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A nuclidic mass formula composed of a gross term, an even-odd term and a shell term is
presented as a revised version of the mass formula constructed by the present authors and
published in 2000. The gross term has almost the same functional form as in the previous
formula, but the parameter values in it are somewhat different. The even-odd term is treated
more carefully, and a considerable improvement is realized. The shell term is exactly the
same as the previous one; it was obtained using spherical single-particle potentials and by
treating the deformed nucleus as a superposition of spherical nuclei. The new mass formula
is applicable to nuclei with Z ≥ 2 and N ≥ 2. The root-mean-square deviation from
experimental masses is 666.7 keV, which is less than that of the previous mass formula,
689.8 keV.

§1. Introduction

Nuclear masses are important quantities to determine the ground state prop-
erties and reactions. Since the formulation of the Weizsäcker-Bethe nuclear mass
formula,1), 2) many mass predictions have been made. At the present time, the main
purpose of the study of mass formulas is to predict reliable masses of unknown nu-
clides, especially neutron-rich nuclides and the superheavy nuclides. Some recent
mass formulas have been applied to calculations of fission barriers and r-process
nucleosyntheses.

One way to reproduce the known nuclear mass values is to use mass system-
atics. For example, the mass formulas presented by Comay et al. and Jänecke et
al.3) are based on Garvey-Kelson-like systematics,4) which take into consideration
particle-hole configurations and yield accurate predictions of known experimental
masses, though it is rather difficult to apply these formulas to unknown nuclei far
from known ones. In the last decade, some mass predictions designed for wide
nuclidic regions have been presented. Among these, we specifically mention two so-
phisticated mass formulas that give not only nuclear masses but also nuclear shapes
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and fission barriers. One is the finite-range droplet model (FRDM, 1995) formula,
which is composed of a macroscopic droplet term and a microscopic shell term.5)

The macroscopic term is calculated using the finite-range droplet model (FRDM),
while the shell term is calculated using the folded-Yukawa single-particle potential.
The other is the formula obtained with the Hartree-Fock plus the BCS-type pairing
method with the MSk7 Skyrme force (HFBCS-1, 2001).6)

Our group has for years been investigating the nuclidic mass formula, which
is composed of two parts: one representing the general trend of the masses as a
function of the proton and neutron numbers (Z, N), and the other representing the
deviations from this general trend.7)–10) It is natural to think of the latter part as
shell energies in a broad sense, because it is caused by the shell structure and, the
deformation of the nucleus, if such exists.

In the early stage of our investigation, the method of constructing the mass
formula, particularly the shell part, was rather phenomenological, and the mass
formulas given in Refs. 7)–9) include many adjustable parameters. For example, the
mass formula in Ref. 9), which is referred to as the TUYY formula hereafter, has
about 300 parameters, of which 266 are in the shell part, and were determined by
comparison with the experimental mass data. However, such an approach is of no
use in the region of superheavy nuclei, where few empirical data are available.

There are many nuclides with spherical ground states, while there are also many
nuclides having deformed ground states with various degrees of deformation. A
direct way of treating a deformed nucleus is to assume a deformed single-particle
potential and put nucleons in it.11) This method is natural, but it requires so much
computer time that the search for the best form of the deformed potential is rather
difficult. In addition, there still seems to be a problem of treating the continuum
and unbound states, which affects the extraction of shell energies for loosely-bound
states, for example, such states in nuclei near the neutron (proton)-drip line.12) We
instead take another approach, based on the phenomenological treatment and expect
to obtain some different findings for properties of nuclei.

During the last decade, we have been investigating a method for obtaining shell
energies and presented a new method for calculating shell energies from spherical
single-particle potentials.10), 13) In Ref. 10), we show that any nuclear shell energy
with Z, N ≥ 2 can be calculated without using deformed potentials; the key point
of this new method is to treat the deformed nucleus as a particular superposition
of spherical nuclei. The mass formula obtained in this manner10) with the shell
energies is referred to as the KUTY00 formula hereafter. The standard deviation of
the KUTY00 mass formula from experimental masses compiled in 199514) is 680 keV.
We applied this formula to superheavy nuclei and briefly considered some properties
of superheavy nuclei, such as single-particle levels, shell energies, alpha-decay Q-
values and spontaneous fission.12), 15)

It is well known that there is an even-odd stagger among nuclidic masses. In the
mass formula presented in Refs. 7) and 8), this stagger is incorporated in the shell
part, except for a small correction term for odd-odd nuclei. By contrast, in the TUYY
formula,9) an even-odd term is introduced separately from the shell term; thus, the
even-odd stagger is not so marked in the shell term. In the KUTY00 formula,10)
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Nuclidic Mass Formula on a Spherical Basis 307

the method of deriving the shell term is quite different from those of the previous
formulas.7)–9) During the course of this derivation, there is a step to incorporate a
BCS-type pairing; however, to reduce the complexity of the computation, this step
is employed mainly for even Z and for even N ; nuclei with odd Z and/or odd N
are treated by interpolation from those with even Z and/or even N . Therefore, a
considerable part of the even-odd stagger is missing in the shell energies of KUTY00,
and we introduce an additional even-odd term, as is done in the TUYY case.

In Ref. 10), we mainly focus on a method for obtaining shell energies; the treat-
ment of the other parts, in particular the additional even-odd part, is insufficient.
Some unreasonable results appear around the proton- and neutron-drip lines. In
this paper, we treat the even-odd term more carefully. In our previous mass formu-
las,9), 10) the functional form of the even-odd term is rather simple, and the parame-
ters in it are adjusted so as to reproduce the total ground state masses. In this paper,
we consider “experimental” even odd energies obtained from experimental masses
and the gross and shell parts of the mass formula. We then construct a new even-odd
term, aided by a comparison with these “experimental” even-odd energies. In this
process, we find a significant property of the “experimental” even-odd energies. This
is discussed in §3.2.

In §2 we present an explicit form of the gross term in the mass formula and only
give an outline of the method for obtaining the shell energies, since this method is
explained in detail in Ref. 10). In the present formula we use exactly the same shell
term as in KUTY00. In §3, we explain how to obtain the “experimental” even-odd
energies and construct the even-odd term. Section 4 is devoted to the determination
of the parameter values for the even-odd term and the gross term. In §5, we elucidate
some properties of the present mass formula. Concluding remarks are presented in
§6.

§2. Gross term and shell term

2.1. Gross term

Our mass formula consists of three parts,

M(Z, N) = Mg(Z, N) + Meo(Z, N) + Ms(Z, N), (2.1)

where Mg(Z, N) is the term representing the gross features of the nuclear mass
surface, Meo(Z, N) the even-odd term, and Ms(Z, N) the shell term.

The gross term expressed in energy units is taken as

Mg(Z, N)c2 = MHc2Z + Mnc
2N + a(A)A

+ b(A)|N − Z| + c(A)(N − Z)2/A
+ EC(Z, N) − kelZ

2.39. (2.2)

Here, MH and Mn are the mass excesses of a hydrogen atom, 1H, and a neutron,
respectively, and A is the mass number, Z + N . This expression of the gross term
is the same as Eq. (2) of Ref. 9), but here we have made small modifications to the
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constants and coefficients. For a(A), b(A) and c(A), we assume

a(A) = a1 + a2A
−1/3 + a3A

−2/3 + a4(A + αa)
−1,

b(A) = b1 + b2A
−1/3 + b3A

−2/3 + b4(A + αb)
−1,

c(A) = c1 + c2A
−1/3 + c3A

−2/3 + c4(A + αc)
−1. (2.3)

The parameters αa, αb, and αc are introduced in order to avoid a drastic change of
the gross term in the region of small mass numbers. The quantities aj , bj , cj , (j =
1–4), αa, αb, and αc are parameters to be determined from experimental mass data,
and their values are given in §4. The forms of the Coulomb term EC(Z, N) and the
binding energy of electrons with kel = 14.33 × 10−6 MeV in Eq. (2.2) are taken to
be exactly the same as in Ref. 9).

2.2. Shell term

The shell term of our mass formula is the same as that in KUTY00, and it is
obtained through the following procedure. First, spherical single-particle potentials
are prepared for the neutrons and protons, and crude shell energies are deduced from
the sums of the single-particle energies for the neutron groups and for the proton
groups. Next, we modify these crude shell energies by taking into account the BCS-
type pairing. Then, we apply a phenomenological reduction to these modified shell
energies. The neutron and proton shell energies of this stage, which we refer to as
refined spherical shell energies, are the final results for spherical nuclei. For deformed
nuclei, we further mix these refined spherical shell energies in a suitable way to obtain
the final shell energies. The details of this procedure are given in Ref. 10).

§3. Even-odd term

First, we point out two causes for the even-odd effect in nuclear masses. One is
that the nucleus has, at least partially, a certain kind of single-particle structure. The
other is the existence of a strongly attractive nuclear central force in the singlet-even
state (isospin-triplet spin-singlet state). This force is considered to be most effective
among various types of nuclear forces for the nucleon pairing. A part of the effect of
this force appears as the pairing in the j-j coupling. The BCS-type pairing is also
caused mainly by this force.

Here, we consider the single-particle structure of a nucleus in some detail. In the
single-particle model, the degeneracy of each single-particle level is even. Because a
nucleon is a fermion, the nucleons in the ground state of the nucleus fill the single-
particle levels from the bottom. From this picture, we can understand that, in the
extreme single-particle model, the ground state energy of a nucleus with an even
number of protons (neutrons) is lower than that with an odd number of protons
(neutrons), on the average. As a simple example, we consider a sequence of uniformly
spaced single-particle energy levels with two-fold degeneracy. When n nucleons fill
these levels from the lowest, which is taken to be zero, the sum of the single-particle
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Nuclidic Mass Formula on a Spherical Basis 309

energies is given as

Esp(n) =
{

n(n/2 − 1)d for even n,
n(n/2 − 1)d + d/2 for odd n, (3.1)

with d being half of the energy-level spacing. This means that there exists an even-
odd energy of d/2 in this case.

We now turn to actual nuclei. In the region of deformed nuclei, the degeneracy
of each single-particle level is two-fold, although the level distribution is not uniform.
Therefore, we can expect a contribution to the even-odd term similar to that in the
above simple example. Here and in the following, d should be taken as the spacing of
the hypothetical non-degenerate, uniformly distributed single-particle levels around
the Fermi surface. It depends strongly on the mass number, decreasing rapidly as A
increases.

Many of the single-particle levels in spherical nuclei have a more than two-fold
degeneracy. In such a case, the sum of the single-particle energies has a different
feature, namely that no even-odd zigzag is apparent. This feature is appropriately
called the shell effect. Yet, as seen from the fact that the magic numbers are all
even, these sums are smaller, on the average, for nuclei with even Z (N) than for
those with odd Z (N). Therefore, it can be said that some even-odd effect is hidden
in the shell effect.

The above consideration suggests that the shell effect and the even-odd effect
are not clearly separated. However, if the shell term is fixed in a certain way, the
even-odd term can be determined.

3.1. “Experimental” values for the even-odd term

In this subsection we prepare data with which the even-odd term can be com-
pared. For brevity, we define

Mgsh(Z, N) ≡ Mg(Z, N) + Ms(Z, N). (3.2)

Then, Eq. (2.1) can be written

M(Z, N) = Mgsh(Z, N) + Meo(Z, N). (3.3)

In Eq. (3.2), the shell part, Ms(Z, N), is already determined, actually taken from
KUTY00. It has no apparent even-odd stagger, as mentioned above. The gross
part, Mg(Z, N), is not yet determined, but we can tentatively take an expression,
e.g., from KUTY00. The problem concerning the choice of the gross part is discussed
at the end of this subsection.

The even-odd part is expressed as

Meo(Z, N) = ModdZ(Z, N)δoddZ + ModdN (Z, N)δoddN

−Moo(Z, N)δoddZδoddN , (3.4)

with

δoddZ =
{

0 for Z-even,
1 for Z-odd, (3.5)
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δoddN =
{

0 for N -even,
1 for N -odd, (3.6)

where, ModdZ(Z, N), ModdN (Z, N), and Moo(Z, N) are assumed to be smooth func-
tions of Z and N . In the following, we proceed by assuming that Mgsh(Z, N) is
fixed.

We first consider the data used to determine ModdN (Z, N). When Z is even and
N is odd, we can express the masses of the nuclei (Z, N − 1), (Z, N) and (Z, N + 1)
as

M(Z, N − 1) = Mgsh(Z, N − 1), (3.7)
M(Z, N) = Mgsh(Z, N) + ModdN (Z, N), (3.8)

M(Z, N + 1) = Mgsh(Z, N + 1). (3.9)

In order to obtain “experimental” values of ModdN (Z, N), we use experimental
masses, denoted by M exp (Z, N), etc., on the left-hand sides of Eqs. (3.7)–(3.9).
Then, the “experimental” value of the odd-N term is obtained as

M exp
oddN (Z, N) = M exp(Z, N) − Mgsh(Z, N)

−1
2
[M exp(Z, N − 1) − Mgsh(Z, N − 1)]

−1
2
[M exp(Z, N + 1) − Mgsh(Z, N + 1)]. (3.10)

The reason we use Eq. (3.10) instead of

M exp
oddN (Z, N) = M exp(Z, N) − Mgsh(Z, N), (3.11)

which is obtained from only Eq. (3.8), is as follows. The deviation of the current mass
formulas from the experimental masses is several hundred keV in energy units, and
the absolute value of ModdN (Z, N) is of a similar magnitude. If we use Eq. (3.11),
the “noise” will be comparable to the original “signal.” In Eq. (3.10), the “noise” is
considerably reduced because, in general, the trends of the differences between the
experimental masses and the mass formula are similar among neighboring nuclei. In
Eq. (3.10), the “noise” is reduced by subtracting the average “noise” of M(Z, N −1)
and M(Z, N + 1), and we can obtain a reasonable “experimental” value for the
odd-N term. For ModdZ(Z, N), we obtain “experimental” values by using a similar
procedure.

Finally, we treat Moo(Z, N) in Eq. (3.4). When both Z and N are odd, the
“experimental” values of M exp

oo (Z, N) are expressed with Eqs. (3.3) and (3.4) as

M exp
oo (Z, N) = −M exp(Z, N) + Mgsh(Z, N) + M exp

oddZ(Z, N) + M exp
oddN (Z, N).

(3.12)

Here, we assume that M exp
oddN (Z, N) is linear for odd-Z and odd-N . This is expressed

as
M exp

oddN (Z, N) =
1
2
[M exp

oddN (Z−1, N) + M exp
oddN (Z + 1, N)], (3.13)
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Nuclidic Mass Formula on a Spherical Basis 311

where the terms on the right-hand side of the equation can be replaced by Eq. (3.10),
because all the pairs of values in the parentheses are even-Z and odd-N . The term
M exp

oddZ(Z, N) for odd-Z and odd-N can be expressed in a similar way. The values of
M exp

oo (Z, N) are obtained as

M exp
oo (Z, N) =

1
2
[M exp(Z−1, N) + M exp(Z, N−1)

+M exp(Z, N + 1) + M exp(Z + 1, N)]

−1
4
[M exp(Z−1, N−1) + M exp(Z−1, N + 1)

+M exp(Z + 1, N−1) + M exp(Z + 1, N + 1)]
−M exp(Z, N)

−1
2
[Mgsh(Z−1, N) + Mgsh(Z, N−1)

+Mgsh(Z, N + 1) + Mgsh(Z + 1, N)]

+
1
4
[Mgsh(Z−1, N−1) + Mgsh(Z−1, N + 1)

+Mgsh(Z + 1, N−1) + Mgsh(Z + 1, N + 1)]
+Mgsh(Z, N). (3.14)

These “experimental” data are used as input data for constructing the even-odd
term of our mass formula.

As stated above, we need a gross term in order to calculate the “experimental”
even-odd energies and to determine the even-odd term. On the other hand, the gross
term should be determined by a comparison with the mass data after the shell and
even-odd terms are fixed. This problem is solved by employing an iteration method.
We start with the gross term of KUTY00 and calculate the first approximation of
the “experimental” even-odd energies, with which the first approximation of the
even-odd term is obtained. Then, we calculate the first approximation of the gross
term, with which the calculation of the second approximation starts. The values
obtained with this procedure quickly converge; even the first approximations of the
“experimental” even-odd energies and the even-odd term are very close to the final
ones.

3.2. Comparison of the “experimental” even-odd energies between mirror nuclei

In the derivation of the gross term and the shell term, which are necessary to
obtain the “experimental” M exp

oddN (Z, N) [Eq. (3.10)] and M exp
oddZ(Z, N), we have care-

fully treated the charge symmetry. Then, it is interesting to compare the “experimen-
tal” M exp

oddN (Z, N) and M exp
oddZ(Z, N) between mirror nuclei. The charge symmetry

of the nuclear force requires that these quantities are nearly equal.
There are 45 pairs of mirror nuclei in the experimental data table16) for which

we can obtain “experimental” M exp
oddN (Z, N) and M exp

oddZ(Z, N). The average of
M exp

oddN (a, b)c2 − M exp
oddZ(b, a)c2 (where a is even and b is odd) is about 100 keV,

which is considerably smaller than the average of the even-odd term itself in this
mass region (a few MeV). In Fig. 1, M exp

oddN (a, b)c2 − M exp
oddZ(b, a)c2 are plotted. As
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Fig. 1. Differences between the “experimental” even-odd energies for mirror nuclei, Mexp
oddN (a, b)c2−

Mexp
oddZ(b, a)c2 (a is even, and b is odd. (a, b) and (b, a) represent (Z, N)). Some sets with larger

and smaller values are indicated by [a, b].

can be seen, almost all of these values are positive. This means that the even-odd
term for a proton is somewhat smaller than that for a neutron. Undoubtedly, the
main reason for this is the Coulomb repulsive force between protons; we believe the
fact that M exp

oddN (a, b)c2 −M exp
oddZ(b, a)c2 is positive is due to two mechanisms. One is

related to the radius of the potential well. The radius of the single-proton potential,
which is composed of the average nuclear potential and the average Coulomb poten-
tial, is larger than the single-neutron potential, and, accordingly, the single-particle
level spacing, which serves as a measure of the even-odd energy, is narrower for a
proton than for a neutron. The other mechanism is related to the proton-proton
interaction in the pair. When two protons form a pair, the Coulomb repulsive force
between them counteracts the attractive nuclear force. The above described feature
of the “experimental” even-odd energies are taken into account when we construct
the functional form of the even-odd term in the next subsection.

The Coulomb repulsive force has another effect: It expands the nucleus and
makes the single-particle level spacing narrower for a proton as well as for a neutron.
When this expansion is compared among isobars, a nucleus containing relatively
many protons should undergo a larger expansion. Therefore, the effect of this ex-
pansion on the difference M exp

oddN (a, b) − M exp
oddZ(b, a) (with a + b = A fixed) should

be to increase it for a < b and decrease it for a > b. We looked for such an effect in
our data, but we could not find clear evidence of it.

We should mention another consideration of the BCS-type pairing effects for the
above properties. The nuclei that we now examine are light nuclei, with A < 60,
and these level densities are believed to be relatively small. Therefore it seems that
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Nuclidic Mass Formula on a Spherical Basis 313

the BCS-type pairing effects are not large. The effect of the pairing energy from the
two-fold degeneracy mentioned above is expected to be larger than that of the BCS-
type pairing. This tendency is expected to reverse along the direction of increasing
mass number A, because the level densities become larger in this direction. We can
also see such an A dependence in Fig. 1.

3.3. Functional form of the even-odd term

In this subsection, we determine the functional form of Meo(Z, N). First, we
consider the half-level spacing d near the Fermi surface. Suppose that neutrons
occupy energy levels as in a degenerate Fermi gas in a volume Vn. When the neutron
number N is sufficiently large, half of the amount by which the Fermi surface rises
when the neutron number increases by 1 is calculated as

dn

2
≈ π2

�
2

2mn(3π2N)1/3Vn
2/3

, (3.15)

where mn is the neutron mass. As mentioned above, this quantity is a certain
measure of ModdN (Z, N). For the volume Vn, we take

Vn =
4π

3
Rn

3, (3.16)

with

Rn = r0(A + Aad)1/3

(
1 + crq

(
N − Z

A

)2
)

+rad + rI
N − Z

A
+ rq

(
N − Z

A

)2

, (3.17)

where r0, Aad, crq, rad, rI , rq are constants. The term with crq is introduced using the
assumption that the equilibrium density of nuclear matter decreases as ((N−Z)/A)2

increases. In our calculation, we take

crq = 1, (3.18)
r0 = 1.04 fm. (3.19)

The reason that we use a value of r0 which is slightly smaller than the typical value,
1.08 fm, is because we introduce the term with crq. In Eq. (3.17), Aad is an adjustable
parameter introduced to add freedom to the A dependence of the effective nuclear
radius in the region of light nuclei. The remaining terms with rad, rI , and rq are
introduced to represent the effect of the structure of the nuclear surface. These
parameters are treated as adjustable parameters, but not quite freely; we limit the
ranges of the parameter values for rI and rq by requiring rI ≤ 3 fm and rq ≤ rI/2
so that Rn does not change drastically with (N − Z)/A.

For the proton, we use dp/2, Vp and Rp given by expressions similar to (3.15)–
(3.17) obtained by substituting the subscript p for n and by exchanging N and Z
with the proton mass mp. The parameter values of rad, rI and rq for a proton might
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be somewhat different from those for a neutron. However, we adopt the same values
for the proton and neutron in order to limit the number of adjustable parameters.

With the above preparation we determine the functional form of the even-odd
term. As mentioned above, the even-odd energies are approximately equal to dp/2
and dn/2 in the extreme single-particle model, although they may be hidden in the
shell energies. Because we reduced the shell energies in the course of deriving the
final shell term, the hidden even-odd energies have also been reduced. This is one
of the reasons for introducing the even-odd term in our mass formula; if we consider
the properties of the nuclear forces, it is clear that we need an even-odd term that
compensates for the above-mentioned reduction of the (hidden) even-odd energy,
because the strongly attractive nuclear force in singlet-even states surely lowers the
energies of the proton pair and neutron pair in the state of the angular momentum
and parity of the pair 0+. A natural form of the even-odd term to overcompensate
for the reduction of the even-odd energy is c1ndn/2 for neutrons and c1pdp/2 for
protons, where c1n and c1p are constants. These forms are strongly A dependent,
and they may be caused mainly by coupling within single-particle orbitals with the
same value of jπ (where j is the angular momentum quantum number, and π the
parity). In addition to such strongly A dependent even-odd energies, we know that
there are even-odd energies with a weaker A dependence. The latter are mainly
caused by the BCS-type pairing, in which the single-particle orbitals with various jπ

participate. It is not yet clear whether the BCS coupling in nuclei is a bulk effect or
a surface effect. Therefore, we assume less strongly A dependent even-odd energies
in the forms c2n(dn[in MeV]/2)α and c2p(dp[in MeV]/2)α, where c2n, c2p, and α are
constants, and α should be much less than unity. Thus, we have

ModdN (Z, N)c2 = c1ndn/2 + c2n(dn[in MeV]/2)α, (3.20)
ModdZ(Z, N)c2 = c1pdp/2 + c2p(dp[in MeV]/2)α. (3.21)

As mentioned in §3.2, the proton even-odd term is somewhat smaller than the neu-
tron even-odd term. After some test calculations, we find that the coefficients in
Eqs. (3.20) and (3.21) are related as

c1n − c1p = 0.05, (3.22)
c2n − c2p = 0.02 MeV. (3.23)

After all, we represent ModdN (Z, N) and ModdZ(Z, N) by using seven adjustable
parameters, Aad, rad, rI ,, rq, c1n, c2n, and α with constraints on rI and rq.

Finally, we consider Moo(Z, N). This is caused by the interaction between the
last odd-neutron and the last odd-proton. This interaction seems to be weaker than
the pairing interaction, and Moo(Z, N) should be smaller than either ModdZ(Z, N)
and ModdN (Z, N). We impose this constraint on the form of Moo(Z, N). For this
purpose, we average ModdZ(Z, N) and ModdN (Z, N) with appropriate weights, and
then multiply it by a function of Z and N with some upper limit. Actually, we take
the reciprocal of each ModdZ(Z, N) or ModdN (Z, N) as the weight, and obtain

Moo(Z, N) = f(Z, N)
ModdZ(Z, N) · ModdN (Z, N)
ModdZ(Z, N) + ModdN (Z, N)

. (3.24)
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When we surveyed the “experimental” values of Moo (Z, N), almost all of them
are positive, but those for Z = N are zero or negative. The reason for this exception
may be the existence of the Wigner term in Mg(Z, N). Because the Wigner term
includes a factor |N − Z|, the nuclei with Z = N are more strongly bound than
estimated by a smooth interpolation from neighboring nuclei, and some portion of
the odd-odd effect may be included in the Wigner term. From this consideration, we
assume that f(Z, N) in Eq. (3.24) includes (1− δZN ) with δZN being the Kronecker
delta. Then, we adopt the functional form for f(Z, N) as

f(Z, N) = (1 − δZN )coo(1 + coo1(A−1/3 − A−2/3)), (3.25)

where coo and coo1 are adjustable parameters.

§4. Determination of adjustable parameters

4.1. Parameters of the even-odd term

We determine the values of the adjustable parameters introduced in §3.3 by fit-
ting the even-odd term to the “experimental” data obtained in §3.1. We mainly take
the least-squares method. The values of nine adjustable parameters thus obtained
are as follows:

Aad = 2, rad = 0.1268 fm,

rI = 3.0 fm, rq = 1.4996 fm,

c1n = 0.45 , c2n = 1.6 MeV, α = 0.25,

coo = 0.1070 , coo1 = 20.14. (4.1)

The root-mean-square (RMS) deviations of ModdZ(Z, N) and ModdN (Z, N) from
the “experimental” values are 246.0 keV for 514 nuclei and 266.0 keV for 495 ones,
respectively. The deviation of Moo(Z, N), excluding the case in which N = Z, is
153.3 keV for 402 nuclei.

Although we did not apply the same procedure to the even-odd term of the
KUTY00 mass formula,10) we can calculate the “experimental” even-odd energies
for KUTY00 by using its gross term. The RMS deviations of the even-odd term
of KUTY00 from these “experimental” values are somewhat larger than the RMS
deviation of the present even-odd term. The RMS deviation of ModdZ(Z, N) is about
30% larger, and those of ModdN (Z, N) and Moo(Z, N) are about 20% larger.

Figure 2 displays the even-odd terms of KUTY00 and the present mass formula
for Boron isotopes. The total even-odd term Meo(Z, N) (plotted by solid curves in
Fig. 2) exhibits zigzag behavior, in general, reflecting the fact that odd-odd nuclei are
less strongly bound than in the case that they are interpolated from the neighboring
odd-Z-even-N nuclei. In the upper figure for KUTY00, however, this zigzag behavior
disappears, or it is even reversed for very neutron-rich nuclei, N = 15 and (probably)
17, which are near or outside the neutron-drip line. This kind of behavior, which
violates the rule of stability for even-N (or even-Z) nuclei compared with odd-N (or
odd-Z) nuclei is unlikely to occur in actual nuclei, even though we do not have any
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Fig. 2. Even-odd terms of B-isotopes in energy units for two mass formulas, KUTY00 and the

present one. Because of the factor of 1 − δZN in Eq. (3.25), the odd-odd term for Z = N is

zero in the lower figure.

definite evidence to disprove it. On the other hand, the present even-odd term is
designed so as to maintain the even-odd regularity, as seen in the lower figure. The
situation is similar for Z, N = 3 and 5.

4.2. Parameters of the gross term

In order to determine the values of the parameters in the gross term, we compare
the calculated masses with the data set for the recommended mass values of Audi,
Wapstra and Thibault in 2003,16) excluding those estimated by systematics. The
nuclides with Z = 0, 1 and/or N = 0, 1 are excluded, because they are too light.
Then, there are 2219 nuclides in all.

The parameters in the gross term are determined by the least-squares method
in which we take the weight for each nuclide as 1/(∆i + 0.7 MeV)2, where ∆i is the
uncertainty in the experimental mass of this nuclide. If the absolute magnitude of
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Table I. Parameters in the gross term in MeV obtained from a comparison with the data set Audi-

Wapstra-Thibault03.16) The values in parentheses are the constrained ones.

i 1 2 3 4

ai −15.7528 15.9195 20.3540 (−40.00)

bi (0) (0) (0) 38.0024

ci 27.6284 (−30.00) (−30.0) 45.3567

a parameter becomes too large in this least-squares procedure, we constrain it to a
reasonable magnitude so as not to cause a drastic variation in the region of light
nuclei. Among the parameters in Eq. (2.3), we obtain αa = 1, αb = 5, αc = 10,
and by considering the origin of the Wigner term, we set bi = 0 for i = 1–3. The
improvement realized in this procedure mainly affects the light nuclei, and therefore
there are some differences between these values and those for KUTY00. The values
of the parameters thus determined are given in Table I.

In Fig. 3, we display the differences between the estimated masses obtained
using the present and the KUTY00 mass formulas. This figure shows that nuclei
with large differences are seen in the very neutron-rich region or in the region of very
light nuclei. Differences on the N = Z line are also notable.

Fig. 3. Differences between the masses (in energy units) calculated using the present formula and

KUTY00.10)
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§5. Properties of the mass formula

5.1. Masses, neutron and proton separation energies

The differences between the calculated masses and the experimental masses16)

are shown in Fig. 4, and the RMS deviations are listed in Table II. The RMS
deviation for our present formula is 666.7 keV for 2219 experimental masses, which
is smaller than that of the KUYT00 mass formula,10) 689.8 keV. In Table II, we also
list the RMS deviations for two other recently proposed mass formulas that make
predictions of masses and deformations for nuclei in a wide nuclidic region, namely
those of the finite range droplet model (FRDM),5) and the Hartree-Fock plus BCS
pairing (HFBCS-1) model.6) Among these, our mass formula has the smallest RMS
deviation. Although there is not much difference in the RMS deviations among these
three mass formulas, there still remain fairly large differences among the estimated
masses for some individual nuclides. The RMS deviations of the separation energies

Table II. RMS deviations of mass formulas from experimental data16) in keV.

nuclidic region

Mass formula Z, N ≥ 2 Z, N ≥ 8

(2219 nuclei) (2149 nuclei)

this work 666.7 652.8

KUTY0010) 689.8 670.7

FRDM5) - 655.5

HFBCS-16) - 770.7

Fig. 4. Differences between the calculated masses and the experimental masses in energy units.
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Table III. RMS deviations of the separation energies from experimental data16) for these mass

formulas in keV. The values in parentheses are the numbers of nuclei.

neutron proton
Mass formula

Sn S2n Sp S2p

Z, N ≥ 2 (2054) (1997) (2016) (1897)

this work 352.9 442.0 389.9 532.2

KUTY0010) 389.1 462.4 437.6 558.2

Z, N ≥ 8 (1988) (1937) (1948) (1835)

this work 316.2 379.1 353.0 490.1

KUTY0010) 339.0 386.5 379.2 499.7

FRDM5) 399.3 511.7 395.2 493.6

HFBCS-16) 451.8 477.3 496.5 603.8

for our mass formula, including the previous formula, KUTY00, are listed in Table
III together with those for the other two. It is seen that our RMS deviation is
significantly smaller than those for the others.

The limit of the region of “stable” nuclei with respect to neutron or proton
emission can be predicted with the separation energies as

Sn > 0 and S2n > 0 on the neutron-rich side,
Sp > 0 and S2p > 0 on the neutron-poor side. (5.1)
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Fig. 6. Nuclei with Sn, S2n, Sp, S2p >0 predicted by the present mass formula in the region of light

nuclei (dots). The known nuclei taken from Ref. 18) are also shown (squares). The seven nuclei

exhibiting possible discrepancies between experiments and calculations are indicated by nuclidic

symbols; the boxed symbols indicate the nuclei which have been confirmed experimentally to

be stable with respect to particle emission, and the underlined symbols indicate nuclei unstable

with respect to particle emission or unknown nuclei. The nuclei recently identified by Notani et

al.,20) 34Ne, 37Na, 43Si, are also shown (triangles).

Table IV. Neutron separation energies obtained with the present mass formula for light nuclei

near the neutron-drip line in MeV. Only nuclides with discrepancies between experiment and

prediction are shown. The underlined values are of greatest interest.

this work
nuclide exp.

Sn S2n
16B unknown18) +0.02 +2.46
26O unstable19) +1.40 +0.21
19B identified18) +0.12 −0.51
19C identified18) −0.04 +3.76
22C identified18) +0.94 −0.31
31F identified18) +0.45 −0.47

31Ne identified18) −0.58 +2.35

Figure 5 displays results for nuclei with Sn, S2n, Sp, S2p >0.
We also compare our neutron-drip line in detail with the experimental one in the

region of light nuclei. Figure 6 displays the nuclides that are predicted to be stable
with respect to particle emission and experimentally known nuclides.18) In the region
satisfying 10 ≤ A ≤ 31, the location of the estimated neutron-drip line is almost the
same as that found experimentally. The discrepancies are as follows. Although our
mass formula predicts that 16B and 26O are stable with respect to emission of one or
two neutron, these nuclides are experimentally unknown or unstable. Contrastingly,
19B, 19C, 22C, 31F and 31Ne are unstable according to our mass formula, but they
have been experimentally identified. As listed in Table IV, the calculated values of
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Nuclidic Mass Formula on a Spherical Basis 321

|Sn| and |S2n| for these nuclei are not very large. The underlined values in Table IV
are within, or almost within, the RMS deviations of Sn and S2n given in Table III;
only the values of S2n for 19B and Sn for 31Ne are 1.15 and 1.65 times as large as
the RMS deviation of S2n and Sn, respectively.

Recently, the neutron-rich isotopes 34Ne, 37Na and 43Si were identified, and
evidence for the particle instability of 33Ne, 36Na and 39Mg was obtained.20) These
experimental results are in agreement with predictions of the present mass formula.

5.2. Systematics of the separation energies

Figure 7 displays the two-neutron separation energies S2n, the experimental data
in the upper panel and our results in the lower panel. We connect the nuclei with
the same N by solid lines. In such a figure, magicities are seen as large gaps between
two lines. In the upper panel, we see large gaps between N = 8 and 10 (abbreviated
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Fig. 7. Two-neutron separation energy S2n for even N . The experimental values of S2n are plotted

in the upper figure, and the values of S2n from the present mass formula are plotted in the lower

figure. The solid lines connect nuclei with the same N , and the dashed line connects the lightest

nuclei stable with respect to proton emission for fixed N .
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“at N = 8”), and at N = 20, 28, 50, 82, 126, except for the region with very small
values of S2n. Similar gaps are seen in the lower panel. In the very neutron-rich
region, which corresponds to the region near the S2n = 0 line, the gaps of our S2n at
N = 20, 28, 50 exhibit substantial decreases, while the gaps at N =16, 32 (or 34),
58 become larger compared with the neighboring ones.

Figure 8, like Fig. 7, displays the two-proton separation energies S2p. Here, we
connect the nuclei with the same Z by solid lines. In the upper panel of Fig. 8, large
gaps are seen at the magic numbers Z = 8, 20, 28, 50, 82. Similar gaps are also seen
in the lower panel. As we move to the very neutron-rich region, which corresponds
to the region near the dashed line, the gap of our S2p at Z = 82 decreases, and the
gap at Z = 50 first decreases and then increases. By contrast, the gaps at Z = 8,
14, and 20 become larger than the neighboring ones. These properties are similar to
those of KUTY00.
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5.3. Nuclear deformation

We show our deformation parameter α2 in Fig. 9. The present deformation
parameters are the same as those of KUTY00, because, as mentioned above, the same
shell energies are used for these two mass formulas. The deformation parameters αi

can be converted into other deformation parameters βi using the relation

βi =
√

4π/(2i + 1)αi, i = 2, 4, 6. (5.2)

Compared with the experimental information regarding |β2| derived from experimen-
tal B(E2),21) the calculated deformation is qualitatively in agreement with experi-
ment in the sense that strongly deformed nuclei appear approximately in the right
places in the N -Z plane. Here, it should be noted that no nuclides are found to
be exactly spherical; many nuclides, including the double-magic nuclides 132Sn and
208Pb, are found to be slightly prolate. This is due to the energy-favoring prolate
shapes, Eq. (79) in Ref. 10). In practice, this deviation from spheres does not seem
to pose a serious problem, because the calculated deformations in the nuclidic region
when the nuclei are allowed to be spherical, are generally very small (α2A � 1).

When we look into the deformation more quantitatively, we find that the calcu-
lated deformations are not large enough. The RMS deviation of our |β2| from the
value of |β2exp| derived from B(E2) is 0.137 for 324 even-even nuclei. This value is
somewhat larger than those of FRDM and HFBCS-1, 0.106 and 0.126, respectively.
We can also consider another indicator for the deviation, defined by

rdef ≡
√∑

β2th
2/
∑

|β2exp|2, (5.3)

Fig. 9. Deformation parameter α2.
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where the sums are taken over the nuclides for which both the theoretical and exper-
imental values are available. When our values of β2 are used for β2th, the indicator
rdef is calculated to be 0.626. The smallness of this value compared to 1 is not so
surprising, because nuclear vibration makes a partial contribution to B(E2), and
consequently to |β2exp|2, whereas it makes no contribution to our β2. However, the
above value is also smaller than those of FRDM and HFBCS-1 (0.757 and 0.789,
respectively), which do not include a contribution from nuclear vibration either.

Improvement of the deformation is a future problem to be considered together
with improvements in the mass values.

§6. Concluding remarks

In the previous sections, we presented the revised version of our mass formula
on a spherical basis published in 2000. In the new mass formula, the even-odd term
is mainly revised. With this revision, this formula accurately predicts experimental
results of the neutron-drip light nuclei within the predictability of this mass for-
mula itself. In the process we pointed out a difference between the “experimental”
even-odd term and between the neutron-neutron and proton-proton pairs. On the
deviation from experimental masses, we found that our formula accurately predicts
not only the experimental masses but also the first derivative of the masses as neutron
and proton separation energies. Furthermore, we remark that the present formula
results in supporting some changes of magicities toward the nuclidic region far from
the β-stability line.

We have compiled a table which lists ground state masses, deformation param-
eters α2, α4, α6, shell energies, one- and two-neutron separation energies, and one-
and two-proton separation energies for 9437 nuclei ranging from Z ≥ 2 and N ≥ 2
to Z ≤ 130 and N ≤ 200. This table is available on the World-Wide Web at
http://wwwndc.tokai.jaeri.go.jp/nucldata/mass/KTUY05 m246S12np.pdf and
http://wwwndc.tokai.jaeri.go.jp/nucldata/mass/KTUY05 m246.dat.
The table will also be sent upon request.
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