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Abstract

Calculations of minimum energy paths for atomic rearrangements using the nudged elas-
tic band method can be accelerated with Gaussian process regression to reduce the number
of energy and atomic force evaluations needed for convergence. Problems can arise, however,
when configurations with large forces due to short distance between atoms are included in
the data set. Here, a significant improvement to the Gaussian process regression approach
is obtained by basing the difference measure between two atomic configurations in the co-
variance function on the inverted interatomic distances and by adding a new early stopping
criterion for the path relaxation phase. This greatly improves the performance of the method
in two applications where the original formulation does not work well: a dissociative ad-
sorption of an H2 molecule on a Cu(110) surface and a diffusion hop of an H2O molecule
on an ice Ih(0001) surface. Also, the revised method works better in the previously ana-
lyzed benchmark application to rearrangement transitions of a heptamer island on a surface,
requiring fewer energy and force evaluations for convergence to the minimum energy path.

1 Introduction

Transitions involving rearrangements of atoms, such as chemical reactions or diffusion events,
can be studied by analyzing a potential energy surface defined in a high-dimensional space of
atom coordinates. Local minima on the energy surface represent stable states of the system, and
minimum energy paths (MEP) connecting those characterize mechanisms of possible transitions.
A maximum on an MEP corresponds to a first order saddle point on the energy surface, and
the highest maximum provides an estimate of the activation energy for the transition.

An MEP can be defined from the requirement that any point on the path is at an energy
minimum in all directions perpendicular to the path. A common way to find MEPs is the
nudged elastic band (NEB) method,1,2 where a discrete chain of atomic configurations, referred
to as images, initially located along some trial path connecting the given minima, is iteratively
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moved toward the nearest MEP. A typical NEB calculation requires on the order of a hundred
evaluations of the energy and atomic forces (corresponding to the negative gradient vector of the
energy) for each image, so the computational effort can be large, especially when it is combined
with electronic structure calculations such as quantum wave function or density functional
theory based methods. In addition, the calculation may need to be repeated if there are several
possible final states for the transition. Thus, it is important to find ways to accelerate NEB
calculations.

Peterson3 applied machine learning based on neural networks4,5 to accelerate NEB calcula-
tions by constructing an approximate energy surface for which the NEB calculations are carried
out. After relaxation of the path on the approximate energy surface, the true energy and force
are evaluated at the locations of the images of the relaxed path to see whether or not the path
has converged to an MEP on the true energy surface. If not, the results of the new energy and
force calculations are added to the training data set and the model is updated. This procedure
is repeated iteratively until the approximate energy surface is accurate enough for convergence
on the true MEP.

The GP-NEBmethod6,7 applies a similar idea but uses Gaussian process regression (GPR)8–11

to model the energy surface. As a non-parametric approach, GPR avoids difficulties related to
optimization of a large number of parameters, which may cause problems when using, e.g., neu-
ral networks. Since NEB calculations are largely based on the atomic forces, a straightforward
inclusion of derivative observations and prediction of derivatives can be seen as advantages of
GPR for this application. As a probabilistic model, GPR also provides an uncertainty estimate,
which can be used to further enhance the procedure by evaluating the energy and forces only at
images located in the most uncertain region of the approximate energy surface before relaxing
the path again.7

Sophisticated methods such as Gaussian approximation potentials12,13 have been developed
to model the entire potential energy surface of atomic systems with Gaussian process regres-
sion. The total energy is typically approximated as a sum of contributions of local atomic
environments defined by descriptors that take into account the type of atoms involved as well
as translational, rotational, and permutational invariance in the atomic configurations. Such
methods could be coupled with the GP-NEB method, but since MEP calculations concern only
a small part of the potential energy surface, it is convenient to keep the representation simple
with respect to the atom coordinates and independent of the types of atoms involved.

The GP-NEB method based on a simple squared exponential covariance function6,7 has
been shown to work well for a benchmark problem involving thirteen different rearrangement
transitions of a heptamer island on a solid surface,14,15 reducing the number of energy and
force evaluations by an order of magnitude as compared with a regular NEB calculation. A
similar approach has been successfully applied also to the diffusion of a Au atom on an Al(111)
surface and the diffusion of a Pt adatom across two terraces of a stepped platinum surface.16 In
some systems, however, strong and quickly changing repulsive forces may cause problems for a
covariance function of this sort where the characteristic length scale and magnitude are the same
throughout the configuration space. In atomic systems, it is typical that the potential energy
changes faster with respect to the atom coordinates when atoms are close to each other, and
this needs to be taken into account when improving the formulation of the covariance function,
as shown here.

In this article, we present improvements to the GP-NEB method, specifically a better differ-
ence measure between a pair of configurations in the covariance function. Instead of measuring
the distance between the two configurations in the space of atom coordinates, the measure is
based on differences in inverted interatomic distances within each of the two configurations. In
addition, a new early stopping criterion, restricting relative changes in the interatomic distances,
is introduced to prevent atoms from moving too close to each other during the NEB relaxation
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phase. The effect of the improvements is illustrated using a system where an H2 molecule dis-
sociates on a Cu(110) surface. The improved method is also applied to H2O diffusion on ice
Ih(0001) surface, another example for which the original formulation does not perform well. In
addition, we show that the new features improve the performance of the GP-NEB method also
in the previously analyzed7 heptamer island benchmark.

2 Methods

In this section, we first briefly review the nudged elastic band method for completeness. In the
second subsection, we describe how Gaussian process regression is used to model energy surfaces
in the GP-NEB method and define an improved difference measure for the covariance function.
Finally, the GP-NEB method is reviewed and a new early stopping criterion introduced in the
third subsection.

2.1 Nudged elastic band method

The nudged elastic band method is an iterative algorithm for finding a minimum energy path
connecting two given local minima on a potential energy surface.1,2 The system can consist of
atoms that move from one location to another in the transition as well as atoms that remain
fixed at the same position. The number of moving atoms is denoted by Nm. An MEP is
correspondingly a continuous path in a 3Nm-dimensional coordinate space. In the NEB method,
the path is represented as a discrete chain of points, and each point is referred to as an image of
the system. Starting from some initial path connecting the two minima, the basic idea is to move
the images downhill on the energy surface to converge on the MEP and at the same time control
the distribution of the images along the path. For the selection of the initial path, the simplest
option is to use a straight line interpolation between the minima, but better alternatives are
the so-called image dependent pair potential (IDPP) method,17 which interpolates as closely as
possible the distances between neighboring atoms, or the geodesic approach recently introduced
by Zhu et al.18

During one iteration, a so-called NEB force vector is calculated for each intermediate image,
and the images are then simultaneously moved in directions based on those vectors. The NEB
force is a resultant of two components. The first one is perpendicular to the path and moves the
chain toward the adjacent MEP. It is given by the negative energy gradient after removing the
component parallel to the tangent of the path at each image. The other component is added to
control the distribution of the images along the path, an artificial spring force acting only in the
direction of the path tangent. When the spring constant is chosen to be the same for all pairs
of adjacent images, an even spacing of the images along the path is obtained. Since the path is
represented in a discretized way, the path tangent at an image needs to be estimated based on
the locations of the neighboring images. A well-behaved estimate is obtained by defining the
tangent to be parallel with the line segment connecting the current image to the neighboring
image of higher energy or, if both of the neighbors are either higher or lower in energy than the
current image, using a weighted average of the two line segments.19 The algorithm has reached
convergence when the magnitude of the NEB force on each image is below a given threshold,
TMEP.

Since the ultimate goal is to find the point of highest energy along the MEP, it is useful
to make one of the images of the discrete chain converge to this maximum point. This can
be accomplished with the climbing image nudged elastic band (CI-NEB) method,20 where the
highest energy image is treated differently. Whereas the component of the negative gradient
parallel to the path tangent is normally removed from the NEB force, it is instead included and
reversed for the climbing image, so as to point in the direction of increased energy along the path.
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The spring force is not applied to the climbing image. In order to keep the intervals reasonably
similar on both sides of the climbing image, the regular NEB method can be conducted first
(using some preliminary convergence threshold) so that the image selected as the climbing image
is not too far from its final location. The rest of the MEP is mainly needed to ensure that the
highest saddle point has been identified and to provide an estimate for the path tangent at the
climbing image. It is, therefore, practical to apply a tighter convergence threshold TCI (< TMEP)
to the climbing image.

In the GP-NEB calculations presented here, the iterative optimization of the locations of
the images is performed using the velocity projection optimization algorithm.2 It is based on
the velocity Verlet algorithm,21 but the velocity vector is projected on the direction of the NEB
force vector to allow the images to accelerate in that direction. If the projected velocity and
the NEB force point in opposite directions, as judged by the inner product, the velocity is set
to zero. In the regular NEB calculations, which are compared to the GP-NEB results, also a
global L-BFGS optimizer22,23 implemented in the EON software package24 is tested, and the
more efficient one of the two optimizers is used in the reference method. The spring constant for
the NEB force and the time step for the velocity projection optimization algorithm are chosen
so that they work best for the regular NEB method.

2.2 Gaussian process regression

A Gaussian process (GP) is a flexible probabilistic model for functions in a continuous do-
main.8–11 It is defined by a mean function m(x), which controls the global mean level of the
process (often set to zero), and a covariance function k(x,x′), which defines how the function
values f(x) and f(x′) at any two input points depend on each other:

Cov
[

f(x), f(x′)
]

= k(x,x′). (1)

If the covariance is large, the function values are likely to be similar, and with zero covariance
they are considered independent. The joint probability distribution of the function values
f = [f(x(1)), f(x(2)), . . . , f(x(N))]T at any finite set of input points X = [x(1),x(2), . . . ,x(N)]T is
a multivariate Gaussian distribution p(f) = N (m,K(X,X)), where m = [m(x(1)),m(x(2)), . . . ,
m(x(N))]T and the notation K(X,X′) represents a covariance matrix

K(X,X′) =













k(x(1),x′(1)) k(x(1),x′(2)) · · · k(x(1),x′(N))

k(x(2),x′(1)) k(x(2),x′(2)) · · · k(x(2),x′(N))
...

...
. . .

...

k(x(N),x′(1)) k(x(N),x′(2)) · · · k(x(N),x′(N))













.

Thus, a GP can be seen as an infinite-dimensional generalization of the multivariate Gaussian
distribution, serving as a prior probability distribution for the unknown function f . After
evaluating the function at some training data points, the probability model is updated and a
posterior probability distribution can be calculated for the function value at any point.

In the present application, f represents the energy of the system and

x = [x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xNm,1, xNm,2, xNm,3]
T

is a 3Nm-dimensional configuration vector including the Cartesian coordinates for moving atoms
1, 2, . . . , Nm ∈ Am. Given a training data set including both the energy and its gradient for
certain configurations, the mean of the posterior process of f provides an approximate energy
surface, which is here referred to as the GP approximation.
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2.2.1 Covariance function and difference measures

Through selection of the covariance function, prior assumptions about the properties of function
f can be encoded into the GP model. In the original formulation of the GP-NEB method,6,7 a
common choice to favor smooth functions was made by using the squared exponential covariance
function

kx(x,x
′) = σ2c + σ2m exp

(

−
1

2
D2
x(x,x

′)

)

, (2)

where the difference measure

Dx(x,x
′) =

√

√

√

√

Nm
∑

i=1

3
∑

d=1

(xi,d − x′i,d)
2

l2
(3)

is a regular Euclidean distance between configuration vectors x and x′ in the 3Nm-dimensional
space of the atom coordinates. The hyperparameters θx = {l, σm} control the length scale and
magnitude of the covariance function, respectively, and σ2c is an additional constant term with
a similar effect as integration over an unknown constant intercept term having a Gaussian prior
distribution with variance σ2c .

This type of covariance function is referred to as being stationary in that the characteristic
length scale and magnitude of the model stay the same throughout the coordinate space. As
will be demonstrated in the Results section, this can be problematic when representing the
energy of atomic configurations, because the energy tends to change faster with respect to the
atom coordinates when atoms are close to each other (see, e.g., the energy curve in Figure 1).

One way to make a stationary covariance function more tolerant toward this kind of non-
stationary effects is to loosen its smoothness assumptions. The squared exponential covariance
function produces infinite times differentiable sample functions, which means that the under-
lying energy surface is assumed to be extremely smooth. In other words, the model tends to
avoid abrupt changes not only in the energy and its gradient but also in the derivatives of all
orders. The Matérn family of covariance functions25 allows control of the smoothness properties
by including an additional hyperparameter, ν. These functions have a convenient form when
ν is a half-integer. For example a choice of ν = 3

2 leads to once differentiable sample func-
tions, which means that the gradient of the underlying function is assumed to be continuous
but abrupt changes in the second derivatives are allowed. When ν → ∞, Matérn covariance
function converges to the squared exponential covariance function.

As shown in the Supporting Information (SI), Matérn covariance functions with once (ν = 3
2)

or twice (ν = 5
2) differentiable sample functions can perform better in modeling chemical systems

than the squared exponential covariance function. A similar observation has been made recently
with ν = 5

2 in ref 26. However, neither the squared exponential nor the Matérn covariance
functions give good performance if the training data set includes configurations where the atoms
come close to each other and the force acting on the atoms is large. In order to resolve this
problem, we replace difference measure Dx(x,x

′) in the squared exponential covariance function
with a modified difference measure D1/r(x,x

′) that stretches when atoms approach each other
and thus makes the covariance function nonstationary with respect to atom coordinates.

The difference measure D1/r(x,x
′) between configurations x and x′ is defined through the

sum of squared differences in the inverted interatomic distances between all atoms in the system,
weighted by length scales specific to each atom pair type:

D1/r(x,x
′) =

√

√

√

√

√

√

√

∑

i∈Am

∑

j∈Am,j>i
∨

j∈Af

(

1
ri,j(x)

− 1
ri,j(x′)

)2

l2φ(i,j)
, (4)
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where

ri,j(x) =

√

√

√

√

3
∑

d=1

(xi,d − xj,d)2

is the distance between atoms i and j, φ(i, j) is the atom pair type for pair (i, j), and lφ(i,j) is
the length scale for that pair type. If frozen atoms are present, i.e., atoms that do not move
during the transition, then pairs of two frozen atoms can be omitted in the calculation of the
difference measure. Thus, the outer summation only includes the set of moving atoms Am. The
inner summation includes the set of frozen atoms Af and part of the moving atoms so that each
atom pair occurs only once. After a little rearrangement,

∣

∣

∣

∣

1

ri,j(x)
−

1

ri,j(x′)

∣

∣

∣

∣

=
|ri,j(x)− ri,j(x

′)|

ri,j(x)ri,j(x′)
, (5)

it is easy to see that the inversion of the interatomic distances corresponds to scaling the
difference between the interatomic distances with their product. Thus, the closer two atoms
are to each other, the larger effect a displacement of these atoms toward or away from each
other has on the difference measure. On the other hand, if two atoms are far apart, the effect
of changes in the interatomic distance becomes negligible.

In practice, some of the frozen atoms may be so far from the moving atoms that they can be
omitted from the difference measure. The evaluations of the covariance function can, therefore,
be sped up by defining an activation distance for the frozen atoms. In the applications presented
in this article, a frozen atom is activated when it is within a radius of 5 Å from any moving
atom in any configuration encountered during the GP-NEB algorithm. Once a frozen atom is
activated, it stays active from then on and is taken into account when calculating covariances.
The distances from the moving atoms to inactive frozen atoms are checked in each iteration,
and if new frozen atoms are activated, the GP model is updated.

Replacing difference measure Dx(x,x
′) with D1/r(x,x

′) in the squared exponential covari-
ance function leads to the following form:

k1/r(x,x
′) = σ2c + σ2m exp













−
1

2

∑

i∈Am

∑

j∈Am,j>i
∨

j∈Af

(

1
ri,j(x)

− 1
ri,j(x′)

)2

l2φ(i,j)













. (6)

Since k1/r corresponds to a regular squared exponential covariance function in the space of
inverse interatomic distances which are obtained as functions of the original coordinates, it is
a valid covariance function in the original coordinate space. With this covariance function, the
GP-NEB method works well also for systems where strong chemical bonding is involved, as
discussed in the Results section. Dealing with atomic forces and efficient optimization of the
hyperparameter values θ1/r = {l1, l2, ..., lNφ

, σm}, where Nφ is the number of active atom pair
types, require differentiation of the covariance function with respect to the atom coordinates
and the hyperparameters. Expressions for the required partial derivatives for both kx and k1/r
are given in the Appendix.

2.2.2 Regression

Consider a regression problem y = f(x) + ǫ, where ǫ is a Gaussian noise term with variance
σ2, and a training data set {X,y}, where y = [y(1), y(2), . . . , y(N)]T includes noisy output
observations from N input points X. When modeling function f as a Gaussian process with a
prior mean function m(x) = 0 and a prior covariance function k(x,x′), the posterior predictive
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distribution for the function value f(x∗) at a new point x∗, conditional on the hyperparameters
θ of the covariance function, is a Gaussian distribution with mean

E[f(x∗) |y,X,θ]= K(x∗,X)(K(X,X) +Σ)−1y (7)

and variance

Var[f(x∗) |y,X,θ]= k(x∗,x∗)−K(x∗,X)(K(X,X) +Σ)−1K(X,x∗), (8)

where Σ = σ2IN is a noise covariance matrix with IN denoting an identity matrix of size N .
The corresponding prediction for the partial derivative of f with respect to coordinate x∗i,d is
given by

E

[

∂f(x∗)

∂x∗i,d

∣

∣

∣

∣

∣

y,X,θ

]

=
∂K(x∗,X)

∂x∗i,d
(K(X,X) +Σ)−1y, (9)

where the elements of ∂K(x∗,X)/∂x∗i,d are obtained by differentiating the covariance function.
Expressions for the partial derivatives of covariance functions kx and k1/r are given in the
Appendix.

The derivatives of the covariance function are needed also for including derivative informa-
tion in Gaussian process regression.27–30 When y is extended to include partial derivatives of
f at the training data points with Gaussian noise variance σ2d, the training covariance matrix
K(X,X) is extended correspondingly to include prior covariances between the partial deriva-
tives and function values

Cov

[

∂f(x)

∂xi,d
, f(x′)

]

=
∂

∂xi,d
Cov

[

f(x), f(x′)
]

=
∂k(x,x′)

∂xi,d
(10)

and the covariances between the derivatives

Cov

[

∂f(x)

∂xi1,d1
,
∂f(x′)

∂x′i2,d2

]

=
∂2

∂xi1,d1∂x
′
i2,d2

Cov
[

f(x), f(x′)
]

=
∂2k(x,x′)

∂xi1,d1∂x
′
i2,d2

. (11)

The vector K(x∗,X), required in prediction at a new point x∗, is extended similarly to include
covariances between the function values f(x∗) at the new point and the partial derivatives at
the training data points. The extension of the noise covariance matrix Σ consists of the noise
variances of both the energy and derivative observations on the diagonal. Notice that since
the function values are in different units than the derivatives, the numerical value of σ2d is not
generally comparable to σ2.

The hyperparameter values θ can be optimized by defining a prior probability distribution
p(θ) and maximizing the marginal posterior probability density p(θ |y,X) ∝ p(θ)p(y |X,θ),
where

p(y |X,θ) = |2π(K(X,X) +Σ)|−
1

2 exp

(

−
1

2
yT(K(X,X) +Σ)−1y

)

(12)

is the marginal likelihood of θ in light of the given training data set {X,y}. To improve
robustness of the hyperparameter optimization, we use here weakly informative priors based on
the range of the training data. The prior distributions used for θ1/r are p(σm) = N (0, (∆y/3)

2)
and p(lψ) = N (0, (∆X/3)

2), where ∆y is the difference between the highest and lowest observed
energy values and ∆X is the maximum difference between the observed data points based on
difference measure D1/r(x,x

′) with unit length scales. In practice, both the objective function
and the hyperparameters are transformed to logarithmic scale for the optimization. The fixed
value of the constant term σ2c is set to the square of the mean of the observed energy values.

In the applications of the GP-NEB method presented here, both energy and gradient ob-
servations are assumed to be noiseless, but small values for the noise variances, σ2 = 10−8 eV2
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and σ2d = 10−8 eV2/Å2, are used to avoid numerical problems when inverting the training co-
variance matrix. The GPR calculations were implemented using the GPstuff toolbox,31 and the
hyperparameters of the covariance function were optimized using the scaled conjugate gradient
algorithm32 whenever the model was updated.

2.3 GP-NEB method

The GP-NEB method6,7 is an algorithm that accelerates NEB calculation by modeling the
potential energy surface as a Gaussian process, relaxing the path on the approximated surface,
and refining the model after new evaluations have been performed. There are two variations
of the method. In the simpler version, referred to as the all-images-evaluated (AIE) algorithm,
energy and atomic forces are evaluated at all intermediate images of the path after each NEB
relaxation phase. Here we focus, however, on the more efficient one-image-evaluated (OIE)
version,7 where the true energy and gradient are evaluated only for the image that is located in
the most uncertain region according to the GP model.

2.3.1 OIE algorithm

The OIE algorithm7 is started by constructing an initial GP model based on the initial data
from the two end points of the path and evaluating the energy and force at the most uncertain
intermediate image of the initial path. The selection is based on the variance of the posterior
predictive distribution of energy at each image. The GP model is then updated based on the
obtained information, and the whole NEB path is relaxed on the revised GP approximation.
By default, each NEB relaxation phase is started from the same initial path and continued
until the maximum magnitude of the approximated NEB forces has dropped below a threshold
TGP
MEP = TCI/10, where TCI is the final convergence threshold for the accurate NEB force on

the climbing image. Other options are also possible in order to decrease the number of steps
required for the relaxation.7 The relaxation is first conducted without climbing image mode until
a preliminary convergence threshold TGP

CIon is reached and then continued from the preliminary
evenly spaced path with climbing image mode turned on.

The final convergence of the algorithm is defined similarly as in the regular NEB method,
based on final convergence thresholds TMEP and TCI for the magnitude of the accurate NEB
forces. However, since all intermediate images are relaxed after each evaluation, the accurate
NEB force can only be known for one image at a time. To enable confirmation of the final
convergence of the whole path with accurate NEB forces, the following rules are applied based on
the mixture of accurate and approximated NEB forces after each model update: If the maximum
magnitude of the accurate/approximated NEB forces is above TMEP, the NEB relaxation phase
is executed normally and the image with the highest uncertainty is evaluated. Otherwise,
the climbing image is evaluated without moving the path (if not already evaluated). If the
maximum NEB force magnitude is below TMEP but the accurate NEB force magnitude on the
climbing image above TCI, the path is relaxed and the climbing image re-evaluated. Finally,
if the maximum magnitude of the accurate/approximated NEB forces is below TMEP and the
accurate NEB force magnitude on the climbing image is below TCI, then more images are
evaluated without moving the path, starting from the image with the highest uncertainty, until
all images have been evaluated or some of the NEB forces is again above TMEP.

When the motivation for finding an MEP is to estimate the transition rates using harmonic
transition state theory, additional force evaluations in the neighborhood of the end points of
the path are usually required to estimate Hessian matrices at the two minimum points. By
performing these evaluations already before the MEP calculation, the additional data can be
included in the initial data set for the GPR calculations.7 In the applications presented in this
article, the Hessian data consist of one data point per input coordinate, including both energy
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and gradient evaluated at a location given by a displacement of 10−3 Å in the positive direction
of the coordinate axis.

2.3.2 Early stopping rules

To prevent the path from moving too far into regions with no observed data, it is good to have
an early stopping rule for the NEB relaxation phase. The stopping criterion defined in the
original formulation of the GP-NEB method7 is based on the distance to the nearest evaluated
configuration according to the regular difference measure Dx: For all images xim of the current
path, there needs to exist an evaluated configuration xeval so that

Dx(xim,xeval) < Les
x . (13)

If this condition does not hold, then the last NEB iteration is rejected, the relaxation phase is
stopped, and the image that triggered the early stopping rule is evaluated next. By default, Les

x

is set to one half of the length of the initial path.
This stopping criterion does not, however, prevent the path from moving to locations where

atoms come close together. As illustrated in the Results section and the SI, large repulsive
forces between atoms may cause problems for the GP model when using a stationary covariance
function with the regular difference measure Dx. The inverse-distance difference measure D1/r

stretches in the direction of the interatomic force when the atoms are closer to each other, which
effectively smoothens the repulsive forces with respect to the difference measure and makes the
modeling easier. However, to ensure that the new evaluations are made at sensible locations, it
is still good to restrict too large relative changes of interatomic distances in the NEB relaxation
phase by an additional early stopping criterion: For all images xim of the current path, there
needs to exist an evaluated configuration xeval so that

∀i ∈ Am ∀j ∈ Am ∪Af :
2

3
ri,j(xeval) < ri,j(xim) <

3

2
ri,j(xeval). (14)

In other words, each evaluated data point is surrounded by an allowed neighborhood with a
limit for the relative (logarithmic) changes in the interatomic distances, and the position of an
image is required to be inside some of these allowed neighborhoods.

The formulation of this early stopping criterion relies on the assumption that a reduction
of an interatomic distance to two thirds of the bond length does not lead to problems when
using a covariance function with the inverse-distance difference measure D1/r. If there exists
no evaluated data from the repulsive region with interatomic distance shorter than the bond
length, the early stopping rule keeps the path safe, and if such data exists, the shape of the GP
model should lead the path away from those regions. Besides avoiding unphysical configurations,
another function of the new early stopping rule is to generally stabilize the development of the
GP model by constraining the exploration into regions of large uncertainty. The limit in the
relative change of the interatomic distances can also be seen as a trade-off between confirming
stability of the algorithm and optimizing its efficiency with respect to the number of evaluations
required for convergence. Based on our tests, the value of 2

3 is a good general choice for all the
systems studied here, although for example 1

2 or 3
4 would be applicable as well. Even though the

inverse-distance difference measure D1/r handles well also strong repulsive forces, it is possible
that a more restrictive limit becomes beneficial in some other systems.

From the perspective of avoiding regions with large uncertainty, it could seem tempting to
base the stopping criterion on the uncertainty estimate of the GP model, which is now based
on the inverse-distance difference measure D1/r. In the beginning, however, there would be
a potential risk that a falsely large length scale of one atom pair type compared to another
would make differences in the corresponding interatomic distances negligible in the expression
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of D1/r and the uncertainties in these directions would be underestimated. Since our definition
for the early stopping criterion is independent of the length scales of the difference measure, it
would be unaffected by the false length scales and would instead help to safely correct them by
forcing evaluations to be made before moving too far in these directions. Instead of logarithmic
scale, it would still be possible to connect the lower and upper limit based on changes in the
inverse interatomic distances, which would increase the upper limit from 3

2 to 2, but we find the
logarithmic scale more intuitive if the user wants to modify the sensitivity of the stopping rule.

If the displacements of the images during a single iteration of the NEB relaxation phase
were unlimited, using the early stopping rules would involve a potential risk for a loop where
the same or almost the same configuration with high atomic force keeps throwing the path away
from the allowed region. Since the early stopping rules reject the last NEB iteration, the new
evaluation would always be made at that same location and the allowed region would not be
extended. For this reason, we set additional limitation rules for the step length of the NEB
iterations during the relaxation phase to guarantee that an evaluated image cannot move away
from the allowed region during a single NEB iteration. Notice that these limitation rules do
not stop the NEB relaxation phase but only reduce the step length of the NEB iterations when
necessary.

In respect of the new early stopping criterion (eq 14), the limitation rule for image xim is
defined as follows: An individual atom i ∈ Am cannot move more than 99% of

min
j∈Af∪Am\{i}

ri,j(xim)/6,

where the minimum is taken over all interatomic distances from that atom to any other atom
in xim. If this limit is exceeded, the whole displacement vector (including all moving atoms) is
shortened so that the displacement of atom i is at the limit. This limitation rule guarantees
that the interatomic distances cannot decrease to two thirds during a single NEB iteration.

A corresponding limitation rule to accompany the original early stopping criterion (eq 13)
is obtained by limiting the displacement vector to 99% of Les

x . If this limit is exceeded, the
displacement vector is simply shortened to the limit.

3 Results

In this section, we present results showing the success of the improved covariance function with
the new early stopping criterion in GP-NEB calculations for two systems that are challenging
for the original formulation of the GP-NEB method. The problems encountered when using a
stationary squared exponential covariance function are illustrated in context of the first applica-
tion example, where a hydrogen molecule dissociates on a Cu(110) surface. The revised method
is shown to perform well also in a more complicated system where an H2O molecule makes a
diffusion hop on an ice Ih(0001) surface. In addition, we show that the performance of the
GP-NEB method is improved also for a previously analyzed benchmark application involving
rearrangements of a heptamer island on a surface.

3.1 Application to H2 dissociation on Cu(110)

A system where a hydrogen molecule dissociates on a Cu(110) surface1 is a good example to
illustrate the benefit of replacing the regular difference measure Dx with the inverse-distance
difference measure D1/r in the covariance function when modeling the energy surface with a
Gaussian process. The copper slab representing the (110) surface consists of 216 Cu atoms in six
layers, and the potential energy function representing the “true” energy is obtained as described
in ref 1 using the embedded-atom method (EAM).33 We start by illustrating the challenges that
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Figure 1: The thick green curve shows “true” energy as a function of distance between
two hydrogen atoms. Training data for the GP models, marked with + signs, include
accurate values for both energy and its first derivative with respect to the coordinate
of the moving hydrogen atom. Left: GP approximations obtained using the stationary
squared exponential covariance function kx. The red curve shows a GP approximation
obtained with a long length scale (fixed hyperparameters: σm = 1.6 eV, l = 1 Å) and
the blue curve with optimized hyperparameters (σm ≈ 1.9 eV, l ≈ 0.084 Å). Right: GP
approximation obtained using covariance function k1/r, based on the inverse-distance
difference measure D1/r, with optimized hyperparameters.

arise when modeling a one-dimensional energy curve for a two-atom system where a hydrogen
atom approaches another hydrogen atom using the stationary squared exponential covariance
function kx, see Figure 1. The “true” energy is smoothly varying but rises sharply when the
atoms are close to each other. If the length scale l in the covariance function is too long,
the dominant data from the short distance region disturb prediction at longer distances. In
the example shown by the red curve, the GP approximation does not go through the data
points even if the assumed noise variance is set to be small. Consequently, the length scale
tends to be optimized to a small value. With a short length scale, however, the GP model has
problems in interpolating the flat region where atoms are farther away from each other, and
the predicted values between the data points approach the mean of the data. When the regular
difference measure Dx is replaced with the inverse-distance difference measure D1/r, the GP
model manages to reproduce the energy curve without problems.

From the perspective of the GP-NEB algorithm, the oscillations in the GP approximation
caused by a short length scale disturb the NEB relaxation phase since the path tends to move
toward the fallacious energy minima. If the length scale is somewhat sensible, the oscillations
should eventually disappear after additional energy and force evaluations, but the number of
required evaluations may grow large especially in high-dimensional cases. In this case, however,
data from a bit shorter distances would force the length scale to be so small that interpolation
would become practically impossible.

Figure 2 shows a two-dimensional illustration of a cut through an energy surface for a
hydrogen molecule dissociating on a Cu(110) surface. In spite of quite a dense grid of training
data points, the GP model based on the regular difference measure Dx cannot recover from the
oscillations caused by the high-gradient data on the left. And again, data points closer to the
vertical axis would force the length scale to become even shorter and make things worse. With
the inverse-distance covariance function k1/r, the high-gradient data near the vertical axis do
not cause problems for the GP model and the agreement with the “true” energy surface is again
good.
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Figure 2: A two-dimensional cut through the potential energy surface for a pair of
hydrogen atoms near a Cu(110) surface. The H–H molecular axis is parallel to the
surface and perpendicular to the atom rows on the Cu(110) surface. The horizontal axis
represents the distance between the two H atoms, and the vertical axis represents the
distance between the H atoms and the Cu(110) surface. Left: ‘True’ energy, given by an
energy surface taken from ref 1. Middle: GP approximation based on the grid of energy
and atomic force evaluations shown with + signs when using the stationary squared
exponential covariance function kx with optimized hyperparameters. Notice the short
length scale oscillations in the GP approximation. Right: GP approximation obtained
using covariance function k1/r, based on the inverse-distance difference measure D1/r,
with optimized hyperparameters. In this case the GP approximation agrees well with
the accurate energy surface.

GP-NEB calculations for finding the minimum energy path of H2 dissociative adsorption on
Cu(110) were performed with the improvements presented in the Methods section, including
covariance function k1/r based on the inverse-distance difference measure D1/r and the new
early stopping criterion restricting relative changes of interatomic distances. The initial state
represents an H2 molecule far from the Cu(110) surface, while the final state represents two H
adatoms sitting on the surface. Each NEB relaxation phase was started from an IDPP path with
eight intermediate images, and the climbing image mode was turned on when the magnitude
of the NEB force based on the GP approximation had dropped below TGP

CIon = 1 eV/Å for all
images. The GP-NEB algorithm was continued until the magnitude of the true NEB force had
dropped below TCI = 0.01 eV/Å for the climbing image and below TMEP = 0.3 eV/Å for the
other intermediate images. A spring constant of 1 eV/Å2 was used for all image intervals.

The upper panel of Figure 3 illustrates the progression of the OIE algorithm in a six-
dimensional case where only the two hydrogen atoms are free to move. Both the initial and
final state are included in the same cut of the energy surface as illustrated in Figure 2, but
the locations of the intermediate images and the training data points in Figure 3 need to be
interpreted as projections due to small rotations and translations of the H2 molecule on the
plane parallel to the Cu(110) surface. The GP approximation based on covariance function
k1/r looks surprisingly realistic already in the beginning, when the training data include only
the energy and its first derivatives at the two end points and one intermediate image and the
Hessian data at the end points. Before moving the images, however, the new early stopping
rule requires one more image of the initial path to be evaluated in order for all the images to be
within the allowed region. The NEB relaxations in the following three GPR iterations also end
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Figure 3: A two-dimensional cut through the potential energy surface for an H2

molecule dissociating on a Cu(110) surface. The H–H molecular axis is parallel to
the surface and perpendicular to the atom rows on the Cu(110) surface. The horizontal
axis represents the distance between the two H atoms, and the vertical axis represents
the distance between the H atoms and the Cu(110) surface. Upper panel: GP approx-
imations with covariance function k1/r after one, two, three, four, and thirteen GPR
iterations of the improved GP-NEB algorithm. The + signs mark projections of loca-
tions where energy and forces have been evaluated. The red line shows the border of the
region allowed by the new early stopping rule, and the white dots are projections of the
images at the end of each NEB relaxation phase. In the first four GPR iterations, the
NEB relaxation phase is terminated by the early stopping rule. A converged MEP is
obtained after thirteen GPR iterations. Lower panel: For comparison, GP approxima-
tions obtained with optimized hyperparameters for the stationary covariance function
kx are presented using the same training data sets as in the upper panel.
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Figure 4: Illustrations of GP approximations based on covariance functions kx (left)
and k1/r (right), corresponding to the rightmost graphs in Figure 3 after adding one
high-gradient training data point near the left border of the graph and reoptimizing the
hyperparameters.
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Figure 5: Number of energy and force evaluations required for convergence of CI-NEB
calculations in the H2/Cu(110) example as a function of the number of degrees of free-
dom, increased by allowing a larger number of Cu atoms to move. The performance of
the all-images-evaluated (AIE) algorithm is presented by blue triangles and the perfor-
mance of the one-image-evaluated (OIE) algorithm with green dots. The use of Hessian
data at the initial and final state minima is indicated by darker color. All the GP-NEB
results were obtained using the improved covariance function k1/r and the new stopping
criterion.
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up being terminated by the early stopping rule. Given how good the first prediction looks, the
early stopping criterion may seem unnecessarily conservative, but it ensures that the relevant
region is obtained safely with a reasonable number of energy and force evaluations, without the
risk of getting too deep into regions of large atomic forces. The converged MEP is obtained
after thirteen GPR iterations, and the convergence is then confirmed by one more evaluation
per image.

For comparison, the lower panel of Figure 3 shows what the GP approximation with the same
training data would look like if covariance function kx based on the regular difference measure
Dx is used instead of k1/r. Note that the training data here consist of configurations where the
energy surface with respect to the atom coordinates is still smooth enough to be interpolated
with a reasonable stationary length scale. However, since the stationary covariance function
extrapolates the attractive forces acting on the H atoms deep into the regions where the atoms
collide or even pass through each other, it would be difficult to keep the images away from
regions of large repulsive forces without too restrictive stopping rule. As shown in Figure 4, an
additional data point from the repulsive region would make interpolation of the training data
set more difficult and lead to a short length scale. For covariance function k1/r, instead, this
high-gradient data point would not cause problems.

Figure 5 shows the number of energy and force evaluations required for convergence of GP-
NEB calculations where the six-dimensional configuration space was extended by allowing also
the nearest Cu atoms to move. The corresponding results for the regular CI-NEB method were
obtained using the velocity projection optimizer with a time step of 0.1 fs, which performed
better than the L-BFGS optimizer in this example. The difference in the obtained saddle point
energy between GP-NEB and regular CI-NEB was not larger than 0.0001 eV in any of the
cases. Compared to the reference method, the number of evaluations is reduced by an order
of magnitude when using the OIE algorithm with the improved covariance function k1/r and
the new stopping criterion. The differences in the results between OIE and AIE algorithms
and the effect of using the Hessian data at the initial and final state minima are quite similar
to the earlier results for the heptamer benchmark obtained with the original formulation of
the GP-NEB method.7 For the reasons explained above, the original formulation based on the
stationary squared exponential covariance function kx could not be successfully applied to the
H2/Cu(110) system.

3.2 Application to H2O diffusion on ice surface

Another example of an application challenging for the original formulation of the GP-NEB
method, involving both strong intramolecular forces and weak intermolecular forces, is a dif-
fusion hop of an H2O admolecule on a (0001) surface of proton-disordered ice Ih. The slab
representing the surface is here composed of 192 constrained water molecules arranged in four
bilayers, and the energy surface is described by the TIP4P/2005f potential function,34 which is
a flexible version of TIP4P/2005.35 This potential function has previously been used to simulate
surface diffusion on various ice Ih surfaces using long-time-scale adaptive kinetic Monte Carlo
simulations, and additional information on the modeling can be found in refs 36 and 37.

CI-NEB calculations for the transition were performed using a linear initial path, a spring
constant of 10 eV/Å2, and the same convergence thresholds as in the H2/Cu(110) example
(TCI = 0.01 eV/Å, TMEP = 0.3 eV/Å, TGP

CIon = 1 eV/Å). In regular CI-NEB calculations, the
L-BFGS optimizer performed better than the velocity projection optimizer for which a time step
of 0.05 fs worked best. Figure 6 shows the minimum energy path obtained for the transition
using the revised GP-NEB method. The energy difference between the initial state and saddle
point was 0.054 eV with the regular CI-NEB method, 0.047 eV with the OIE version of the
GP-NEB algorithm and 0.045 eV with the AIE version. While the regular CI-NEB calculation
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required 1574 energy and force evaluations to reach convergence, the OIE version of the GP-
NEB method converged with 35 and the AIE version with 90 evaluations. Thus, also for this
molecular system, the GP-NEB method significantly reduces the number of evaluations.

Figure 6: Minimum energy path for a diffusion hop of an H2O admolecule on proton-
disordered ice Ih(0001) surface calculated using the improved GP-NEB method. The O
atom of the diffusing molecule is shown in red and the molecules in the surface bilayer in
grayscale. Lower bilayer molecules are not presented. Hydrogen bonds are shown with
dotted lines. The use of Gaussian process regression reduces the number of energy and
force evaluations by more than an order of magnitude.

3.3 Application to the heptamer island benchmark

In an earlier publication,7 the original formulation of the GP-NEB method based on the station-
ary covariance function kx was shown to work well for a benchmark involving rearrangements of
a heptamer island on a (111) surface of a face-centered cubic (FCC) crystal.14,15 We now show
that the improved covariance function k1/r based on the inverse-distance difference measure
D1/r gives even better performance in that the number of energy and force evaluations needed
to reach convergence is reduced further. The initial, saddle point, and final state configurations
for the thirteen transitions are shown in ref 7. In the initial state, the seven atoms sit at FCC
surface sites and form a compact island. In two of the transitions, the whole island is shifted to
hexagonal close-packed (HCP) sites on the surface. In some of the other transitions, a pair of
edge atoms slides to adjacent FCC sites, an atom half way dissociates from the island, or one
of the atoms is displaced away from the island while another one takes its place. The system is
described by 343 platinum atoms with 56 atoms in each of the six layers, and the interactions
between the atoms are described by a Morse potential.14

New GP-NEB calculations for the benchmark transitions were performed using the improved
covariance function k1/r and the new early stopping criterion with the same settings as in the
earlier tests:7 An IDPP path with five intermediate images (Nim = 7) was used as the initial
path, the spring constant was set to 1 eV/Å2 for all image intervals, and the convergence
thresholds were the same that were used also for the H2/Cu(110) and H2O applications (TCI =
0.01 eV/Å, TMEP = 0.3 eV/Å, TGP

CIon = 1 eV/Å). All platinum atoms were treated as the same
atom type, and thus a common length scale was shared by all atom pairs in the system when
calculating the inverse-distance difference measure D1/r between configurations. The number
of degrees of freedom was altered from 21 to 39 by allowing some of the nearest substrate atoms
to move with the seven island atoms. In all cases, the saddle point energy differed less than
0.0004 eV from the regular CI-NEB result.

The average number of energy and force evaluations required in the new GP-NEB calcula-
tions as a function of the number of degrees of freedom is shown in Figure 7 with thick solid
lines. The results are presented for both the OIE (green) and AIE (blue) algorithms with
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(darker color) and without (lighter color) use of the Hessian data at the initial and final state
minima. Depending on the algorithm variant, the improvements to the GP-NEB method reduce
the number of required energy and force evaluations by about 30–50% compared to the earlier
results (narrow dashed lines).
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Figure 7: Number of energy and force evaluations required for convergence of CI-NEB
calculations in the heptamer island benchmark with variants of the GP-NEB method.
The average over the thirteen different transitions is presented as a function of the
number of degrees of freedom, increased by allowing a larger number of substrate atoms
to move. The narrow dashed lines present the earlier GP-NEB results7 obtained using
the stationary squared exponential covariance function kx, and the thick solid lines
present the corresponding results when using the improved covariance function k1/r
and the new stopping criterion. The performance of the all-images-evaluated (AIE)
algorithm is presented by blue triangles and the performance of the one-image-evaluated
(OIE) algorithm by green dots. The use of Hessian data at the initial and final state
minima is indicated by darker color.

4 Discussion

The examples of application of the GP-NEB method studied here show that interpolation of the
energy surface with respect to atom coordinates may be difficult with a stationary Gaussian pro-
cess covariance function that has the same characteristic length scale throughout the coordinate
space. An improved covariance function was presented here, where the similarity between two
configurations is based on differences in inverted interatomic distances within each of the two
configurations. The closer two atoms are to each other, the larger effect a small displacement
of these atoms toward or away from each other has on the inverse-distance difference measure.
This makes the covariance function nonstationary with respect to the atom coordinates and the
energy surface easier to represent by the Gaussian process model.

The justification of the inverse-distance covariance function is based on the assumption that
the energy of the system can be presented as a smooth function of interatomic distances. In
other words, if there are two configurations with the same interatomic distances, also the energy
should be the same. Since the covariance function gives almost full correlation for the two energy
values, reduced only by the small noise variance σ2, problems may arise if the energies differ by
significantly more than σ. Therefore, if a cutoff distance is used to reduce the number of atom
pairs taken into account in the covariance function, the changes in energy outside the cutoff
distance should be kept comparable to σ. Similar problems may emerge if the energy evaluations
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involve periodic boundary conditions not taken into account when calculating the interatomic
distances for the covariance function. In a proper treatment of such systems, the contribution
of an interatomic distance should be suppressed smoothly to zero before half cell size is reached
in any direction in order to avoid discontinuities in the derivatives of the difference measure
with respect to the original coordinates.

As mentioned in the Methods section and illustrated in the SI, a stationary model becomes
to some extent more flexible if the smoothness assumptions are loosened by replacing the in-
finitely differentiable squared exponential covariance function with an appropriate member of
the Matérn family. The improved covariance function based on the inverse-distance difference
measure could similarly be made more flexible if the difference measure was fed to a Matérn
covariance function. In the examples presented in this article, however, this covariance function
worked best in the squared exponential form. This indicates that the energy was behaving
smoothly enough with respect to the inverted interatomic distances, in order to be successfully
modeled with an infinitely differentiable covariance function.

In addition to the inverse interatomic distances, it is possible to include also angles be-
tween the lines connecting the atoms when defining the similarity between configurations. This
would, however, require handling triplets of atoms, which would complicate and slow down
calculation of the covariances. In principle, the GP-NEB method can also be combined with
more complicated approximative models of local atomic environments as those used in the GAP
potentials.12,13 Our goal, however, has been to keep the model simple with respect to the atom
coordinates and general enough to be able to interpolate the surroundings of minimum energy
paths accurately without extensive tuning.

Besides modifying the covariance function, an early stopping criterion restricting relative
changes in the interatomic distances during the NEB relaxation was introduced. The purpose
of the new stopping rule is to avoid unphysical configurations that may disturb the fitting of the
GP model and also to generally stabilize the development of the model by constraining how far
the NEB images can move into unexplored regions. However, since the criterion is only based
on interatomic distances, it does not necessarily restrict joint movement of a group of atoms.
To restrict also joint movement of atoms, we considered one more early stopping criterion based
on the displacement of each atom scaled by the distance to the nearest atom. This criterion
would similarly require that there exists an evaluated data point that fulfils the condition for
all atoms. However, we did not find this addition useful in the examples presented here. Rather
than stabilizing the algorithm, it increased the number of evaluations by triggering unnecessary
energy and force evaluations.

The advantage of the GP-NEB method relies on the assumption that training of the GP
model and evaluations on the approximated energy surface can be performed in negligible time
compared to accurate energy and force evaluations. In practice, however, the cost of the GP
approximation limits the applicability of the method to systems with around a few dozen moving
atoms or less. The computational bottleneck of a standard implementation of Gaussian process
regression is the inversion of the training covariance matrix with a cubic time requirement
and a quadratic memory requirement with respect to the length of the observation vector. A
recently introduced approach38,39 avoids explicit inversion of the covariance matrix and thereby
reduces the scaling of the training time from cubic to quadratic and the scaling of the memory
requirement from quadratic to linear without compromising the accuracy of the inference. Since
the approach is also parallelizable, further acceleration is possible by using multiple processors.
When the training data set includes derivatives with respect to all 3Nm input coordinates, this
approach would mean quadratic scaling with respect to both the number of data points, N ,
and the number of moving atoms, Nm. The construction of the matrix requires evaluations of
(N(1 + 3Nm))

2 covariances and the prediction of the whole gradient vector Nm derivatives of
N(1 + 3Nm) covariances. Even though calculation of any of these elements requires evaluation

18



of the difference measure, which here includes a sum over all pairs of moving atoms, this needs
to be done only once for each pair of data points. By storing the value of the difference measure
and its derivative with respect to each input coordinate while building each of the N2 blocks,
the whole covariance matrix can be built in O(N2N2

m) time, and similarly, the prediction of the
whole gradient vector can be done in O(NN2

m) time. Thus, even though the inverse-distance
formulation increases the cost of individual covariance function evaluations, it does not affect
the scaling of the cost of the whole algorithm.

If found necessary, practical speedup could be obtained by reducing the training data set by
selectively ignoring some of the data points, derivatives of some data points or derivatives with
respect to movement of some atoms. It would also be possible to train a separate GP model for
each image using different training data sets. If the evaluations of the GP approximation are
taking much time, it might be convenient to reduce the maximum number of inner iterations
and start the following NEB relaxation phase where the previous one ended. The optimization
of the hyperparameters could be as well started from the previous values after a few initial
rounds or even skipped for some number of rounds after the values have stabilized, and it is also
possible to use the same length scale for all atom pair types. One possible approach would be
to start with a lighter approximate model with larger noise assumed and switch to a noiseless
model when converging to the minimum energy path.

Supporting Information

• Extensions of Figures 1–4 and 7 including GP approximations obtained with stationary
Matérn covariance functions and GP-NEB results obtained by feeding the inverse-distance
difference measure to Matérn covariance functions (PDF)
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Appendix

Partial derivatives of covariance function kx

When predicting derivatives of a function modeled with a Gaussian process (eq 9) or when
dealing with derivative data in the training data set (eqs 10–11), partial derivatives of the
covariance function with respect to input coordinates are required. To calculate the partial
derivatives of covariance function kx, defined in eq 2, we first calculate the partial derivative of
the square of the regular difference measure Dx(x,x

′), defined in eq 3, with respect to the dth

coordinate of moving atom i in x,

∂D2
x(x,x

′)

∂xi,d
=

2(xi,d − x′i,d)

l2
, (15)

and with respect to both the dth1 coordinate of moving atom i1 in x and dth2 coordinate of moving
atom i2 in x′,

∂2D2
x(x,x

′)

∂xi1,d1∂x
′
i2,d2

=







0, if i1 6= i2 ∨ d1 6= d2
−2

l2
, if i1 = i2 ∧ d1 = d2.

(16)

Using chain rules, the corresponding partial derivatives of covariance function kx can be pre-
sented as

∂kx(x,x
′)

∂xi,d
=
∂kx(x,x

′)

∂D2
x(x,x

′)
·
∂D2

x(x,x
′)

∂xi,d
(17)

and

∂2kx(x,x
′)

∂xi1,d1∂x
′
i2,d2

=
∂kx(x,x

′)

∂D2
x(x,x

′)
·
∂2D2

x(x,x
′)

∂xi1,d1∂x
′
i2,d2

+
∂2kx(x,x

′)

∂(D2
x(x,x

′))2
·
∂D2

x(x,x
′)

∂xi1,d1
·
∂D2

x(x,x
′)

∂x′i2,d2
, (18)

where
∂kx(x,x

′)

∂D2
x(x,x

′)
= −

σ2m
2

exp

(

−
1

2
D2
x(x,x

′)

)

(19)

and
∂2kx(x,x

′)

∂(D2
x(x,x

′))2
=
σ2m
4

exp

(

−
1

2
D2
x(x,x

′)

)

(20)

are the first and second derivatives of the covariance function with respect to the squared
difference measure.

When optimizing the hyperparameters, it is useful to differentiate the covariance function
and its derivatives also with respect to the hyperparameters. Differentiation with respect to
magnitude σm is trivial, since σ2m can be factorized out from the expressions. With respect to
the isotropic length scale l, we start again by differentiating the squared difference measure and
its derivatives:

∂D2
x(x,x

′)

∂l
=

Nm
∑

i=1

3
∑

d=1

−2(xi,d − x′i,d)
2

l3
, (21)

∂D2
x(x,x

′)

∂xi,d∂l
=

−4(xi,d − x′i,d)

l3
, (22)

∂2D2
x(x,x

′)

∂xi1,d1∂x
′
i2,d2

∂l
=







0, if i1 6= i2 ∨ d1 6= d2
4

l3
, if i1 = i2 ∧ d1 = d2.

(23)
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Using chain rules, we can now differentiate the covariance function and its derivatives:

∂kx(x,x
′)

∂lψ
=
∂kx(x,x

′)

∂D2
x(x,x

′)
·
∂D2

x(x,x
′)

∂l
, (24)

∂2kx(x,x
′)

∂xi,d∂l
=
∂kx(x,x

′)

∂D2
x(x,x

′)
·
∂2D2

x(x,x
′)

∂xi,d∂l
+

∂2kx(x,x
′)

∂(D2
x(x,x

′))2
·
∂D2

x(x,x
′)

∂xi,d
·
∂D2

x(x,x
′)

∂l
, (25)

∂3kx(x,x
′)

∂xi1,d1∂x
′
i2,d2

∂l
=
∂kx(x,x

′)

∂D2
x(x,x

′)
·

∂3D2
x(x,x

′)

∂xi1,d1∂x
′
i2,d2

∂l

+
∂2kx(x,x

′)

∂(D2
x(x,x

′))2
·

(

∂D2
x(x,x

′)

∂xi1,d1
·
∂2D2

x(x,x
′)

∂x′i2,d2∂l

+
∂D2

x(x,x
′)

∂x′i2,d2
·
∂2D2

x(x,x
′)

∂xi1,d1∂l
+
∂D2

x(x,x
′)

∂l
·
∂2D2

x(x,x
′)

∂xi1,d1∂x
′
i2,d2

)

+
∂3kx(x,x

′)

∂(D2
x(x,x

′))3
·
∂D2

x(x,x
′)

∂xi1,d1
·
∂D2

x(x,x
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∂x′i2,d2
·
∂D2

x(x,x
′)

∂l
,

(26)

where
∂3kx(x,x

′)

∂(D2
x(x,x

′))3
= −

σ2m
8

exp

(

−
1

2
D2
x(x,x

′)

)

. (27)

Partial derivatives of covariance function k1/r

The partial derivative of the square of the inverse-distance difference measure D1/r(x,x
′), de-

fined in eq 4, with respect to the dth coordinate of moving atom i in x is given by

∂D2
1/r(x,x

′)

∂xi,d
=

∑

j∈Am\{i}
∨

j∈Af

[

−2(xi,d − xj,d)

l2φ(i,j)r
3
i,j(x)

(

1

ri,j(x)
−

1

ri,j(x′)

)

]

, (28)

and with respect to both the dth1 coordinate of moving atom i1 in x and dth2 coordinate of moving
atom i2 in x′ by

∂2D2
1/r(x,x

′)

∂xi1,d1∂x
′
i2,d2

=































2(xi1,d1 − xi2,d1)(x
′
i1,d2

− x′i2,d2)

l2φ(i1,i2)r
3
i1,i2

(x)r3i1,i2(x
′)

, if i1 6= i2

∑

j∈Am\{i}
∨

j∈Af

−2(xi,d1 − xj,d1)(x
′
i,d2

− x′j,d2)

l2φ(i,j)r
3
i,j(x)r

3
i,j(x

′)
, if i1 = i2 = i.

(29)

The corresponding partial derivatives of covariance function k1/r can be presented with similar
expressions as shown for kx in eqs 17 and 18, keeping in mind that kx and k1/r have the same
derivatives with respect to the square of the difference measure.

Similarly, k1/r and its derivatives can be differentiated with respect to length scale lψ for
atom pair type ψ using similar chain rules as shown in eqs 24, 25, and 26. The corresponding
partial derivatives of the square of the difference measure D1/r, required for these expressions,
are given by

∂D2
1/r(x,x

′)

∂lψ
=
∑

i∈Am

∑

[

j∈Am,j>i
∨

j∈Af

]

φ(i,j)=ψ

−2
(

1
ri,j(x)

− 1
ri,j(x′)

)2

l3ψ
, (30)
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∂2D2
1/r(x,x

′)

∂xi,d∂lψ
=

∑

[

j∈Am\{i}
∨

j∈Af

]

φ(i,j)=ψ

[

4(xi,d − xj,d)

l3ψr
3
i,j(x)

(

1

ri,j(x)
−

1

ri,j(x′)

)

]

, (31)

and

∂3D2
1/r(x,x

′)

∂xi1,d1∂x
′
i2,d2

∂lψ
=



















































0, if i1 6= i2 ∧ φ(i1, i2) 6= ψ

−4(xi1,d1 − xi2,d1)(x
′
i1,d2

− x′i2,d2)

l3ψr
3
i1,i2

(x)r3i1,i2(x
′)

, if i1 6= i2 ∧ φ(i1, i2) = ψ

∑

[

j∈Am\{i}
∨

j∈Af

]

φ(i,j)=ψ

4(xi,d1 − xj,d1)(x
′
i,d2

− x′j,d2)

l3ψr
3
i,j(x)r

3
i,j(x

′)
, if i1 = i2 = i.

(32)
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