleotides inserted between each site. For example, a
sequence containing the sites ACG, GGG and TAC would be
of the form ACG(N50)GGG(N50)TAC. For each of the five
variants, only those sites with observed Ka

app values above
background level were used (for wild-type Zif268 and REDV,
the top 15; for LRHN, the top 13; for RGPD, the top 17; for
KASN, all 64). Eliminating background sites avoided the situa-
tion that would occur if the 20% of sites being tested all had
background Ka

app values and thus were all identical, making a
correlation impossible. The correlation coefficients between
the observed Ka

app values and posterior probabilities calculated
from zero order and first order HMMs are shown in Table 3.
These analyses indicate that binding site data for even a
majority of binding sites with Ka

app values above background
can provide a rough approximation of the Ka

app values, but even
with data for 80% of the above background sites, the rank
correlation coefficients are still somewhat low (no higher than
0.62 for these five Zif268 variants).

Extrapolation of full-length binding sites from subsets of
binding sites

We considered whether 1NN and NN3 microarray data could
be combined to accurately calculate the individual 123 micro-
array data. If this could be done, then only 32 sequences would
be required to determine the preferences for 64 different triplet
sites: 42 + 42. More significantly, only 144 sequences would be
required to determine the preference for 1 048 576 different 10 bp
long sites. In general, the number of sequences required would
scale linearly with the binding site length according to 16(n – 1),
where n is the length of the site in base pairs.

Combining 1NN and NN3 microarray data to infer the individual
123 Ka

app values can be performed using the joint probability
function Pr(123) = Pr(12|3) Pr(3). Pr(12|3) can be determined
from NN3 microarray data and Pr(3) can be determined from
1NN microarray data. Therefore, we are using one-quarter of
the dataset to calculate mononucleotide frequencies for NN3
and a partially overlapping set of that data, also comprising
one-quarter of the total dataset, to calculate dinucleotide frequencies
for 12N.

In order to test this approximation, we derived 1NN and NN3
data from the available NNN microarray data. In order to calculate
Pr(12|3), we divided each of the individual observed Ka

app

values of type 123 by the sum of the Ka
app values of type NN3.

For example, in order to calculate Pr(AC|G) for wild-type
Zif268, the observed Ka

app values for ACG were divided by the
sum of the Ka

app values of type NNG for each of the replicates
on the microarray. In order to calculate Pr(3), the probabilities
of each of the 16 sequences of type 1NN were calculated by
dividing the individual observed Ka

app values by the sum of the
Ka

app values of all 16 sequences of type 1NN. Pr(3) was then
calculated as the sum of the Ka

app values of the four 1N3
sequences. Sixteen triplets for each of the five Zif268 variants
were used as test cases for this approximation. For example,
Pr(G) for wild-type Zif268 was calculated by first dividing the
individual observed Ka

app values of each of the 16 sequences of
type TNN by the sum of these Ka

app values and then calculating
the sum of the Ka

app values of the four TNG sequences.
These 16 triplets were chosen so as to use 1NN and NN3 data

that would most accurately reflect the triplet with the highest
average Ka

app for the given variant. For example, TNN and

Table 3. Correlation coefficients between observed Ka
app values and posterior

probabilities calculated from zero order (complete position independence,
based upon mononucleotide weight matrix data) and first order (strict
immediate neighbor dependence, based upon dinucleotide weight matrix data)
HMMs, as constructed from 60% of sites and tested on the remaining 40%,
and constructed from 80% of sites and tested on the remaining 20%

For each of these two construct/test groupings, 500 random sets of triplets
were analyzed and the means of their correlation coefficients were calculated.

Zif268 variant Observed Ka
app

versus 60%/
40% zero order

Observed Ka
app

versus 60%/
40% first order

Observed Ka
app

versus 80%/
20% zero order

Observed Ka
app

versus 80%/
20% first order

Wild-type 0.511 0.241 0.620 0.372

LRHN 0.420 0.526 0.526 0.405

RGPD 0.432 0.556 0.465 0.529

REDV 0.475 0.103 0.551 0.144

KASN 0.164 –0.052 0.206 –0.080
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NNT data were derived from the LRHN microarray binding
data, so that the probability of T at the third position would be
derived from the set of TNN sequences and the probability of
TA at the first and second positions of the triplet would be
derived from NNT data. We chose to use this methodology,
since these triplets will probably include the most data-rich
sequences in terms of specific binding by the variant.

The extrapolated Ka
app values for the 16 triplets calculated in

this manner for each of the five Zif268 variants correlated
extremely well with the observed Ka

app values. The rank
correlation coefficients between observed Ka

app values and
Ka

app values for all five variants were all over 0.97 (see Table 4).
REDV had the lowest rank correlation coefficient of the five
variants; it differed only in the ordering of the three binding
sites ranked 6, 7 and 8 in the observed versus extrapolated
rankings. Thus, if for a particular transcription factor a binding
site has already been identified that can be used as a starting
sequence from which to vary each dinucleotide, then the
optimal full-length binding site for that transcription factor can
be extrapolated from its binding preferences for only a small
subset of all possible full-length binding sites. In practice, one
would perform microarray binding experiments starting at one
set of dinucleotides and then, given the results of the extra-
polation of those binding experiments, vary the adjacent
dinucleotides accordingly. Analysis of Zif268 binding experi-
ments using microarrays spotted with the 16 GCN NAG GCG
sequences, in addition to the data we have already gathered
using GCG NNN GCG microarrays, would allow one to verify
that 12NN and NN34 Ka

app values can be combined to calculate
the Ka

app values of 1234. If so, this would mean that one could
determine the binding site preferences of transcription factors
by a series of protein binding microarrays, stepping out 1 nt at
a time to determine the optimal full-length binding site.
Finally, the Kd

app of the extrapolated 10 bp site for Zif268 could
be compared with the Kd

app of the 10 bp site used in the co-
crystal structure (24) to determine whether the extrapolated
site has a higher binding affinity.

DISCUSSION

These results provide compelling evidence that the use of
binding site mononucleotide frequency weight matrices,
currently the state-of-the-art bioinformatic technology for
describing the binding site preferences of transcription factors,
does not accurately depict the true binding site preferences.

Analysis of microarray binding data led to the discovery that
there is significant interdependence between the nucleotides of
a transcription factor binding site. Taking into account the
interactions between adjacent nucleotides provides a more
accurate rank ordering of binding sites than does consideration
of mononucleotide frequencies alone (see Table 2), but still
does not completely describe all the interactions between the
nucleotides of the binding site.

Much discussion has taken place regarding the possibility of
a DNA recognition code that would describe sequence-specific
DNA binding accurately (9,25–28). If a DNA recognition code
does exist, it is likely to have different rules for each of the
different structural classes of transcription factors (27), and it
is likely that transcription factors of different structural classes
will exhibit varying degrees of nucleotide position inter-
dependence in their DNA binding sites. We have shown
evidence that there is a significant degree of nucleotide position
interdependence in a set of related Cys2His2 zinc fingers.
Further analyses of DNA–protein interactions, including high
throughput analyses capable of providing quantitative binding
data for a great number of DNA variants (10,11), of members
of other structural classes of DNA binding proteins will
provide the necessary data to determine the extent of nucleotide
position interdependence in binding sites for these various
types of transcription factors.

In addition, our analyses indicate that microarray binding
data using particular subsets of binding sites can be extra-
polated to calculate the relative binding affinities of the preferen-
tial full-length binding sites, given that some binding site is
already known that can be used as a starting sequence for
which to vary each dinucleotide. Such extrapolation would be
useful in the analysis of microarray binding experiments in
order to derive the binding site preferences of transcription
factors such as those with a series of zinc fingers in tandem,
while keeping cost and labor to a minimum by using only a
small fraction of all possible binding sites on the microarrays.

Supplementary Material is available at the World Wide Web site
http://arep.med.harvard.edu/Bulyk/NAR2002supplementary/.
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