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Minimum energy paths for transitions such as atomic and/or spin rearrangements in thermalized sys-
tems are the transition paths of largest statistical weight. Such paths are frequently calculated using
the nudged elastic band method, where an initial path is iteratively shifted to the nearest minimum
energy path. The computational effort can be large, especially when ab initio or electron density
functional calculations are used to evaluate the energy and atomic forces. Here, we show how the
number of such evaluations can be reduced by an order of magnitude using a Gaussian process
regression approach where an approximate energy surface is generated and refined in each iteration.
When the goal is to evaluate the transition rate within harmonic transition state theory, the evalu-
ation of the Hessian matrix at the initial and final state minima can be carried out beforehand and
used as input in the minimum energy path calculation, thereby improving stability and reducing the
number of iterations needed for convergence. A Gaussian process model also provides an uncer-
tainty estimate for the approximate energy surface, and this can be used to focus the calculations on
the lesser-known part of the path, thereby reducing the number of needed energy and force evalua-
tions to a half in the present calculations. The methodology is illustrated using the two-dimensional
Müller-Brown potential surface and performance assessed on an established benchmark involving
13 rearrangement transitions of a heptamer island on a solid surface. Published by AIP Publishing.

https://doi.org/10.1063/1.4986787

I. INTRODUCTION

Theoretical studies of the transition mechanism and esti-
mation of the rate of thermally activated events involving dis-
placements of atoms or rotations of magnetic moments often
involve finding a minimum energy path (MEP) connecting ini-
tial and final state minima on the energy surface characterizing
the system. An MEP is a natural choice for a reaction coor-
dinate since it represents a path of maximal statistical weight
in a system in thermal equilibrium with a heat bath. Transi-
tion state theory1–3 calculations can be carried out using this
reaction coordinate to parametrize, for example, a hyperpla-
nar representation of the transition state.4,5 Even though such a
reaction coordinate represents only one particular mechanism
for the transition, it is possible to discover a new mechanism
corresponding to a lower free energy barrier when full varia-
tional optimization of both the location and orientation of the
hyperplanar transition state is carried out.6,7 In such a case, an
MEP is just a convenient tool for the implementation of a full
free energy calculation.

Most often, transition rates are, however, estimated from
the harmonic approximation to transition state theory, where

a)Electronic mail: hj@hi.is

the maximum rise in the energy along an MEP gives the activa-
tion energy of the transition and the pre-exponential factor in
the Arrhenius expression for the rate can be obtained from the
Hessian matrix evaluated at the initial state minimum and the
energy maximum—a first-order saddle point on the energy sur-
face.8 While it is possible to use various methods to converge
directly on a saddle point starting from some initial guess,
knowledge of the whole MEP is useful because it is impor-
tant to make sure that the highest first-order saddle point for
the full transition has been found. Furthermore, calculations of
MEPs often reveal unknown intermediate minima and unex-
pected transition mechanisms9 and therefore play an important
role in the studies of the mechanism and rate of thermally
activated transitions. Most often, such calculations are car-
ried out for transitions involving rearrangements of atoms, but
similar considerations apply to thermally activated transitions
where magnetic moments rotate from one magnetic state to
another.10–13

The nudged elastic band (NEB) method is a commonly
used iterative approach to find MEPs.5,9,14 For magnetic tran-
sitions, a variant of the method called geodesic NEB has been
developed.15 In the NEB method, the path between two local
minima on the energy surface is represented by a discrete set
of replicas of the system, referred to as “images,” each of them
consisting of values for all degrees of freedom. Starting from
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some initial path, the locations of the images on the energy
surface are iteratively optimized so as to obtain a discrete
representation of an MEP.

Each NEB calculation typically involves on the order of
a hundred evaluations of the energy and force (the negative
gradient of the energy) for each one of the images, and the
path is typically represented by five to ten images. The evalua-
tions were initially performed mostly using analytical potential
energy functions, but nowadays electronic structure calcula-
tions are also used extensively in NEB applications. Since
a typical electronic structure calculation takes on the order
of tens of CPU minutes or more, the NEB calculations can
become computationally demanding. In addition, the calcu-
lation may need to be repeated if there are several possible
final states for the transition. Thus, it would be valuable to find
ways to accelerate NEB calculations. To get the most out of
the computationally intensive electronic structure calculations,
the information obtained from them should be exploited better
to decrease the number of NEB iterations instead of forgetting
it after one iteration.

The use of machine learning to accelerate MEP and sad-
dle point calculations has been introduced by Peterson,16 who
applied neural networks to construct an approximate energy
surface for which NEB calculations were carried out. After
relaxation of the path on the approximate energy surface, the
true energy and force were evaluated at the images of the
relaxed path to see whether or not the path had converged
on an MEP on the true energy surface. If true convergence had
not been reached, the new energy and force values calculated
at the location of the images were added to the training data
set and the model was updated. This procedure was repeated
iteratively until the approximate energy surface was accurate
enough for converging on the true MEP.

Proof-of-principle results have also been presented where
Gaussian process regression (GPR)17–20 is applied to accel-
erate NEB calculations.21 Since the calculations are largely
based on the gradient vector of the energy surface, straight-
forward inclusion of derivative observations and prediction of
derivatives can be seen as advantages of GPR for this appli-
cation. It is also easy to encode prior assumptions about the
smoothness properties of the energy surface into the covariance
function of the Gaussian process (GP) model or learn about
these properties from the data. Analytical expressions for the
posterior predictions conditional on the hyperparameters of
the GP model allow both fast predictions and reliable esti-
mation of uncertainties. The predictive performance of GPR
has been shown to be competitive with other machine learn-
ing methods especially when the number of observations is
small.22

The GPR approach to MEP calculations is extended here
by presenting two algorithms to accelerate climbing image
nudged elastic band (CI-NEB) calculations, where one of the
images is made to converge to a small tolerance on the highest
energy maximum along the MEP.23 The basic GPR approach is
described as the all-images-evaluated (AIE) algorithm, where
the energy and force are evaluated at all intermediate images
of the CI-NEB before the approximation to the energy sur-
face is updated. In a more advanced algorithm, the energy
and force are evaluated at only one image before a new

approximate energy surface is constructed. We refer to the
latter as the one-image-evaluated (OIE) algorithm. As a prob-
abilistic model, a GP expresses the energy predictions as
probability distributions, which means that the uncertainty of
the prediction can also be estimated, e.g., as the variance of
the posterior distribution. This uncertainty estimate is used
by the OIE algorithm to select the image to be evaluated in
such a way as to give maximal improvement of the model.
By directing the evaluations to locations where they are most
needed, the OIE algorithm skips some of the energy and force
evaluations and thus decreases the overall computation time
compared to the AIE algorithm. This approach has similarities
with Bayesian optimization,24 where the uncertainties of a GP
model are used to define an acquisition function that is used to
select the locations of new evaluations in a global optimization
task.

Another extension of the GPR approach presented here
applies when the overall goal is to estimate the forward and
backward transition rates using harmonic transition state the-
ory. Then, the Hessian matrix needs to be evaluated at the initial
and final state minima, as well as at the highest first-order sad-
dle point along the MEP. The evaluation of the Hessian at the
endpoint minima can be carried out before the MEP calcula-
tion to provide additional input information into the GP model
about the shape of the energy surface in the vicinity of the two
ends of the MEP.

The article is organized as follows: In Sec. II, a brief
introduction to the NEB method is given, followed by pre-
sentation of necessary GP theory for the GPR approach in
Sec. III. In Sec. IV, the two implementations, the AIE algo-
rithm and the OIE algorithm, are described and illustrated
on the two-dimensional Müller-Brown energy surface.25 In
Sec. V, the heptamer island benchmark is described and per-
formance statistics are given as a function of the number of
degrees of freedom. The article concludes with a discussion in
Sec. VI.

II. NUDGED ELASTIC BAND METHOD

The objective of the nudged elastic band (NEB) method
is to find a minimum energy path (MEP) connecting two given
local minima on an energy surface. An MEP is defined as a
path for which the gradient of the energy has zero compo-
nent perpendicular to the path tangent. In the NEB method,
the path is represented in a discretized way as a set of images,
which are sets of values of all degrees of freedom in the system
(atom coordinates and angles specifying orientation of mag-
netic vectors, and possibly also simulation box size and shape).
The MEP is found iteratively, starting from some initial path
between the two minima. Most often, a straight line interpola-
tion between the minima has been used to generate the initial
path,14 but a better approach is to start with a path that interpo-
lates as closely as possible the distances between neighboring
atoms, the so-called image dependent pair potential (IDPP)
method.26

The key feature of the NEB algorithm is the “nudging,”
a projection which is used to separate the force components
perpendicular and parallel to the path from each other. If each
image is just moved along the force vector (negative gradient
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of the energy), they would end up sliding down to the nearest
minima. The main idea in the NEB method is to take into
account only the force component perpendicular to the path
and at the same time control the distribution of the images
along the path. The projection of the force requires an estimate
of the local tangent to the path at the location of each image.
A well-behaved estimate is obtained by defining the tangent
based on the vector to the neighboring image of higher energy
or, if both of the neighbors are either higher or lower in energy
than the current image, a weighted average of the vectors to
the two neighboring images.27

To control the distribution of the images along the path, a
spring force acting in the direction of the path tangent is typi-
cally introduced. The most common choice is to strive for an
even distribution, but one can also choose to have, for exam-
ple, a higher density of images where the energy is larger.23

The spring force also prevents the path from becoming arbi-
trarily long in regions of little or no force. This is important,
for example, in calculations of adsorption and desorption of
molecules at surfaces.

In each iteration, the images are moved along the resul-
tant vector of the spring force and the component of the true
force perpendicular to the path, which is here referred to as
the NEB force FNEB. The true force is the negative gradient of
the energy, and in most cases, an evaluation of the energy also
delivers the gradient vector at little or no additional expense.
It is, however, typically too expensive to evaluate the second
derivatives of the energy, and the iterative algorithms are there-
fore based solely on the gradient and energy at each image
(in addition to the spring force which depends on the distri-
bution of the images). A simple and stable method that has
been used extensively in NEB calculations will be used here
to control the step size of the movements. It is based on a veloc-
ity Verlet dynamics algorithm where only the component of
the velocity in the direction of the NEB force is included as
long as the inner product with the NEB force is positive.14 A
somewhat higher efficiency can be obtained by using quadrat-
ically convergent algorithms such as conjugate gradient or
quasi-Newton,28 but those can be less stable especially in the
beginning of an NEB calculation.

The most important part of an MEP is the vicinity of the
highest energy saddle point, especially in harmonic transition
state theory calculations where the highest energy saddle point
directly gives an estimate of the activation energy of the tran-
sition. It is, therefore, advantageous to let the highest energy
image move to the maximum energy along the path. This vari-
ant of the NEB method is referred to as the climbing image
nudged elastic band (CI-NEB) method.23 Whereas the com-
ponent of the true force acting in the direction of the tangent
is normally removed from the NEB force, for the climbing
image, it is instead flipped around to point towards the direc-
tion of higher energy along the path. In the CI-NEB method,
the spring force is not applied to the climbing image and the
rest of the images are distributed evenly on each side of the
climbing image. To keep the intervals reasonably similar on
both sides of the climbing image, the regular NEB method is
typically conducted first (to some preliminary tolerance) so
that the image selected as the climbing image is not too far
from the true saddle point. The rest of the MEP is mainly

needed to ensure that the highest saddle point has been iden-
tified and to provide an estimate of the tangent to the path in
order to carry out the nudging projections of the forces. It is
more important to make the climbing image converge rigor-
ously than the other images. It is, therefore, practical to apply
a tighter tolerance for the magnitude of the NEB force acting
on the climbing image than to the other images in CI-NEB
calculations.

In the heptamer island benchmark presented here, the path
was represented by seven images, N im = 7, and the initial path
was generated using the IDPP method. All spring constants
were chosen to be 1 eV/Å to give an even distribution of the
images along the path on each side of the climbing image.
The focus here is on calculations where the energy and force
are obtained using some ab initio or density functional theory
calculations. The computational effort in all other parts of the
calculation is then insignificant in comparison, and thus the
overall computational effort is well characterized by simply
the number of times the energy and force need to be evaluated
in order to converge on the MEP. Below, we describe various
strategies to accelerate CI-NEB calculations with Gaussian
process regression.

III. GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) is a flexible probabilistic model
for functions in a continuous domain.17–20 It is defined by
a mean function m(x) and a covariance function k(x(i), x(j))
so that the joint probability distribution of the function
values f = [ f (x(1)), f (x(2)), . . . , f (x(N))]T at any finite set of
input points X= [x(1), x(2), . . . , x(N)]T ∈ R

N×D is a mul-
tivariate Gaussian distribution p(f)=N(m, K(X, X)), where
m= [m(x(1)), m(x(2)), . . . , m(x(N))]T and the notation K(X, X′)
represents a covariance matrix with entries Kij = k(xi, x′

j
).

Thus, a GP can be seen as an infinite-dimensional general-
ization of the multivariate Gaussian distribution, serving as
a prior probability distribution for the unknown function f.
After evaluating the function at some training data points,
the probability model is updated and a posterior probability
distribution can be calculated for the function value at any
point.

The most important part of the GP model is the covari-
ance function, which defines how the function values at any
two input points depend on each other, usually based on the
distance between the points. Through selection of the covari-
ance function, different prior assumptions about the properties
of the function can be encoded into the model. To favor smooth
functions, the infinitely differentiable squared exponential
covariance function

k(x(i), x(j)) = σ2
c + σ2

m exp *.,−
1
2

D
∑

d=1

(x(i)
d
− x

(j)
d

)2

l2
d

+/-
is used here. The hyperparameters l = {l1, . . . , lD} are length
scales that define the range of the covariance in each dimen-
sion, and σ2

m is a hyperparameter that controls the magnitude
of the covariation. The mean function is here set to zero, but
the additional constant term σ2

c in the covariance function
has a similar effect as integration over an unknown constant
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intercept term having a Gaussian prior distribution with
variance σ2

c .
Consider a regression problem y= f (x) + ǫ , where ǫ is a

Gaussian noise term with variance σ2, and a training data
set {X, y}, where y= [y(1), y(2), . . . , y(N)]T includes N noisy
output observations from the N input points X= [x(1), x(2),
. . . , x(N)]T ∈ R

N×D. The posterior predictive distribution for
the function value f (x*) at a new point x*, conditional on
the GP model hyperparameters θ = {σ2

m, l}, is a Gaussian
distribution with mean

E[ f (x∗)|y, X, θ] = K(x∗, X)
(

K(X, X) + σ2I
)−1

y

and variance

Var[ f (x∗)|y, X, θ]

= k(x∗, x∗) − K(x∗, X)
(

K(X, X) + σ2I
)−1

K(X, x∗),

where I is the identity matrix. Here the hyperparameter val-
ues θ = {σ2

m, l} are optimized by defining a prior probabil-
ity distribution p(θ) and maximizing the marginal posterior
probability density p(θ |y, X)∝ p(θ)p(y|X, θ), where p(y|X, θ)
= ∫f p(y|f)p(f |X, θ)df is the marginal likelihood of θ in the
light of the observed data set {X, y}.

Since differentiation is a linear operation, the derivative
of a GP is a GP as well.29–33 This makes it straightforward to
use derivative information and predict derivatives of the func-
tion f. Derivative observations can be included in the model by
extending the observation vector y to include partial deriva-
tive observations and by extending the covariance matrix K(X,
X) correspondingly to include covariances between the func-
tion values and partial derivatives and covariances between
the partial derivatives themselves. In the case of the squared

exponential covariance function, these entries are obtained
by

Cov

∂f (x(i))

∂x
(i)
d

, f (x(j))


=

∂

∂x
(i)
d

Cov
[

f (x(i)), f (x(j))
]
=

∂k(x(i), x(j))

∂x
(i)
d

= −
σ

2
m(x(i)

d
− x

(j)
d

)

l2
d

exp *.,−
1
2

D
∑

g=1

(x(i)
g − x

(j)
g )2

l2
g

+/-
and

Cov


∂f (x(i))

∂x
(i)
d1

,
∂f (x(j))

∂x
(j)
d2

 =
∂

2

∂x
(i)
d1
∂x

(j)
d2

Cov
[

f (x(i)), f (x(j))
]

=

∂
2k(x(i), x(j))

∂x
(i)
d1
∂x

(j)
d2

=

σ
2
m

l2
d1

*.,δd1d2 −
(x(i)

d1
− x

(j)
d1

)(x(i)
d2
− x

(j)
d2

)

l2
d2

+/-
× exp *.,−

1
2

D
∑

g=1

(x(i)
g − x

(j)
g )2

l2
g

+/- ,

where δd1d2 = 1 if d1 = d2 and δd1d2 = 0 if d1 , d2. These same
expressions are needed when predicting the derivatives. The
posterior predictive distribution of the partial derivative of
function f with respect to dimension d at a new point x* is
a Gaussian distribution with mean

E

[
∂f (x∗)
∂x∗

d

�����y, X, θ

]
=

∂K(x∗, X)
∂x∗

d

(

K(X, X) + σ2I
)−1

y

and variance

Var

[
∂f (x∗)
∂x∗

d

�����y, X, θ

]
=

∂
2k(x∗, x∗′)
∂x∗

d
∂x∗

d
′ −

∂K(x∗, X)
∂x∗

d

(

K(X, X) + σ2I
)−1 ∂K(X, x∗)

∂x∗
d

.

In the present application, the vector x includes coordinates of the atoms and the function f is the energy of the system. The
extended observation vector

yext =

y
(1) · · · y(N),

∂f (x(1))

∂x
(1)
1

· · ·
∂f (x(N))

∂x
(N)
1

,
∂f (x(1))

∂x
(1)
2

· · ·
∂f (x(N))

∂x
(N)
2

, . . . ,
∂f (x(1))

∂x
(1)
D

· · ·
∂f (x(N))

∂x
(N)
D


T

includes the accurate values of the energy and the partial derivatives of the energy with respect to the coordinates of the atoms
(i.e., components of the negative force vector) at the training data points x(1), x(2), . . . , x(N). The GP model is used to predict the
energy f (x*) and its gradient vector [ ∂f (x∗)

∂x∗1
, ∂f (x∗)

∂x∗2
, . . . , ∂f (x∗)

∂x∗
D

]T at a new point x*, which in this case represents an image on the

discrete path representation between the initial and final state minima. Since the training data also include derivative observations,
the mean and variance of the posterior predictive distribution of the energy are given as

E[ f (x∗)|yext, X, θ] = K∗ext

(

Kext + σ2I
)−1

yext (1)

and

Var[ f (x∗)|yext, X, θ] = k(x∗, x∗) −K∗ext

(

Kext + σ2I
)−1

K∗ext
T, (2)

where

K∗ext =

[
K(x∗, X)

∂K(x∗, X)
∂x1

∂K(x∗, X)
∂x2

· · ·
∂K(x∗, X)
∂xD

]
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and

Kext =



K(X, X)
∂K(X, X′)
∂x′1

∂K(X, X′)
∂x′2

· · ·
∂K(X, X′)
∂x′

D

∂K(X, X′)
∂x1

∂
2K(X, X′)
∂x1∂x′1

∂
2K(X, X′)
∂x1∂x′2

· · ·
∂

2K(X, X′)
∂x1∂x′

D

∂K(X, X′)
∂x2

∂
2K(X, X′)
∂x2∂x′1

∂
2K(X, X′)
∂x2∂x′2

· · ·
∂

2K(X, X′)
∂x2∂x′

D
...

...
...

. . .
...

∂K(X, X′)
∂xD

∂
2K(X, X′)
∂xD∂x′1

∂
2K(X, X′)
∂xD∂x′2

· · ·
∂

2K(X, X′)
∂xD∂x′

D



.

Correspondingly, the mean and variance of the posterior pre-
dictive distribution of the partial derivative of the energy with
respect to coordinate d at x* are given as

E

[
∂f (x∗)
∂x∗

d

�����yext, X, θ

]
=

∂K∗ext

∂x∗
d

(

Kext + σ2I
)−1

yext (3)

and

Var

[
∂f (x∗)
∂x∗

d

�����yext, X, θ

]

=

∂
2k(x∗, x∗′)
∂x∗

d
∂x∗

d
′ −

∂K∗ext

∂x∗
d

(

Kext + σ2I
)−1 ∂K∗ext

T

∂x∗
d

.

Even if the observations are assumed to be accurate, a small
but positive value for the noise variance σ2 is used to avoid
numerical problems when inverting the covariance matrix
Kext.

IV. ALGORITHMS

In this section, the two algorithms using the Gaussian
process regression (GPR) approach to accelerate CI-NEB
calculations, the all-images-evaluated (AIE) algorithm and
the one-image-evaluated (OIE) algorithm, are presented in
detail.

A. All-images-evaluated (AIE) algorithm

Input: A GP model, energy (and zero force) at the two
minima on the energy surface, coordinates of the N im images
on the initial path, a final convergence threshold TMEP for the
minimum energy path, an additional final convergence thresh-
old TCI for the climbing image iCI, a preliminary convergence
threshold TGP

CIon for turning climbing image mode on during the
relaxation phase, a maximum displacement rmax of any image
from the nearest observed data point.

Output: A minimum energy path represented by N im

images, one of which has climbed to the highest saddle point.

1. Start from the initial path and repeat the following (outer
iteration loop):

A. Evaluate the true energy and force at the N im ☞ 2
intermediate images of the current path and add them
to the training data.

B. Calculate the accurate NEB force vector FNEB(i) for
each intermediate image i ∈ {2, 3, . . . , Nim − 1}.

C. If maxi |FNEB(i)| < TMEP and |FNEB(iCI)| < TCI, then
stop the algorithm (final convergence reached).

D. Optimize the hyperparameters of the GP model based
on the training data and calculate the matrix inversion
in Eq. (1).

E. Relaxation phase: Start from the initial path, set
climbing image mode off, and repeat the following
(inner iteration loop):

I. Calculate the GP posterior mean energy and gradi-
ent at the intermediate images using Eqs. (1) and
(3).

II. Calculate the approximate NEB force vector
FGP

NEB(i) for each intermediate image using the GP
posterior mean gradient.

III. If climbing image mode is off and maxi |FGP
NEB(i)|

< TGP
CIon, then turn climbing image mode on and

recalculate the approximate NEB force vectors.
IV. If climbing image mode is on and maxi |FGP

NEB(i)|
<

1
10 TCI, then stop the relaxation phase (E).

V. Move the intermediate images along the approx-
imate NEB force vector FGP

NEB(i) with a step size
defined by the projected velocity Verlet algorithm.

VI. If the distance from any current image to the nearest
observed data point is larger than rmax, then reject
the last inner step and stop the relaxation phase (E).

A pseudocode for the AIE algorithm is presented above.
Figure 1 shows an illustration of the progression of the algo-
rithm on the two-dimensional Müller-Brown energy surface.25

The energy (and the zero gradient of the energy) at the ini-
tial and final state minima is assumed to be provided as
input.

The algorithm is started by evaluating the energy and force
at the N im ☞ 2 intermediate images of an initial path and con-
structing a GP model for the energy based on the obtained
information. The path is then relaxed on the approximate
energy surface (GPR iteration 1), which is given as the pos-
terior mean of the GP model, with a regular CI-NEB method
using the posterior mean gradient of the GP model to cal-
culate the approximate NEB force at the images. After each
relaxation phase, final convergence of the path is checked by
evaluating the true energy and force at the images of the relaxed



152720-6 Koistinen et al. J. Chem. Phys. 147, 152720 (2017)

FIG. 1. Far left: The two-dimensional Müller-Brown energy surface, which has three minima, and the minimum energy path (red curve). Three panels to the
right: An illustration of the iterative construction of an approximate energy surface in the vicinity of the minimum energy path using the all-images-evaluated
algorithm where energy and atomic forces are evaluated at all intermediate images of the nudged elastic band. The initial path is a straight line interpolation
between the initial and final state minima. The red + signs show the points at which the energy and atomic forces have been evaluated. The yellow disks show
the climbing image nudged elastic band relaxed on the approximate energy surface of each Gaussian process regression iteration. After each GPR iteration,
final convergence of the path is checked by energy and force evaluations, which are then added to the training data for the following GPR iteration. After three
iterations (and a total of 24 energy and force evaluations), final convergence is confirmed as the magnitude of the NEB force is below the threshold 0.01, both
for the climbing image and the other intermediate images.

path, and these observations are then added to the training
data to improve the GP model on the following round. As can
be seen from Fig. 1, a fairly accurate approximation of the
Müller-Brown energy surface is obtained already after three
GPR iterations of the AIE algorithm. This corresponds to 18
energy and force evaluations since the path is represented by
six movable images in this case. A simplified flowchart of the
algorithm is presented in Fig. 2.

The final convergence of the climbing image nudged elas-
tic band is defined by the magnitude of the NEB force (includ-
ing the spring force parallel to the path tangent) at each image
calculated using the energy and force of the true energy sur-
face. Two separate final convergence thresholds are used: TMEP

for the maximum NEB force magnitude maxi |FNEB(i)| among
the intermediate images i and a tighter TCI for the NEB force
magnitude |FNEB(iCI)| of the climbing image iCI.

To ensure that the incomplete relaxation of the path on
the approximate energy surface does not disturb final con-
vergence, the convergence threshold TGP

MEP for the maximum
approximate NEB force magnitude maxi |FGP

NEB(i)| during the
relaxation phase is defined as 1/10 of the tighter final thresh-
old TCI. To decrease the amount of inner iterations during the
relaxation phase, there is an alternative option for TGP

MEP to
be defined as 1/10 of the smallest true NEB force magnitude
obtained so far on any of the intermediate images (but not

less than TCI/10). If the approximation error is assumed not
to decrease more than that during one GPR iteration, there is
no need for a tighter convergence on the approximated surface
and thus the relaxation phase can be sped up by using a larger
tolerance. The divisor 10 can also be replaced by some other
suitable number.

To make it more certain that the path converges to the same
MEP as the one obtained by the regular CI-NEB method, each
relaxation phase on the approximate energy surface is started
from the same initial path. The relaxation is first conducted
without climbing image mode until a preliminary convergence
threshold TGP

CIon is reached and then continued from the prelim-
inary evenly spaced path with climbing image mode turned on.
Starting each relaxation phase from the initial path may pos-
sibly improve the stability of the algorithm, but there is also
an alternative option which may decrease the number of inner
iterations. In this alternative scheme, each relaxation phase
would be started from the latest evenly spaced path converged
to TGP

CIon, and the climbing image phase would be started from
the latest converged CI-NEB path if the climbing image of
that path has the highest energy also on the current approx-
imate energy surface. If, instead, the index of the highest
energy image has changed, the climbing image phase would be
started normally from the preliminarily relaxed evenly spaced
path.

FIG. 2. A flowchart of the all-images-
evaluated algorithm, where energy and
atomic forces are evaluated at all inter-
mediate images of the climbing image
nudged elastic band relaxed on the GP-
approximated energy surface.



152720-7 Koistinen et al. J. Chem. Phys. 147, 152720 (2017)

In the early phases of the algorithm, when little infor-
mation is available about the energy surface, there is a greater
possibility that the path wanders far away from the initial path.
To prevent this behavior, it is good to have some early stop-
ping rule for the movement of the path. Thus, if the distance
from any current image to the nearest observed data point
becomes larger than rmax, then the last inner step is rejected
and the relaxation phase stopped. In the heptamer island bench-
mark described later in Sec. V, rmax is defined as half of the
length of the initial path (sum of the distances between adja-
cent images), but other definitions, e.g., based on the length
scale of the GP model, are also possible.

When the final goal is to estimate the transition rates using
harmonic transition state theory, the Hessian matrices at the
initial and final state minima will need to be calculated. The
Hessian is usually calculated with a finite difference method,
where energy and force evaluations are made in the neighbor-
hood of the minima. If these calculations, which anyway are
needed for the Hessian, are evaluated already in the beginning
of the MEP calculation, the calculated values can be added to
the initial data set for the GPR calculations to provide informa-
tion about the shape of the energy surface around the endpoints
of the path and improve especially the early phase of the algo-
rithm. To test the effect of the Hessian input in the heptamer
island benchmark, a finite difference displacement of 10☞3 Å
is made in the positive direction along each of the atom coor-
dinates, and the values of the energy and force at these points
are included as input in the GPR calculation.

Since the GPR calculations using gradient observations
require an inversion of an (1 + D)N × (1 + D)N matrix, the
computational effort scales as O(((1 + D)N)3), where N is
the number of observation points and D is the number of
degrees of freedom (here coordinates of movable atoms). As
usual, the matrix inversion is computed by forming a Cholesky
decomposition and solving a linear system of equations. Since
the model stays the same during the relaxation phase on the
approximate energy surface, the matrix inversion needs to be
computed only once for each GPR iteration and the complex-
ity of one inner iteration on the approximate energy surface is
O((1 + D)N).

B. One-image-evaluated (OIE) algorithm

Input: A GP model, energy (and zero force) at the two
minima on the energy surface, coordinates of the N im images
on the initial path, a final convergence threshold TMEP for the
minimum energy path, an additional final convergence thresh-
old TCI for the climbing image iCI, a preliminary convergence
threshold TGP

CIon for turning climbing image mode on during the
relaxation phase, a maximum displacement rmax of any image
from the nearest observed data point.

Output: A minimum energy path represented by N im

images, one of which has climbed to the highest saddle
point.

1. Optimize the hyperparameters of the GP model based on
the initial data.

2. Start from the initial path and repeat the following (outer
iteration loop):

A. Calculate the GP posterior variance at the uneval-
uated images i ∈ Iu on the current path using Eq.
(2).

B. Evaluate the true energy and force at the image
with highest posterior variance and add them to the
training data.

C. Calculate the accurate NEB force vector FNEB(i) for
the evaluated images i ∈ Ie.

D. If all images on the current path have been evaluated,
maxi |FNEB(i)| < TMEP and |FNEB(iCI)| < TCI, then
stop the algorithm (final convergence reached).

E. Reoptimize the GP hyperparameters, calculate the
GP posterior mean energy and gradient at the uneval-
uated images i ∈ Iu using Eqs. (1) and (3), and save
the matrix inversion for further use.

F. Calculate the approximate NEB force vector FGP
NEB(i)

for the unevaluated images i ∈ Iu using the GP
posterior mean gradient and set FGP

NEB(i) = FNEB(i)
for the evaluated images i ∈ Ie.

G. If maxi |FGP
NEB(i)| < TMEP:

I. If iCI ∈ Iu, then evaluate the energy and force at the
climbing image iCI, add them to the training data,
and go to C.

II. If iCI ∈ Ie and |FNEB(iCI)| < TCI, then go to A.
III. If iCI ∈ Ie and |FNEB(iCI)| ≥ TCI, then execute the

relaxation phase (H), evaluate the energy and force
at the climbing image, add them to the training data,
and go to C.

H. Relaxation phase: Start from the initial path, set
climbing image mode off, and repeat the following
(inner iteration loop):

I. Calculate the GP posterior mean energy and gradi-
ent at the intermediate images using Eqs. (1) and
(3).

II. Calculate the approximate NEB force vector
FGP

NEB(i) for each intermediate image using the GP
posterior mean gradient.

III. If climbing image mode is off and maxi |FGP
NEB(i)|

< TGP
CIon, then turn climbing image mode on and

recalculate the approximate NEB force vectors.
IV. If climbing image mode is on and maxi |FGP

NEB(i)|
< TGP

MEP =
1

10 TCI, then stop the relaxation phase
(H).

V. Move the intermediate images along the approx-
imate NEB force vector FGP

NEB(i) with a step size
defined by the projected velocity Verlet algorithm.

VI. If the distance from any current image i to the near-
est observed data point is larger than rmax, then
reject the last inner step, evaluate image i, and go
to C.

A pseudocode for the OIE algorithm is presented above.
Figure 3 shows an illustration of the progression of the algo-
rithm on the Müller-Brown energy surface. Both the GP
approximation to the energy surface and the estimated uncer-
tainty after one, two, three, and eleven GPR iterations are
shown. The energy (and the zero gradient of the energy) at the
initial and final state minima is assumed to be given as
input.
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FIG. 3. An illustration of the iterative construction of an approximate energy surface to the two-dimensional Müller-Brown energy surface (shown in Fig. 1) in
the vicinity of the minimum energy path using the one-image-evaluated algorithm where the energy and atomic forces are evaluated only at one image of the
nudged elastic band. The initial path is a straight line interpolation between the initial and final state minima. Upper panel: The red + signs show the points at
which the energy and atomic forces have been evaluated. The yellow disks show the climbing image nudged elastic band relaxed on the approximate energy
surface of each Gaussian process regression iteration. After GPR iterations 1, 2, and 3, the energy and force are calculated at the image where the estimated
uncertainty is largest and the observed data are then added to the training data set for the following GPR iteration. Lower panel: The estimated uncertainty
(standard deviation) of the energy approximation shown directly above. After eleven iterations, the path is not displaced further but the final convergence is
checked by evaluating the energy and force at each intermediate image one by one. After 17 evaluations, final convergence is confirmed as the magnitude of the
NEB force is below the threshold 0.01 both for the climbing image and the other intermediate images.

The algorithm is started by evaluating the true energy and
force at the image located in the middle of the initial path
where the uncertainty of the initial GP model is largest. The
GP model is then updated based on the obtained information,
and the path is relaxed on the approximate energy surface (GPR
iteration 1). After each relaxation phase, the true energy and
force are evaluated at only one image of the relaxed path before
updating the GP model. According to the main rule, the image
with the highest uncertainty estimate is selected for evalua-
tion, and the information obtained is then used to improve
the GP model on the following round. As can be seen from
Fig. 3, a fairly accurate approximation of the Müller-Brown
energy surface is obtained already after eleven GPR iterations
of the OIE algorithm. This corresponds to only eleven energy
and force evaluations, quite a bit fewer than the 18 included
in the three GPR iterations of the AIE algorithm shown in
Fig. 1.

The details of the OIE algorithm are otherwise similar
to the AIE algorithm, but since only one image is evaluated
between the GPR iterations, relaxing the path between each
evaluation would mean that the accurate NEB force is only
known for one image at a time. Thus, it would not be known for
sure whether the path has converged on a true MEP. Approxi-
mations for the NEB forces can of course be calculated at the
unevaluated images based on the updated GP model, but since
the NEB forces have been relaxed to zero based on the previous

GP approximation and since the largest changes to the approx-
imation usually emerge near the new observation point, it is
most likely that these approximations underestimate the NEB
force magnitudes. The approximated NEB forces, however,
together with the accurate ones, at least indicate if there is a
possibility that the path may have converged. The general idea
for the convergence check of the OIE algorithm is that when
the maximum magnitude of both the accurate and approxi-
mated NEB forces is below the final convergence threshold
TMEP, more images are evaluated without moving the path
until some of the magnitudes rise above the threshold or all
images have been evaluated. Since the images with the high-
est uncertainty, which are the most likely ones to violate the
convergence criterion, are evaluated first, it is likely that the
convergence check will be interrupted early if the path has not
yet truly converged.

The special role of the climbing image makes the evalu-
ation rules a bit more complicated. Since the climbing image
has a tighter convergence threshold and since the position of
the climbing image also affects the distribution of the other
images, it is desirable to favor evaluations of the climbing
image during the convergence check. As long as the maxi-
mum magnitude of the accurate and approximated NEB forces
is above TMEP, the GP relaxation phase is executed nor-
mally and the image with the highest uncertainty is evaluated.
After the maximum magnitude has reduced below TMEP, the
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FIG. 4. A flowchart of the one-image-
evaluated algorithm, where the energy
and atomic forces are evaluated at only
one image before a new Gaussian pro-
cess regression iteration.

climbing image is evaluated without moving the path (if
not already evaluated). As long as the maximum NEB force
magnitude stays below TMEP but the NEB force magnitude
|FNEB(iCI)| on the climbing image is above TCI, the path is
relaxed and the climbing image is re-evaluated. Finally, if the
maximum magnitude of the accurate and approximated NEB
forces is below TMEP, the climbing image has been evaluated
and |FNEB(iCI)| < TCI, then more images are evaluated with-
out moving the path, starting from the image with the highest
uncertainty.

Another exception to the selection of the image to be eval-
uated is caused by the early stopping rule during the relaxation
phase. If the distance from any current image i to the nearest
observed data point becomes larger than rmax, then the last
inner step is rejected, the relaxation phase stopped, and image
i evaluated next. A simplified flowchart of the OIE algorithm
is presented in Fig. 4.

V. APPLICATION TO THE HEPTAMER
ISLAND BENCHMARK

A test problem that has been used in several studies of
algorithms for finding MEPs and saddle points involves an
island of seven atoms on the (111) surface of a face-centered

cubic (FCC) crystal.34,35 The interaction between the atoms is
described with a simple Morse potential to make the imple-
mentation of the benchmark easy. The initial, saddle point
and final configurations of the atoms for the 13 lowest acti-
vation energy transitions, labeled from A to M, are shown in
Fig. 5. In the initial state, the seven atoms sit at FCC surface
sites and form a compact island. In transitions A and B, the
whole island shifts to HCP sites on the surface. In some of the
other transitions, a pair of edge atoms slides to adjacent FCC
sites, an atom half way dissociates from the island, or a pair
of edge atoms moves in such a way that one of the atoms is
displaced away from the island while the other atom takes its
place.

The calculations were carried out using five intermediate
images (N im = 7) in the CI-NEB calculations starting with an
IDPP path, and the images were moved iteratively to an MEP
using the projected velocity Verlet algorithm14 with a time step
of 0.1 fs. A time step of 1 fs is too large and leads to overshoot-
ing, but a time step of 0.01 fs requires a significantly larger
number of iterations. The algorithms were continued until the
magnitude of the true NEB force acting on the climbing image
had dropped below TCI = 0.01 eV/Å. A larger tolerance, TMEP

= 0.3 eV/Å, was used for the magnitude of the NEB force
acting on the other images in the CI-NEB calculation. During
each relaxation phase on the GP-approximated surface, the
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FIG. 5. An illustration of the atomic transitions of the heptamer island bench-
mark problem. The initial configuration involves a seven-atom island (dark
blue disks in the uppermost left column) adsorbed at FCC sites of an FCC(111)
surface. Saddle point configuration (light blue disks) and final configura-
tion (purple disks) are shown together for each of the transitions, labeled
A–M.

preliminary convergence threshold TGP
CIon for turning climbing

image mode on was 1 eV/Å. The GPR calculations were car-
ried out using the GPstuff toolbox.36 The fixed parameters of
the GP model were chosen to be σ2

= 10−8 eV2 and σ2
c = 100

eV2. A common length scale ld = l was used for all dimen-
sions d = 1, . . . , D, and a zero mean Student’s t-distribution
(restricted to positive values) with 1 Å2 scale and four degrees
of freedom was used as a prior distribution for l and a log-
uniform distribution for σ2

m (i.e., the default priors of GPstuff)
in the optimization of the hyperparameters. The prior distri-
butions stabilize the point estimates of the hyperparameters
especially in the beginning, when there is little data available.
The optimization was performed using the scaled conjugate
gradient algorithm.37

By using input from the Hessian at the initial and final
state minima, the path relaxed on the GP-approximated energy
surface can become qualitatively similar to the true MEP with
fewer GPR iterations. This is illustrated for transition I in
Fig. 6. It shows the true energy evaluated at the location of
the images of the initial path, the converged MEP, and the
path after one GPR iteration in the AIE algorithm with and

FIG. 6. An illustration of the improvement that can be obtained by using the
Hessian at the initial and final state minima. The calculations are for transition
I when the substrate atoms are frozen. The green and orange points show the
true energy evaluated at the location of images of a climbing image nudged
elastic band relaxed on the first approximate energy surface of the all-images-
evaluated algorithm, i.e., at this point, the energy and force had been evaluated
at all the images of the initial path. The path obtained when the Hessian is not
used (orange) is far from the converged minimum energy path (red), quite a bit
farther away than the initial path (blue), and the climbing image has moved to
the final state minimum. The path obtained when the Hessian is used (green),
however, represents a clear improvement to the initial path, having moved
significantly closer to the converged MEP. Eventually, the path converges
after 14 Gaussian process regression iterations (a total of 75 energy and force
evaluations required to confirm final convergence) when the Hessian is used,
and after 17 GPR iterations when it is not used.

without input from the Hessian. The estimate without the Hes-
sian input is quite poor at this point, the path reaching an area
of high energy and the climbing image moving to the final state
minimum.

The reason for this behavior can be seen from Fig. 7, where
the GP-approximated energy at the location of the images
after one GPR iteration (five energy and force evaluations) is
shown. The maximum of the approximated energy along the
path is indeed at the final state of the path. However, with the
input from the Hessian, a qualitatively correct path is obtained
already after one GPR iteration. In this case, the information
coming from the Hessian about the curvature at the endpoints
ensures that the GP-approximated surface has minima at those
points. Without the Hessian input, the three subsequent GPR
iterations still show qualitatively wrong variation of the energy
along the path, and it is only after the fifth iteration that enough
input has been obtained for the GP model to be reasonably
accurate to produce a path qualitatively similar to the true
MEP.

The overall reduction in the number of energy and force
evaluations corresponds essentially to the first three GPR itera-
tions that can be skipped when the Hessian is provided. It takes
17 GPR iterations without and 14 iterations with the Hessian
input to reach convergence in this case. The energy and force
evaluations needed to construct the Hessian are not counted
in the cost of finding the MEP since they need to be carried
out anyway if the transition rate is estimated using harmonic
transition state theory. While the reduction in the number of
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FIG. 7. Comparison of the performance of the all-images-evaluated algo-
rithm with and without input from the Hessian at the initial state minima.
The markers show the GP-approximated energy at the images of the climb-
ing image nudged elastic band relaxed on the approximate energy surface
after one to seven Gaussian process regression iterations (5 to 35 energy and
force evaluations, blue) and after final convergence (red) for transition I when
the substrate atoms are frozen. Without the Hessian input (upper graph), the
approximate energy surface after one GPR iteration does not have an interme-
diate barrier and the climbing image moves to the final state minimum. The true
energy evaluated at each image along this path is shown in Fig. 6 and shows a
large energy barrier. It takes six GPR iterations (30 energy and force evalua-
tions) before the path relaxed on the approximated surface starts to look quali-
tatively similar to the converged minimum energy path. With the Hessian input
(lower graph), the energy along the path relaxed on the approximate energy
surface is qualitatively similar to that of the converged MEP already after one
iteration.

energy and force evaluations (here 15) corresponds to savings
of about 20%, the importance of the Hessian input can be
greater in more challenging systems when avoiding explo-
ration of regions far away from the MEP where the atomic
forces tend to be large.

Even larger savings are obtained by using the uncertainty
estimate provided by the GP model to evaluate the energy and
force only at the image where the true energy is the most poorly
known instead of all images, i.e., to move to the OIE from the
AIE algorithm. This is illustrated for transition F in Fig. 8,
where the GP-approximated energy at the CI-NEB images is
shown after a certain number of energy and force evaluations
for the AIE and OIE algorithms. In the AIE case, the path
is still qualitatively incorrect after 20 evaluations (four GPR
iterations), while this suffices for the OIE algorithm (20 GPR
iterations) to nearly reach convergence. For the AIE algorithm,
it takes a total of 75 energy and force evaluations to confirm
final convergence, while the OIE algorithm requires 39. Sim-
ilar reduction in the number of energy and force evaluations
was found for the other transitions.

The number of energy and force evaluations required
to confirm final convergence for each of the 13 transitions
using the AIE and OIE algorithms is given in Table I as a

FIG. 8. Comparison of the performance of the all-images-evaluated (AIE)
and the one-image-evaluated (OIE) algorithms (Hessian input used) for tran-
sition F when the substrate atoms are frozen. The markers show the GP-
approximated energy at the images of the climbing image nudged elastic band
relaxed on the approximate energy surface after 5, 10, 15, and 20 energy and
force evaluations (blue) and after final convergence (red). With the AIE algo-
rithm (upper figure), the variation of the energy is significantly different for
the path on the approximate surface compared with the true minimum energy
path even after 20 evaluations (four Gaussian process regression iterations).
With the OIE algorithm (lower figure), the variation of the energy along the
path on the approximate surface is close to that of the converged MEP after
20 evaluations (corresponding to 20 GPR iterations in this case).

fraction of the number of evaluations required by a regular
CI-NEB method. Also, the effect of using the Hessian input
for the AIE algorithm is shown. These numbers correspond
to the case where six nearest substrate atoms can move in
addition to the seven island atoms. The relative number of
evaluations compared to the regular CI-NEB varies between
the transitions. A clear trend is that the more complex the
transition and the more the iterations required by the reg-
ular CI-NEB, the larger is the relative effect of the GPR
approach.

The average number of energy and force evaluations for
transitions C–M as a function of the number of degrees of free-
dom is shown in Fig. 9.38 For the smallest number of degrees
of freedom, 21, only the seven island atoms are allowed to
move while all the substrate atoms are frozen. For the larger
numbers of degrees of freedom, some of the surface atoms are
also allowed to move. Starting with the AIE algorithm, the
use of the Hessian input reduces the number of evaluations by
about 20%, but the transition to the OIE algorithm has an even
larger effect, a reduction to a half.

The OIE results represent savings of an order of magnitude
with respect to the regular CI-NEB calculation. The number
of energy and force evaluations reported here for the CI-NEB
method is similar to what has been reported earlier for this test
problem.34,35 It is possible to use a more efficient minimization
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TABLE I. The number of energy and force evaluations needed to converge
the regular climbing image nudged elastic band (CI-NEB) calculations of the
heptamer island benchmark transitions (shown in Fig. 5) when 39 degrees of
freedom are included, and the reduction in the number of evaluations obtained
with the Gaussian process regression approach using the all-images-evaluated
algorithm without the Hessian input (AIE), all-images-evaluated algorithm
with the Hessian input (AIE-H), and one-image-evaluated algorithm without
the Hessian input (OIE).

Number of Number of evaluations as a fraction
evaluations of evaluations needed for CI-NEB

Transition CI-NEB AIE AIE-H OIE

A 120 0.42 0.42 0.13

B 120 0.42 0.42 0.23

C 285 0.25 0.21 0.13

D 265 0.26 0.23 0.14

E 290 0.24 0.19 0.13

F 855 0.12 0.12 0.05

G 840 0.13 0.11 0.05

H 1480 0.08 0.07 0.04

I 1480 0.07 0.07 0.04

J 605 0.15 0.12 0.07

K 610 0.14 0.12 0.07

L 565 0.17 0.12 0.06

M 570 0.17 0.11 0.06

scheme to relax the images in CI-NEB calculations,28 but the
difference is not so large. The test results presented here, there-
fore, show that the use of GPR can significantly reduce the
computational effort in, for example, calculations of MEPs
for surface processes.

FIG. 9. Average number of energy and force evaluations needed to converge
to a minimum energy path in climbing image nudged elastic band calculations
of the heptamer island benchmark as a function of the number of degrees of
freedom, increased by allowing a larger number of substrate atoms to move.
The lower figure shows the same results as the upper figure on a different scale
to better distinguish between the various implementations of the Gaussian
process regression approach. For the larger numbers of degrees of freedom,
the one-image-evaluated (OIE) algorithm provides about 1/20 reduction in the
number of energy and force evaluations as compared with a regular CI-NEB
calculation. The all-images-evaluated (AIE) algorithm requires about twice
as many evaluations as the OIE algorithm, but the use of the Hessian at the
initial and final state minima can reduce that by about 20%. The use of the
Hessian has less effect when the OIE algorithm is used (not shown).

VI. DISCUSSION

The results presented here show that the GPR approach
can reduce the number of energy and force evaluations needed
in CI-NEB calculations of MEPs by an order of magnitude.
This is important since a large amount of computer time is
used in such calculations, especially when ab initio or den-
sity functional theory calculations are used. Compared with
the previous proof-of-principle calculations,21 three major
improvements to the algorithm have been presented here. First
of all, the CI-NEB algorithm was used where one of the images
is pushed up to the maximum along the MEP. This provides
stability and accelerates convergence because it focuses more
evaluations of the energy and force in the vicinity of the
first-order saddle point, the most important part of the energy
surface.

Second, the benefit of using the finite difference estimate
of the Hessian at the endpoints was demonstrated and found
to result in a 20% reduction in the number of energy and func-
tion evaluations needed to converge on an MEP with the AIE
algorithm. This estimation of the Hessian does not represent
any additional energy and force evaluations in cases where the
goal is to calculate the transition rates using harmonic tran-
sition state theory. The usual ordering of the calculations is
simply changed; the Hessian at the endpoint minima is eval-
uated before the MEP calculation rather than afterwards. If a
higher level of rate theory, such as optimal hyperplanar tran-
sition state theory,6 is used, then analogous information about
the initial and final states can be obtained from dynamical
trajectories.

While the Hessian input reduced the number of energy
and function evaluations only by 20%, a significant advan-
tage is likely in greater stability and lower probability of the
path escaping into irrelevant regions of the energy surface in
the first few GPR iterations. This we have seen in preliminary
studies of dissociative adsorption of H2 on a metal surface and
water molecule diffusion on an ice Ih(0001) surface.39 The
addition of the finite difference data points for the Hessian
adds significantly to the memory requirements of the GPR cal-
culation. Those data points could, however, be dropped after
just a few GPR iterations since they are not needed when the
GP approximation of the energy surface becomes reasonably
accurate around the MEP. A more elegant and efficient way
of incorporating the information from the Hessian into the
covariance calculation could also be developed. The imple-
mentation described here represents just an initial test to see
how important such information can be.

As a third improvement, a significant reduction in the
computational effort was shown to be possible by using
the one-image-evaluated algorithm instead of the earlier all-
images-evaluated approach. The number of energy and force
evaluations was reduced to a half in the heptamer benchmark.
In the OIE algorithm, the true energy and force are evalu-
ated only at one image, rather than all images along the path,
before a new GPR iteration. A calculated choice of the location
of each evaluation can be made based on the uncertainty esti-
mate provided by the GP model. Interestingly, the use of the
Hessian did not provide significant reduction in the number of
energy and force evaluations required by the OIE algorithm.
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This apparently stems from the fact that the OIE algorithm
involves fewer evaluations in the early phase of the iterative
GPR process where the approximation to the energy surface
is poor.

The heptamer island benchmark studied here is a rela-
tively simple example, and it will be important to test the GPR
approach on more complex systems to be able to fully assess
its utility and to develop the methodology further. On complex
energy surfaces, there may exist multiple MEPs connecting
the two endpoint minima, which would require some kind of
sampling of MEPs.40 Also, some systems may have multi-
ple local minima and highly curved MEPs, which can lead to
convergence problems unless a large number of images are
included in the calculation. In systems where various types of
molecular interactions are involved, the optimal length scale
may vary depending on the location in the coordinate space.
In such cases, it may be advantageous to use a GP model
that allows different length scales in different parts of the
space.

In order to tackle large systems, the scaling of the GPR
calculations will need to be improved. A more efficient imple-
mentation could be obtained, e.g., by using a compactly sup-
ported covariance function to produce a sparse covariance
matrix where data points far away from each other become
independent.41 It may also be possible to reduce the dimen-
sionality by using partially additive models, where the inter-
action term in the energy function for far away atoms is
ignored. There is, however, a large set of important problems,
such as calculations of catalytic processes often involving
rather small molecules adsorbed on surfaces, where the com-
plexity is comparable to the heptamer island benchmark and
where the GPR approach is clearly going to offer a signifi-
cant reduction in computational effort in NEB calculations of
MEPs.

At a low enough temperature, quantum mechanical tun-
neling becomes the dominant transition mechanism, and the
task is then to find a minimal action path.9,42,43 The effect of
the GPR approach in tunneling path calculations could be even
larger than for MEP calculations since each iteration involves
more energy and force calculations (Feynman paths rather than
points in configuration space) and thereby more data for the
modeling. In addition to atomic rearrangements, it will be valu-
able to apply the GPR approach also to magnetic transitions
where the magnetic properties of the system are evaluated by
computationally intensive ab initio or density functional the-
ory calculations. The relevant degrees of freedom in magnetic
transitions are the angles defining the orientation of the mag-
netic vectors, and the task is again to find MEPs on the energy
surface with respect to those angles.11–13
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32J. Riihimäki and A. Vehtari, “Gaussian processes with monotonicity infor-
mation,” in Proceedings of Machine Learning Research, edited by Y. W. Teh
and M. Titterington (PMLR, 2010), Vol. 9, pp. 645–652.
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