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NULL CURVES IN MINKOWSKI 3-SPACE

JUN-ICHI INOGUCHI AND SUNGWOOK LEE

(Communicated by H. Hilmi HACISALIHOǦLU)

Abstract. The purpose of this report is to give a self-contained survey on
null curves in Minkowski 3-space. This report consists of two parts. In Part I
of this report, we give some characterizations of null helices in terms of their
associated curves. Part I includes some new results on null curves.

In part II, we give some applications of null curve theory to surface geometry
in Minkowski 3-space and anti de Sitter 3-space.

Introduction

In mathematical study of relativity theory, a lightlike particle is understood as
a future-pointing null geodesic in a spacetime, i.e., a connected and time-oriented
4-dimensional Lorentzian manifold (See eg., [56]). Many of the classical results from
Riemannian geometry have Lorentzian counterparts. However, the presence of null
curves often causes important and interesting differences between Lorentzian and
Riemannian geometry.

One of the purpose of this report is to give a self-contained survey on such
“different aspects” of null curves.

In Part I of this report, we shall give some characterizations of null helices in
terms of their associated curves.

In part II, we shall give some applications of null curve theory to surface geometry
in Minkowski 3-space and anti de Sitter 3-space.

The fundamentals of classical string theory can be summarized as follows: A
closed string is an object γ in the physical space, that is homeomorphic to S1.
Intuitively speaking, a string evolves in time while sweeping a surface Σ, called
world sheet, in spacetime. For physical reasons Σ is supposed to be a timelike
surface. The dynamical equations for a string are defined by a variational principle:
The first area variation of Σ must vanish subject to the condition that the initial
and final configuration of the string are kept fixed. Hence Σ will be a timelike
minimal surface having two spacelike boundary components.
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These observations motivate us to study timelike minimal surfaces in terms of
null curves.

Part II will be devoted to a representation formula of timelike minimal surfaces in
Minkowski 3-space. Moreover we shall also study timelike surface of mean curvature
1 in the anti de Sitter 3-space.

In this report, we do not discuss variational problems (or optimal control prob-
lems) on null curves. For these problems, we refer to the works [28], [51], [52] by
J. D. Grant, E. Musso and L. Nicolodi.

Part I Null curves

1. Framed null curves

1.1. Minkowski 3-space. Let E
3
1 be a Minkowski 3-space with natural Lorentzian

metric 〈·, ·〉 = −dξ2
1 + dξ2

2 + dξ2
3 . A vector v ∈ E

3
1 is said to be

• spacelike if 〈v, v〉 > 0 or v = 0,
• timelike if 〈v, v〉 < 0,
• null if 〈v,v〉 = 0 and v 6= 0.

Null vectors are also called lightlike vectors. A vector v is called a causal vector if
it is not spacelike.

The set Λ of all null vectors:

Λ = {v ∈ E
3
1 \ {0} | 〈v,v〉 = 0 }

is called the lightcone of E
3
1. Analogously, lightcone Λp with vertex p is a quadric

defined by

Λp = {v ∈ E
3
1 \ {p} | 〈v − p, v − p〉 = 0 }.

The unit timelike vector e1 = (1, 0, 0) time-orients E
3
1. With respect to this time-

orientation, the connected component

Λ+ = {v ∈ Λ | 〈v,e1〉 < 0 }

is called the future cone. The another connected component is called the past cone
and denoted by Λ−.

One can easily check that two null vectors p and q are in the same connected
component of Λ if and only if 〈p, q〉 < 0.

Minkowski 3-space has two kinds of quadrics other than lightcone.
The pseudosphere S

2
1(m; r) of radius r > 0 centered at m ∈ E

3
1 is a quadric:

S
2
1(m; r) = {v ∈ E

3
1 | 〈v − m, v − m〉 = r2 }.

With respect to the Lorentzian metric induced from E
3
1, S

2
1(m; r) is a Lorentz 2-

manifold of constant sectional curvature 1/r2. Note that pseudospheres are also
called Lorentz spheres.

The pseudosphere of radius r centered at the origin is simply denoted by S
2
1(r).

In particular, we denote S
2
1 = S

2
1(1). Pseudospheres are called de Sitter 2-spaces in

general relativity.
On the other hand, for r > 0, the quardric

H
2
0(m; r) = {v ∈ E

3
1 | 〈v − m, v − m〉 = −r2 }
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is a Riemannian 2-manifold of constant sectional curvature −1/r2. This quardric
has two connected components

H
2
0(m; r)+ = {v ∈ H

2
0(m; r) | 〈v,e1〉 < 0},

H
2
0(m; r)− = {v ∈ H

2
0(m; r) | 〈v,e1〉 > 0}.

Each connected component is a simply connected Riemannian manifold of constant
curvature −1/r2 and hence identified with hyperbolic 2-space of curvature −1/r2.

Let W be a 2-dimensional linear subspace of E
3
1. Then there are three mutually

exclusive possibilities for W :

(1) The restriction 〈·, ·〉|W of the Lorentzian metric on W is positive definite.
Then W is said to be spacelike.

(2) 〈·, ·〉|W is Lorentzian, i.e., nondegenerate and of signature (1, 1). Then W
is timelike.

(3) 〈·, ·〉|W is degenerate. Then W is lightlike (or null).

The type into which W falls is called the causal character.

Proposition 1.1. Let W be a 2-dimensional lightlike linear subspace of E
3
1. Then

there exists a basis {u, v} of W such that u is spacelike, v is null and 〈u, v〉 = 0.

The vector product operation × of E
3
1 is defined by

a × b := (a3b2 − a2b3, a3b1 − a1b3, a1b2 − a2b1)

for a = (a1, a2, a3) and b = (b1, b2, b3).
Let us denote by {e1, e2, e3} the natural basis of E

3
1, i.e.,

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Then we have

e1 × e2 = e3, e2 × e3 = −e1, e3 × e1 = e2.

The vector product operation × is related to the determinant function by

det(x, y,z) = 〈x × y, z〉.

Let us denote by O1(3) the semi-orthogonal group of E
3
1:

O1(3) = {A ∈ GL3R | tA ε A = ε}, ε = diag(−1, 1, 1).

The semi-orthogonal group O1(3) has four connected components. (See [56,
Chapter 9]). The identity component of O1(3) is denoted by SO+

1 (3).

A null frame is an ordered triple of vectors:

L = (A,B, C),

where A and B are null vectors satisfying 〈A,B〉 = 1, C is a unit spacelike vector
orthogonal to the timelike plane spanned by A and B, and detL = ±1.

To any null frame L, the associated orthonormal frame F = F(L) is

F(L) = (
1√
2
(A − B),

1√
2
(A + B), C).

A null frame L is called proper if its associated orthonormal frame F = F(L)
lies in SO+

1 (3).
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A typical example of null frame

(1.1) L =





1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1





is associated to the natural orthonormal frame (e1,e2, e3). The following proposi-
tions are easily verified (See Graves [29]).

Proposition 1.2. Let L be a null frame. Then its associated orthonormal frame
is F = L · L−1.

Proposition 1.3. The set of all proper null frame is the right coset of SO+
1 (3)

determined by L.

The Lie algebra so
+
1 (3) is given explicitly by

so
+
1 (3) =











0 u v
u 0 −w
v w 0



 | u, v, w ∈ R







.

1.2. Null curves. Take a curve F = F (t) in SO+
1 (3). Then F−1F ′ ∈ so

+
1 (3).

Express F−1F ′ as

F−1 dF

dt
=





0 u v
u 0 −w
v w 0



 .

Then L = F · L satisfies the following formula:

L−1 dL

dt
=





k1 0 −k3

0 −k1 −k2

k2 k3 0



 , k1 = u, k2 =
v + w√

2
, k3 =

−v + w√
2

.

Thus we have the following fundamental result:

Lemma 1.1. Let L = L(t) be a curve in GL3R. Then L(t) ∈ SO+
1 (3) · L if and

only if L(t0) ∈ SO+
1 (3) · L for some t0 and L−1dL/dt has the form:

L−1 dL

dt
=





k1 0 −k3

0 −k1 −k2

k2 k3 0



 .

A parametrized curve γ = γ(t) is said to be a null curve or lightlike curve if its
tangent vector field dγ/dt is null.

A null frame for a null curve γ(t) is a proper null frame field L(t) = (A,B, C)(t)
along γ such that dγ/dt is a positive scalar multiple of A(t). In such a case γ is
said to be framed by L. A parametrized null curve (γ, L) together with a proper
null frame is called a framed null curve.

Note that null frame fields for null curves are not unique. In fact, if γ is framed
by L = (A,B, C). Then for any positive real numbers λ, µ, Lλ,µ := (λA, λ−1B −
λµ2A/2 − µC, C + λµA) also frames γ. Therefore, the curve and a frame must be
given together.

Now we describe the Frenet–Serret formula for a framed null curve.
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Let γ(t) be a framed null curve with proper frame L = (A,B, C) such that
dγ/dt = k0(t)A(t). Then by the Lemma 1.1, we have the following Frenet-Serret
formula of (γ, L):

(1.2) L−1 dL

dt
=





k1(t) 0 −k3(t)
0 −k1(t) −k2(t)

k2(t) k3(t) 0



 .

Theorem 1.1. (Fundamental theorem of null curve theory)
If an initial data (p, k0, k1, k2, k3) is specified, then there exists a unique framed null
curve (γ(t), L(t)) such that γ(0) = p, dγ/dt = k0(t)A(t).

Proposition 1.4. ([29, Proposition 2.5]) A parametrized null curve γ(t) starting
at γ0 lies in the inside of the lightcone with vertex γ0.

2. The pseudo-arc parameter

2.1. Canonical parametrization. Duggal and Bejancu [19] wrote that

“The property “null” is unaffected by parameter changing, there

are no canonical choice of the parameter –like as arclength

parameter for spacelike curves or proper time parameter for

timelike curve”.

We shall see in this section, one can take a canonical parameter for every null
curve (See Lemma 2.1 and Remark 2.3).

Lemma 2.1. Let γ(t) be a parametrized null curve in E
3
1. Then there exits a

reparametrization t = t(s) of γ so that k1 ≡ 0.

Proof. Let γ(t) be a parametrized null curve framed by a proper frame (A, B,C).
The null frame (A,B, C) satisfies the Frenet-Serret equation (1.2). Consider a
reparametrization t = t(s). Then

Ã(s) :=
dγ

ds
=

dt

ds
k0(t)A(t), B̃(s) :=

ds

dt
B(t), C̃(s) := C(t)

is a null frame along γ(s). Denote by {k̃i} the corresponding curvature functions

of γ with respect to the new frame (Ã, B̃, C̃). Then we have

k1(t)
ds

dt
= k̃1(s)

(

ds

dt

)2

+
d2s

dt2
,

(2.1) k2(t) =

(

ds

dt

)2

k̃2(s),

(2.2) k3(t) = k̃3(s)

(

ds

dt

)2

.

Thus if we choose the reparametrization:

s(t) = c1

∫ t

t0

exp

(∫ t

t0

k1(t)dt

)

dt + c2, c1 ∈ R
×, c2 ∈ R

then k̃1(s) = 0. ¤

Duggal and Bejancu [19] called this parameter s a distinguished parameter of γ.
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Remark 2.1. Graves [29] called parametrized null curves such that k3 = 0 gener-
alized null cubics. The transformation law (2.1)–(2.2) implies that vanishing of k2

or k3 is invariant under reparametrization. Thus the definition of “generalized null
cubic” is independent of the choice of parametrization.

Generalized null cubics will be discussed again in Example 2.1.

Note that some authors call a null frame with k1 = 0 a Cartan frame and
a framed null curve, a Cartan framed null curve. (eg., Bonnor [7], Duggal and
Bejancu [19] and Ikawa [35]).

On the other hand, it is known that every parametrized null curve γ = γ(t) is
framed by a proper null frame such that the original parameter is the distinguished
parameter of the framed curve. In fact, the following result is obtained by K. Honda
and the first named author:

Proposition 2.1. ([32]) Let γ = γ(s) be a parametrized null curve which is not a
geodesic. Then there exists uniquely a proper null frame F = (A,B, C) such that

F−1 dF

ds
=





0 0 −k3

0 0 −k2

k2 k3 0



 , A =
dγ

ds
.

Proof. Put A(s) = γ′. Then from the assumption, γ′ and γ′′ are linearly indepen-
dent and hence γ′′ is spacelike, i.e., 〈γ′′, γ′′〉 > 0. Because 〈γ′, γ′′〉 = 0. Thus there
exists a unique section (vector field) B(s) of the orthogonal compliment γ′′(s)⊥ of
γ′′(s) such that

〈A(s), B(s)〉 = 1, 〈B(s), B(s)〉 = 0.

We define the vector field C(s) along γ by C(s) = A(s) × B(s). Then we have
〈A(s), C(s)〉 = 〈B(s), C(s)〉 = 0 and 〈C(s), C(s)〉 = 1.

Moreover, there exist functions k2(s) and k3(s) which satisfy

A′(s) = γ′′(s) = k2(s)C(s), B′(s) = k3(s)C(s).

Uniqueness follows from the construction we have done.@¤

Note that one can reparametrize γ further so that γ′′ is a unit spacelike vector
field. Later, this reparametrization will be discussed again.

Corollary 2.1. Let γ be a null curve parametrized by the distinguished parameter
s which is framed by F = (A,B, C). Then

F−1 dF

ds
=





0 0 −k3

0 0 −k2

k2 k3 0



 .

We call the vector field B the binormal vector field. The vector field C will be
called the principal normal vector field of γ.

Hereafter we call a framed null curve parametrized by the distinguished param-
eter, a null Frenet curve.

One can easily see that null curves parametrized by the distinguished parameter
with nonzero constant k2 and k3 = 0 are cubic curves. Based on this fact, Graves
called such curves generalized null cubics. As we mentioned before, the notion of
generalized null cubic does not depend on parametrization.
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Example 2.1. (cf. [53]) Let φ and ψ be functions satisfying φ′ = (ψ′)2. Then the
curve

γ(s) =

(

1√
2

(

s +
φ(s)

2

)

,
1√
2

(

s − φ(s)

2

)

, ψ(s)

)

is a null Frenet curve with frame

A =

(

1√
2

(

1 +
φ′ (s)

2

)

,
1√
2

(

1 − φ′ (s)

2

)

, ψ′ (s)

)

,

B =

(

− 1√
2
,

1√
2
, 0

)

, C =

(

ψ′(s)√
2

,−ψ′(s)√
2

, 1

)

.

Direct computation shows that the curvature and torsion of γ are

k2(s) = ψ′′(s), k3 = 0.

Thus γ is a generalized null cubic. In particular, in case that k2 is a nonzero

constant, then

φ(s) =
k2
2

3
s3 + ak2s

2 + a2s + c, ψ(s) =
k2

2
s2 + as + b,

where a, b, c are constants.
In case that k2 is constant, clearly γ is a cubic curve.

Remark 2.2. In p. 66 of [19], Duggal and Bejancu claimed that · · · “locally, for

any null curves of a 3-dimensional Lorentzian manifold we find

a Cartan frame such that it is a generalized null cubic”.

They considered the following procedure:

Define a new frame field F̄ = (Ā(s), B̄(s), C̄(s)) by

Ā(s) := A(s), B̄(s) := −f(s)

2
A(s) + B(s) + f(s)C(s), C̄(s) := C(s) − f(s)A(s),

where f is a solution to

df

ds
+

k2(s)

2
f(s)2 + k3(s) = 0.

Then the new frame has zero torsion k3 = 0. However this frame F̄ is not a Cartan
frame because of uniqueness of Cartan frame. We can check that F̄ is not the
Cartan frame by straightforward computation. In fact, the new frame satisfies

d

ds
(Ā, B̄, C̄) = (Ā, B̄, C̄)





k̄1 0 −k̄3

0 −k̄1 −k̄2

k̄2 k̄3 0





with

k̄1 = f(s)k2(s), k̄2(s) = k2(s), k̄3 = 0.

Thus (γ, F̄ ) is not a generalized null cubic.

For a null curve γ(t) parametrized by the distinguished parameter t such that
〈γ′′, γ′′〉 > 0, we can reparametrize t = t(s) so that 〈γss, γss〉 = 1. Then γ is framed
by F = (A,B,C) such that

A = γs =
dγ

ds
, C = γss =

d2γ

ds2
.
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With respect to this parameter and frame, γ obeys the following Frenet-Serret
formula:

(2.3) F−1 dF

ds
=





0 0 −k
0 0 −1
1 k 0



 .

The parameter s is called the pseudo-arc parameter [22]. We call the function k
the lightlike curvature of γ. The lightlike curvature is Lorentzian invariant (See [22,
Corollary 3.4]).

This reparametrization is most economical way for the study of null curves. In
fact, null curves are completely determined only by its lightlike curvature up to
Lorentz transformations. Thus this representation may be considered as a “canon-
ical representation” for null curves.

Remark 2.3. The lightlike curvature k is called null Cartan curvature in [22]. Null
Frenet curves parametrized by the pseudo-arc parameter are called null Cartan
curves in [22]. Clearly, by definition, null geodesics can not be null Cartan curves
in the sense of [22].

2.2. Null helices. A curve in Euclidean 3-space is said to be a helix if its curvature
and torsion are non-zero constants.

More generally, a curve in E
3 is said to be a generalized helix if the tangent vector

field of γ has constant angle with a fixed direction (called the axis of the curve).
Generalized helices are also called curves of constant slope, cylindrical helices ([55])
or general helices.

In classical differential geometry of spatial curves, the following result is known
(see eg.,[20], [44], [66]):

Theorem 2.1. (Bertrand-Lancret-de Saint Venant) A curve γ(s) in Euclidean
3-space is a generalized helix if and only if its ratio of curvature and torsion is
constant.

For historical review of this classical result and related topics, we refer to [64]
and [66].

Now we consider such curves in null curve geometry.

Definition 2.1. ([22, Definition 3.5]) A null Frenet curve parametrized by the
pseudo-arc parameter is said to be a null helix if its lightlike curvature is constant.

Note that null Frenet curves with constant curvature and torsion have been called
“null helices” by some authors ([7], [35] etc.). Moreover, lightlike analogue of gen-
eralized helices (or constant slope curves) is introduced and studied independently
by H. Balgetir, M. Bektaş, M. Eugüt [3], [6] and B. Şahin, E. Kiliç, R. Güneş [62].

A null Frenet curve γ(t) parametrized by the distinguished parameter t is said to
be a null generalized helix or null general helix if there exists a vector q ∈ E

3
1 such

that 〈γt, q〉 is constant. The line spanned by q is called the axis of the generalized
helix.

The above definition is a slight modification of that of generalized helix in E
3.

Lemma 2.2. A non-geodesic null Frenet curve is a null generalized helix if and
only if its slope k3/k2 is constant.
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Proof. Let us express q as

q = qAA + qBB + qCC.

Then the coefficients are given by

qA = 〈q, B〉, qB = 〈q, A〉, qC = 〈q, C〉.
By the assumption, qB is a constant. Differentiating these coefficients, we get

q′A = k3 qC , q′B = k2 qC , q′C = −k3 qB − k2 > qA.

From these, we notice that qA is constant and so is the slope k3/k2 = −qA/qB .
Conversely, if k3/k2 is constant, then define a vector q by q := A + (k3/k2)B.

Then 〈A, q〉 is constant. ¤

Remark 2.4. Lemma 2.2 was claimed in [6] and [62].
Note that, precisely speaking, the statement in [6] is inaccurate. In fact, the au-

thors claimed that their results hold for null generalized helices in general Lorentzian
3-manifolds. But, obviously, their results hold only for null generalized helices in
Minkowski 3-space. In fact, they used linear space structure of the ambient space.

Under the pseudo-arc parametrization, the following result is obtained:

Corollary 2.2. ([23, Proposition 6]) A null Frenet curve parametrized by the
pseudo-arc parameter is a null generalized helix if and only if it is a null helix.

Example 2.2. ([23]) The null helices parametrized by pseudo-arc parameter are
congruent to one of the following:

(1)
(

− s

σ
,

1

σ2
sin(σs),

1

σ2
cos(σs)

)

, k = σ2/2 > 0;

(2)
(

1

σ2
sinh(σs),

1

σ2
cosh(σs),− s

σ

)

, k = −σ2/2 > 0;

(3)
(

s3

4
+

s

3
,
s2

2
,
s3

4
− s

3

)

, k = 0;

Note that, under the pseudo-arc parametrization, generalized null cubics are
represented as null helices of zero lightlike curvature. Moreover, such curves are
unique up to Lorentz transformation. Null helices of zero lightlike curvature are
cubic curves with respect to the pseudo-arc. We call null helices of zero lightlike
curvature, null cubics.

(a) (b)

0 1

-4

2

-2

3

0

4

2

4

(c)

Figure 1. Null cubics
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Remark 2.5. Two generalizations of generalized helices in E
3 to general Riemannian

3-manifolds are known. Now let (M, g) be a Riemannian 3-manifold and γ(s) a
curve in M parametrized by arclength. Then γ is said to be a Frenet curve (of
osculating order 3) if there exists an orthonormal frame field E = {E1 = γ′, E2, E3}
along γ such that E satisfies the Frenet-Serret equation:

∇E1
E = E





0 −k2 0
k2 0 −k3

0 k3 0





for some functions k2 ≥ 0 and k3. The functions k2 and k3 are called the curvature
and torsion of γ, respectively.

(1) A curve γ(s) is said to be a generalized helix if there exists a parallel vector
field ξ on M such that g(ξ, γ′) is a constant.

(2) A curve γ(s) is said to be a generalized helix if there exists a Killing vector
field ξ on M such that g(ξ, γ′) is a constant.

M. Barros [5] used the second idea to generalize Bertrand-Lancret-de Saint Venant
Theorem to curves in Riemannian 3-space forms and Lorentzian 3-space forms. If
the ambient space M is of constant curvature the following result is known.

Lemma 2.3 ([5]). Let M be a complete and simply connected Riemannian 3-
manifold of constant curvature and γ a curve in M parametrized by arclength.
A vector field ξ along γ is a Killing vector field aling γ if and only if it extends to
a Killing vector field of M .

The generalized helices in Riemannian 3-space forms are classified as follows [5]
(see also [2]):

Theorem 2.2. A curve γ in hyperbolic 3-space H
3 is a generalized helix if and only

if either

• k3 = 0 and γ is a curve in some hyperbolic 2-space, or
• γ is a helix in H

3.

Theorem 2.3. A curve γ in the unit 3-sphere S
3 is a generalized helix if and only

if either

• k3 = 0 and γ is a curve in some 2-sphere, or
• there exists a constant b such that k3 ± 1 = bk2.

Corresponding results for 3-dimensional Lorentzian space forms are obtained by
A. Ferrández [21].

The unit 3-sphere S
3 is a typical example of contact Riemannian 3-manifold,

especially, a Sasakian 3-manifold. On a Sasakian 3-manifold M , the Reeb vector
field ξ is a unit Killing vector field. One can obtain the following Bertrand-Lancret-
de Saint Venant type theorem for Sasakian 3-manifolds (see also [11]).

Theorem 2.4. ([10]) A non-geodesic curve in a Sasakian 3-manifold parametrized
by arclength makes constant angle with the Reeb vector field if and only if the ratio
of k3 ± 1 and k2 is constant.

J. T. Cho and J. E. Lee [12] studied generalized helices in pseduo-Hermitian
geometry.
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3. Associated curves

3.1. Let γ = γ(s) be a null Frenet curve parametrized by the pseudo-arc parameter
s with frame (A,B, C). Take three functions u, v, w and define a new curve γ̄(s̄) by

γ̄(s̄) := γ(s) + u(s)A(s) + v(s)B(s) + w(s)C(s).

Here s̄ = s̄(s) is a function of s such that the new curve is also a null Frenet
curve parametrized by the pseudo-arc parameter s̄. The new null Frenet curve γ̄
is called an associated null Frenet curve of γ with reference coordinate (u, v, w).
Differentiating γ̄, we have

(3.1)
ds̄

ds
Ā(s̄) = (1 + u′ − kw)A + (v′ − w)B + (w′ + u + kv)C.

Since Ā is null, we have

(3.2) (w′ + u + kv)2 + 2(1 + u′ − kw)(v′ − w) = 0.

As applications of (3.1)-(3.2), one can study null Frenet curves which admit
associated null Frenet curves.

Proposition 3.1. ([33]) Let γ(s) be a null Frenet curve parametrized by the pseudo-
arc parameter s and u, v, w functions of s Then γ(s) + u(s)A(s) + v(s)B(s) +
w(s)C(s) is a constant vector if and only if

1 + u′ − kw = 0,

v′ − w = 0,(3.3)

w′ + u + kv = 0.

This condition is called the Cesàro’s fixed point condition.

Associated curves to null Frenet curves are studied recently by Balgetir, Bektaş,
K. Honda and the first named author.

3.2. First, let us consider a pair of null curves which possess common principal
normal direction.

J. Bertrand studied curves in Euclidean 3-space E
3 whose principal normals are

the principal normals of another curves. Such a curve is nowadays called a Bertrand
curve. Bertrand curves are characterized as follows (See [20, p. 41]):

Proposition 3.2. Let γ be a curve in Euclidean 3-space parametrized by the ar-
clength. Then γ is a Bertrand curve if and only if γ is a plane curve or curves
whose curvature κ and torsion τ are in linear relation:

µ κ + ν τ = 1

for some constant µ and ν. The product of torsions of Bertrand pair is constant.

Remark 3.1. Bertrand mates in E
3 are particular examples of offset curves used

in computer-aided geometric design (CAGD). See [54]. Bertrand curves and their
geodesic imbedding in surfaces are recently rediscovered and studied in the context
of modern soliton theory by Schief [63].

Now we study Bertrand property for null Frenet curves.

Definition 3.1. Let γ(s) and γ̄(s̄) be null Frenet curves parametrized by the
pseudo-arc parameter. Then the pair (γ, γ̄) is said to be a null Bertrand pair if
their principal normal vector fields C and C̄ are linearly dependent.
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The curve γ̄ is called a Bertrand mate of γ and vice versa. A null Frenet curve
is said to be a null Bertrand curve if it admits a Bertrand mate.

By definition, for a null Bertrand pair (γ, γ), there exists a functional relation
s̄ = s̄(s) such that

C(s̄(s)) = ǫ C(s), ǫ = ±1.

While there exists many Bertrand curves in E
3, there are no nontrivial null

Bertrand pairs.

Theorem 3.1. Let γ be a null Frenet curve parametrized by the pseudo-arc. If γ
admits a Bertrand mate then γ and its Bertrand mate have the same nonzero con-
stant lightlike curvatures. Moreover the Bertrand mate is congruent to the original
curve.

Proof. Let (γ, γ) be a null Bertrand pair. Then γ can be expressed as

(3.4) γ(s̄(s)) := γ(s) + r(s)C(s)

for some function r(s) 6= 0 and some parametrization s̄ = s̄(s) with respect to the
pseudo-arc parameter s of γ. Differentiating (3.4) with respect to s,

(3.5) A
ds̄

ds
= A + r′ C + rC ′.

Here s̄ is the pseudo-arc parameter of α. By using the Frenet-Serret formula (2.3),
we have

(3.6) A
ds̄

ds
= (1 − rk)A − rB + r′ C.

Since A is null,

(3.7) (r′)2 = 2r(1 − rk).

Next, since γ is a Bertrand mate of γ, C and C are linearly dependent, thus
〈A,C〉 = 0, hence r is a constant.

From (3.7), we conclude that k = 1/r = nonzero constant. Hence γ is a null
helix of nonzero lightlike curvature.

We investigate the Bertrand mate of γ in more detail. By (3.5), we notice that

(3.8) A(s̄(s)) = µ B(s), µ(s) = −r
ds

ds̄
6= 0.

This equation implies that

B(s̄(s)) = µ(s)−1A(s), C(s̄(s)) = −C(s).

Differentiating (3.8) with respect to s and using Frenet-Serret formula again, we
obtain

ds̄

ds

dA

ds̄
=

dµ

ds
B + µ k C.

This formula implies µ is constant and ds̄/ds = ±1. Hence µ = ±r and hence the
Frenet frame of γ is given by (±rB,±r−1A,−C). Thus γ has constant lightlike
curvature 1/r and hence congruent to γ.

Conversely let γ be a null Frenet curve with constant lightlike curvature k =
1/r 6= 0. Then

γ(s) := γ(s) + rC(s)
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is a null Frenet curve with pseudo-arc parameter s and framed by

A(s) = −rB(s), B(s) = −r−1A(s), C(s) = −C(s).

Thus (γ, γ) is a Bertrand pair and γ has constant lightlike curvature 1/r.
This completes the proof. ¤

Theorem 3.1 implies that the Bertrand property characterizes null helix of nonzero
lightlike curvature. Theorem 3.1 was essentially stated in [4].

Here we confirm that the Bertrand mate of a null helix of nonzero lightlike
curvature is congruent to the original curve.

Example 3.1. Let γ(s) be a null helix of lightlike curvature 1/2:

γ(s) = (s, cos s, sin s)

with Frenet frame

A = (1,− sin s, cos s), B = (−1,− sin s, cos s)/2, C = (0,− cos s,− sin s).

Define γ̄ by γ̄ = γ + 2C with s̄ = s. Then

γ̄(s) = (s,− cos s,− sin s).

Obviously γ̄ is congruent to the original curve γ.

The case k > 0 can be checked in much the same way.

3.3. Next, we study pairs of null Frenet curves which possess common binormal
direction. In E

3, the following characterization theorem is classical.

Proposition 3.3. ( cf. [30, p. 161, Ex. 14]) Let γ(s) be a curve parametrized by
arc length parameter in E

3. Assume that there exists a curve γ̄ parametrized by
arc length parameter such that the binormal direction of γ̄ coincides with that of γ.
Then both curves are plane curves.

In null curve case, the following result is obtained.

Theorem 3.2. ([32])

(1) Let γ(s) be a null Frenet curve parametrized by pseudo-arc parameter. As-
sume that there exists a null Frenet curve γ̄ parametrized by pseudo-arc
parameter such that the binormal direction of γ̄ coincides with that of γ.
Then at the corresponding point, the lightlike curvatures of γ and γ̄ coin-
cide.

(2) Let γ(s) be a null Frenet curve parametrized by pseudo-arc. Then there
exists a null Frenet curve γ̄(s̄) parametrized by pseudo-arc such that the
binormal directions of γ and γ̄ coincide and k(s) = k̄(s̄).

Proof.

(1) Let γ(s) be a null Frenet curve parametrized by the pseudo-arc parameter
s. Assume that there exists a null Frenet curve γ̄(s̄) parametrized by the
pseudo-arc parameter s̄ such that the binormal directions γ coincides with
that of γ̄. Then γ̄ can be parametrized as

(3.9) γ̄(s̄(s)) = γ(s) + v(s)B(s)

for some function v(s) 6= 0 and some parametrization s̄ = s̄(s). Hence γ̄ is
an associated curve to γ with reference coordinates (0, v(s), 0).
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Without loss of generality, we may assume that

(3.10) B(s̄(s)) = a(s)B(s),

for some function a(s) 6= 0. Then by (3.1), we have

(3.11)
ds̄

ds
Ā(s̄) = A(s) + v′(s)B(s) + k(s)v(s)C(s).

Next, (3.2) together with 〈A,B〉 = 1 implies

(3.12) 2v′(s) + {v(s)k(s)}2 = 0

and

a(s) =
ds̄

ds
.

Thus, from (3.12), the function v(s) is completely determined by the light-
like curvature;

1

v(s)
=

1

2

∫

k(s)2ds + c

for some constant c. Note that C ×B = −B. The principal normal C of γ̄
is given by

(3.13) C(s̄(s)) = A(s̄(s)) × B(s̄(s)) = C(s) − v(s)k(s)B(s).

Differentiating (3.10) with respect to s and using (3.13), we obtain

a(s)k̄(s̄(s)){C(s) − v(s)k(s)B(s)} =
da

ds
(s)B(s) + a(s)k(s)C(s).

Comparing the both sides of this equation, we obtain

(3.14) k̄(s̄(s)) = k(s),
da

ds
= −a(s)v(s)k(s)2.

From this we have

a(s) = a0v(s)2, a0 ∈ R
×.

Thus the lightlike curvature at the corresponding points coincide.
Differentiating (3.13), we get

a(s)2 = v(s)k′(s).

(2) For every null Frenet curve γ parametrized by pseudo-arc, define a new
curve γ̄(s̄) by

(3.15) γ̄(s̄(s)) := γ(s) + v(s)B(s), 1/v(s) =
1

2

∫

k(s)2 ds + c.

where c is a nonzero constant. Take a nonzero constant a0 and define a
function s̄ by

s̄(s) := a0

∫

v(s)2 ds.

Then γ̄ is a null Frenet curve parametrized by the pseudo-arc s̄ framed by

A =
d

ds̄
γ̄, B =

ds̄

ds
B, C = A × B.

Clearly these two curves have common binormal directions. ¤

Theorem 3.2 implies the following characterization of null cubics (null helices of
zero lightlike curvature).
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Corollary 3.1. Let γ be a null Frenet curve parametrized by pseudo-arc parameter.
Assume that there exists a null Frenet curve γ̄(s̄) parametrized by pseudo-arc such
that the binormal directions of γ and γ̄ coincide and 〈γ̄ − γ,A〉 is a constant. Then
γ is a null cubic.

Remark 3.2. Theorem 3.2 seems to be better comparing with Bäcklund transfor-
mations for constant torsion curves:

Theorem 3.3. ([8]) Let γ(s) be a unit speed curve in E
3 with non-zero constant

torsion τ and Frenet frame (T, N, B). Then, for any constant λ and a solution β
to the ordinary differential equation:

dβ

ds
= λ sin β − κ,

the curve γ̄(s) defined by

γ̄(s) := γ(s) +
2λ

λ2 + τ2
(cos βT + sin βN)

is a curve of same constant torsion with arclength parameter s.

The new curve γ̄ is called the Bäcklund transform of γ. Note that nonzero con-
stant torsion curves are typical examples of Bertrand curves. Bäcklund transfor-
mations of nonzero constant torsion curves can be generalized to Bertrand curves.
See [63].

3.4. Finally we study Cesàro’s fixed point condition. Here we recall the following
classical results.

Proposition 3.4. ( cf. [9], [57]) Let γ(s) be a curve parametrized by the arclength
parameter s in Euclidean 3-space E

3, which is not a straight line. If there exists
a point of E

3 such that all the rectifying planes pass through the point. Then the
slope τ/κ of γ is a linear function of s.

Such curves are called rectifying curves by B. Y. Chen [9].

Proposition 3.5. ( cf. [57]) Let γ(s) be a curve in E
3 parametrized by arclength,

which is not a straight line. If there exists a point of E
3 such that all the osculating

planes pass through the point. Then the curve is planar.

Proposition 3.6. ( cf. [57]) Let γ(s) be a curve in E
3 parametrized by arclength,

which is not a straight line. If there exists a point of E
3 such that all the normal

planes pass through the point, then the curve is spherical.

In the case of null Frenet curves, the following result is obtained for rectifying
curves.

Proposition 3.7. ([33]) Let γ be a null Frenet curve parametrized by pseudo-arc
parameter s. Assume that all the rectifying planes of γ pass through a fixed point.
Then the lightlike curvature k of γ is a linear function of s.

Proof. Let γ(s) be a null Frenet curve with frame (A,B, C) parametrized by
pseudo-arc and P a fixed point which all the rectifying planes of γ pass through.
Then the position vector p of P (with respect to the origin) is represented as

(3.16) p = γ(s) + u(s)A(s) + v(s)B(s).

for some functions u(s) 6= 0 and v(s).
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Since p is a constant vector, the coefficient functions satisfy the Cesàro’s fixed
point condition:

u′ = −1, v′ = 0, u + kv = 0

From these, we notice that v is a constant, say b. Next, u is a linear function and
expressed as u(s) = −s + a, where a is a constant. Hence the lightlike curvature
must satisfy

(−s + a) + bk(s) = 0.

This implies that b 6= 0 and

k(s) =
1

b
s − a

b
.

Thus k is a linear function of s.
Conversely, assume that k is a linear function of s, say, k(s) = s/b− a/b, b 6= 0.

Then γ̄ = γ + (−s + a)A + bB is a constant vector. ¤

Remark 3.3. Recently Chen [9] obtained the following result:

All the rectifying curves in Euclidean 3-space are congruent to

γ(t) = a(sec t)α(t), a > 0

where α(t) is a unit speed curve in the unit 2-sphere S
2 centered at the origin and

a is a constant.

It is easy to establish corresponding results for timelike curves or spacelike curves
with non-null principal normal in Minkowski 3-space. For timelike case, α is a unit
speed curve in the hyperbolic 2-space H

2. Similarly, α is a unit speed curve in
pseudosphere S

2
1 for spacelike rectifying curves.

Here we give a new result on rectifying null Frenet curves.

Proposition 3.8. Let γ be a null Frenet curve parametrized by pseudo-arc param-
eter s. If γ is a rectifying curve, then

(1) 〈γ, γ〉 = c1s + c2 for some constants c1 and c2.
(2) The binormal coefficient 〈γ, A〉 of the position vector of γ is a nonzero

constant.
(3) The tangential coefficient 〈γ,B〉 of the position vector of γ is s+b for some

constant b.
Conversely, if γ satisfies any of (1), (2) or (3), then it is a rectifying

curve.

Proof. Let γ be a rectifying null Frenet curve. Then γ is written as

γ(s) = u(s)A(s) + v(s)B(s).

Hence γ′ = u′A + v′B + (u + vk)C and γ′ = A, where k is the lightlike curvature.
Thus

u′ = 1, v′ = 0, u + vk = 0.

Namely, we have

u = s + b, v = a, k = − s

a
for some constants a 6= 0 and b. Hence

γ(s) = (s + b)A(s) + aB(s).

From this equation, we get
〈γ, γ〉 = 2a(s + b).
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Thus (1) is satisfied. The tangential coefficient u and binormal coefficient v of γ
are

u(s) = 〈γ′, B〉 = s + b, v(s) = 〈γ′, A〉 = a.

Thus γ satisfies (2) and (3).
Conversely, assume that γ satisfies the condition (2), i.e., 〈γ, A〉 = c for some

constant c. Then 〈γ,A′〉 = 0. This implies that γ is a rectifying curve since A′ = C.
Note that the condition (1) implies (2). Now, assume that γ satisfies the condition
(3), i.e., 〈γ, B〉 = s + b for some constant b. Then 〈γ,B′〉 = 0. This also implies
that γ is a rectifying curve, since B′ = κC. Here, κ is the lightlike curvature of γ.
¤

Theorem 3.4. Let γ be a rectifying null Frenet curve in E
3
1 parametrized by pseudo-

arc parameter s. If γ satisfies 〈γ, γ〉 > 0, then γ is given by

γ(s) =
√

2as ϕ(s),

where ϕ(s) is a timelike curve in the pseudosphere S
2
1. By the reparametrization by

the proper time t, γ is rewritten as

γ(t) =
√

2a et ϕ̂(t),

where ϕ̂(t) = ϕ(et) is a unit speed timelike curve in S
2
1.

Conversely, let γ be a null Frenet curve defined by

γ(s) =
√

2as ϕ(s)

for a positive number a and a timelike curve ϕ in S
2
1 with 〈ϕ′, ϕ′〉 = −1/(4s2) and

〈ϕ′′, ϕ′′〉 = 1/(2as). Then γ is a rectifying null Frenet curve parametrized by the
pseudo-arc parameter s with 〈γ, γ〉 > 0.

Proof. Assume that γ is a null rectifying curve in E
3
1. Then, by Proposition 3.8,

γ(s) = (s + b)A + aB

for some constants a 6= 0 and b. Without loss of generality, we may assume that
b = 0, i.e.,

γ(s) = sA + aB.

Hereafter we may study only the case a > 0. In fact, the other case a < 0 can
be discussed in much the same way. Under this assumption, the curve have two
components. γ− : (−β, 0) → E

3
1 and γ+ : (0, β) → E

3
1. The component γ+ satisfies

〈γ+(s), γ(s)+〉 = 2as > 0. Define ϕ+ : (0, β) −→ E
3
1 by

ϕ+(s) :=
γ(s)√
2as

.

Then 〈ϕ+, ϕ+〉 = 1. The new curve ϕ+ is a timelike curve, in fact, γ′
+(s) =

a√
2as

ϕ+(s) +
√

2asϕ′
+(s) and 〈ϕ′

+, ϕ+〉 = 0, so

〈γ′
+, ϕ′

+〉 = − a

2s
√

2as
.

Hence,

〈ϕ′
+, ϕ′

+〉 =
1√
2as

〈γ′
+, ϕ′

+〉 = − 1

4s2
.
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Thus ϕ+(s) is a timelike curve in S
2
1. Now let t be the proper time and dt

ds
:= 1

2s
.

Then

t =
1

2

∫ 2

1

du

u
=

1

2
ln s.

Let ϕ̂+(t) = ϕ+(et). Then

γ+(t) =
√

2aetϕ̂+(t)

and |ϕ̂′
+(t)| = 〈ϕ̂′

+(t), ϕ̂′
+(t)〉 = −1.

For the other component, γ−, we have similar represnttaion

γ−(s) =
√
−2asφ−(s)

for some curve φ− in H
2
0.

Conversely, let γ be a null Frenet curve defined by

γ(s) =
√

2asϕ(s)

for a positive number a > 0 and a timelike curve ϕ(s) in the pseudosphere S
2
1 with

|ϕ′(s)| = − 1
4s2 and |ϕ′′(s)| = 1

2as
.

By a direct computation with |ϕ′(s)| = − 1
4s2 and |ϕ′′(s)| = 1

2as
, we see that

〈γ′′, γ′′〉 = 1, i.e., s is pseudo-arc parameter.

γ′(s) =
√

2as

(

1

2s
ϕ + ϕ′

)

and so

〈γ,A〉 = a,

where A = γ′. Since the tangential component of γ is a nonzero constant, by
Proposition 3.8 γ is a rectifying curve in E

3
1.

Analogously, let γ be a null Frenet curve defined by

γ(s) =
√

2asψ(s)

for a positive number a > 0 and a curve ψ(s) in the hyperbolic 2-space H
2
0 with

|ϕ′(s)| = 1
4s2 . Then γ(s) is a rectifying null Frenet curve with pseudo-arc parameter

s. ¤

Next, we study null Frenet curves which admit a point such that all of the
osculating planes pass through the point.

Proposition 3.9. ([33]) Let γ be a null Frenet curve parametrized by pseudo-arc.
Then there does not exist any point of E

3
1 such that all the osculating planes pass

through the point.

Proof. Assume that p = γ(s) + u(s)A(s) + w(s)C(s) is constant, then from the
Cesàro’s fixed point condition:

1 + u′ − kw = 0, w = 0, w′ + u = 0.

From the second and third equations, we have u = w = 0. But this contradicts to
the first equation. ¤

This result is consistent with the fact the only null curves in Minkowski plane
are null lines.
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Theorem 3.5. ([33]) Let γ(s) be a null Frenet curve parametrized by pseudo-arc.
Then there exists a point of E

3
1 such that all the normal planes of γ pass through it

if and only if the lightlike curvature k is a solution to

k3 = k′′k − 3(k′)2, k 6= 0.

Proof. If p = γ + vB + wC is constant, then by Cesàro’s fixed point condition,
we have

1 − kw = 0, v′ − w = 0, w′ + kv = 0.

From these we have

(3.17) v =
k′

k3
, w =

1

k
,

(3.18) k3 = k′′k − 3(k′)2.

Conversely, take a solution k to (3.18) and γ be a null Frenet curve with lightlike
curvature k. Define two functions v and w by (3.17), then γ+vB+wC is a constant
vector. ¤

3

2.5

2

1.5

1

s

21.510.50

Figure 2. The solution to k3 = k′′k−3(k′)2 with initial condition
k(0) = 1 and k′(0) = −1.

40

30

20

10

0

s

21.510.50

Figure 3. The graph of k′(s).
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Figure 4. Null curve γ =
(

− k′

k3 ,− k′

k3 sin s + 1
k

cos s,− k′

k3 cos s − 1
k

sin s
)

.

4. Null curves on S
2
1

4.1. As we saw in Proposition 3.6, some characterizations of spherical curves in E
3

are known (see also [69], [70]). The following characterization is fundamental. (see
eg. [57, p. 19, Theorem 4.1], [30, p. 161, Exercise 9]).

Proposition 4.1. A curve γ(s) parametrized by the arclength in E
3 (which is not

a straight line) is a spherical curve if and only if its curvature κ and the torsion τ
satisfy

• τ = 0 and κ is a nonzero constant, that is, γ is a circle or
• κ′ 6= 0 and κ and τ satisfy

ρτ +

(

ρ′

τ

)′
= 0,

where ρ := 1/κ is the curvature radius function.

In this section we prove the following result.

Theorem 4.1. The only null curves lying on the pseudosphere S
2
1 are null geodesics

of S
2
1.

Denote by D and ∇ the Levi-Civita connections of E
3
1 and S

2
1(m; r), respectively.

Let x be the position vector field of E
3
1. Then −(x−m)/r is a unit normal vector

field of S
2
1(m; r) in E

3
1.

The Gauss formula of S
2
1(m; r) in E

3
1 is given by

DXY = ∇XY − 〈X, Y 〉(x − m),

where X and Y are arbitrary vector fields on S
2
1.

Now we consider null curves on the pseudosphere S
2
1(m; r). First we recall the

classification of null geodesics on S
2
1(m; r).

Let γ(s) be a curve in S
2
1(m; r), then by the Gauss formula,

d2γ

ds2
= ∇γ′γ′ − 〈γ′, γ′〉(γ − m).

Now we assume that α is a null geodesic starts at p ∈ S
2
1(m; r) with initial velocity

q ∈ TpS
2
1(m; r). Note that since q ∈ TpS

2
1(m; r), 〈p − m, q〉 = 0. (This remark will

be used in later discussions).
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Then the Gauss formula implies

d2γ

ds2
= 0, α(0) = p,

dγ

ds
= q.

Hence γ(s) = p + sq, which is a null line contained in S
2
1(m; r).

Remark 4.1. Since S
2
1(m; r) is realized as a hyperboloid of one sheet in E

3
1, it is a

doubly ruled surface:

ϕ(u, v) = γ(u) + vℓ±(u),

γ(u) = (m1,m2 + r cos u,m3 + r sin u), m = (m1,m2,m3),

ℓ±(u) = (±r,−r sin u, r cos u).

The base curve of these ruled patch is the circle (ξ2 − m2)
2 + (ξ3 − m3)

2 = r2 in
the spacelike plane ξ1 = m1. Such circles are spacelike geodesics of S

2
1(m; r). The

rulings are null lines in E
3
1.

Remark 4.2. Here we would like to remark that at every point p of S
2
1, there exists

two null lines β and γ contained in S
2
1 which make constant “angle”. In fact, at every

point p ∈ S
2
1, there exist exactly two null directions in the tangent space TpS

2
1. We

can take a pair of null vectors {u, v} such that 〈u, v〉 = 1. Then β(s) = p + su and
γ(t) = p + tv are required null lines. In the left figure below, grid lines are timelike
and spacelike geodesics. The null geodesics in red and blue have parametrizations

(v,−v/2, 1/2) , (−v,−v/2, 1/2),

respectively.

(a) (b)

Figure 5. Null lines on S
2
1

This property characterizes S
2
1 as follows:

Theorem 4.2. ([39]) Let M be a timelike surface in E
3
1. At every point p on M ,

if there exist two null lines through p contained in M then M is locally isometric
to the pseudosphere or a timelike plane.
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4.2. Now we prove Theorem 4.1.

Lemma 4.1. (cf. [59]) There are no nongeodesic parametrized null curves lying
on the pseudosphere.

Proof. Let γ(s) be a null Frenet curve parametrized by the pseudoarc. Assume that
γ lies in the pseudosphere S

2
1(m; r). Without loss of generality, we may assume that

m = 0 and r = 1. Then we have

(4.1) 〈γ, γ〉 = 1.

Differentiating (4.1), we have

(4.2) 〈A, γ〉 = 0.

Differentiating this equation, we get

〈C, γ〉 + 〈A,A〉 = 0.

Hence we obtain

(4.3) 〈C, γ〉 = 0.

Differentiating (4.3),
〈kA + B, γ〉 = 0.

This together with (4.2), we have

〈B, γ〉 = 0.

Hence we conclude that γ = 0. This is a contradiction ¤

This Lemma together with Remark 4.2 implies Theorem 4.1.

Remark 4.3. In [59], Petrović-Torgas̆ev and S̆ućurović claimed the nonexistence of
null curves which lie in the pseudosphere in Minkowski 3-space. Their discussion
consists of two parts. In the first part, they considered null lines contained in
S

2
1(m; r). And they claimed the nonexistence of null lines contained in S

2
1(m; r).

As we saw in Remark 4.2 at every point of S
2
1, there exists two null lines through the

point and contained in S
2
1. This claim is not true. In the second part, they proved

the nonexistence of non-geodesic null Frenet curves contained in the pseudosphere.
The proof of this nonexistence is the same as the proof of Lemma 4.1.

Now we recall the first part of the proof of Theorem 4.1 in [59]. We use the
notation of [59]: g denotes the induced metric of S

2
1(m; r).

Let α(s) = p + sq be a null line contained in S
2
1(m; r). Then we have

g(α − m, α − m) = r2.

Differentiating this equation, we get

g(p + sq − m, q) = 0.

Since q is null, we have
g(p, q) = g(m, q).

From this relation, Petrović-Torgas̆ev and S̆ućurović claimed that p = m and hence
g(α−m, α−m) = 0. However the relation g(p, q) = g(m, q) does not imply p = m.

The relation g(p, q) = g(m, q) means that g(p−m, q) = 0, namely q is a tangent
vector of S

2
1(m; r) at p.

Note that obviously null lines starting at m (corresponding to the case p = m)
are not contained in S

2
1.
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5. Screen bundles

In this section, we would like to discuss how our formulation relates to the
formulation due to the book [19].

Let γ : I ⊂ R → E
3
1 be a parametrized null curve. Denote by Tγ the tangent

bundle of γ:

Tγ :=
⋃

t∈I

R ˙γ(t), γ̇ =
dγ

dt
.

The tangent bundle Tγ is a line bundle over I.
Define a vector bundle T⊥γ of rank 2 over I by

T⊥γ :=
⋃

T⊥
p γ, T⊥

p γ = {vp ∈ TpE
3
1 | 〈vp, γ̇〉 = 0}.

The tangent bundle Tγ is a vector subbundle of T⊥γ. Moreover both Tγ and
T⊥γ are vector subbundles of the pull-back bundle:

γ∗TE
3
1 =

⋃

t

Tγ(t)E
3
1.

A complementary vector subbundle S = S(T⊥γ);

T⊥γ = Tγ ⊕ S(T⊥γ).

is called a screen vector bundle of γ. The screen bundle is not uniquely deter-
mined. In fact, let ξ be a local section of the screen bundle. Then for any function
λ(s), ξ(s) + λ(s)γ′(s) spans another screen bundle. It is easy to see that every
screen bundle is spacelike (and hence, nondegenerate). Thus we have the following
orthogonal decomposition:

γ∗TE
3
1 = S(T⊥γ) ⊕ S(T⊥γ)⊥.

Now we fix a screen bundle of γ. Then we have:

Lemma 5.1. (Bejancu) Let γ(t) be a parametrized null curve in E
3
1 with screen

vector bundle S. Then there exists a unique line bundle N such that there exists a
unique section N of N satisfying

〈dγ

dt
,N〉 = 1, 〈N, N〉 = 〈N, X〉 = 0

for any section X of S.

The line bundle N = NS is called the null transversal bundle of γ with respect
to the screen bundle S.

The null transversal bundle depends on the choice of screen bundle. Take a unit
section W of S(T⊥γ) so that det(γ′, N, W ) = 1. Then (L, N, W ), L = γ′ is a null
frame field of γ. Thus (L,N,W ) satisfies the Frenet equation:

d

dt
(L,N,W ) = (L, N, W )





k1 0 −k3

0 −k1 −k2

k2 k3 0



 .

In general this frame field does not satisfy k1 = 0.

Let γ(s) be a nongeodesic null curve. Then there exists a null frame (A,B, C)
with k1 = 0 according to the construction given in Proposition 2.1.

The principal normal vector field C(s) is defined by the formula:

γ′′(s) = k2(s)C(s).
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The principal normal vector field defines a screen bundle S;

S(T⊥γ) =
⋃

s

S(T⊥
s γ), S(T⊥

s γ) = RC(s).

Let B(s) be the binormal vector field. Then the null transversal bundle is spanned
by B(s);

N =
⋃

Ns, Ns = RB(s).

As we saw before, for any function λ,

Sλ(T⊥γ) =
⋃

s

Sλ(T⊥
s γ), Sλ(T⊥

s γ) = R(C(s) + λ(s)A(s))

gives another screen bundle.

Part II Applications

6. Applications: Ruled surfaces

6.1. Ruled patch. First of all, we recall basic ingredients about ruled surfaces
from O’Neill’s textbook [55, pp. 140–143, 231–234] and Spivak’s textbook [65,
pp. 146–150, 182–183].

Let R
3 be Cartesian 3-space. A ruled surface in R

3 is an immersed surface
swept out by a straight line ℓ moving along a curve γ. The various position of the
generating line ℓ are called the ruling ( or ruler) of the surface. Such a surface thus
has a parametrisation of the following ruled form:

ϕ(u, v) = γ(u) + vP (u) (or γ(v) + uP (v)).

The curve γ is called the base curve or generating curve. The curve P (u) is called the
director curve. Alternatively P is regarded as a vector field along γ It is necessary
to restrict v to some interval to guarantee the immersion property of ϕ.

In Euclidean 3-space, the following result is well-known:

Theorem 6.1. Flat surfaces in E
3 are generalized cones, cylinders or tangent

developables.

Corollary 6.1. (Pogorelov-Hartman-Nirenberg-Massey) Complete flat surfaces are
cylinders.

Ruled surfaces which are not generalized cones or cylinders or tangent devel-
opables are sometimes called scrolls.

Now we study ruled surfaces in Minkowski 3-space.

Let γ : I → E
3
1 be a parametrized curve and P be a vector field along γ.

Consider the mapping ϕ(u, v) := γ(u) + vP (u) : I × R
∗ → E

3
1. Then the pulled-

back symmetric tensor I = 〈dϕ,dϕ〉 is given by [1]:

I =

(

〈γ̇, γ̇〉 + 2v〈γ̇, Ṗ 〉 + v2〈Ṗ , Ṗ 〉 〈γ̇, P 〉 + v〈Ṗ , P 〉
〈γ̇, P 〉 + v〈Ṗ , P 〉 〈P, P 〉

)

.

Here we used the dot “ · ” for d/du. According to the causal character of γ and P ,
there are four possibilities for nondegenerate ruled surfaces:

(I) γ̇ and P are non-null and γ̇ and P are linearly independent;
(II) γ̇ is null and P is non-null with 〈γ̇, P 〉 6= 0;
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(III) γ̇ is non-null and P is null with 〈γ̇, P 〉 6= 0;
(IV) γ̇ and P are null with 〈γ̇, P 〉 6= 0;

The following result is due to L. J. Aĺıas, A. Ferrández, P. Lucas and M. A. Meroño.

Lemma 6.1. (cf. [1]) After an appropriate change of the base curve γ, cases (II)
and (III) can be reduced locally to (I) and (IV), respectively.

Proof. Let ϕ(u, v) = γ(u) + vP (u) be a ruled of type (II). Then by a suitable
reparametrization of γ and rescaling of P , we get

〈P, P 〉 = ν = ±1, 〈γ̇, P 〉 = 1

so that

det I = ν{2v〈γ̇, Ṗ 〉 + v2〈Ṗ , Ṗ 〉} − 1 < 0.

Now we look for a curve α(u) = γ(u)+v(u)P (u) in the ruled surface with 〈α̇, α̇〉 = ν
and such that α̇ and X are linearly independent. The condition 〈α̇, α̇〉 = ν is
equivalent to

(6.1) v̇2 + 2νv̇ + det I = 0.

This equation has positive discriminant from det I < 0. Thus we can locally inte-
grate this to obtain v = v(u). Besides, α̇ and X are linearly independent because
〈α̇, α̇〉 = 〈P, P 〉 = ν and 〈α̇, P 〉 = 1 + ν v̇ 6= ±ν. This shows that ϕ(u, v) is
reparametrized as in case (I) taking α as the base curve.

Next let ϕ be a ruled surface of type (III). Then by a suitable reparametrisation
of γ and the rescaling of P , we have

〈γ̇, γ̇〉 = ν, 〈γ̇, P 〉 = 1.

We can find a null curve α(u) of the form α(u) = γ(u) + v(u)P (u) in the ruled
surface with 〈α̇, P 〉 6= 0. In fact, since the condition 〈α̇, α̇〉 = 0 is equivalent to

(6.2) −2v̇ = ν + 2v〈α̇, Ṗ 〉 + v2〈Ṗ , Ṗ 〉.
This equation can be locally integrated to obtain v = v(u). Moreover 〈α̇, P 〉 =
〈γ̇, P 〉 6= 0. Thus we can take α as a base curve of ϕ. ¤

In the rest of this section we shall investigate the case (IV). The main purpose of
the rest of this section is to give the “standard parametrization” for ruled surfaces
of type (IV).

6.2. B-scrolls. Graves [29] introduced the notion of B-scroll.

Definition 6.1. Let γ(u) be a null Frenet curve parametrized by the distinguished
parameter u and framed by (A,B, C). Then the timelike ruled surface

ϕ(u, v) := γ(u) + vB(u)

is called the B-scroll of γ.

The first derivatives of the B-scroll are given by

ϕu = A(u) − vk3(u)C(u), ϕv = B(u).

Thus the metric I of the B-scroll is

I =

(

k3(u)2v2 1
1 0

)

.



NULL CURVES IN MINKOWSKI 3-SPACE 65

Take a unit normal vector field n by n = −k3(u)vB(u) + C(u). Then the shape
operator of ϕ derived from n is

S =

(

k3(u) 0
k2(u) + vk′

3(u)2 k3(u)

)

.

Thus the Gaussian curvature K and the mean curvature H of the B-scroll are given
by

K = k3(u)2, H = k3(u).

In particular, the B-scroll is totally umbilical if and only if γ is a geodesic and k3

is a constant.
Thus if γ is not a geodesic, then S has real repeated principal curvatures with

1-dimensional eigenspace spanned by B. (Hence this surface is not totally umbilic).
B-scrolls give examples of timelike surfaces which have no Euclidean or spacelike

counterparts. In fact, B-scrolls of nongeodesic null Frenet curves are not totally
umbilic but have real repeated principal curvatures everywhere.

It is easy to see that B-scroll has vanishing mean curvature if and only if it is
flat. Moreover the base curve of flat B-scroll is a generalized null cubic.

Remark 6.1. B-scrolls can be totally umbilical.
Let M be a totally umbilical timelike surface which is not totally geodesic. It is

known that such a surface is congruent to an open portion of a pseudosphere S
2
1(r)

centered at the origin.
Now we show that S

2
1(r) is locally expressed as a B-scroll. As we saw before,

a B-scroll is totally umbilical if and only if the generating curve is a null geodesic
and has constant torsion k3. Take a null geodesic γ(s) defined by

γ(s) = (0, 0, 1) + s(1, 1, 0)/
√

2.

Then γ admits a null Frenet frame:

A(s) = (
1√
2
,

1√
2
, 0), B(s) = (− s2

2
√

2r2
− 1√

2
− s2

2
√

2r2
+

1√
2
,
s

r
),

C(s) = (− s

r
√

2
,− s

r
√

2
, 1).

The torsion of γ is k3 = 1/r. The B-scroll of γ is S
2
1(r).

Remark 6.2. Let γ(u) be a null Frenet curve. Then ψ(u, v) = ϕ(u) + vA(u) is a
lightlike surface and called the lightlike developable of γ [37].

B-scrolls have been appeared in many contexts of differential geometry. More-
over, the notion of B-scroll can be generalized to 3-dimensional Lorentzian space
forms. See [15] and [26].

Here we would like to exhibit some examples.

6.3. Bonnet surfaces and HIMC surfaces.

Definition 6.2. Let ϕ : M → E
3
1 be a timelike surface. Then (M,ϕ) is said to

be a timelike Bonnet surface if there exists a (local) isometric deformation family
{ϕλ} preserving the mean curvature through ϕ.

Theorem 6.2. ([26]) Every B-scroll is a timelike Bonnet surface.
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Next a timelike surface M in Minkowski 3-space is said to be a timelike surface
with harmonic inverse mean curvature (timelike HIMC surface, in short) if its
reciprocal mean curvature function 1/H is a Lorentz harmonic function [27].

Proposition 6.1. ([27]) For every non-geodesic null Frenet curve, its B-scroll is
a timelike HIMC surface.

6.4. Finite type immersions. Let ϕ : M → E
3
1 be an immersed semi-Riemannian

surface. Denote by ∆ the Laplace-Beltrami operator with respect to the induced
metric I. Then (M, ϕ) is said to be of finite type if ϕ can be written as a finite sum
of eigenfunctions of ∆:

ϕ = ϕ0 + ϕ1 + · · · + ϕk,

where ϕ0 is a constant vector and ∆ϕi = λiϕi, for i = 1, · · · , k. If in particular all
eigenvalues {λi} are mutually different, then (M, ϕ) is said to be of k-type.

F. Dillen, I. Van de Woestyne, L. Verstraelen and J. Walrave classified ruled
surfaces of finite type in E

3
1.

Theorem 6.3. ([17]) A timelike ruled surfaces M in E
3
1 is of finite type if and only

if

(1) M is minimal, (H = 0);
(2) M is a portion of a timelike circular cylinder E

1
1 × S

1;
(3) pseudocircular cylinder S

1
1 × E

1 or
(4) M is an isoparametric surface with null rulings.

Timelike minimal surfaces and various cylinders are 1-type timelike surfaces,
that is, ϕ = ϕ0 + ϕi with λi 6= 0.

Timelike isoparametric surfaces are of null 2-type, that is, ϕ has the decomposi-
tion:

ϕ = ϕ0 + ϕi + ϕj

with λi = 0, λj 6= 0.
Note that timelike isoparametric surfaces can be reparametrized as B-scrolls of

null Frenet curves with constant torsion.

6.5. Gauss maps. Let ϕ : M → E
3
1 be a timelike surface. Then its unit normal

vector field can be regarded as a smooth map into the unit pseudosphere S
2
1. The

resulting map ψ : M → S
2
1 is called the Gauss map of ϕ.

Like Euclidean geometry, the following Ruh-Vilms type theorem is obtained:

Proposition 6.2. ([49]) Let ϕ : M → E
3
1 be a timelike surface with Gauss map

ψ : M → S
2
1. Then ψ is a (Lorentz) harmonic map if and only if the mean curvature

of ϕ is constant.

Based on the Ruh-Vilms property, a loop group theoretic construction of timelike
constant mean curvature surfaces in E

3
1 is established in [18]. See also [38].

Let ψ be a smooth map from a semi-Riemannian 2-manifold M into the unit
pseudo 2-sphere S

2
1 or hyperbolic 2-space H

2. We embbed S
2
1 and H

2 in E
3
1 as

hyperboloids. Then ψ is harmonic if and only if

∆ψ = ρ ψ

for some function ρ. Mappings which satisfy these equations are called pointwise
1-type map by some authors (See eg., [41] etc).

Kim and Yoon classified nondegenerate ruled surfaces of constant mean curvature
in E

3
1.



NULL CURVES IN MINKOWSKI 3-SPACE 67

Proposition 6.3. ([41]) The only nondegenerate cylindrical ruled surfaces of con-
stant mean curvature whose base curves are non-null are open portions of

(1) spacelike or timelike planes,
(2) hyperbolic cylinder H

1 × E
1 (spacelike surface),

(3) timelike circular cylinder E
1
1 × S

1 (timelike surface), or
(4) pseudocircular cylinder S

1
1 × E

1 (timelike surface).

Proposition 6.4. ([41]) Nondegenerate noncylindrical ruled surfaces of constant
mean curvature with non-null base curves have mean curvature 0.

Note that ruled spacelike maximal surfaces and ruled timelike minimal surfaces
are classified by O. Kobayashi [43], L. McNertney [48] and Van de Wostijne [67].

Proposition 6.5. ([41]) B-scrolls over null curves with constant k3 are the only
ruled surfaces of constant mean curvature in E

3
1 with null rulings.

Choi, Ki, Suh [14], Aĺıas, Ferrández, Lucas and Merõno [1] studied Gauss maps
of timelike ruled surfaces in Minkowski 3-space.

Theorem 6.4. ([1],[13],[14])

(1) The only timelike ruled surfaces with non-null rulings in E
3
1 for which the

Gauss map satisfies ∆ψ = Λψ, where ∆ is the Laplace operator on the sur-
face and Λ some fixed endomorphism of E

3
1, are open portions of a timelike

plane, timelike circular cylinder E
1
1 × S

1, pseudocircular cylinder S
1
1 × E

1.
(2) B-scrolls over null curves with constant torsion are the only ruled surfaces

in E
3
1 with null rulings whose Gauss map ψ satisfies the condition ∆ψ = Λψ.

In all the cases, the Gauss maps are (Lorentz) harmonic maps into S
2
1.

Note that Ferrández and Lucas [25] generalized the result (2) in the preceding
Theorem to that for B-scrolls in 3-dimensional Lorentzian space forms [15].

As we mentioned before, B-scrolls of constant (mean) curvature are null 2-type.
Null 2-type timelike surfaces in 3-dimensional Lorentzian space forms are classified
by Kim and Kim [40]. In case of E

3
1, they proved:

Proposition 6.6. The only null 2-type timelike surfaces are constant mean curva-
ture timelike cylinders or B-scrolls of constant mean curvature.

6.6. Affine differential geometry. B-scrolls have been appeared in affine dif-
ferential geometry.

First, we recall the following result:

Lemma 6.2. ([16]) Up to conjugation, the following three cases cover all possible
non-trivial one-parameter subgroups of the isometry group SO+

1 (3) ⋉ R
3:

(6.3)





1 0 0
0 cos t sin t
0 − sin t cos t









x
y
z



 + h





t
0
0



 ;

(6.4)





cosh t sinh t 0
sinh t cosh t 0

0 0 1









x
y
z



 + h





0
0
t



 ;

(6.5)





1 + t2/2 −t2/2 t
t2/2 1 − t2/2 t

t −t 1









x
y
z



 + h





t3/3 + t
t3/3 − t

t2



 .
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The one-parameter subgroups in the list are called helicoidal motion with pitch
h. The third type helicoidal motion is also called a cubic screw motion (kubische
Schraubung).

A nondegenerate surface in E
3
1 is said to be a helicoidal surface if there exists a

non-trivial one-parameter subgroup {gt} of SO+
1 (3) ⋉ R

3 such that the surface is
invariant under the action of {gt}.

Let us consider the orbit of the line Re3 under the helicoidal motion (6.5). The
orbit is parametrized as

ϕ(s, v) =
(

h(s3 + s), h(s3 − s), hs2
)

+ v (s, s, 1) .

Note that this surface has vanishing mean curvature.
This helicoidal surface is a timelike ruled surface with null base curve γ(s) =

(h(s3 + s), h(s3 − s), hs2) with director curve P (s) = (s, s, 1). (Since, 〈γ′, P 〉 =
−2h 6= 0. One can reparametrize ϕ as a B-scroll). If we choose h = −1/2, then
ϕ is a B-scroll of γ. This example is an indefinite real form of the so-called Lie’s
minimal surface.

It is pointed out in [16], this timelike ruled surface is equiaffinly congruent (but
not isometric) to the Cayley’s ruled surface of third degree which has been investi-
gated in affine differential geometry. For more detailed historical discussions about
Cayley’s minimal surface, we refer to [16].

F. Dillen and W. Kühnel classified ruled Weingarten surfaces in Minkowski 3-
space. The following is a slight modification of [16, Theorem 2].

Theorem 6.5. Let ϕ(s, v) = γ(s) + vP (s) be a nondegenerate Weingarten ruled
surface in E

3
1. Then

(1) Any non-flat ruled Weingarten surface with nonnull rulings is an open por-
tion of a helicoidal ruled surface,

(2) Any ruled surface with null rulings is a Weingarten surface satisfying H2 =
K.

6.7. Distribution parameter. A. Fujioka and the first named author have proved
the following fundamental result:

Theorem 6.6. ([26]) Let M be a timelike surface in E
3
1. Assume that M has real

repeated principal curvatures with corresponding 1-dimensional eigenspace every-
where. Then M is a B-scroll of a null Frenet curve.

This implies that every null scrolls can be reparametrized as a B-scroll of a null
Frenet curve. For instance, as we have seen before (Remark 6.1), the pseudosphere
S

2
1 can be represented as B-scroll.
Hereafter we study geometric meaning of these reparametrizations in detail.

Let M be a ruled surface in E
3
1 with null rulings. Assume that M is non-

cylindrical. Take any regular curve α on the surface which intersects the rulings
transversally, and let X be a vector field along α such that X(u) is pointing in the
direction of the ruling through α(u). Then M is parametrized as

ϕ(u, v) = α(u) + vX(u),

where 〈X,X〉 = 0. Since M is non-cylindrical, Ẋ 6= 0. Moreover, since M is
timelike,

〈Ẋ, Ẋ〉 > 0, 〈α̇, X〉 6= 0.

The following result is due to [17]:
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Lemma 6.3. The function ρ = 〈Ẋ, Ẋ〉/〈α̇, X〉2 is independent of the choice of α,
the parametrisation of α or the scaling of X. The shape operator of M with respect
to the coordinates (u, v) has the form:

( √
ρ 0

something
√

ρ

)

.

We call the function ρ the distribution parameter of the ruled surface M with
null rulings. In particular, if M is a B-scroll of a null Frenet curve, ρ = k2

3 = K.

Remark 6.3. (Extension B-scroll) In [58], Nasar and Fathi introduced the notion of
“extension B-scroll”. Let α(s) be a null Frenet curve and P be a null vector field
along γ. Nasar and Fathi call the ruled surface φ(s, v) = α(s) + vL(s) an extension
B-scroll.

However, one can see that every extension B-scroll can be reparametrized as a
B-scroll.

7. Applications: Timelike minimal surfaces

7.1. Lorentz conformal structure. Let M be an oriented 2-manifold and h1

and h2 Lorentzian metrics on M . Then h1 and h2 are said to be conformally
equivalent if there exists a smooth positive function µ on M such that h2 = µ h1.
An equivalence class C of a Lorentzian metric on M is called a Lorentz conformal
structure. An orderd pair (M, C) consisiting of an oriented surface and a Lorentz
conformal structure compatible to the given orientation is called a Lorentz surface.

A local coordinate system (u, v) is said to be null if

h

(

∂

∂u
,

∂

∂u

)

= h

(

∂

∂v
,

∂

∂v

)

= 0

for any h ∈ C.

Proposition 7.1. (cf. [68, p. 13]) Let (M, C) be a Lorentz surface. Then there
exists, in some neighborhood of any point, a null coordinate system (u, v).

Remark 7.1. Let (M, C) be a Lorentz surface. Take a Lorentzian metric h ∈ C.
Denote by ¤h the Laplace-Beltrami operator of h (frequently called d’Alembert
operator). With respect to a null coordinate system (u, v) such that h = eω dudv,
¤h is given by

¤h = 4e−ω∂u∂v.

A smooth function f ∈ C∞(M) is said to be a (Lorentz) harmonic function if
¤hf = 0. The explicit formula of ¤ implies that the harmonicity of functions is
invariant under conformal transformations of (M, C).

The exterior differential operator d is decomposed with respect to the conformal
structure:

d = d′ + d′′, d′ :=
∂

∂u
du, d′′ :=

∂

∂v
dv.

It is easy to see that d′ and d′′ are independent of the choice of null coordinate
system.

Definition 7.1. Let f : M → R be a smooth function. Then f is said to be a
(real) Lorentz holomorphic function if d′′f = 0. Similarly, f is said to be a (real)
Lorentz anti holomorphic function if d′f = 0.
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It is easy to see that f ∈ C2(M) is Lorentz harmonic if and only if d′′d′f = 0.
In particular, (Lorentz) ±-holomorphic functions are harmonic.

Proposition 7.2. (d’Alembert formula) Let M be a Lorentz surface and F a
Lorentz harmonic function. Then there exist a Lorentz holomorphic function X
and a Lorentz anti holomorphic function Y such that F = X + Y .

For general theory of Lorentz surfaces, we refer to [38], [68].

7.2. Classical representation formula. Let M = (M, C) be a Lorenzt surface.
An immersion ϕ : M → N3

1 to a Lorentz 3-manifold (N3
1 , h) is said to be a timelike

surface if ϕ is conformal, i.e., ϕ∗h ∈ C. A timelike surface is said to be minimal
(or extremal) if its mean curvature vanishes.

Now let ϕ : M → E
3
1 be a timelike surface in Minkowski 3-space. Then it is

easy to see that M is minimal if and only if ϕ is a vector-valued Lorentz harmonic
function. Hence the immersion ϕ can be written locally:

ϕ(u, v) = X(u) + Y (v)

as a sum of two curves X(u) and Y (v) by Proposition 7.2. By computing the first
fundamental form of the right hand side, we obtain

(7.1) 〈Xu, Xu〉 = 〈Yv, Yv〉 = 0,

and Xu and Yv are linearly independent. Hence X(u) and Y (v) are null curves in
E

3
1.
Here we arrive at the classical representation formula:

Proposition 7.3. ([48, Theorem 3.5]) Let ϕ : M → E
3
1 be a timelike minimal

surface. Then ϕ is expressed locally as a sum of null curves:

ϕ(u, v) = X(u) + Y (v).

The velocity vector fields of the null curves X(u) and Y (v) are linearly independent.
Conversely, let X(u) and Y (v) be null curves defined on open intervals Iu and

Iv, respectively. Assume that the velocity vector fields Xu and Yv are linearly
independent. Then ϕ(u, v) = X(u) + Y (v) is a timelike minimal immersion of
(Iu × Iv, dudv) into E

3
1 with metric I = 2〈Xu, Yv〉dudv.

Let ϕ(u, v) = X(u) + Y (v) be a timelike minimal surface. Then ϕ̂(u, v) :=
X(u) − Y (v) is also a timelike minimal surface. The timelike minimal surface ϕ̂ is
called the conjugate timelike minimal surface of ϕ.

Example 7.1 (Timelike catenoid and Timelike helicoid with spacelike axis). Let
us consider the following timelike minimal surface:

ϕ(u, v) = X(u) + Y (v),

where

X(u) = (sinhu, cosh u, u), Y (v) = (− sinh v,− cosh v,−v).

Then

ϕ =

(

2 sinh

(

u − v

2

)

cosh

(

u + 2

2

)

, 2 sinh

(

u − v

2

)

sinh

(

u + 2

2

)

, u − v

)

,

ϕ̂ =

(

2 cosh

(

u − v

2

)

sinh

(

u + 2

2

)

, 2 cosh

(

u − v

2

)

cosh

(

u + 2

2

)

, u + v

)

.
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The surface ϕ is a timelike minimal surface of revolution with timelike profile curve
and spacelike axis, which is called the Lorentz catenoid (or timelike catenoid) with
spacelike axis. The conjugate timelike minimal surface ϕ̂ is a timelike ruled minimal
surface which is called the timelike helicoid with spacelike axis.

(a) (b)

Figure 6. Timelike catenoid ϕ (a) and Timelike helicoid ϕ̂ (b)
with spacelike axis

Example 7.2 (Timelike catenoid and Timelike helicoid with timelike axis). Next,
let us consider the following timelike minimal surfaces:

ϕ(u, v) = X(u) + Y (v),

where
X(u) = (u, sin u,− cos u), Y (v) = (−v,− sin v, cos v).

Then

ϕ(u, v) =

(

u − v, 2 sin

(

u − v

2

)

cos

(

u + v

2

)

, 2 sin

(

u − v

2

)

cos

(

u + v

2

))

,

ϕ̂(u, v) =

(

u + v, 2 cos

(

u − v

2

)

sin

(

u + v

2

)

,−2 cos

(

u − v

2

)

cos

(

u + v

2

))

.

The surface ϕ is a timelike minimal surface of revolution with timelike profile curve
and timelike axis, which is called the Lorentz catenoid (or timelike catenoid) with
timelike axis. The conjugate timelike minimal surface ϕ̂ is a timelike ruled minimal
surface which is called the timelike helicoid with timelike axis.

(a) (b) (c)

Figure 7. Timelike catenoid ϕ (a), (b) and Timelike helicoid ϕ̂
(c) with timelike axis
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7.3. The Weierstrass formula. Let ϕ : M → E
3
1 be a timelike surface parametrized

by null coordinates (u, v). Hereafter we assume that M is a simply connected region
of the Minkowski plane E

2
1 = (R2, dudv) containing the origin (0, 0).

Let n be the unit normal vector field to M , i.e., n is a vector field along ϕ which
satisfies

〈ϕu,n〉 = 〈ϕv, n〉 = 0, 〈n, n〉 = 1.

then one can check that Qdu2 +Rdv2 is globally defined on the Lorentz surface M ,
where Q = 〈ϕuu,n〉 and R = 〈ϕvv, n〉. The differential Qdu2 + Rdv2 is called the
Hopf differential of M .

The Codazzi equations of (M, ϕ) imply that the mean curvature H is constant
if and only if Qv = Ru = 0 (See [36], [18], [38]).

Now let ϕ : M → E
3
1 be a timelike minimal surface parametrized by null coordi-

nates (u, v).
Define two vector valued functions ξ = (ξ1, ξ2, ξ3) and η = (η1, η2, η3) by

ξ(u) := ϕu, η(v) := ϕv,

in other words,

X(u) =

∫ u

0

ξ(u) du, Y (v) =

∫ v

0

η(v) dv

for the timelike minimal surface ϕ(u, v) = X(u) + Y (v). By definition, ξ and η
satisfy

−ξ2
1 + ξ2

2 + ξ2
3 = −η2

1 + η2
2 + η2

3 = 0.

Define the functions f(u),q(u), g(v) and r(v) by

−ξ1 + ξ2 = f, ξ3 = qf,

η1 + η2 = g, η3 = rg.

Then we have

ξ(u) = (−1

2
(1 + q(u)2),

1

2
(1 − q(u)2), q(u))f(u),

η(v) = (
1

2
(1 + r(v)2),

1

2
(1 − r(v)2), r(v))g(v).

Thus the original timelike minimal surface is represented by

ϕ(u, v) =

∫ u

0

(

−1

2
(1 + q(u)2),

1

2
(1 − q(u)2), q(u)

)

f(u)du(7.2)

+

∫ v

0

(

1

2
(1 + r(v)2),

1

2
(1 − r(v)2), r(v)

)

g(v)dv

up to translations. This is the Weierstrass formula obtained by Magid. See [46,
Theorem 4.3 and p. 456, Notes 2]. The first fundamental form of ϕ is given by

I = {1 + q(u)r(v)}2f(u)g(v) dudv.

The unit normal vector field n of ϕ is given by

n =
1

1 + qr
(q − r, q + r,−1 + qr).

Under the stereographic projection ([38, Example 3.18]):

℘+ : S
2
1 \ {z = −1} → E

2
1 \ H

1
0,
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the unit normal n is projected to

1

2qr
(q − r, q + r) ∈ E

2
1.

The E
2
1-valued function (q, r) is frequently referred as the projected Gauss map of

(M, ϕ).
The Hopf differential of ϕ is given by

Q(u) =
dq

du
(u)f(u), R(v) =

dr

dv
(v)g(v).

Locally one can reparametrize ϕ so that f(u) = g(v) = 1. Then under this
parametrization, the null curves

X(u) =

∫ u

0

(

−1

2
(1 + q(u)2),

1

2
(1 − q(u)2), q(u)

)

du,

Y (v) =

∫ v

0

(

1

2
(1 + r(v)2),

1

2
(1 − r(v)2), r(v)

)

dv

have null Frenet frame fields

AX(u) =

(

−1

2
(1 + q(u)2),

1

2
(1 − q(u)2), q(u)

)

,

BX(u) = (1, 1, 0), CX(u) = (−q(u),−q(u), 1),

AY (v) =

(

1

2
(1 + r(v)2),

1

2
(1 − r(v)2), r(v)

)

,

BY (v) = (−1, 1, 0), CY (v) = (r(v),−r(v), 1),

respectively. The curvature functions of X and Y are

kX
2 (u) = qu = Q, kY

2 (v) = rv = R, kX
3 (u) = kY

3 (v) = 0.

Example 7.3 (Timelike Enneper surfaces). Take q = εu = ±u, r = v in

ϕ(ε)
u = (−1

2
(1 + q2),

1

2
(1 − q2), q), ϕ(ε)

v = (
1

2
(1 + r2),

1

2
(1 − r2), r),

Then we obtain the following immersion:

ϕ(ε)(u, v) = X(u) + Y (v),

where

X(u) =
1

2
(−(u +

u3

3
), u − u3

3
, εu2),

Y (v) =
1

2
(v +

v3

3
, v − v3

3
, v2).

These formulas show that the parameters u and v are pseudoarc paremeters of X(u)
and Y (v), respectively. And hence X(u) and Y (v) are null cubics.

The timelike surface ϕ(1) may be regarded as “Lorentzian cousin” of Enneper’s
minimal surface. The Hopf differential and the Gaussian curvature of ϕ(ε) are

(7.3) Q = ε, R = 1, K = −4ε(1 + εuv)−4.

The metric of ϕ(ε) is

(7.4) I = (1 + εuv)2dudv.
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The surface ϕ(1) has real distinct principal curvatures. On the contrary, ϕ(−1)

has no Euclidean counterpart, since it has imaginary principal curvatures. Both
the surfaces are foliated by null cubics discussed in Example 2.2.

The Enneper’s minimal surface in Euclidean 3-space does not have such a prop-
erty.

(a) (b)

(c) (d)

Figure 8. Timelike Enneper surface (isothermic type) (a), (b)
and Timelike Enneper surface (anti-isothermic type) (c), (d)

Remark 7.2 (Isothermic and anti-isothermic coordinate systems). Let ϕ : M → N3
1

be a timelike surface in a Lorentz 3-manifold.

(1) A local null coordinate system (u, v) is said to be isothermic if the metric
and Hopf differential of the surface have the form:

I = eωdudv, Q(u, v) =
1

2
q(u, v)̺(u), R(u, v) =

1

2
q(u, v)σ(v),

where ̺ and σ are positive Lorentz holomorphic function and positive
Lorentz anti-holomorphic function, respectively.
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(2) A local null coordinate system (u, v) is said to be anti-isothermic if the
metric and Hopf differential of the surface have the form:

I = eωdudv, Q(u, v) =
1

2
q(u, v)̺(u), R(u, v) = −1

2
q(u, v)σ(v),

where ̺ and σ are positive Lorentz holomorphic function and positive
Lorentz anti-holomorphic function, respectively. The anti-isothermic prop-
erty implies that the timelike surface has non-real (imaginary) principal
curvatures.

(3) The formulas (7.3)–(7.4) imply that the timelike Enneper surface ϕ(1) is
parametrized by isothermic coordinate system (u, v). On the other hand,
ϕ(−1) is parametrized by anti-isothermic coordinate system (u, v). For more
details on isothermic and anti-isothermic coordinate system, we refer to
[26]–[27].

Example 7.4 (Flat B-scoll). Next we consider a timelike minimal surface with
with q 6= 0 and r = 0. By the classical formula, we obtain

ϕ(u, v) = X(u) + Y (v),

X(u) =

∫ u

0

(

−1

2
(1 + q(u)2),

1

2
(1 − q(u)2), q(u)

)

du, Y (v) = v

(

1

2
,
1

2
, 0

)

This explicit representation shows that ϕ is a ruled surface. The null Frenet frame
field (AX , BX , CX) along the null curve X(u) is given by

AX(u) = Xu(u) =

(

−1

2
(1 + q(u)2),

1

2
(1 − q(u)2), q(u)

)

,

BX(u) = (1, 1, 0), CX(u) = (−q,−q, 1).

Hence we notice the Y (v) = vBX(u)/2. Thus ϕ is the B-scroll of X(u). Note that
the unit normal vector field of ϕ is N = C. The second fundamental form of ϕ is
described as Q = qu(u), R = 0, K = H = 0. Hence ϕ has principal curvature 0 with
multiplicity 2. However ϕ is not totally geodesic since qu 6= 0 by our assumption
q 6= 0. This timelike surface has no Euclidean counterpart. Reparametrize (u, v) so
that Q = 1. Without loss of generality, we may assume that q(u) = u. Then u is
the pseudoarc parameter of X(u). Then ϕ is parametrized as

ϕ(u, v) =
1

2

(

−u3

3
− u + v,−u3

3
+ u + v, u2

)

.

(a) (b)

Figure 9. Flat B-scroll
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Hence ϕ is a cylinder over a parabora 2ξ3 = (−ξ1+ξ2)
2. P. Mira and J. A. Pastor

called a minimal B-scroll a parabolic null cylinder [50].

Example 7.5 (Timelike catenoid and Timelike helicoid with spacelike axis). The
timelike catenoid and timelike helicoid with spacelike axis in Example 7.1 can be
obtained by the Weierstrass formula (7.2) with the data q(u) = −eu, f(u) = −e−u,
r(v) = e−v, g(v) = ∓ev, respectively. The ordered pair (q, r) = (−eu, e−v) is the
Gauss map projected in E

2
1(u, v). The timelike catenoid and timelike helicoid share

the same Gauss map analogously to the Euclidean case.

Example 7.6 (Timelike catenoid and Timelike helicoid with timelike axis). The
timelike catenoid and timelike helicoid with timelike axis in Example 7.2 can
be obtained by the Weierstrass formula (7.2) with the data q(u) = sin u

−1+cos u
,

f(u) = −1 + cos u, r(v) = sin v
1+cos v

, g(v) = ∓(1 + cos v), respectively. The or-

dered pair (q, r) =
(

sin u
−1+cos u

, sin v
1+cos v

)

is the Gauss map projected in E
2
1(u, v). The

timelike catenoid and timelike helicoid share the same Gauss map analogously to
the Euclidean case.

8. Applications: Timelike CMC-1 surfaces

In this section, we study a representation formula for timelike surfaces of constant
mean curvature 1 (abbreviated as CMC-1) in anti-de Sitter 3-space H

3
1 [34], [45].

It is interesting that timelike CMC-1 surfaces in H
3
1 can be constructed by a pair

of Lorentz holomorphic and Lorentz anti-holomorphic null curves in PSL(2; R) =
SL(2; R)/{±id}. That is, there is a Weierstrass formula for timelike CMC-1 surfaces
in H

3
1. This is not a coincidence due to Lawson-Guichard correspondence between

timelike minimal surfaces in E
3
1 and timelike CMC-1 surfaces (See [26], [27], [45].)

The anti-de Sitter 3-space H
3
1 is realized as a hyperquadric:

H
3
1 = {(ξ0, ξ1, ξ2, ξ3) ∈ E

4
2 | − ξ2

0 − ξ2
1 + ξ2

2 + ξ2
3 = −1}

in the semi-Euclidean 4-space E
4
2 with index 2. The semi-Euclidean 4-space E

4
2 is

identified with the space M(2; R) of all 2 by 2 real matrices via the correspondence;

(8.1) (ξ0, ξ1, ξ2, ξ3) ←→
(

ξ0 − ξ3 −ξ1 + ξ2

ξ1 + ξ2 ξ0 + ξ3

)

.

The scalar product 〈·, ·〉 of E
4
2 corresponds to the scalar product

(8.2) 〈X,Y 〉 =
1

2
{tr(XY ) − tr(X)tr(Y )}

on M(2; R). Under the identification E
4
2 = M(2; R), the anti de Sitter 3-space H

3
1 is

identified with the real special linear group SL(2; R). The metric on H
3
1 induced by

(8.2) is bi-invariant. In fact, the product group SL(2; R)×SL(2; R) acts isometrically
and transitively on H

3
1 via the action:

(a, b) · X = aXbt.

The isotropy subgroup at the identity is

K = {(a, (at)−1) | a ∈ SL(2; R)}.
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This isotropy group is isomorphic to SL(2; R). Hence H
3
1 is represented as H

3
1 =

SL(2; R) × SL(2; R)/SL(2; R) as a Lorentzian symmeteric space. The natural pro-
jection π : SL(2; R)×SL(2; R) → H

3
1 is given by π(a, b) = abt. For more information

on the SL(2; R)-model of H
3
1, we refer to [15], [36], [38], [45].

The following result is fundamental in this section.

Proposition 8.1. Let γ : I → H
3
1 be a curve. then the following conditions are

mutually equivalent:

• γ is a null curve, i.e., γ′ is a null vector field along γ,
• det(γ−1γ′) = 0.

This characterization motivates us the following definition.

Definition 8.1. Let M be a 2-manifold and F : M −→ SL(2; R) a map. Then F
is said to be null if det(F−1dF ) = 0.

Theorem 8.1 (Weierstrass-Bryant representation [34],[45]). Let M be a Lorentz
surface and F = (F1, F2) : M −→ SL(2; R) × SL(2; R) an immersion such that

(1) F1 is Lorentz holomorphic, i.e., (F1)v = 0 and F2 is Lorentz anti-holomorphic,
i.e., (F2)u = 0,

(2) F1 and F2 are null curves, i.e., det(F−1
1 dF1) = det(F−1

2 dF2) = 0.

Then

(8.3) ψ := F1F
t
2

is a smooth conformal timelike immersion into H
3
1 with CMC-1. Conversely, let

M be an oriented and simply-connected Lorentz surface with globally defined null
coordinates. If ψ : M −→ H

3
1 is a smooth conformal immersion with CMC-1, then

there exists an immersion F = (F1, F2) : M −→ SL(2; R) × SL(2; R) such that
F1, F2 satisfy the conditions (1), (2), and ψ = F1F

t
2 .

Let ψ : M −→ H
3
1 be a timelike CMC-1 surface. Then, by Theorem 8.1, there

exists a smooth immersion F = (F1, F2) : M −→ SL(2; R)×SL(2; R) satisfying (1),
(2) and ψ = F1F

t
2 .

Locally in an open set U ⊂ M ,

F−1
1 dF1 =

(

p1q1 −p2
1

q2
1 −p1q1

)

e
ω

2 du, F−1
2 dF2 =

(

p2q2 −p2
2

q2
2 −p2q2

)

e
ω

2 dv,

where

(

p1 −q2

q1 p2

)

∈ SL(2; R) and ω : M −→ R.

Let q := p1

q1

, f(u) := q2
1 , r := p2

q2

, and g(v) := q2
2 . Then the Weierstrass formula

(7.2) defines a timelike minimal surface ϕ : U −→ E
3
1. Note that the ordered

pair (q, r) coincides with the stereographically projected Gauss map of the timelike
minimal surface ϕ. The induced metric Iψ of (U,ψ) is related to the induced metric
Iϕ of (U,ϕ) by

Iψ = eω(1 + qr)2f(u)g(v)dudv = eω Iϕ.

Thus the induced metric Iψ of the timelike CMC-1 surface ψ is conformal to Iϕ.
Conversely, assume that a timelike minimal surface ϕ : M −→ E

3
1 is given by the

Weierstrass formula (7.2) with data (q, f(u)) and (r, g(v)). Consider the following
system of differential equations:

(8.4)
dF1

du
= F1

(

q −q2

1 −q

)

e
ω

2 f(u),
dF2

dv
= F2

(

r −r2

1 −r

)

e
ω

2 g(v).
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The linear system (8.4) is called the Brayant-Umehara-Yamada type representation
formula. These equations in (8.4) satisfy the integrability condition, so there exists
a solution (F1, F2) : M −→ SL(2; R) × SL(2; R) satisfying the conditions (1) and
(2). By Theorem 8.1, ψ := F1F

t
2 : M −→ H

3
1 defines a timelike CMC-1 surface in

H
3
1.
Hence, we see that timelike CMC-1 surfaces in H

3
1 are closely related to timelike

minimal surfaces in E
3
1. More specifically, there is a one-to-one correspondence

between timelike CMC-1 surfaces in H
3
1 and timelike minimal surfaces in E

3
1. Note

that the Gauss-Codazzi equations are preserved by this correspondence, i.e., those
correspondents in H

3
1 and in E

3
1 satisfy the same Gauss-Codazzi equations. This

is a special case of the so-called Lawson-Guichard correspondence between timelike
CMC surfaces in semi-Riemannian space forms E

3
1, S

3
1, and H

3
1. Here, S

3
1 denotes the

de Sitter 3-space which can be realized as the hyperquadric in Minkowski 4-space
E

4
1:

S
3
1 := {(ξ0, ξ1, ξ2, ξ3) ∈ E

4
1 | − ξ2

0 + ξ2
1 + ξ2

2 + ξ2
3 = 1}.

Let ℘+ : H
3
1 \ {ξ0 = −1} −→ E

3
1 \ S

2
1 be the stereographic projection from

−e0 = (−1, 0, 0, 0):

(8.5) ℘+(ξ0, ξ1, ξ2, ξ3) =

(

ξ1

1 + ξ0
,

ξ2

1 + ξ0
,

ξ3

1 + ξ0

)

.

Let ℘− : H
3
1 \ {ξ0 = 1} −→ E

3
1 \ S

2
1 be the stereographic projection from e0 =

(1, 0, 0, 0):

(8.6) ℘−(x0, x1, x2, x3) =

(

x1

1 − x0
,

x2

1 − x0
,

x3

1 − x0

)

.

Cut H
3
1 into two halves by the hyperplane ξ0 = 0. Denote by (H3

1)+ (resp.
(H3

1)−) the half containing e0 = (1, 0, 0, 0) (resp. −e0 = (−1, 0, 0, 0)). Then
℘+ : (H3

1)+ −→ Int S
2
1 and ℘− : (H3

1)− −→ Int S
2
1.

Example 8.1 (Timelike Enneper Cousin in H
3
1 of isothermic type). Let (q(u), r(v)) =

(u, v). Then using the Bryant-Umehara-Yamada type representation formula (8.4),
we set up the following initial value problem:

F−1
1 dF1 =

(

u −u2

1 −u

)

du, F−1
2 dF2 =

(

v −v2

1 −v

)

dv

with the initial condition F1(0) = F2(0) =

(

1 0
0 1

)

. This initial value problem has

a unique solution

F1(u) =

(

cosh u sinhu − u cosh u
sinhu cosh u − u sinhu

)

,

F2(v) =

(

cosh v sinh v − v cosh v
sinh v cosh v − v sinh v

)

which are Lorentz holomorphic and Lorentz anti-holomorphic null curves in SL(2; R).
The Weierstrass-Bryant representation formula (8.3) then yields a timelike CMC-1
surfaces in H

3
1. The resulting surface is a correspondent of isothermic type timelike

Enneper surface in E
3
1 under the Lawson-Guichard correspondence. For this reason,

the resulting surface is called isothermic type timelike Enneper cousin in H
3
1.
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(a) (b)

Figure 10. Isothermic type timelike Enneper cousin projected
into Int S

2
1 via ℘+ with lightcone in E

3
1

Example 8.2 (Timelike Enneper Cousin in H
3
1 of anti-isothermic type). Let (q(u), r(v)) =

(−u, v). Then using the Bryant-Umehara-Yamada type representation (8.4), we set
up the following initial value problem:

F−1
1 dF1 =

(

−u −u2

1 u

)

du, F−1
2 dF2 =

(

v −v2

1 −v

)

dv

with the initial condition F1(0) = F2(0) =

(

1 0
0 1

)

. This initial value problem has

a unique solution

F1(u) =

(

cos u − sin u + u cos u
sin u cos u + u sin u

)

,

F2(v) =

(

cosh v sinh v − v cosh v
sinh v cosh v − v sinh v

)

which are Lorentz holomorphic and Lorentz anti-holomorphic null curves into SL(2; R).
The Weierstrass-Bryant representation formula (8.3) then yields a timelike CMC-
1 surface in H

3
1. The resulting surface is a correspondent of anti-isothermic type

timelike Enneper surface in E
3
1 under the Lawson-Guichard correspondence. For

this reason, the resulting surface is called anti-isothermic type timelike Enneper
cousin in H

3
1. Figure 11 shows the anti-isothermic type timelike Enneper cousin in

H
3
1 projected via ℘+ into the interior of the boundary S

2
1.

Figure 11. Anti-isothermic type timelike Enneper cousin pro-
jected into Int S

2
1 via ℘+ with lightcone in E

3
1
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Example 8.3 (Timelike Catenoid Cousins in H
3
1). Let q(u) = −eu, f(u) = −e−u,

r(v) = e−v and g(v) = −ev. We solve the initial value problem:

F−1
1 dF1 =

(

1 eu

−e−u −1

)

du, F−1
2 dF2 =

(

−1 e−v

−ev 1

)

dv

with F1(0) = F2(0) =

(

1 0
0 1

)

.

The resulting surface F1F
t
2 (Figure 12(a)) is a timelike catenoid cousin H

3
1, which

is corresponded to timelike catenoid with spacelike axis in E
3
1 via the Lawson-

Guichard correspondence.
Now, let us take q(u) = sin u

−1+cos u
, f(u) = −1 + cos u, r(v) = sin v

1+cos v
and g(v) =

−(1 + cos v). Then we solve the initial value problem:

F−1
1 dF1 =

(

sin u − sin2 u
−1+cos u

−1 + cos u − sin u

)

du,

F−1
2 dF2 =

(

− sin v sin2 v
1+cos v

−1 − cos v sin v

)

dv

with F1(π/2) = F2(π/2) =

(

1 0
0 1

)

. The resulting surface F1F
t
2 (Figures 12(b),

12(c)) is a timelike catenoid cousin H
3
1, which is corresponded to timelike catenoid

with timelike axis in E
3
1 (Example 7.1, Example 7.5) via the Lawson-Guichard

correspondence.

(a) (b) (c)

Figure 12. Timelike Enneper cousins projected into Int S
2
1 via

℘+ with lightcone in E
3
1

For more details on timelike CMC-1 surfaces in H
3
1, we refer to [45].
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