Null controllability of the structurally damped wave equation with moving point control

Lionel Rosier Université Henri Poincaré Nancy 1

BCAM Bilbao, 04/11/2011

Outline

- Control of the structurally damped wave equation with moving point control
- 2. Control of the BBM equation with moving point control
- 3. Unique continuation property for BBM

Joint works with

- Philippe Martin (Ecole des Mines, Paris)

Bing-Yu Zhang (University of Cincinnati)

- Pierre Rouchon (Ecole des Mines, Paris)

Wave equation with structural damping

$$y_{tt} - y_{xx} - \varepsilon y_{txx} = 0$$

$$y(0, t) = y(1, t) = 0$$

 $\varepsilon > 0$ strength of the structural (or internal) damping

▶ Spectrum: $\lambda_k^{\pm} = k^2 \pi^2 \varepsilon (-1 \pm \sqrt{1 - 4k^{-2}\pi^{-2}\varepsilon^{-2}})/2, \ k \in \mathbb{Z}$

$$\lambda_k^+ \sim -\varepsilon^{-1}, \qquad \lambda_k^- \sim -k^2 \pi^2 \varepsilon$$

- Accumulation point in the spectrum: no spectral controllability, but approximate controllability (LR-P.
- Rouchon '07)
- Phenomenon already noticed by

S. Micu '01 (linearized BBM)

- ▶ **D. Russell '85** (Beam with structural damping)
 - G. Leugering '86 (viscoelasticity)

Moving control

- Control whose support (a point, an interval) is moving; Introduced by J.-L. Lions '92
- ▶ Wave eq.: Lions '92, Khapalov '95, Castro (preprint)
- ► Heat eq.: Khapalov '01, Castro-Zuazua '05
- Here, we are concerned with

$$y_{tt} - y_{xx} - y_{txx} = b(x + ct)h(x, t)$$

 $x \in \mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z}) \sim [0, 2\pi)$

where b denotes δ_0 , or $d\delta_0/dx$, or $b(\cdot) \in L^{\infty}(\mathbb{T})$, and $c \in \mathbb{R}$ is the (constant) velocity.

Control problem in a moving frame

Pick c = -1 for simplicity, and set v(x, t) = y(x + t, t). Then

$$y_{tt} - y_{xx} - y_{txx} = b(x - t)h(x, t)$$

 $y(x, 0) = y_0(x), y_t(x, 0) = \xi_0(x)$

is transformed into

$$v_{tt} - 2v_{xt} - v_{txx} + v_{xxx} = b(x)h(x+t,t)$$

 $v(x,0) = y_0(x), \ v_t(x,0) = y_0'(x) + \xi_0(x)$

The BBM term y_{txx} has generated the KdV term v_{xxx} !!

"New" spectrum

$$\lambda_k^{\pm} = (-(k^2 - 2ik) \pm \sqrt{k^4 - 4k^2}))/2$$

- $\lambda_k^+ = -1 + ik + O(k^{-2})$ hyperbolic part
- $\lambda_k^- = -k^2 + 1 + ik + O(k^{-2})$ parabolic part
- $ho_0^\pm = 0, \; \lambda_2^\pm = -2 + 2i, \; \lambda_{-2}^\pm = -2 2i \;\;\;\;$ dble eigenv.

We expect at most a null controllability in large time

Main results (1)

Thm (P. Martin - LR - P. Rouchon)

Let $\omega \subset \mathbb{T}$ be any nonempty open set, and $T > 2\pi$. Then any $(y_0, \xi_0) \in H^{s+2}(\mathbb{T}) \times H^s(\mathbb{T})$ with s > 15/2, there exists a control $h \in L^2(\mathbb{T} \times (0, T))$ s.t. the solution y of

$$y_{tt} - y_{xx} - y_{txx} = h(x, t) \mathbf{1}_{\omega}(x - t)$$

 $(y, y_t)_{|t=0} = (y_0, \xi_0)$

satisfies $(y, y_t)_{|t=T} = (0, 0)$.

Main results (2)

Thm (P. Martin - LR - P. Rouchon)

Let $T > 2\pi$. Then for any $(y_0, \xi_0) \in H^{s+2}(\mathbb{T}) \times H^s(\mathbb{T})$ with s > 9/2, there exists a control $h \in L^2(0, T)$ s.t. the solution y of

$$y_{tt} - y_{xx} - y_{txx} = h(t)\delta_{x=t}$$

 $(y, y_t)_{|t=0} = (y_0, \xi_0)$

satisfies
$$y(T) - [y(T)] = 0$$
, $y_t(T) = 0$. $[y] = (2\pi)^{-1} \int_{\mathbb{T}} y(x) dx$

Sketch of the proof

- We reduce the problem to a moment problem (as in Fattorini-Russell '71).
- For the first result (h = h(x, t)), we first control to 0 the means of y and y_t in small time, and next use a control $h(x, t) = b(x)\tilde{h}(t)$, where the "controller" b takes the form

$$b(x) = \mathbf{1}_{(a,a+\sigma\pi)}(x) - \mathbf{1}_{(a+\sigma\pi,a+2\sigma\pi)}(x)$$

with σ a quadratic irrational number, so that

$$\hat{b}_0 = 0, \qquad |\hat{b}_k| > C/|k|^3 \text{ for } k \neq 0$$

Sketch of the proof (cont.)

▶ Two families $\{f_k\}$ and $\{g_k\}$ are said to be **biorthogonal** in $L^2(0,T)$ if we have

$$\int_0^T f_k(t) \overline{g_l(t)} dt = \delta_k^l \qquad \forall k, l$$

We need to construct a biorthogonal family to the family of functions

$$\left(e^{\lambda_k^+t}\right)_{k\in\mathbb{Z}}\cup\left(e^{\lambda_k^-t}\right)_{k\in\mathbb{Z}\setminus\{0,\pm2\}}\cup\{\textit{te}^{\lambda_2t},\;\textit{te}^{\lambda_{-2}t}\}$$

with $\lambda_k^\pm=(-(k^2-2ik)\pm\sqrt{k^4-4k^2})/2$ $\lambda_k^+=\lambda_k^-$ for $k=0,\pm 2$ and to estimate carefully the L^2 -norm of each function of the biorthogonal family

Step 1. Estimation of a canonical product

We need to estimate the canonical product

$$P(z) = z(1 - \frac{z}{i\lambda_2})(1 - \frac{z}{i\lambda_{-2}}) \prod_{k \in \mathbb{Z} \setminus \{0, \pm 2\}} (1 - \frac{z}{i\lambda_k^+}) \prod_{k \in \mathbb{Z} \setminus \{0, \pm 2\}} (1 - \frac{z}{i\lambda_k^-})$$

We show that P is an entire function of exponential type at most π, with

$$|P(x)| \lesssim (1+|x|)^{-3}e^{\sqrt{2}\pi\sqrt{|x|}}, x \in \mathbb{R}$$

$$|P'(i\lambda_k^+)| \gtrsim |k|^{-3}e^{\sqrt{2}\pi\sqrt{|k|}}, x \in \mathbb{Z} \setminus \{0, \pm 2\}$$

$$|P'(i\lambda_k^-)| \gtrsim |k|^{-7}e^{\pi|k|^2}, x \in \mathbb{Z} \setminus \{0, \pm 2\}$$

To do that, we use the theory of functions of type sine (Levin)

Functions of type sine

- An entire function f(z) of exponential type π is of **type sine** if
 - its zeros are separated: $|\mu_k \mu_l| > const$

•
$$C^{-1}e^{\pi|y|} \le |f(x+iy)| \le Ce^{\pi|y|}$$
 $|y| > H, x$

► From of a result of **Levin**: If $\mu_k = k + d_k$ with $d_0 = 0$, $d_k = d + O(k^{-1})$ ($d \in \mathbb{C}$) and the μ_k are pairwise \neq , then

$$f(z) = z \prod_{k \in \mathbb{Z}^*} (1 - \frac{z}{\mu_k})$$

is a function of type sine

Step 2: construction of a "good" multiplier

▶ If a canonical product P with roots $i\lambda_k$ is (say) bounded on the real axis, a biorthogonal family to the $e^{\lambda_k t}$'s is obtained by taking the inverse Fourier transform of the functions

$$\frac{P(z)}{P'(i\lambda_k)(z-i\lambda_k)}$$

► Here, we have to multiply P by an entire function m(z) of exponential type to "balance" P on the real axis; namely, s.t.

$$|m(x)| \leq C(1+|x|)e^{-\sqrt{2}\pi\sqrt{|x|}}$$

and with "almost" the same behavior on lines Im z = const

Following **Glass '10**, we use **Beurling-Malliavin** multiplier obtained by atomization of the measure $d\mu(t)$, where $\mu(t) = \mathbf{1}_{(B,\infty)}(at - b\sqrt{t})$, $B = (b/a)^2$, $a = T/(2\pi) - 1$, $b = \sqrt{2}$:

$$m(z) = \exp \int_0^\infty \log \left(1 - \frac{(z - i)^2}{t^2}\right) d[\mu(t)]$$

Step 3: Conclusion

- We construct the biorthogonal family by taking the inverse Fourier transform of some functions involving P and m. Invoque Paley-Wiener and Plancherel to get the required properties.
- The moment problem is solved explicitly, the control being expressed as a series of functions in the biorthogonal family.

II. The regularized long wave or BBM equation

$$u_t - u_{txx} + u_x + uu_x = 0, \qquad x \in \mathbb{R}, \ t \in \mathbb{R}$$

Introduced by Benjamin, Bona, Mahony in 1972 as an alternative to Korteweg-de Vries (KdV) equation

$$u_t + u_{xxx} + u_x + uu_x = 0, \qquad x \in \mathbb{R}, \ t \in \mathbb{R}$$

for unidirectional propagation of water waves in channels

- Nonlocal form: $u_t = -A(u + u^2/2)$ where $A = (1 \partial_x^2)^{-1} \partial_x$ (bounded in each H^s)
- ▶ GWP in $H^1(\mathbb{R})$ (Benjamin-Bona-Mahony '72)
 - ▶ GWP in $L^2(\mathbb{R})$ and ill-posed in $H^s(\mathbb{R})$ for s < 0 (Bona-Tzvetkov '09)
 - GWP in $L^2(\mathbb{T})$ (**Roumégoux '10**)

BBM compared to KdV

Properties	KdV	BBM
Invariants	infinity	3
Integrability	Yes	No
Smoothing effect	in space	in time
GWP in $H^s(\mathbb{R})$	s > -3/4	$s \geq 0$
Numerics	Hard	Easy
Controllability of	Exact	Approximate
linearized eq. in $L^2(\mathbb{T})$		No spectral controllability

Control of BBM: some references

Linearized BBM:

$$u_t - u_{txx} + u_x = 0$$

- ➤ S. Micu '01: Cost of the control in the approximate controllability
- X. Zhang, E. Zuazua '03: weak stabilization
- N. Adames, H. Leiva, J. Sanchez '08: approximate controllability for $u_t u_{txx} + au_{xx} = 0$
- N. A. Larkin, M. P. Vishnevskii '08: weak stabilization for $u_t u_{txx} + uu_x = 0$
- ▶ Spectrum (for $x \in \mathbb{T}$): $\lambda_k = -ik/(k^2 + 1) \to 0$ as $k \to \infty$

Control problem in a moving frame

Pick c = -1 for simplicity, and set v(x, t) = u(x + t, t). Then

$$u_t - u_{txx} + u_x + uu_x = b(x - t)h(x, t)$$

 $u(x, 0) = u_0(x)$

is transformed into the following KdV-BBM eq.

$$v_t - v_{txx} + v_{xxx} + vv_x = b(x)h(x+t,t)$$

$$v(x,0) = u_0(x).$$

The BBM term u_{txx} has generated the KdV term v_{xxx} !! Spectrum: $\lambda_k = ik^3/(k^2+1)$; spectral gap!!

Moving control for BBM: exact controllability

Thm. (LR - B.-Y. Zhang)

Let $b\in C^\infty(\mathbb{T}),\,b\neq 0$, and $T>2\pi.$ Then there exists $\delta>0$ such that for all $u_0,u_T\in H^1(\mathbb{T})$ with $||u_0||_{H^1}+||u_T||_{H^1}<\delta$, there exists a control $h\in L^2(0,T;H^{-1}(\mathbb{T}))$ driving the sol. u of

$$u_t - u_{txx} + u_x + uu_x = b(x-t)h(x,t)$$

from u_0 at t = 0 to u_T at t = T.

Moving control for BBM: exp. stabilization

Thm. (LR - B.-Y. Zhang)

Let $b \in C^{\infty}(\mathbb{T})$, $b \neq 0$. Then there exist some positive numbers δ , C, λ such that for all $u_0 \in H^1(\mathbb{T})$ with $||u_0||_{H^1} < \delta$, the sol. u of

$$u_t - u_{txx} + u_x + uu_x = -b(x-t)(1-\partial_x^2)[b(x-t)u(x,t)]$$

 $u(x,0) = u_0(x)$

satisfies

$$||u(t)||_{H^1} \leq Ce^{-\lambda t}||u_0||_{H^1}$$

Unique Continuation property

Hard! the linearized eq: $u_t - u_{xxt} + u_x = 0$ has for **principal** symbol $p(\xi, \tau) = \xi^2 \tau$. Characteristic lines: t = const and x = const

- M. Davila, G. Perla-Menzala '98 Carleman estimate and UCP for BBM (but results not exact as stated)
- ▶ **S. Micu** '01 UCP for $u_t u_{txx} + u_x = 0$, assuming $u(0, t) = u(1, t) = 0 = \mathbf{u_x}(1, \mathbf{t})$
- ▶ **X. Zhang, E. Zuazua '03** UCP for $u_t u_{txx} + p(x)u_x + q(x)u = 0$, assuming u = 0 on $\omega \times (0, T)$ and some hypotheses about p, q
- ▶ **M. Yamamoto '03** UCP for $u_t u_{txx} + p(x, t)u_x + q(x, t)u = 0$, assuming $u_{|t=0} = 0$ and $u(1, t) = u_x(1, t) = 0$
- Y. Mammeri '09, UCP for KP-BBM-II (based on Constantin's work on Camassa-Holm '05)

Bourgain approach

▶ If u solves $u_t - u_{txx} + u_x + f(u)_x = 0$ on $\mathbb{R} \times (0, T)$ and is supported in $(-L, L) \times (0, T)$, then $\hat{u} = \int_{\mathbb{R}} u e^{-i\xi x} dx$ is an entire function s.t.

$$\hat{u}_t = -i\xi(1+\xi^2)^{-1}(\hat{u}+\widehat{f(u)})$$

- ▶ The analysis at high frequencies ($\xi \to \infty$) works well for KdV, Schrödinger, not for BBM. Here, the problems occur at $\xi = \pm i$.
- However, we can use that method to prove the UCP for
 - $u_t u_{txx} + uu_x = 0$ ("equal width eq.")
 - $u_t u_{txx} + u_x + (u * u)_x = 0$

UCP for BBM

Consider

$$u_t - u_{xxt} + u_x + uu_x = 0, \quad x \in \mathbb{T}$$

 $u(x,0) = u_0(x)$

Thm. (LR-B.Y. Zhang)

Assume that $u_0 \in H^1(\mathbb{T})$ is s.t.

$$\int_{\mathbb{T}} u_0(x) dx \geq 0, \qquad ||u_0||_{L^{\infty}(\mathbb{T})} < 3.$$

If $u \equiv 0$ on $\omega \times (0, T)$, then $u_0 = 0$

Rmq. UCP false for any $u_0 \in L^{\infty}(\mathbb{T})$: Take $u(x,t) = u_0(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \in \omega \\ -2 & \text{otherwise} \end{array} \right.$

Conclusion and future directions of research

- ► The null controllability in large time of the wave eq. with structural damping has been derived in dim. 1.
 - 1. Is it true in less regular spaces?
 - 2. What's about the dimension 2?
- The local exact controllability and exponential stabilization of BBM with moving control have been derived.
 - 1. Can we obtain global results?
 - 2. Global UCP for KdV-BBM?
- Some UCP has been proved for BBM.
 - 1. Can we drop the two assumptions $\int_{\mathbb{T}} u_0 \ge 0$, $||u_0||_{L^{\infty}} < 3$?
 - 2. What sort of stability do we have when applying a (fixed) internal damping?