
Statistics and Computing (2020) 30:305–330

https://doi.org/10.1007/s11222-019-09884-y

Nudging the particle filter

Ömer Deniz Akyildiz1,2 · Joaquín Míguez3,4

Received: 24 April 2018 / Accepted: 1 July 2019 / Published online: 13 July 2019

© The Author(s) 2019

Abstract

We investigate a new sampling scheme aimed at improving the performance of particle filters whenever (a) there is a significant
mismatch between the assumed model dynamics and the actual system, or (b) the posterior probability tends to concentrate
in relatively small regions of the state space. The proposed scheme pushes some particles toward specific regions where the
likelihood is expected to be high, an operation known as nudging in the geophysics literature. We reinterpret nudging in a form
applicable to any particle filtering scheme, as it does not involve any changes in the rest of the algorithm. Since the particles
are modified, but the importance weights do not account for this modification, the use of nudging leads to additional bias in the
resulting estimators. However, we prove analytically that nudged particle filters can still attain asymptotic convergence with
the same error rates as conventional particle methods. Simple analysis also yields an alternative interpretation of the nudging
operation that explains its robustness to model errors. Finally, we show numerical results that illustrate the improvements that
can be attained using the proposed scheme. In particular, we present nonlinear tracking examples with synthetic data and a
model inference example using real-world financial data.

Keywords Particle filtering · Nudging · Robust filtering · Data assimilation · Model errors · Approximation errors.

1 Introduction

1.1 Background

State-space models (SSMs) are ubiquitous in many fields
of science and engineering, including weather forecasting,
mathematical finance, target tracking, machine learning,
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population dynamics, etc., where inferring the states of
dynamical systems from data plays a key role.

A SSM comprises a pair of stochastic processes (xt )t≥0

and (yt )t≥1 called signal process and observation process,
respectively. The conditional relations between these pro-
cesses are defined with a transition and an observation model
(also called likelihood model) where observations are condi-
tionally independent given the signal process, and the latter
is itself a Markov process. Given an observation sequence,
y1:t , the filtering problem in SSMs consists in the estimation
of expectations with respect to the posterior probability dis-
tribution of the hidden states, conditional on y1:t , which is
also referred to as the filtering distribution.

Apart from a few special cases, neither the filtering distri-
bution nor the integrals (or expectations) with respect to it can
be computed exactly; hence, one needs to resort to numerical
approximations of these quantities. Particle filters (PFs) have
been a classical choice for this task since their introduction
by Gordon et al. (1993); see also Kitagawa (1996), Liu and
Chen (1998), Doucet et al. (2000, 2001). The PF constructs
an empirical approximation of the posterior probability dis-
tribution via a set of Monte Carlo samples (usually termed
particles) which are modified or killed sequentially as more
data are taken into account. These samples are then used to
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estimate the relevant expectations. The original form of the
PF, often referred to as the bootstrap particle filter (BPF), has
received significant attention due to its efficiency in a vari-
ety of problems, its intuitive appeal and its straightforward
implementation. A large body of theoretical work concern-
ing the BPF has also been compiled. For example, it has been
proved that the expectations with respect to the empirical
measures constructed by the BPF converge to the expecta-
tions with respect to the true posterior distributions when the
number of particles is large enough (Del Moral and Guionnet
1999; Chopin 2004; Künsch 2005; Douc and Moulines 2008)
or that they converge uniformly over time under additional
assumptions related to the stability of the true distributions
(Del Moral and Guionnet 2001; Del Moral 2004).

Despite the success of PFs in relatively low-dimensional
settings, their use has been regarded impractical in models
where (xt )t≥0 and (yt )t≥1 are sequences of high-dimensional
random variables. In such scenarios, standard PFs have been
shown to collapse (Bengtsson et al. 2008; Snyder et al. 2008).
This problem has received significant attention from the
data assimilation community. The high-dimensional mod-
els which are common in meteorology and other fields of
Geophysics are often dealt with via an operation called nudg-

ing (Hoke and Anthes 1976; Malanotte-Rizzoli and Holland
1986, 1988; Zou et al. 1992). Within the particle filtering
context, nudging can be defined as a transformation of the
particles, which are pushed toward the observations using
some observation-dependent map (van Leeuwen 2009, 2010;
Ades and van Leeuwen 2013, 2015). If the dimensions of
the observations and the hidden states are different, which
is often the case, a gain matrix is computed in order to per-
form the nudging operation. In van Leeuwen (2009, 2010),
Ades and van Leeuwen (2013, 2015), nudging is performed
after the sampling step of the particle filter. The impor-
tance weights are then computed accordingly, so that they
remain proper. Hence, nudging in this version amounts to a
sophisticated choice of the importance function that gener-
ates the particles. It has been shown (numerically) that the
schemes proposed by van Leeuwen (2009, 2010), Ades and
van Leeuwen (2013, 2015) can track high-dimensional sys-
tems with a low number of particles. However, generating
samples from the nudged proposal requires costly computa-
tions for each particle and the evaluation of weights becomes
heavier as well. It is also unclear how to apply existing
nudging schemes when non-Gaussianity and nontrivial non-
linearities are present in the observation model.

A related class of algorithms includes the so-called
implicit particle filters (IPFs) (Chorin and Tu 2009; Chorin
et al. 2010; Atkins et al. 2013). Similar to nudging schemes,
IPFs rely on the principle of pushing particles to high-
probability regions in order to prevent the collapse of the
filter in high-dimensional state spaces. In a typical IPF, the
region where particles should be generated is determined

by solving an algebraic equation. This equation is model
dependent, yet it can be solved for a variety of different
cases (general procedures for finding solutions are given by
Chorin and Tu 2009; Chorin et al. 2010). The fundamental
principle underlying IPFs, moving the particles toward high-
probability regions, is similar to nudging. Note, however,
that unlike IPFs, nudging-based methods are not designed to
guarantee that the resulting particles land on high-probability
regions; it can be the case that nudged particles are moved
to relatively low probability regions (at least occasionally).
Since an IPF requires the solution of a model-dependent
algebraic equation for every particle, it can be computation-
ally costly, similar to the nudging methods by van Leeuwen
(2009, 2010), Ades and van Leeuwen (2013, 2015). More-
over, it is not straightforward to derive the map for the
translation of particles in general models; hence, the applica-
bility of IPFs depends heavily on the specific model at hand.

1.2 Contribution

In this work, we propose a modification of the PF, termed
the nudged particle filter (NuPF) and assess its performance
in high-dimensional settings and with misspecified models.
Although we use the same idea for nudging that is presented
in the literature, our algorithm has subtle but crucial differ-
ences, as summarized below.

– First, we define the nudging step not just as a relax-
ation step toward observations but as a step that strictly
increases the likelihood of a subset of particles. This defi-
nition paves the way for different nudging schemes, such
as using the gradients of likelihoods or employing ran-
dom search schemes to move around the state space. In
particular, classical nudging (relaxation) operations arise
as a special case of nudging using gradients when the like-
lihood is assumed to be Gaussian. Compared to IPFs, the
nudging operation we propose is easier to implement as
we only demand the likelihood to increase (rather than
the posterior density). Indeed, nudging operators can be
implemented in relatively straightforward forms, without
the need to solve model-dependent equations.

– Second, unlike the other nudging-based PFs, we do not
correct the bias induced by the nudging operation dur-
ing the weighting step. Instead, we compute the weights
in the same way they would be computed in a conven-
tional (non-nudged) PF and the nudging step is devised to
preserve the convergence rate of the PF, under mild stan-
dard assumptions, despite the bias. Moreover, computing
biased weights is usually faster than computing proper
(unbiased) weights. Depending on the choice of nudg-
ing scheme, the proposed algorithm can have an almost
negligible computational overhead compared to the con-
ventional PF from which it is derived.
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– Finally, we show that a nudged PF for a given SSM (say
M0) is equivalent to a standard BPF running on a modi-
fied dynamical model (denoted M1). In particular, model
M1 is endowed with the same likelihood function as M0,
but the transition kernel is observation driven in order
to match the nudging operation. As a consequence, the
implicit model M1 is “adapted to the data” and we have
empirically found that, for any sufficiently long sequence
y1, . . . , yt , the evidence1 (Robert 2007) in favor of M1

is greater than the evidence in favor of M0. We can show,
for several examples, that this implicit adaptation to the
data makes the NuPF robust to mismatches in the state
equation of the SSM compared to conventional PFs. In
particular, provided that the likelihoods are specified or
calibrated reliably, we have found that NuPFs perform
reliably under a certain amount of mismatch in the tran-
sition kernel of the SSM, while standard PFs degrade
clearly in the same scenario.

In order to illustrate the contributions outlined above, we
present the results of several computer experiments with both
synthetic and real data. In the first example, we assess the
performance of the NuPF when applied to a linear-Gaussian
SSM. The aim of these computer simulations is to compare
the estimation accuracy and the computational cost of the
proposed scheme with several other competing algorithms,
namely a standard BPF, a PF with optimal proposal function
and a NuPF with proper weights. The fact that the underly-
ing SSM is linear-Gaussian enables the computation of the
optimal importance function (intractable in a general setting)
and proper weights for the NuPF. We implement the latter
scheme because of its similarity to standard nudging filters
in the literature. This example shows that the NuPF suffers
just from a slight performance degradation compared to the
PF with optimal importance function or the NuPF with proper
weights, while the latter two algorithms are computationally
more demanding.

The second and third examples are aimed at testing the
robustness of the NuPF when there is a significant misspec-
ification in the state equation of the SSM. This is helpful
in real-world applications because practitioners often have
more control over measurement systems, which determine
the likelihood, than they have over the state dynamics. We
present computer simulation results for a stochastic Lorenz
63 model and a maneuvering target tracking problem.

In the fourth example, we present numerical results for
a stochastic Lorenz 96 model, in order to show how a rel-
atively high-dimensional system can be tracked without a
major increase in the computational effort compared to the

1 Given a dataset {y1, . . . , yt }, the evidence in favor of a model M is
the joint probability density of y1, . . . , yt conditional on M, denoted
p(y1:t |M).

standard BPF. For this set of computer simulations, we have
also compared the NuPF with the ensemble Kalman filter
(EnKF), which is the de facto choice for tackling this type of
systems.

Let us remark that, for the two stochastic Lorenz sys-
tems, the Markov kernel in the SSM can be sampled in a
relatively straightforward way, yet transition probability den-
sities cannot be computed (as they involve a sequence of noise
variables mapped by a composition of nonlinear functions).
Therefore, computing proper weights for proposal functions
other than the Markov kernel itself is, in general, not possible
for these examples.

Finally, we demonstrate the practical use of the NuPF on
a problem where a real dataset is used to fit a stochastic
volatility model using either particle Markov chain Monte
Carlo (pMCMC) (Andrieu et al. 2010) or nested particle fil-
ters (Crisan and Miguez 2018).

1.3 Organization

The paper is structured as follows. After a brief note about
notation, we describe the SSMs of interest and the BPF in
Sect. 2. Then in Sect. 3, we outline the general algorithm and
the specific nudging schemes we propose to use within the
PF. We prove a convergence result in Sect. 4 which shows
that the new algorithm has the same asymptotic convergence
rate as the BPF. We also provide an alternative interpreta-
tion of the nudging operation that explains its robustness in
scenarios where there is a mismatch between the observed
data and the assumed SSM. We discuss the computer sim-
ulation experiments in Sect. 5 and present results for real
data in Sect. 6. Finally, we make some concluding remarks
in Sect. 7.

1.4 Notation

We denote the set of real numbers as R, while Rd = R× d· · ·
×R is the space of d-dimensional real vectors. We denote the
set of positive integers with N and the set of positive reals
with R+. We represent the state space with X ⊂ Rdx and the
observation space with Y ⊂ Rdy .

In order to denote sequences, we use the shorthand nota-
tion xi1:i2 = {xi1 , . . . , xi2}. For sets of integers, we use
[n] = {1, . . . , n}. The p-norm of a vector x ∈ Rd is defined
by‖x‖p = (x

p
1 +· · ·+x

p

d )1/p. The L p norm of a random vari-
able z with probability density function (pdf) p(z) is denoted
‖z‖p =

(∫

|z|p p(z)dz
)1/p

, for p ≥ 1. The Gaussian (nor-
mal) probability distribution with mean m and covariance
matrix C is denoted N (m, C). We denote the identity matrix
of dimension d with Id .

The supremum norm of a real function ϕ : X → R is
denoted ‖ϕ‖∞ = supx∈X |ϕ(x)|. A function is bounded if
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‖ϕ‖∞ < ∞ and we indicate the space of real bounded func-
tions X → R as B(X). The set of probability measures on X is
denoted P(X), the Borel σ -algebra of subsets of X is denoted
B(X), and the integral of a function ϕ : X → R with respect
to a measure μ on the measurable space (X,B(X)) is denoted
(ϕ, μ) :=

∫

ϕdμ. The unit Dirac delta measure located at
x ∈ Rd is denoted δx (dx). The Monte Carlo approximation
of a measure μ constructed using N samples is denoted as
μN . Given a Markov kernel τ(dx ′|x) and a measure π(dx),
we define the notation ξ(dx ′) = τπ �

∫

τ(dx ′|x)π(dx).

2 Background

2.1 State-spacemodels

We consider SSMs of the form

x0 ∼ π0(dx0), (2.1)

xt |xt−1 ∼ τt (dxt |xt−1), (2.2)

yt |xt ∼ gt (yt |xt ), t ∈ N, (2.3)

where xt ∈ X is the system state at time t , yt ∈ Y is the t th
observation, the measure π0 describes the prior probability
distribution of the initial state, τt is a Markov transition kernel
on X and gt (yt |xt ) is the (possibly non-normalized) pdf of
the observation yt conditional on the state xt . We assume the
observation sequence {yt }t∈N+ is arbitrary but fixed. Hence, it
is convenient to think of the conditional pdf gt as a likelihood
function and we write gt (xt ) := gt (yt |xt ) for conciseness.

We are interested in the sequence of posterior proba-
bility distributions of the states generated by the SSM. To
be specific, at each time t = 1, 2, . . . we aim at comput-
ing (or, at least, approximating) the probability measure πt

which describes the probability distribution of the state xt

conditional on the observation of the sequence y1:t . When
it exists, we use π(xt |y1:t ) to denote the pdf of xt given
y1:t with respect to the Lebesgue measure, i.e., πt (dxt ) =
π(xt |y1:t )dxt .

The measure πt is often termed the optimal filter at time
t . It is closely related to the probability measure ξt , which
describes the probability distribution of the state xt condi-
tional on y1:t−1, and it is, therefore, termed the predictive

measure at time t . As for the case of the optimal filter, we use
ξ(xt |y1:t−1) to denote the pdf, with respect to the Lebesgue
measure, of xt given y1:t−1.

2.2 Bootstrap particle filter

The BPF (Gordon et al. 1993) is a recursive algorithm that
produces successive Monte Carlo approximations of ξt and
πt for t = 1, 2, . . .. The method can be outlined as shown in
Algorithm 1.

Algorithm 1 Bootstrap Particle Filter

1: Generate the initial particle system {x
(i)
0 }N

i=1 by drawing N times
independently from the prior π0.

2: for t ≥ 1 do

3: Sampling: draw x̄
(i)
t ∼ τt (dxt |x (i)

t−1) independently for every i =
1, . . . , N .

4: Weighting: compute w
(i)
t = gt (x̄

(i)
t )/Z̄ N

t for every i = 1, . . . , N ,

where Z̄ N
t =

∑N
i=1 gt (x̄

(i)
t ).

5: Resampling: draw x
(i)
t , i = 1, . . . , N from the discrete distribu-

tion
∑

i w
(i)
t δ

x̄
(i)
t

(dx), independently for i = 1, . . . , N .

6: end for

After an initialization stage, where a set of independent
and identically distributed (i.i.d.) samples from the prior
are drawn, it consists of three recursive steps which can be
depicted as,

π N
t−1 →

︸︷︷︸

sampling

ξ N
t →

︸︷︷︸

weighting

π̃ N
t →

︸︷︷︸

resampling

π N
t . (2.4)

Given a Monte Carlo approximation π N
t−1 = 1

N

∑N
i=1 δ

x
(i)
t−1

computed at time t − 1, the sampling step yields an approx-
imation of the predictive measure ξt of the form

ξ N
t = 1

N

N
∑

i=1

δ
x̄

(i)
t

by propagating the particles {x
(i)
t−1}N

i=1 via the Markov kernel

τt (·|x (i)
t−1). The observation yt is assimilated via the impor-

tance weights w
(i)
t ∝ gt (x

(i)
t ), to obtain the approximate

filter

π̃ N
t =

N
∑

i=1

w
(i)
t δ

x̄
(i)
t

,

and the resampling step produces a set of unweighted
particles that completes the recursive loop and yields the
approximation

π N
t = 1

N

N
∑

i=1

δ
x

(i)
t

.

The random measures ξ N
t , π̃ N

t and π N
t are commonly used

to estimate a posteriori expectations conditional on the avail-
able observations. For example, if ϕ is a function X → R,
then the expectation of the random variable ϕ(xt ) conditional
on y1:t−1 is E

[

ϕ(xt )|y1:t−1
]

= (ϕ, ξt ). The latter integral can
be approximated using ξ N

t , namely

(ϕ, ξt ) =
∫

ϕ(xt )ξt (dxt ) ≈ (ϕ, ξ N
t )

=
∫

ϕ(xt )ξ
N
t (dxt ) = 1

N

N
∑

i=1

ϕ(x̄
(i)
t ).
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Similarly, we can have estimators (ϕ, π̃ N
t ) ≈ (ϕ, πt ) and

(ϕ, π N
t ) ≈ (ϕ, πt ). Classical convergence results are usually

proved for real bounded functions, e.g., if ϕ ∈ B(X) then

lim
N→∞

|(ϕ, πt ) − (ϕ, π N
t )| = 0 almost surely (a.s.)

under mild assumptions; see Del Moral (2004), Bain and
Crisan (2009) and references therein.

The BPF can be generalized by using arbitrary pro-
posal pdf’s qt (xt |x (i)

t−1, yt ), possibly observation dependent,

instead of the Markov kernel τt (·|x (i)
t−1) in order to generate

the particles {x̄
(i)
t }N

i=1 in the sampling step. This can lead to
more efficient algorithms, but the weight computation has to
account for the new proposal and we obtain (Doucet et al.
2000)

w
(i)
t ∝

gt

(

x̄
(i)
t

)

τt

(

x̄
(i)
t |x (i)

t

)

qt

(

x̄
(i)
t |x (i)

t−1, yt

) , (2.5)

which can be more costly to evaluate. This issue is related to
the nudged PF to be introduced in Sect. 3, which can be inter-
preted as a scheme to choose a certain observation-dependent
proposal qt (xt |x (i)

t−1, yt ). However, the new method does not
require that the weights be computed as in (2.5) in order to
ensure convergence of the estimators.

3 Nudged particle filter

3.1 General algorithm

Compared to the standard BPF, the nudged particle filter
(NuPF) incorporates one additional step right after the sam-
pling of the particles {x̄

(i)
t }N

i=1 at time t . The schematic
depiction of the BPF in (2.4) now becomes

π N
t−1 →

︸︷︷︸

sampling

ξ N
t →

︸︷︷︸

nudging

ξ̃ N
t →

︸︷︷︸

weighting

π̃ N
t →

︸︷︷︸

resampling

π N
t , (3.1)

where the new nudging step intuitively consists in pushing a
subset of the generated particles {x̄

(i)
t }N

i=1 toward regions of
the state space X where the likelihood function gt (x) takes
higher values.

When considered jointly, the sampling and nudging steps
in (3.1) can be seen as sampling from a proposal distribution
which is obtained by modifying the kernel τt (·|xt−1) in a way
that depends on the observation yt . Indeed, this is the classical
view of nudging in the literature (van Leeuwen 2009, 2010;
Ades and van Leeuwen 2013, 2015). However, unlike in this
classical approach, here the weighting step does not account
for the effect of nudging. In the proposed NuPF, the weights

are kept the same as in the original filter, w
(i)
t ∝ gt (x

(i)
t ).

In doing so, we save computations but, at the same time,
introduce bias in the Monte Carlo estimators. One of the
contributions of this paper is to show that this bias can be
controlled using simple design rules for the nudging step,
while practical performance can be improved at the same
time.

In order to provide an explicit description of the NuPF, let
us first state a definition for the nudging step.

Definition 1 A nudging operator α
yt
t : X → X associated

with the likelihood function gt (x) is a map such that

if x ′ = α
yt
t (x) then gt (x ′) ≥ gt (x) (3.2)

for every x, x ′ ∈ X.

Intuitively, we define nudging herein as an operation that
increases the likelihood. There are several ways in which this
can be achieved and we discuss some examples in Sects. 3.2
and 3.3. The NuPF with nudging operator α

yt
t : X → X is

outlined in Algorithm 2.

Algorithm 2 Nudged Particle Filter (NuPF)

1: Generate the initial particle system {x
(i)
0 }N

i=1 by drawing N times
independently from the prior π0.

2: for t ≥ 1 do

3: Sampling: draw x̄
(i)
t ∼ τt (dxt |x (i)

t−1) independently for every i =
1, . . . , N .

4: Nudging: choose a set of indices It ⊂ [N ], then compute x̃
(i)
t =

α
yt
t (x̄

(i)
t ) for every i ∈ It . Keep x̃

(i)
t = x̄

(i)
t for every i ∈ [N ]\It .

5: Weighting: compute w
(i)
t = gt (x̃

(i)
t )/Z̃ N

t for every i = 1, . . . , N ,

where Z̃ N
t =

∑N
i=1 g(x̃

(i)
t ).

6: Resample: draw x
(i)
t from

∑

i w
(i)
t δ

x̃
(i)
t

(dx) independently for i =
1, . . . , N .

7: end for

It can be seen that the nudging operation is implemented
in two stages.

– First, we choose a set of indices It ⊂ [N ] that identi-
fies the particles to be nudged. Let M = |It | denote the
number of elements in It . We prove in Sect. 4 that keep-
ing M ≤ O(

√
N ) allows the NuPF to converge with the

same error rates O(1/
√

N ) as the BPF. In Sect. 3.2, we
discuss two simple methods to build It in practice.

– Second, we choose an operator α
yt
t that guarantees an

increase in the likelihood of any particle. We discuss dif-
ferent implementations of α

yt
t in Sect. 3.3.

We devote the rest of this section to a discussion of how these
two steps can be implemented (in several ways).
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3.2 Selection of particles to be nudged

The set of indices It , which identifies the particles to be
nudged in Algorithm 2, can be constructed in several differ-
ent ways, either random or deterministic. In this paper, we
describe two simple random procedures with little computa-
tional overhead.

– Batch nudging. Let the number of nudged particles M

be fixed. A simple way to construct It is to draw indices
i1, i2, . . . , iM uniformly from [N ] without replacement,
and then let It = i1:M . We refer to this scheme as batch

nudging, referring to selection of the indices at once. One
advantage of this scheme is that the number of particles
to be nudged, M , is deterministic and can be set a priori.

– Independent nudging. The size and the elements of It can
also be selected randomly in a number of ways. Here, we
have studied a procedure in which, for each index i =
1, . . . , N , we assign i ∈ It with probability M

N
. In this

way, the actual cardinality |It | is random, but its expected
value is exactly M . This procedure is particularly suit-
able for parallel implementations, since each index can
be assigned to It (or not) at the same time as all others.

3.3 How to nudge

The nudging step is aimed at increasing the likelihood of
a subset of individual particles, namely those with indices
contained in It . Therefore, any map α

yt
t : X → X such that

(gt ◦α
yt
t )(x) ≥ gt (x) when x ∈ X is a valid nudging operator.

Typical procedures used for optimization, such as gradient
moves or random search schemes, can be easily adapted to
implement (relatively) inexpensive nudging steps. Here we
briefly describe a few of such techniques.

– Gradient nudging. If gt (xt ) is a differentiable function
of xt , one straightforward way to nudge particles is to
take gradient steps. In Algorithm 3, we show a simple
procedure with one gradient step alone, and where γt > 0
is a step-size parameter and ∇x gt (x) denotes the vector of
partial derivatives of gt with respect to the state variables,
i.e.,

∇xt gt =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂gt

∂x1,t
∂gt

∂x2,t

...
∂gt

∂xdx ,t

⎤

⎥
⎥
⎥
⎥
⎥
⎦

for xt =

⎡

⎢
⎢
⎢
⎣

x1,t

x2,t

...

xdx ,t

⎤

⎥
⎥
⎥
⎦

∈ X.

Algorithms can obviously be designed where nudging
involves several gradient steps. In this work, we limit our
study to the single-step case, which is shown to be effec-
tive and keeps the computational overhead to a minimum.

We also note that the performance of gradient nudging
can be sensitive to the choice of the step-size parameters
γt > 0, which are, in turn, model dependent.2

– Random nudging. Gradient-free techniques inherited
from the field of global optimization can also be employed
in order to push particles toward regions where they have
higher likelihoods. A simple stochastic-search technique
adapted to the nudging framework is shown in Algo-
rithm 4. We hereafter refer to the latter scheme as random
search nudging.

– Model-specific nudging. Particles can also be nudged
using the specific model information. For instance, in
some applications the state vector xt can be split into two
subvectors, xobs

t and xunobs
t (observed and unobserved,

respectively), such that gt (xt ) = gt (xobs
t ), i.e., the like-

lihood depends only on xobs
t and not on xunobs

t . If the
relationship between xobs

t and xunobs
t is tractable, one can

first nudge xobs
t in order to increase the likelihood and

then modify xunobs
t in order to keep it coherent with xobs

t .
A typical example of this kind arises in object tracking
problems, where positions and velocities have a special
and simple physical relationship, but usually only posi-
tion variables are observed through a linear or nonlinear
transformation. In this case, nudging would only affect
the position variables. However, using these position vari-
ables, one can also nudge velocity variables with simple
rules. We discuss this idea and show numerical results in
Sect. 5.

Algorithm 3 Gradient nudging
1: for every i ∈ It do

x̃
(i)
t = x̄

(i)
t + γt∇xt gt (x̄

(i)
t )

2: end for

Algorithm 4 Random search nudging
1: repeat

2: Generate x̃
(i)
t = x̄

(i)
t + ηt where ηt ∼ N (0, C) for some covari-

ance matrix C .
3: If gt (x̃

(i)
t ) > gt (x̄

(i)
t ) then keep x̃

(i)
t , otherwise set x̃

(i)
t = x̄

(i)
t .

4: until the particle is nudged.

3.4 Nudging general particle filters

In this paper, we limit our presentation to BPFs in order to
focus on the key concepts of nudging and to ease presen-
tation. It should be apparent, however, that nudging steps

2 We have found, nevertheless, that fixed step sizes (i.e., γt = γ for all
t) work well in practice for the examples of Sects. 5 and 6.
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can be plugged into general PFs. More specifically, since the
nudging step is algorithmically detached from the sampling
and weighting steps, it can be easily used within any PF,
even if it relies on different proposals and different weight-
ing schemes. We leave for future work the investigation of
the performance of nudging within widely used PFs, such as
auxiliary particle filters (APFs) (Pitt and Shephard 1999).

4 Analysis

The nudging step modifies the random generation of particles
in a way that is not compensated by the importance weights.
Therefore, we can expect nudging to introduce bias in the
resulting estimators in general. However, in Sect. 4.1 we
prove that, as long as some basic guidelines are followed, the
estimators of integrals with respect to the filtering measure
πt and the predictive measure ξt converge in L p as N → ∞
with the usual Monte Carlo rate O(1/

√
N ). The analysis is

based on a simple induction argument and ensures the con-
sistency of a broad class of estimators. In Sect. 4.2, we briefly
comment on the conditions needed to guarantee that conver-
gence is attained uniformly over time. We do not provide a
full proof, but this can be done by extending the classical
arguments in Del Moral and Guionnet (2001) or Del Moral
(2004) and using the same treatment of the nudging step as
in the induction proof of Sect. 4.1. Finally, in Sect. 4.3, we
provide an interpretation of nudging in a scenario with mod-
eling errors. In particular, we show that the NuPF can be seen
as a standard BPF for a modified dynamical model which is
“a better fit” for the available data than the original SSM.

4.1 Convergence in Lp

The goal in this section is to provide theoretical guarantees
of convergence for the NuPF under mild assumptions. First,
we analyze a general NuPF (with arbitrary nudging operator
α

yt
t and an upper bound on the size M of the index set It ) and

then we provide a result for a NuPF with gradient nudging.
Before proceeding with the analysis, let us note that the

NuPF produces several approximate measures, depending on
the set of particles (and weights) used to construct them. After
the sampling step, we have the random probability measure

ξ N
t = 1

N

N
∑

i=1

δ
x̄

(i)
t

, (4.1)

which converts into

ξ̃ N
t = 1

N

N
∑

i=1

δ
x̃

(i)
t

(4.2)

after nudging. Once the weights w
(i)
t are computed, we obtain

the approximate filter

π̃ N
t =

N
∑

i=1

w
(i)
t δ

x̃
(i)
t

, (4.3)

which finally yields

π N
t = 1

N

N
∑

i=1

δ
x

(i)
t

(4.4)

after the resampling step.
Similar to the BPF, simple Assumption 1 stated next is

sufficient for consistency and to obtain explicit error rates
(Del Moral and Miclo 2000; Crisan and Doucet 2002; Míguez
et al. 2013) for the NuPF, as stated in Theorem 1.

Assumption 1 The likelihood function is positive and
bounded, i.e.,

gt (xt ) > 0 and ‖gt‖∞ = sup
xt ∈X

|gt (xt )| < ∞

for t = 1, . . . , T .

Theorem 1 Let y1:T be an arbitrary but fixed sequence of

observations, with T < ∞, and choose any M ≤
√

N and

any map α
yt
t : X → X. If Assumption 1 is satisfied and

|It | = M, then

‖(ϕ, π N
t ) − (ϕ, πt )‖p ≤ ct,p‖ϕ‖∞√

N
(4.5)

for every t = 1, 2, . . . , T , any ϕ ∈ B(X), any p ≥ 1 and

some constant ct,p < ∞ independent of N .

See “Appendix A” for a proof.
Theorem 1 is very general; it actually holds for any map

α
yt
t : X → X, i.e., not necessarily a nudging operator. We

can also obtain error rates for specific choices of the nudg-
ing scheme. A simple, yet practically appealing, setup is the
combination of batch and gradient nudging, as described in
Sects. 3.2 and 3.3, respectively.

Assumption 2 The gradient of the likelihood is bounded. In
particular, there are constants G t < ∞ such that

‖∇x gt (x)‖2 ≤ G t < ∞

for every x ∈ X and t = 1, 2, . . . , T .

Lemma 1 Choose the number of nudged particles, M > 0,

and a sequence of step sizes, γt > 0, in such a way that

sup1≤t≤T γt M ≤
√

N for some T < 0. If Assumption 2 holds

and ϕ is a Lipschitz test function; then the error introduced
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by the batch gradient-nudging step with |It | = M can be

bounded as,

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, ξ̃ N
t )

∥
∥
∥

p
≤ LG t√

N
,

where L is the Lipschitz constant of ϕ, for every t = 1, . . . , T .

See “Appendix B” for a proof.
It is straightforward to apply Lemma 1 to prove con-

vergence of the NuPF with a batch gradient-nudging step.
Specifically, we have the following result.

Theorem 2 Let y1:T be an arbitrary but fixed sequence of

observations, with T < ∞, and choose a sequence of step

sizes γt > 0 and an integer M such that

sup
1≤t≤T

γt M ≤
√

N .

Let π N
t denote the filter approximation obtained with a NuPF

with batch gradient nudging. If Assumptions 1 and 2 are

satisfied and |It | = M, then

‖(ϕ, π N
t ) − (ϕ, πt )‖p ≤ ct,p‖ϕ‖∞√

N
(4.6)

for every t = 1, 2, . . . , T , any bounded Lipschitz function ϕ,

some constant ct,p < ∞ independent of N for any integer

p ≥ 1.

The proof is straightforward (using the same argument as
in the proof of Theorem 1 combined with Lemma 1), and we
omit it here. We note that Lemma 1 provides a guideline for
the choice of M and γt . In particular, one can select M = Nβ ,

where 0 < β < 1, together with γt ≤ N
1
2 −β in order to

ensure that γt M ≤
√

N . Actually, it would be sufficient to

set γt ≤ C N
1
2 −β for some constant C < ∞ in order to

keep the same error rate (albeit with a different constant in
the numerator of the bound). Therefore, Lemma 1 provides a
heuristic to balance the step size with the number of nudged
particles.3 We can increase the number of nudged particles,
but in that case we need to shrink the step size accordingly, so
as to keep γt M ≤

√
N . Similar results can be obtained using

the gradient of the log-likelihood, log gt , if the gt comes from
the exponential family of densities.

4.2 Uniform convergence

Uniform convergence can be proved for the NuPF under the
same standard assumptions as for the conventional BPF; see,

3 Note that the step sizes may have to be kept small enough to ensure that
gt (x̄

(i)
t + γt∇x gt (x̄

(i)
t )) ≥ gt (x̄

(i)
t ), so that proper nudging, according

to Definition 1, is performed.

e.g., Del Moral and Guionnet (2001), Del Moral (2004). The
latter can be summarized as follows (Del Moral 2004):

(i) The likelihood function is bounded and bounded away
from zero, i.e., gt ∈ B(X), and there is some constant
a > 0 such that inf t>0,x∈X gt (x) ≥ a.

(ii) The kernel mixes sufficiently well, namely, for any given
integer m there is a constant 0 < ε < 1 such that

inf
t>0;(x,x ′)∈X2

τt+m|t (A|x)

τt+m|t (A|x ′)
> ε

for any Borel set A, where τt+m|t is the composition of
the kernels τt+m ◦ τt+m−1 ◦ · · · ◦ τt .

When (i) and (ii) above hold, the sequence of optimal filters
{πt }t≥0 is stable and it can be proved that

sup
t>0

‖(ϕ, πt ) − (ϕ, π N
t )‖p ≤ cp√

N

for any bounded function ϕ ∈ B(X), where cp < ∞ is
constant with respect to N and t and π N

t is the particle
approximation produced by either the NuPF (as in Theorem 1
or, provided supt>0 G t < ∞, as in Theorem 2) or the BPF
algorithms. We skip a formal proof as, again, it is straight-
forward combination of the standard argument by Del Moral
(2004) (see also, e.g., Oreshkin and Coates 2011; Crisan and
Miguez 2017) with the same handling of the nudging opera-
tor as in the proofs of Theorem 1 or Lemma 1 .

4.3 Nudging as amodified dynamical model

We have found in computer simulation experiments that
the NuPF is consistently more robust to model errors than
the conventional BPF. In order to obtain some analytical
insight of this scenario, in this section we reinterpret the
NuPF as a standard BPF for a modified, observation-driven
dynamical model and discuss why this modified model can
be expected to be a better fit for the given data than the
original SSM. In this way, the NuPF can be seen as an auto-
matic adaptation of the underlying model to the available
data.

The dynamic models of interest in stochastic filtering can
be defined by a prior measure τ0, the transition kernels τt

and the likelihood functions gt (x) = gt (yt |x), for t ≥ 1. In
this section, we write the latter as g

yt
t (x) = gt (yt |x), in order

to emphasize that gt is parametrized by the observation yt ,
and we also assume that every g

yt
t is a normalized pdf in yt

for the sake of clarity. Hence, we can formally represent the
SSM defined by (2.1), (2.2) and (2.3) as M0 = {τ0, τt , g

yt
t }.
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Now, let us assume y1:T to be fixed and construct the
alternative dynamical model M1 = {τ0, τ̃

yt
t , g

yt
t }, where

τ̃
yt
t (dxt |xt−1) := (1 − εM )τt (dxt |xt−1)

+ εM

∫

δα
yt
t (x̄t )

(dxt )τt (dx̄t |xt−1) (4.7)

is an observation-driven transition kernel, εM = M
N

and the
nudging operator α

yt
t is a one-to-one map that depends on

the (fixed) observation yt . We note that the kernel τ̃
yt
t jointly

represents the Markov transition induced by the original ker-
nel τt followed by an independent nudging transformation
(namely, each particle is independently nudged with proba-
bility εM ). As a consequence, the standard BPF for model
M1 coincides exactly with a NuPF for model M0 with
independent nudging and operator α

yt
t . Indeed, according to

the definition of τ̃
yt
t in (4.7), generating a sample x̃

(i)
t from

τ̃
yt
t (dxt |x (i)

t−1) is a three-step process where

– We first draw x̄
(i)
t from τt (dxt |x (i)

t−1),

– Then generate a sample u
(i)
t from the uniform distribution

U(0, 1), and
– If u

(i)
t < εM , then we set x̃

(i)
t = α

yt
t (x̄

(i)
t ), else we set

x̃
(i)
t = x̄

(i)
t .

After sampling, the importance weight for the BPF applied
to model M1 is w

(i)
t ∝ g

yt
t (x̃

(i)
t ). This is exactly the same

procedure as in the NuPF applied to the original SSM M0

(see Algorithm 2).
Intuitively, one can expect that the observation-driven M1

is a better fit for the data sequence y1:T than the original model
M0. Within the Bayesian methodology, a common approach
to compare two competing probabilistic models (M0 and
M1 in this case) for a given dataset y1:t is to evaluate the so-
called model evidence (Bernardo and Smith 1994) for both
M0 and M1.

Definition 2 The evidence (or likelihood) of a probabilistic
model M for a given dataset y1:t is the probability den-
sity of the data conditional on the model that we denote as
p(y1:t |M).

We say that M1 is a better fit than M0 for the dataset y1:t
when p(y1:t |M1) > p(y1:t |M0). Since

p(y1:t |M0) =
∫

· · ·
∫ t

∏

l=1

gl(xl)τl(dxl |xl−1)τ0(dx0),

and

p(y1:t |M1) =
∫

· · ·
∫ t

∏

l=1

gl(xl)τ̃
yl

l (dxl |xl−1)τ0(dx0),

the difference between the evidence of M0 and the evidence
of M1 depends on the difference between the transition ker-
nels τ̃t and τ̃

yt
t .

We have empirically observed in several computer exper-
iments that p(y1:t |M1) > p(y1:t |M0) and we argue that the
observation-driven kernel τ̃ yt

t implicit to the NuPF is the rea-
son why the latter filter is robust to modeling errors in the
state equation, compared to standard PFs. This claim is sup-
ported by the numerical results in Sects. 5.2 and 5.3, which
show how the NuPF attains a significant better performance
than the standard BPF, the auxiliary PF Pitt and Shephard
(1999) or the extended Kalman filter (Anderson and Moore
1979) in scenarios where the filters are built upon a transi-
tion kernel different from the one used to generate the actual
observations.

While it is hard to show that p(y1:t |M1) > p(y1:t |M0)

for every NuPF, it is indeed possible to guarantee that the
latter inequality holds for specific nudging schemes. An
example is provided in “Appendix C”, where we describe
a certain nudging operator α

yt
t and then proceed to prove that

p(y1:t |M1) > p(y1:t |M0), for that particular scheme, under
some regularity conditions on the likelihoods and transition
kernels.

5 Computer simulations

In this section, we present the results of several computer
experiments. In the first one, we address the tracking of a
linear-Gaussian system. This is a very simple model which
enables a clearcut comparison of the NuPF and other com-
peting schemes, including a conventional PF with optimal
importance function (which is intractable for all other exam-
ples) and a PF with nudging and proper importance weights.
Then, we study three nonlinear tracking problems:

– A stochastic Lorenz 63 model with misspecified param-
eters,

– A maneuvering target monitored by a network of sensors
collecting nonlinear observations corrupted with heavy-
tailed noise,

– And, finally, a high-dimensional stochastic Lorenz 96
model.4

We have used gradient nudging in all experiments, with
either M ≤

√
N (deterministically, with batch nudging) or

E[M] ≤
√

N (with independent nudging). This ensures that
the assumptions of Theorem 1 hold. For simplicity, the gradi-
ent steps are computed with fixed step sizes, i.e., γt = γ for

4 For the experiments involving Lorenz 96 model, simulation from the
model is implemented in C++ and integrated into MATLAB. The rest
of the simulations are fully implemented in MATLAB.
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all t . For the object tracking experiment, we have used a large
step size, but this choice does not affect the convergence rate
of the NuPF algorithm either.

5.1 A high-dimensional, inhomogeneous
linear-Gaussian state-spacemodel

In this experiment, we compare different PFs implemented to
track a high-dimensional linear-Gaussian SSM. In particular,
the model under consideration is

x0 ∼ N (0, Idx ), (5.1)

xt |xt−1 ∼ N (xt−1, Q), (5.2)

yt |xt ∼ N (Ct xt , R), (5.3)

where {xt }t≥0 are hidden states, {yt }t≥1 are observations and
Q and R are the process and the observation noise covari-
ance matrices, respectively. The latter are diagonal matrices,
namely Q = q Idx and R = Idy , where q = 0.1, dx = 100
and dy = 20. The sequence {Ct }t≥1 defines a time-varying
observation model. The elements of this sequence are chosen
as random binary matrices, i.e., Ct ∈ {0, 1}dy×dx where each
entry is generated as an independent Bernoulli random vari-
able with p = 0.5. Once generated, they are fixed and fed
into all algorithms we describe below for each independent
Monte Carlo run.

We compare the NuPF with three alternative PFs. The
first method we implement is the PF with the optimal pro-
posal pdf p(xt |xt−1, yt ) ∝ gt (yt |xt )τt (xt |xt−1), abbreviated
as Optimal PF. The pdf p(xt |xt−1, yt ) leads to an analytically
tractable Gaussian density for model (5.1)–(5.3) (Doucet
et al. 2000) but not in the nonlinear tracking examples below.
Note, however, that at each time step, the mean and covari-
ance matrix of this proposal have to be explicitly evaluated
in order to compute the importance weights.

The second filter is a nudged PF with proper importance
weights (NuPF-PW). In this case, we treat the generation of
the nudged particles as a proposal function to be accounted
for during the weighting step. To be specific, the proposal
distribution resulting from the NuPF has the form

τ̃t (dxt |xt−1) = (1 − ǫN )τt (dxt |xt−1) + ǫN τ̄t (dxt |xt−1),

(5.4)

where ǫN = 1√
N

and

τ̄t (dxt |xt−1) =
∫

δα
yt
t (x̄t )

(dxt )τt (dx̄t |xt−1).

The latter conditional distribution admits an explicit repre-
sentation as a Gaussian for model (5.1)–(5.3) when the αt

operator is designed as a gradient step, but this approach is

intractable for the examples in Sects. 5.2 and 5.4. Note that τ̃t

is a mixture of two time-varying Gaussians and this fact adds
to the cost of the sampling and weighting steps. Specifically,
computing weights for the NuPF-PW is significantly more
costly, compared to the BPF or the NuPF, because mixture
(5.4) has to be evaluated together with the likelihood and the
transition pdf.

The third tracking algorithm implemented for model
(5.1)–(5.3) is the conventional BPF.

For all filters, we have set the number of particles as5

N = 100 . In order to implement the NuPF and NuPF-PW
schemes, we have selected the step size γ = 2 × 10−2. We
have run 1000 independent Monte Carlo runs for this exper-
iment. To evaluate different methods, we have computed the
empirical normalized mean squared errors (NMSEs). Specif-
ically, the NMSE for the j th simulation is

NMSE( j) =
∑t f

t=1 ‖x̄t − x̂t ( j)‖2
2

∑t f

t=1 ‖xt‖2
2

, (5.5)

where x̄t = E[xt |y1:t ] is the exact posterior mean of the state
xt conditioned on the observations up to time t and x̂t ( j)

is the estimate of the state vector in the j th simulation run.
Therefore, the notation NMSE implies the normalized mean
squared error is computed with respect to x̄t . In the figures,
we usually plot the mean and the standard deviation of the
sample of errors, NMSE(1), . . . , NMSE(1000).

The results are shown in Fig. 1. In particular, in Fig. 1a,
we observe that the NMSE performance of the NuPF com-
pared to the optimal PF and NuPF-PW (which is similar to a
classical PF with nudging) is comparable. However, Fig. 1b
reveals that the NuPF is significantly less demanding com-
pared to the optimal PF and the NuPF-PW method. Indeed,
the run times of the NuPF are almost identical to the those of
the plain BPF. As a result, the plot of the NMSEs multiplied
by the running times displayed in Fig. 1b reveals that the pro-
posed algorithm is as favorable as the optimal PF, which can
be implemented for this model, but not for general models
unlike the NuPF.

5.2 Stochastic Lorenz 63model withmisspecified
parameters

In this experiment, we demonstrate the performance of the
NuPF when tracking a misspecified stochastic Lorenz 63
model. The dynamics of the system is described by a stochas-
tic differential equation (SDE) in three dimensions,

5 When N is increased, the results are similar for the NuPF, the optimal
PF and the NuPF-PW larger number particles, as they already perform
close to optimally for N = 100, and only the BPF improves signifi-
cantly.
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Fig. 1 a NMSE of the Optimal PF, NuPF-PW, NuPF, and BPF meth-
ods implemented for the high-dimensional linear-Gaussian SSM given
in (5.1)–(5.3). The boxplots are constructed from 1,000 independent
Monte Carlo runs. It can be seen that the NMSE of the NuPF is com-
parable to the error of the Optimal PF and the NuPF-PW methods. b

Runtimes × NMSEs of all methods. This experiment shows that, in
addition to the fact that the NuPF attains a comparable estimation per-
formance, which can be seen in a, it has a computational cost similar to
the plain BPF. The figure demonstrates that the NuPF has a comparable
performance to the optimal PF for this model
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Fig. 2 a NMSE results of the BPF and NuPF algorithms
for a misspecified Lorenz 63 system. The results have been
obtained from 1000 independent Monte Carlo runs for each N ∈
{10, 100, 500, 1 K, 5 K, 10 K, 20 K, 50 K, 100 K}. The light-colored

lines indicate the area containing up to one standard deviation from
the empirical mean. The misspecified parameter is bǫ = b + ǫ, where
b = 8/3 and ǫ = 0.75. b A sample path of the true state variable x2,t

and its estimates in a run with N = 500 particles

dx1 = −a(x1 − x2)ds + dw1,

dx2 = (rx1 − x2 − x1x3) ds + dw2,

dx3 = (x1x2 − bx3) ds + dw3,

where s denotes continuous time, {wi (s)}s∈(0,∞) for i =
1, 2, 3 are one-dimensional independent Wiener processes
and a, r,b ∈ R are fixed model parameters. We discretize the
model using the Euler–Maruyama scheme with integration
step T > 0 and obtain the system of difference equations

x1,t = x1,t−1 − Ta(x1,t−1 − x2,t−1) +
√
Tu1,t ,

x2,t = x2,t−1 + T(rx1,t−1 − x2,t−1 − x1,t−1x3,t−1)

+
√
Tu2,t ,

x3,t = x3,t−1 + T(x1,t−1x2,t−1 − bx3,t−1) +
√
Tu3,t , (5.6)

where {ui,t }t∈N, i = 1, 2, 3 are i.i.d. Gaussian random vari-
ables with zero mean and unit variance. We assume that we
can only observe the variable x1,t , contaminated by additive
noise, every ts > 1 discrete time steps. To be specific, we
collect the sequence of observations

yn = kox1,nts + vn, n = 1, 2, . . . ,

where {vn}n∈N is a sequence of i.i.d. Gaussian random
variables with zero mean and unit variance and the scale
parameter ko = 0.8 is assumed known.
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In order to simulate both the state signal and the synthetic
observations from this model, we choose the so-called stan-
dard parameter values

(a, r,b) =
(

10, 28,
8

3

)

,

which make the system dynamics chaotic. The initial condi-
tion is set as

x0 = [−5.91652,−5.52332, 24.5723]⊤.

The latter value has been chosen from a deterministic trajec-
tory of the system (i.e., with no state noise) with the same
parameter set (a, r,b) =

(

10, 28, 8
3

)

to ensure that the model
is started at a sensible point. We assume that the system is
observed every ts = 40 discrete time steps and for each
simulation we simulate the system for t = 0, 1, . . . , t f , with

t f = 20, 000. Since ts = 40, we have a sequence of
t f

ts
= 500

observations overall.
Let us note here that the Markov kernel which takes the

state from time n − 1 to time n (i.e., from the time of one
observation to the time of the next observation) is straight-
forward to simulate using Euler–Maruyama scheme (5.6);
however, the associated transition probability density cannot
be evaluated because it involves the mapping of both the state
and a sequence of ts noise samples through a composition of
nonlinear functions. This precludes the use of importance
sampling schemes that require the evaluation of this density
when computing the weights.

We run the BPF and NuPF algorithms for the model
described above, except that the parameter b is replaced by
bǫ = b+ ǫ, with ǫ = 0.75 (hence bǫ ≈ 3.417 vs. b ≈ 2.667
for the actual system). As the system underlying dynamics is
chaotic, this mismatch affects the predictability of the system
significantly.

We have implemented the NuPF with independent gradi-
ent nudging. Each particle is nudged with probability 1√

N
,

where N is the number of particles (hence E[M] =
√

N )
and the size of the gradient steps is set to γ = 0.75 (see
Algorithm 3).

As a figure of merit, we evaluate the NMSE for the three-
dimensional state vector, averaged over 1000 independent
Monte Carlo simulations. For this example (as well as in the
rest of this section), it is not possible to compute the exact
posterior mean of the state variables. Therefore, the NMSE
values are computed with respect to the ground truth, i.e.,

NMSE( j) =
∑t f

t=1 ‖xt − x̂t ( j)‖2
2

∑t f

t=1 ‖xt‖2
2

, (5.7)

where (xt )t≥1 is the ground truth signal.

Figure 2a displays the NMSE, attained for varying num-
ber of particles N , for the standard BPF and the NuPF. It is
seen that the NuPF outperforms the BPF for the whole range
of values of N in the experiment, in terms of both the mean
and the standard deviation of the errors, although the NMSE
values become closer for larger N . The plot on the right
displays the values of x2,t and its estimates for a typical sim-
ulation. In general, the experiment shows that the NuPF can
track the actual system using the misspecified model and a
small number of particles, whereas the BPF requires a higher
computational effort to attain a similar performance.

As a final experiment with this model, we have tested the
robustness of the algorithms with respect to the choice of
parameters in the nudging step. In particular, we have tested
the NuPF with independent gradient nudging for a wide range
of step sizes γ . Also, we have tested the NuPF with random
search nudging using a wide range of covariances of the form
C = σ 2 I by varying σ 2.

The results can be seen in Fig. 3. This figure shows that the
algorithm is robust to the choice of parameters for a range
of step sizes and variances of the random search step. As
expected, random search nudging takes longer running time
compared to gradient steps. This difference in run times is
expected to be larger in higher-dimensional models since
random search is expected to be harder in such scenarios.

5.3 Object tracking with amisspecifiedmodel

In this experiment, we consider a tracking scenario where
a target is observed through sensors collecting radio sig-
nal strength (RSS) measurements contaminated with additive
heavy-tailed noise. The target dynamics are described by the
model,

xt = Axt−1 + BL(xt−1 − x•) + ut ,

where xt ∈ R4 denotes the target state, consisting of its posi-

tion rt ∈ R2 and its velocity, vt ∈ R2; hence, xt =
[

rt

vt

]

∈

R4. The vector x• is a deterministic, pre-chosen state to be
attained by the target. Each element in the sequence {ut }t∈N is
a zero-mean Gaussian random vector with covariance matrix
Q. The parameters A, B, Q are selected as

A =
[

I2 κ I2

0 0.99I2

]

, B =
[

0 I2
]⊤

,

and

Q =
[

κ3

3 I2
κ2

2 I2

κ2

2 I2 κ I2

]

,
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Fig. 3 A comparison of gradient nudging and random search nudging
for a variety of parameter settings. From a, it can be seen that gradient
nudging is robust within a large interval for γ . From b, one can see that
the same is true for random search nudging with the covariance of the
form C = σ 2 I for a wide range of σ 2. From c, d, it can be seen that
while gradient nudging causes negligible computational overhead, ran-

dom search nudging is more demanding in terms of computation time
and this behavior is expected to be more apparent in higher-dimensional
spaces. Comparing a, b, it can also be seen that gradient nudging attains
lower error rates in general. The lighter-colored lines indicate the area
containing up to one standard deviation from the empirical means in
each plot

where I2 is the 2 × 2 identity matrix and κ = 0.04. The
policy matrix L ∈ R2×4 determines the trajectory of the
target from an initial position x0 = [140, 140, 50, 0]⊤ to a
final state x• = [140,−140, 0, 0]⊤ and it is computed by
solving a Riccati equation (see Bertsekas 2001 for details),
which yields

L =
[

− 0.0134 0 − 0.0381 0
0 − 0.0134 0 − 0.0381

]

.

This policy results in a highly maneuvering trajectory. In
order to design the NuPF, however, we assume the simpler
dynamical model

xt = Axt−1 + ut ;

hence, there is a considerable model mismatch.
The observations are nonlinear and coming from 10 sen-

sors placed in the region where the target moves. The
measurement collected at the i th sensor, time t , is modeled
as

yt,i = 10 log10

(
P0

‖rt − si‖2 + η

)

+ wt,i ,

where rt ∈ R2 is the location vector of the target, si is the
position of the i th sensor and wt,i ∼ T (0, 1, ν) is an indepen-
dent t-distributed random variable for each i = 1, . . . , 10.
Intuitively, the closer the parameter ν to 1, the more explo-
sive the observations become. In particular, we set ν = 1.01
to make the observations explosive and heavy tailed. As for
the sensor parameters, we set the transmitted RSS as P0 = 1
and the sensitivity parameter as η = 10−9. The latter yields

a soft lower bound of −90 decibels (dB) for the RSS mea-
surements.

We have implemented the NuPF with batch gradient nudg-
ing, with a large step size γ = 5.5 and M = ⌊

√
N⌋. Since the

observations depend on the position vector rt only, an addi-
tional model-specific nudging step is needed for the velocity
vector vt . In particular, after nudging the r

(i)
t = [x (i)

1,t , x
(i)
2,t ]⊤,

we update the velocity variables as

v
(i)
t = 1

κ

(

r
(i)
t − r

(i)
t−1

)

, where v
(i)
t =

[

x
(i)
3,t , x

(i)
4,t

]⊤
,

where κ = 0.04 as defined for the model. The motivation for
this additional transformation comes from the physical rela-
tionship between position and velocity. We note, however,
that the NuPF also works without nudging the velocities.

We have run 10, 000 Monte Carlo runs with N = 500
particles in the auxiliary particle filter (APF) (Pitt and Shep-
hard 1999; Johansen and Doucet 2008; Douc et al. 2009),
the BPF (Gordon et al. 1993) and the NuPF. We have also
implemented the extended Kalman filter (EKF), which uses
the gradient of the observation model.

Figure 4 shows a typical simulation run with each one
of the four algorithms [on the left side, plots (a)–(d)] and
a boxplot of the NMSEs obtained for the 10,000 simula-
tions [on the right, plot (e)]. Plots (a)–(d) show that, while
the EKF also uses the gradient of the observation model, it
fails to handle the heavy-tailed noise, as it relies on Gaussian
approximations. The BPF and the APF collapse due to the
model mismatch in the state equation. Plot (d) shows that the
NMSE of the NuPF is just slightly smaller in the mean than
the NMSE of the EKF, but much more stable.
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Fig. 4 Plots a–d: A typical simulation run for the BPF, APF, EKF
and NuPF algorithms using N = 500 particles. The black dots denote
the real trajectory of the object, the red dots are sensors, and the blue
dots are position estimates as provided by the filters. Plot e: Boxplot of

the errors NMSE(1), . . . , NMSE(10, 000) obtained for the set of inde-
pendent simulation runs. The NuPF achieves a low NMSE with a low
variance, whereas the EKF exhibits a large variance

5.4 High-dimensional stochastic Lorenz 96model

In this computer experiment, we compare the NuPF with the
ensemble Kalman filter (EnKF) for the tracking of a stochas-
tic Lorenz 96 system. The latter is described by the set of
stochastic differential equations (SDEs)

dxi =
[

(xi+1 − xi−2)xi−1 − xi + F
]

ds + dwi ,

i = 1, . . . , d,

where s denotes continuous time, {wi (s)}s∈(0,∞), 1 ≤ i ≤ d,
are independent Wiener processes, d is the system dimension
and the forcing parameter is set to F = 8, which ensures a
chaotic regime. The model is assumed to have a circular spa-
tial structure, so that x−1 = xd−1, x0 = xd , and xd+1 = x1.
Note that each xi , i = 1, . . . , d, denotes a time-varying state
associated to a different space location. In order to simulate
data from this model, we apply the Euler–Maruyama dis-
cretization scheme and obtain the difference equations,

xi,t = xi,t−1 + T
[

(xi+1,t−1 − xi−2,t−1)xi−1,t−1

−xi,t−1 + F
]

+
√
Tui,t ,

where ui,t are zero-mean, unit-variance Gaussian random
variables. We initialise this system by generating a vector

from the uniform distribution on (0, 1)d and running the sys-
tem for a small number of iterations and set x0 as the output
of this short run.

We assume that the system is only partially observed. In
particular, half of the state variables are observed, in Gaussian
noise, every ts = 10 time steps, namely

y j,n = x2 j−1,nts + u j,n,

where n = 1, 2, . . ., j = 1, 2, . . . , ⌊d/2⌋, and u j,n is a
normal random variable with zero mean and unit variance.
The same as in the stochastic Lorenz 63 example of Sect. 5.2,
the transition pdf that takes the state from time (n − 1)ts to
time nts is simple to simulate but hard to evaluate, since it
involves mapping a sequence of noise variables through a
composition of nonlinearities.

In all the simulations for this system, we run the NuPF with
batch gradient nudging (with M = ⌊

√
N⌋ nudged particles

and step size γ = 0.075). In the first computer experiment,
we fixed the dimension d = 40 and run the BPF and the
NuPF with increasing number of particles. The results can
be seen in Fig. 5, which shows how the NuPF performs better
than the BPF in terms of NMSE [plot (a)]. Since the run times
of both algorithms are nearly identical, it can be seen that,
when considered jointly with NMSEs, the NuPF attains a
significantly better performance [plot (b)].
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Fig. 5 Comparison of the NuPF and the BPF for the stochastic Lorenz
96 system with model dimension d = 40. The results have been aver-
aged over a set of 1024 independent Monte Carlo runs. Plot a: evolution
of the NMSE as the number of particles N is increased. The light-colored
lines indicate the area containing up to one standard deviation from the

empirical mean. Plot b: Run-times×N M SE for the BPF and the NuPF
in the same set of simulations. Since the increase in computational cost
of the NuPF, compared to the BPF, is negligible, it is seen from plot b

that the NuPF performs better when errors and run times are considered
jointly
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Fig. 6 Comparison of the NuPF with the EnKF for the stochastic Lorenz
96 model with increasing dimension d and fixed number of particles
N = 500 (this is the same as the number of ensemble members in
the EnKF). We have run 1000 independent Monte Carlo trials for this
experiment. Plot a: NMSE versus dimension d. The EnKF attains a

smaller error for lower dimensions, but then it explodes for d > 103,
while the NuPF remains stable. Plot b: Running times×NMSE plot for
the same set of simulations. It can be seen that the overall performance
of the NuPF is better beyond 1K dimensions compared to the EnKF

In a second computer experiment, we compared the NuPF
with the EnKF. Figure 6a shows how the NMSE of the two
algorithms grows as the model dimension d increases and the
number of particles N is kept fixed. In particular, the EnKF
attains a better performance for smaller dimensions (up to
d = 103); however, its NMSE blows up for d > 103 while
the performance of the NuPF remains stable. The running
time of the EnKF was also higher than the running time of
the NuPF in the range of higher dimensions (d ≥ 103).

5.5 Assessment of bias

In this section, we numerically quantify the bias of the pro-
posed algorithm on a low-dimensional linear-Gaussian state-

space model. To assess the bias, we compute the marginal
likelihood estimates given by the BPF and the NuPF. The
reason for this choice is that the BPF is known to yield unbi-
ased estimates of the marginal likelihood (Del Moral 2004).6

The NuPF leads to biased (typically overestimated) marginal
likelihood estimates; hence, it is of interest to compare them
with those of the BPF. To this end, we choose a simple
linear-Gaussian state-space model for which the marginal

6 Note that the estimates of integrals (ϕ, πt ) computed using the
self-normalized importance sampling approximations (i.e., (ϕ, π N

t ) ≈
(ϕ, πt )) produced by the BPF and the NuPF methods are biased and
the bias vanishes with the same rate for both algorithms as a result of
Theorem 1. The same is true for the approximate predictive measures
ξ N

t .
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likelihood can be exactly computed as a by-product of the
Kalman filter. We then compare this exact marginal likeli-
hood to the estimates given by the BPF and the NuPF.

Particularly, we define the state-space model,

x0 ∼ N (x0;μ0, P0), (5.8)

xt |xt−1 ∼ N (xt ; xt−1, Q), (5.9)

yt |xt ∼ N (yt ; Ct xt , R), (5.10)

where (Ct )t≥0 ∈ [0, 1]1×2 is a sequence of observation
matrices where each entry is generated as a realization of
a Bernoulli random variable with p = 0.5, μ0 is a zero
vector and xt ∈ R2 and yt ∈ R. The state variables are
cross-correlated, namely

Q =
[

2.7 −0.48
−0.48 2.05

]

,

and R = 1. We have chosen the prior covariance as P0 = Idx .
We have simulated the system for T = 100 time steps. Given
a fixed observation sequence y1:T , the marginal likelihood for
the system given in Eqs. (5.9)–(5.10) is

Z⋆ = p(y1:T ),

which can be exactly computed via the Kalman filter.
We denote the estimate of Z⋆ given by the BPF and the

NuPF as Z N
BPF and Z N

NuPF, respectively. It is well known that
the BPF estimator is unbiased (Del Moral 2004),

E[Z N
BPF] = Z⋆, (5.11)

where E[·] denotes the expectation with respect to the ran-
domness of the particles. Numerically, this suggests that as
one runs identical, independent Monte Carlo simulations to
obtain {Z

N ,k
BPF}K

k=1 and compute the average

Z̄ N
BPF = 1

K

K
∑

k=1

Z
N ,k
BPF, (5.12)

then it follows from unbiasedness property (5.11) that the
ratio of the average in (5.12) and the true value Z⋆ should
satisfy

Z̄ N
BPF

Z⋆
→ 1 as K → ∞.

Since the marginal likelihood estimates provided by the
NuPF are not unbiased for the original SSM (and tend to
attain higher values), if we define

Z̄ N
NuPF = 1

K

K
∑

k=1

Z
N ,k
NuPF,

then as K → ∞, we should see

Z̄ N
NuPF

Z⋆
→ 1 + ǫ as K → ∞,

for some ǫ > 0.
We have conducted an experiment aimed at quantifying

the bias ǫ > 0 above. In particular, we have run 20,000
independent simulations for the BPF and the NuPF with N =
100, N = 1000 and N = 10, 000. For each value of N , we
have computed running empirical means as in (5.12) and
(6.1) for K = 1, . . . , 20, 000. The variance of Z̄ N

BPF increases
with T ; hence, the estimators for small K display a relatively
large variance and we need K >> 1 to clearly observe the
bias. The NuPF filter performs independent gradient nudging
with step size γ = 0.1.

The results of the experiment are displayed in Fig. 7, which
shows how, as expected, the NuPF overestimates Z⋆. We
can also see how the bias becomes smaller as N increases
(because only and average of

√
N particles are nudged per

time step).

6 Experimental results onmodel inference

In this section, we illustrate the application of the NuPF to
estimate the parameters of a financial time-series model. In
particular, we adopt a stochastic volatility SSM and we aim
at estimating its unknown parameters (and track its state
variables) using the EURUSD log-return data from 2014-
12-31 to 2016-12-31 (obtained from www.quandl.com).
For this task, we apply two recently proposed Monte Carlo
schemes: the nested particle filter (NPF) (Crisan and Miguez
2018) (a purely recursive, particle filter style Monte Carlo
method) and the particle Metropolis–Hastings (pMH) algo-
rithm (Andrieu et al. 2010) (a batch Markov chain Monte
Carlo procedure). In their original forms, both algorithms
use the marginal likelihood estimators given by the BPF to
construct a Monte Carlo approximation of the posterior distri-
bution of the unknown model parameters. Here, we compare
the performance of these algorithms when the marginal like-
lihoods are computed using either the BPF or the proposed
NuPF.

We assume the stochastic volatility SSM (Tsay 2005),

x0 ∼ N

(

μ,
σ 2

v

1 − φ2

)

, (6.1)

xt |xt−1 ∼ N (μ + φ(xt−1 − μ), σ 2
v ), (6.2)

yt |xt ∼ N (0, exp(xt )), (6.3)

where μ ∈ R, σv ∈ R+ and φ ∈ [−1, 1] are fixed
but unknown parameters. The states {xt }1≤t≤T are log-
volatilities, and the observations {yt }1≤t≤T are log-returns.
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Fig. 7 Evolution of the running averages Z̄ N
BPF/Z⋆ (black) and

Z̄ N
NuPF/Z⋆ (red) for K = 1, . . . , 20,000 independent simulations with

N = 100, N = 1000 and N = 10,000 particles for both filters. The
ratio Z̄ N

BPF/Z⋆ for the BPF is unbiased (Del Moral 2004) and hence

converges to 1. The ratio Z̄ N
NuPF/Z⋆ for the NuPF converges to 1 + ǫ,

with ǫ > 0 becoming smaller as N increases, showing that the esti-
mator Z N

NuPF is biased (yet asymptotically unbiased with N → ∞; see
Theorem 1). (Color figure online)

We follow the same procedure as Dahlin and Schön (2015)
to preprocess the observations. Given the historical price
sequence s0, . . . , sT , the log-return at time t is calculated
as

yt = 100 log(st/st−1)

for 1 ≤ t ≤ T . Then, given y1:T , we tackle the joint
Bayesian estimation of x1:T and the unknown parameters
θ = (μ, σv, φ). In the next two subsections, we compare the
conventional BPF and the NuPF as building blocks of the
NPF and the pMH algorithms.

6.1 Nudging the nested particle filter

The NPF in Crisan and Miguez (2018) consists of two layers
of particle filters which are used to jointly approximate the
posterior distributions of the parameters and the states. The
filter in the first layer builds a particle approximation of the
marginal posterior distribution of the parameters. Then, for
each particle in the parameter space, say θ (i), there is an
inner filter that approximates the posterior distribution of
the states conditional on the parameter vector θ (i). The inner
filters are classical particle filters, which are essentially used
to compute the importance weights (marginal likelihoods) of
the particles in the parameter space. In the implementation of
Crisan and Miguez (2018), the inner filters are conventional
BPFs. We have compared this conventional implementation
with an alternative one where the BPFs are replaced by the
NuPFs. For a detailed description of the NPF, see Crisan and
Miguez (2018).

In order to assess the performances of the nudged and
classical versions of the NPF, we compute the model evidence
estimate given by the nested filter by integrating out both the

parameters and the states. In particular, if the set of particles in
the parameter space at time t is {θ (i)

t }K
i=1 and for each particle

θ
(i)
t we have a set of particles in the state space {x

(i, j)
t }N

j=1,
we compute

p̂(y1:T ) =
T

∏

t=1

⎡

⎣
1

K N

K
∑

i=1

N
∑

j=1

gt (x
(i, j)
t )

⎤

⎦ .

The model evidence quantifies the fitness of the stochastic
volatility model for the given dataset; hence, we expect to see
a higher value when a method attains a better performance
(the intuition is that if we have better estimates of the param-
eters and the states, then the model will fit better). For this
experiment, we compute the model evidence for the nudged
NPF before the nudging step, so as to make the comparison
with the conventional algorithm fair.

We have conducted 1000 independent Monte Carlo runs
for each algorithm and computed the model evidence esti-
mates. We have used the same parameters and the same setup
for the two versions of the NPF (nudged and conventional). In
particular, each unknown parameter is jittered independently.
The parameter μ is jittered with a zero-mean Gaussian kernel
variance σ 2

μ = 10−3, the parameter σv is jittered with a trun-
cated Gaussian kernel on (0,∞) with variance σ 2

σv
= 10−4,

and the parameter φ is jittered with a zero-mean truncated
Gaussian kernel on [−1, 1], with variance σ 2

φ = 10−4. We
have chosen a large step size for the nudging step, γ = 4,
and we have used batch nudging with M = ⌊

√
N⌋.

The results in Fig. 8 demonstrate empirically that the use
of the nudging step within the NPF reduces the variance of the
model evidence estimators; hence, it improves the numerical
stability of the NPF.

123



322 Statistics and Computing (2020) 30:305–330

K=10 and N=20 with  = 4

(a)

-620

-600

-580

-560

-540

-520

-500

-480

M
a

rg
in

a
l 
L

o
g

-L
ik

e
lih

o
o

d

K=100 and N=500 with  = 4

(b)

-620

-600

-580

-560

-540

-520

-500

-480

M
a

rg
in

a
l 
L

o
g

-L
ik

e
lih

o
o

d

Nudged NPF NPF Nudged NPF NPF Nudged NPF NPF

K=200 and N=500 with  = 4

(c)

-620

-600

-580

-560

-540

-520

-500

-480

M
a

rg
in

a
l 
L

o
g

-L
ik

e
lih

o
o

d

Fig. 8 Model evidence estimates produced by the nudged NPF and the
conventional NPF with varying computational effort. From a to c, it can
be seen that, as we increase the number of particles in the parameter

space (K ) and the state space (N ), the variances of the estimates are
smaller. The nudged NPF results in much more stable estimates, with
lower variance and fewer extreme values

(a) N (b)001= N (c)005= N = 1000

Fig. 9 The parameter posterior distributions found by the pMH-NuPF and the pMH-BPF for varying N . It can be seen that, as N increases, the
impact of the nudging-induced bias on the posterior distributions vanishes

6.2 Nudging the particle Metropolis–Hastings

The pMH algorithm is a Markov chain Monte Carlo (MCMC)
method for inferring parameters of general SSMs (Andrieu
et al. 2010). The pMH uses PFs as auxiliary devices to esti-
mate parameter likelihoods in a similar way as the NPF uses
them to compute importance weights. In the case of the pMH,
these estimates should be unbiased and they are needed to
determine the acceptance probability for each element of the
Markov chain. For the details of the algorithm, see Andrieu

et al. (2010) (or Dahlin and Schön 2015 for a tutorial-style
introduction). Let us note that the use of NuPF does not lead
to an unbiased estimate of the likelihood with respect to the
assumed SSM. However, as discussed in Sect. 4.3, one can
view the use of nudging in this context as an implementation
of pMH with an implicit dynamical model M1 derived from
the original SSM M0.

We have carried out a computer experiment to compare the
performance of the pMH scheme using either BPFs or NuPFs
to compute acceptance probabilities. The two algorithms are
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Fig. 10 Empirical acceptance rates computed for the pMH running BPF
and the pMH running NuPF. From a, it can be seen that there is a signif-
icant increase in the acceptance rates when the number of particles are

low, e.g., N = 100. From b and c, it can be seen that the pMH-NuPF
is still better for increasing number of particles but the pMH-BPF is
catching up with the performance of the pMH-NuPF

Fig. 11 Empirical
autocorrelation functions
(ACFs) computed for the pMH
-BPF and the pMH-NuPF. From
a–c, it can be seen that using the
NuPF instead of BPF within the
pMH causes faster
autocorrelation decay. These
results are obtained by
averaging ACFs over 1000
Monte Carlo runs
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labeled pMH-BPF and pMH-NuPF, respectively, hereafter.
The parameter priors in the experiment are

p(μ) = N (0, 1), p(σv) = G(2, 0.1),

p(φ) = B(120, 2),

where G(a, θ) denotes the Gamma pdf with shape parameter
a and scale parameter θ andB(α, β)denotes the Beta pdf with
shape parameters (α, β). Unlike Dahlin and Schön (2015),
who use a truncated Gaussian prior centered on 0.95 with a
small variance for φ, we use the Beta pdf, which is defined
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on [0, 1], with mean α/(α + β) = 0.9836, which puts a
significant probability mass on the interval [0.9, 1].

We have compared the pMH-BPF algorithm and the pMH-
NuPF scheme (using a batch nudging procedure withγ = 0.1
and M = ⌊

√
N⌋) by running 1000 independent Monte Carlo

trials. We have computed the marginal likelihood estimates
in the NuPF after the nudging step.

First, in order to illustrate the impact of the nudging on
the parameter posteriors, we have run the pMH-NuPF and
the pMH-BPF and obtained a long Markov chain (2 × 106

iterations) from both algorithms. Figure 9 displays the two-
dimensional marginals of the resulting posterior distribution.
It can be seen from Fig. 9 that the bias of the NuPF yields a
perturbation compared to the posterior distribution approx-
imated with the pMH-BPF. The discrepancy is small but
noticeable for small N (see Fig. 9a for N = 100) and van-
ishes as we increase N (see Fig. 9b, c, for N = 500 and
N = 1000, respectively). We observe that for a moderate
number of particles, such as N = 500 in Fig. 9b, the error in
the posterior distribution due to the bias in the NuPF is very
slight.

Two common figures of merit for MCMC algorithms are
the acceptance rate of the Markov kernel (desirably high)
and the autocorrelation function of the chain (desirably low).
Figure 10 shows the acceptance rates for the pMH-NuPF
and the pMH-BPF algorithms with N = 100, N = 500
and N = 1000 particles in both PFs. It is observed that the
use of nudging leads to noticeably higher acceptance rates,
although the difference becomes smaller as N increases.

Figure 11 displays the average autocorrelation functions
(ACFs) of the chains obtained in the 1000 independent
simulations. We see that the autocorrelation of the chains
produced by the pMH-NuPF method decays more quickly
than the autocorrelation of the chains output by the conven-
tional pMH-BPF, especially for lower values of N . Even for
N = 1000 (which ensures an almost negligible perturbation
of the posterior distribution, as shown in Fig. 9c), there is an
improvement in the ACFs of the parameters φ and σv using
the NuPF. Less correlation can be expected to translate into
better estimates as well for a fixed length of the chain.

7 Conclusions

We have proposed a simple modification of the particle filter
which, according to our computer experiments, can improve
the performance of the algorithm (e.g., when tracking high-
dimensional systems) or enhance its robustness to model
mismatches in the state equation of a SSM. The modifica-
tion of the standard particle filtering scheme consists of an
additional step, which we term nudging, in which a sub-
set of particles are pushed toward regions of the state space
with a higher likelihood. In this way, the state space can be

explored more efficiently while keeping the computational
effort at nearly the same level as in a standard particle filter.
We refer to the new algorithm as the “nudged particle filter”
(NuPF). While, for clarity and simplicity, we have kept the
discussion and the numerical comparisons restricted to the
modification (nudging) of the conventional BPF, the new step
can be naturally incorporated to most known particle filtering
methods.

We have presented a basic analysis of the NuPF which
indicates that the algorithm converges (in L p) with the same
error rate as the standard particle filter. In addition, we have
also provided a simple reinterpretation of nudging that illus-
trates why the NuPF tends to outperform the BPF when there
is some mismatch in the state equation of the SSM. To be
specific, we have shown that, given a fixed sequence of obser-
vations, the NuPF amounts to a standard PF for a modified
dynamical model which empirically leads to a higher model
evidence (i.e., a higher likelihood) compared to the original
SSM.

The analytical results have been supplemented with a
number of computer experiments, with both synthetic and
real data. In the latter case, we have tackled the fitting
of a stochastic volatility SSM using Bayesian methods for
model inference and a time-series dataset consisting of euro-
to-US-dollar exchange rates over a period of two years.
We have shown how different figures of merit (model evi-
dence, acceptance probabilities or autocorrelation functions)
improve when using the NuPF, instead of a standard BPF,
in order to implement a nested particle filter (Crisan and
Miguez 2018) and a particle Metropolis–Hastings (Andrieu
et al. 2010) algorithm.

Since the nudging step is fairly general, it can be used
with a wide range of differentiable or non-differentiable like-
lihoods. Besides, the new operation does not require any
modification of the well-defined steps of the PF so it can be
plugged into a variety of common particle filtering methods.
Therefore, it can be adopted by a practitioner with hardly
any additional effort. In particular, gradient-nudging steps
(for differentiable log-likelihoods) can be implemented using
automatic differentiation tools, currently available in many
software packages, hence relieving the user from explicitly
calculating the gradient of the likelihood.

Similar to the resampling step, which is routinely employed
for numerical stability, we believe the nudging step can
be systematically used for improving the performance and
robustness of particle filters.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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A Proof of Theorem 1

In order to prove Theorem 1, we need a preliminary lemma,
which can be found, e.g., in Crisan (2001).

Lemma 2 Let α, β, ᾱ, β̄ ∈ P(X) be probability measures

and f , h ∈ B(X) be two real bounded functions on X such

that (h, ᾱ) > 0 and (h, β̄) > 0. If the identities,

( f , α) = ( f h, ᾱ)

(h, ᾱ)
and ( f , β) = ( f h, β̄)

(h, β̄)

hold, then we have,

|( f , α) − ( f , β)| ≤ 1

(h, ᾱ)

∣
∣( f h, ᾱ) − ( f h, β̄)

∣
∣

+ ‖ f ‖∞
(h, ᾱ)

∣
∣(h, ᾱ) − (h, β̄)

∣
∣ .

Now we proceed with the proof of Theorem 1. We follow
the same kind of induction argument as in, e.g., Del Moral
and Miclo (2000) and Crisan and Miguez (2018).

For the base case, i.e., t = 0, we draw x
(i)
0 , i = 1, . . . , N ,

i.i.d. from π0 and obtain,

‖(ϕ, π N
0 ) − (ϕ, π0)‖p

= E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N
∑

i=1

(

ϕ(x
(i)
0 ) − (ϕ, π0)

)
∣
∣
∣
∣
∣

p
⎤

⎦

1/p

.

We define S
(i)
0 = ϕ(x

(i)
0 ) − (ϕ, π0) and note that S

(i)
0 , i =

1, . . . , N are zero-mean and independent random variables.
Using the Marcinkiewicz–Zygmund inequality (Shiryaev
1996), we arrive at,

E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N
∑

i=1

S
(i)
0

∣
∣
∣
∣
∣

p
⎤

⎦ ≤ B0,p

N p
E

⎡

⎣

(
N

∑

i=1

∣
∣
∣S

(i)
0

∣
∣
∣

2
) p

2
⎤

⎦

≤ B0,p

N p

(

N4‖ϕ‖2
∞

) p
2

,

where B0,p is a constant independent of N and the last

inequality follows from
∣
∣
∣S

(i)
0

∣
∣
∣ =

∣
∣
∣ϕ(x

(i)
0 ) − (ϕ, π0)

∣
∣
∣ ≤

2‖ϕ‖∞. Therefore, we have proved that Eq. (C.6) holds for
the base case,

‖(ϕ, π N
0 ) − (ϕ, π0)‖p ≤ c0,p‖ϕ‖∞√

N
,

where c0,p = 2B
1/p
0,p is a constant independent of N .

The induction hypothesis is that, at time t − 1,

∥
∥
∥(ϕ, π N

t−1) − (ϕ, πt−1)

∥
∥
∥

p
≤ ct−1,p‖ϕ‖∞√

N

for some constant ct−1,p < ∞ independent of N .
We start analyzing the predictive measure ξ N

t ,

ξ N
t (dx) = 1

N

N
∑

i=1

δ
x̄

(i)
t

(dx),

where x̄
(i)
t , i = 1, . . . , N are the particles sampled from

the transition kernels τ
x

(i)
t−1

t (dxt ) � τt (dxt |x (i)
t−1). Since we

have ξt = τtπt−1 (see Sect. 1.4), a simple triangle inequality
yields,

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, ξt )

∥
∥
∥

p
=

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, τtπt−1)

∥
∥
∥

p

≤
∥
∥
∥(ϕ, ξ N

t ) − (ϕ, τtπ
N
t−1)

∥
∥
∥

p

+
∥
∥
∥(ϕ, τtπ

N
t−1) − (ϕ, τtπt−1)

∥
∥
∥

p
,

(A.1)

where,

(

ϕ, τtπ
N
t−1

)

= 1

N

N
∑

i=1

(

ϕ, τ
x

(i)
t−1

t

)

. (A.2)

For the sampling step, we aim at bounding the two terms on
the rhs of (A.1).

For the first term, we introduce the σ -algebra generated
by the random variables x

(i)
0:t and x̄

(i)
1:t , i = 1, . . . , N , denoted

Ft = σ(x
(i)
0:t , x̄

(i)
1:t , i = 1, . . . , N ). Since π N

t−1 is measurable
w.r.t. Ft−1, we can write

E[(ϕ, ξ N
t )|Ft−1] = 1

N

N
∑

i=1

(

ϕ, τ
x

(i)
t−1

t

)

=
(

ϕ, τtπ
N
t−1

)

.

Next, we define the random variables S
(i)
t = ϕ(x̄

(i)
t ) −

(ϕ, τtπ
N
t−1) and note that, conditional on Ft−1, S

(i)
t , i =

1, . . . , N are zero mean and independent. Then, the approx-
imation error of ξ N

t can be written as,

E[
∣
∣
∣(ϕ, ξ N

t ) − (ϕ, τtπ
N
t−1)

∣
∣
∣

p

|Ft−1]

= E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N
∑

i=1

S
(i)
t

∣
∣
∣
∣
∣

p ∣
∣
∣
∣
Ft−1

⎤

⎦ .

Resorting again to the Marcinkiewicz–Zygmund inequality,
we can write,

E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N
∑

i=1

S
(i)
t

∣
∣
∣
∣
∣

p ∣
∣
∣
∣
Ft−1

⎤

⎦
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≤ Bt,p

N p
E

⎡

⎣

(
N

∑

i=1

∣
∣
∣S

(i)
t

∣
∣
∣

2
) p

2 ∣
∣
∣
∣
Ft−1

⎤

⎦ ,

where Bt,p < ∞ is a constant independent of N . Moreover,

since
∣
∣
∣S

(i)
t

∣
∣
∣ =

∣
∣
∣ϕ(x̄

(i)
t ) − (ϕ, τtπ

N
t−1)

∣
∣
∣ ≤ 2‖ϕ‖∞, we have,

E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N
∑

i=1

S
(i)
t

∣
∣
∣
∣
∣

p ∣
∣
∣
∣
Ft−1

⎤

⎦

≤ Bt,p

N p

(

N4‖ϕ‖2
∞

) p
2 = Bt,p

N p/2 2p‖ϕ‖p
∞.

If we take unconditional expectations on both sides of the
equation above, then we arrive at

‖(ϕ, ξ N
t ) − (ϕ, τtπ

N
t−1)‖p ≤ c1,p‖ϕ‖∞√

N
, (A.3)

where c1,p = 2B
1/p
t,p < ∞ is a constant independent of N .

To handle the second term in the rhs of (A.1), we define
(ϕ̄, πt−1) = (ϕ, τtπt−1) where ϕ̄ ∈ B(X) and given by,

ϕ̄(x) = (ϕ, τ x
t ).

We also write (ϕ̄, π N
t−1) = (ϕ, τtπ

N
t−1). Since ‖ϕ̄‖∞ ≤

‖ϕ‖∞, the induction hypothesis leads,

‖(ϕ, τtπ
N
t−1) − (ϕ, τtπt−1)‖p = ‖(ϕ̄, π N

t−1) − (ϕ̄, πt−1)‖p

≤ ct−1,p‖ϕ‖∞√
N

, (A.4)

where ct−1,p is a constant independent of N . Combining
(A.1) and (A.4) yields,

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, ξt )

∥
∥
∥

p
≤ c1,t,p‖ϕ‖∞√

N
(A.5)

where c1,t,p = ct−1,p + c1,p < ∞ is a constant independent
of N .

Next, we have to bound the error between the predictive
measure ξ N

t and the nudged measure ξ̃ N
t . As the sets of sam-

ples {x̄
(i)
t }N

i=1, used to construct ξ N
t , and {x̃

(i)
t }N

i=1, used to
construct ξ̃ N

t as shown in (4.2), differ exactly in M parti-

cles, namely x̃
( j1)
t , . . . , x̃

( jM )
t , where { j1, . . . , jM } = It , we

readily obtain the relationship

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, ξ̃ N
t )

∥
∥
∥

p
=

∥
∥
∥
∥
∥
∥

1

N

∑

i∈It

(

ϕ(x̄
(i)
t ) − ϕ(x̃

(i)
t )

)

∥
∥
∥
∥
∥
∥

p

≤ 2‖ϕ‖∞M

N

≤ 2‖ϕ‖∞√
N

(A.6)

where the first inequality holds trivially (since |ϕ(x) −
ϕ(x ′)| ≤ 2‖ϕ‖∞ for every (x, x ′) ∈ X2) and the second
inequality follows from the assumption M ≤

√
N . Combin-

ing (A.5) and (C.8), we arrive at

∥
∥
∥(ϕ, ξt ) − (ϕ, ξ̃ N

t )

∥
∥
∥

p
≤ c̃1,t‖ϕ‖∞√

N
, (A.7)

where the constant c̃1,t,p = 2 + c1,t,p < ∞ is independent
of N .

Next, we aim at bounding ‖(ϕ, πt ) − (ϕ, π̃ N
t )‖p using

(A.7). We note that, after the computation of weights, we
define the weighted random measure,

π̃ N
t =

N
∑

i=1

w
(i)
t δ

x̃
(i)
t

where w
(i)
t = gt (x̃

(i)
t )

∑N
i=1 gt (x̃

(i)
t )

.

The integrals computed with respect to the weighted measure
π̃ N

t takes the form,

(ϕ, π̃ N
t ) = (ϕgt , ξ̃

N )

(gt , ξ̃
N
t )

. (A.8)

On the other hand, using Bayes theorem, integrals with
respect to the optimal filter can also be written in a similar
form as,

(ϕ, πt ) = (ϕgt , ξt )

(gt , ξt )
. (A.9)

Using Lemma 2 together with (A.8) and (A.9), we can readily
obtain,

∣
∣
∣(ϕ, π̃ N

t ) − (ϕ, πt )

∣
∣
∣ ≤ 1

(gt , ξt )

(

‖ϕ‖∞
∣
∣
∣(gt , ξt ) − (gt , ξ

N
t )

∣
∣
∣

+
∣
∣
∣(ϕgt , ξt ) − (ϕgt , ξ

N
t )

∣
∣
∣

)

, (A.10)

where (gt , ξt ) > 0 by assumption. Using Minkowski’s
inequality, we can deduce from (A.10) that

∥
∥
∥(ϕ, π̃ N

t ) − (ϕ, πt )

∥
∥
∥

p
≤ 1

(gt , ξt )

(

‖ϕ‖∞
∥
∥
∥(gt , ξt ) − (gt , ξ

N
t )

∥
∥
∥

p

+
∥
∥
∥(ϕgt , ξt ) − (ϕgt , ξ

N
t )

∥
∥
∥

p

)

. (A.11)

Noting that we have ‖ϕgt‖∞ ≤ ‖ϕ‖∞‖gt‖∞, (A.7) and
(A.11) together yield,

∥
∥
∥(ϕ, πt ) − (ϕ, π̃ N

t )

∥
∥
∥

p
≤ c2,t,p‖ϕ‖∞√

N
, (A.12)
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where

c2,t,p = 2‖gt‖∞c̃1,t,p

(gt , ξt )
< ∞

is a finite constant independent of N (the denominator is
positive and the numerator is finite as a consequence of
Assumption 1).

Finally, the analysis of the multinomial resampling step
is also standard. We denote the resampled measure as π N

t .
Since the random variables which are used to construct π N

t

are sampled i.i.d from π̃ N
t , the argument for the base case

can also be applied here to yield,

∥
∥
∥(ϕ, π̃ N

t ) − (ϕ, π N
t )

∥
∥
∥

p
≤ c3,t,p‖ϕ‖∞√

N
, (A.13)

where c3,t,p < ∞ is a constant independent of N . Combining
bounds (A.12) and (A.13) to obtain inequality (C.6), with
ct,p = c2,t,p + c3,t,p < ∞, concludes the proof.

B Proof of Lemma 1

Since x̃
(i)
t = x̄

(i)
t + γt∇xt gt (x̄

(i)
t ), we readily obtain the rela-

tionships

∣
∣
∣ϕ(x̃

(i)
t ) − ϕ(x̄

(i)
t )

∣
∣
∣ ≤ L

∥
∥
∥x̃

(i)
t − x̄

(i)
t

∥
∥
∥

2

= Lγt

∥
∥
∥∇xt g(x̄

(i)
t )

∥
∥
∥

2

≤ γt LG t (B.1)

where the first inequality follows from the Lipschitz assump-
tion, the identity is due to the implementation of the
gradient-nudging step and the second inequality follows
from Assumption 2. Then we bound the error ‖(ϕ, ξ N

t ) −
(ϕ, ξ̃ N

t )‖p as

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, ξ̃ N
t )

∥
∥
∥

p
=

∥
∥
∥
∥
∥
∥

1

N

∑

i∈It

(

ϕ(x̄
(i)
t ) − ϕ(x̃

(i)
t )

)

∥
∥
∥
∥
∥
∥

p

≤ 1

N

∑

i∈I

∥
∥
∥ϕ(x̄

(i)
t ) − ϕ(x̃

(i)
t )

∥
∥
∥

p

≤ M

N
γt LG t (B.2)

where the identity is a consequence of the construction of It

and we apply Minkowski’s inequality, (B.1) and the assump-
tion |It | = M to obtain (B.2). However, we have assumed
that sup1≤t≤T γt M ≤

√
N , hence

∥
∥
∥(ϕ, ξ N

t ) − (ϕ, ξ̃ N
t )

∥
∥
∥

p
≤ LG t√

N
.

C Nudging scheme that increases themodel
evidence

Consider the SSM M0 = {τ0, τt , gt } where the likelihoods
(gt )t≥1 and the Markov kernels (τt )t≥1 satisfy the regularity
assumptions below.

Assumption 3 The functions log gt (x), t = 1, 2, . . ., are dif-
ferentiable and the gradients ∇ log gt (x) are Lipschitz with
constant Lg

t < ∞. To be specific,

‖∇ log gt (x) − ∇ log gt (x ′)‖2 ≤ L
g
t ‖x − x ′‖2.

Assumption 4 The Markov kernels τt (dx |x ′) are absolutely
continuous with respect to the Lebesgue measure; hence,
there are conditional pdf’s mt (x |x ′) such that τt (dx |x ′) =
mt (x |x ′)dx for any x ′ ∈ X. Moreover, the log-pdf’s
log mt (x |x ′) are uniformly Lipschitz in x ′, i.e., there are non-
negative bounded functions L t (x) such that

| log mt (x |x ′) − log mt (x |x ′′)| ≤ L t (x)‖x ′ − x ′′‖2

and Lτ
t = supx∈X L t (x) < ∞.

For any subset A ⊆ X, let us introduce the indicator func-
tion

1A(x) :=
{

1, if x ∈ A,

0, otherwise.

We construct the nudging operator α
yt
t : X �→ X of the

form

α
yt
t (x) := (x + γt∇ log gt (x)) 1Syt

(x) + x1Syt
(x), (C.1)

where Syt :=
{

x ∈ X : ‖∇ log gt (xt )‖ ≥ 2Lτ
t

}

(recall that
gt (x) = gt (yt |x)), Syt = X\Syt is the complement of
the set Syt and γt > 0 is small enough to guarantee that
gt (x + γt∇ log gt (x)) ≥ gt (x). Intuitively, this nudging
scheme only takes a gradient step when the slope of the
likelihood gt is sufficient to insure an improvement of the
likelihood with a small move of the state x .

Assume, for simplicity, that we apply the nudging operator
(C.1) to every particle at every time step. The recursive step
of the resulting NuPF can be outlined as follows:

1. For i = 1, . . . , N ,

(a) Draw x̄
(i)
t ∼ τt (dxt |x (i)

t−1),

(b) Nudge every particle, i.e., x̃
(i)
t = α

yt
t (x̄

(i)
t ),

(c) And compute weights w
(i)
t ∝ gt (x̃

(i)
t ).

2. Resample to obtain {x
(i)
t }i=1,...,N .
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The asymptotic convergence of this algorithm can be insured
whenever the step sizes γt are selected small enough to guar-
antee that supx ‖x −α

yt
t (x)‖ ≤ 1√

N
(this is a consequence of

Corollary 1 in Crisan and Miguez 2018). The implicit model
for this NuPF is M1 = {τ0, τ̃t , gt } where the transition ker-
nel is

τ̃
yt
t (dxt |xt−1) =

∫

δα
yt
t (x̄)(dxt )τt (dx̄ |xt−1). (C.2)

Note that for any integrable function f : X �→ X we have

( f , τ̃
yt
t )(xt−1) =

∫ ∫

f (xt )δα
yt
t (x̄)(dxt )τt (dx̄ |xt−1)

=
∫

( f ◦ α
yt
t )(x̄)τt (dx̄ |xt−1)

= ( f ◦ α
yt
t , τt )(xt−1), (C.3)

where ( f ◦α
yt
t )(x) = f (α

yt
t (x)) is the composition of f and

α
yt
t . In particular, we note that (gt , τ̃

yt
t )(x) = (gt ◦α

yt
t , τt )(x)

and (1X, τ̃
yt
t )(x) =

∫

1X(α
yt
t (x))τt (dx̄ |x) = 1 because α

yt
t

is X �→ X and, therefore, 1X ◦ α
gt
t = 1.

Let βt (x) := x + γt∇ log gt (x). Assumptions 3 and 4
entail the following result.

Lemma 3 If Assumptions 3 and 4 hold and the inequalities

γt ≤ 1

L
g
t

and ‖∇ log gt (xt )‖2 ≥ 2Lτ
t ,

are satisfied, then

(gt ◦ βt )(xt )

gt (xt )
≥ sup

xt+1∈X

mt+1(xt+1|xt )

mt+1(xt+1|βt (xt ))
. (C.4)

Proof Assumption 3 implies that, for any pair x, x ′ ∈ X,

log gt (x) ≥ log gt (x ′) +
〈

∇ log gt (x ′), x − x ′〉 − L
g
t

2
‖x − x ′‖2

2

(C.5)

see, e.g., Bubeck et al. (2015, Lemma 3.4) for a proof. We can
readily use (C.5) to obtain a lower bound for log gt (βt (xt )).
Indeed,

log gt (βt (xt )) ≥ log gt (xt ) + 〈∇ log gt (xt ), γt∇ log gt (xt )〉

−L
g
t γ 2

t

2
‖∇ log gt (xt )‖2

2

= log gt (xt ) +
(

γt − L
g
t γ 2

t

2

)

‖∇ log gt (xt )‖2
2

≥ log gt (xt ) + γt

2
‖∇ log gt (xt )‖2

2 (C.6)

where the last inequality follows from the assumption γt ≤
1
L

g
t

. In turn, (C.6) implies

gt (βt (xt ))

gt (xt )
≥ exp

{γt

2
‖∇ log gt (xt )‖2

2

}

. (C.7)

We now turn to the problem of upper bounding the ratio
of transition pdf’s. From Assumption 4 and the definition of
βt (xt ), we readily obtain that

log mt+1(xt+1|xt ) − log mt+1(xt+1|βt (xt ))

≤ Lτ
t γt‖∇ log gt (xt )‖2 (C.8)

holds for any xt+1 ∈ X. Taking exponentials on both sides of
(C.8) we arrive at

sup
xt+1∈X

mt+1(xt+1|xt )

mt+1(xt+1|βt (xt ))
≤ exp

{

Lτ
t γt‖∇ log gt (xt )‖2

}

.

(C.9)

If ‖∇ log gt (xt )‖2 = 0 then expressions (C.7) and (C.9)
together readily yield desired relationship (C.4).

If‖∇ log gt (xt )‖2 > 0, then the assumption‖∇ log gt (xt )‖
≥ 2Lτ

t implies that

γt

2
‖∇ log gt (xt )‖2

2 ≥ γtL
τ
t ‖∇ log gt (xt )‖2

which, together with (C.7) and (C.9), again yield desired
inequality (C.4). ⊓⊔

Finally, we prove that the evidence in favor of M1 is
greater than the evidence in favor of M0.

Proposition 1 Let the nudging scheme be defined as in (C.1).
If Assumptions 3 and 4 hold and the inequality

γt ≤ 1

L
g
t

is satisfied for t = 1, . . . , T < ∞, then p(y1:T |M1) ≥
p(y1:T |M0).

Proof From the definition of τ̃t in (C.2) and ensuing relation-
ship (C.3), the evidence of model M1 can be readily written
down as

p(y1:T |M1) =
∫

· · ·
∫

gT (α
yT
t (xT )) ×

×
T −1
∏

t=1

mt+1(xt+1|αyt
t (xt ))gt (α

yt
t (xt ))

×m1(x1|x0)m0(x0)dx0 · · · dxT . (C.10)
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It is apparent that gT (α
yT

T (xT )) ≥ gT (xT ) for every xT .
Moreover, for any xt ∈ X, if xt ∈ Syt then

‖∇ log gt (xt )‖ ≥ 2Lτ
t and α

yt
t (xt ) = βt (xt );

hence, we can apply Lemma 3, which yields

mt+1(xt+1|αyt
t (xt ))gt (α

yt
t (xt )) ≥ mt+1(xt+1|xt )gt (xt )

for every xt+1. Alternatively, if xt /∈ Syt , then α
yt
t (xt ) = xt

and, trivially,

mt+1(xt+1|αyt
t (xt ))gt (α

yt
t (xt )) = mt+1(xt+1|xt )gt (xt ).

Therefore,

p(y1:T |M1) ≥
∫

· · ·
∫

gT (xT )

T −1
∏

t=1

mt+1(xt+1|xt )gt (xt )

× m1(x1|x0)m0(x0)dx0 · · · dxT

= p(y1:T |M0).

⊓⊔
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