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Null Double Injection and the Extra Element 
Theorem 

R. D. MIDDLEBROOK, FELLOW, IEEE 

Abstract-The extra element theorem (EET) states that any transfer 

function of a linear system can be expressed in terms of its value when 

a given “extra” element is absent, and a correction factor involving 

the extra element and two driving point impedances seen by the ele- 

ment. One class of applications is when a system has already been ana- 

lyzed and later an extra element is to be added to the model: the EET 

avoids the analysis having to be restarted from scratch. Another class 

of applications is when a system is to be analyzed for the first time: if 

one element is designated as “extra,” the analysis can be performed 

on the simpler model in the absence of the designated element, and the 

result modified by the EET correction factor upon restoration of the 

“extra” element. 

Although the EET itself is not new, its interpretation and applica- 

tion appear to be little known. In this paper, the EET is derived and 

applied to several examples in a manner that has been developed and 

refined in the classroom over a number of years. The concept of “null 

double injection” is introduced first, because it is the key to making 

easy the calculation of the two driving point impedances needed for the 

EET correction factor. 

I. INTRODUCTION 

N a design process, considerable effort is expended in I analysis of a circuit model for various transfer func- 
tions, of which usually the gain is the most important. 
Later, perhaps following experimental measurements on 
a breadboard, it may be decided that an additional element 
needs to be added to the model. For example, gain mea- 
surements may disclose an unanticipated high-frequency 
pole, and one may wish to restore a previously omitted 
collector-base capacitance to a transistor model. 

The usual approach is to restart the analysis on the aug- 
mented circuit model, for all the desired transfer func- 
tions. Each such analysis is of course more complicated 
than it was the first time, especially if there is feedback 
to be accounted for, because the circuit has an additional 
element. 

In this iteration process, it may be noticed that much of 
the analysis is the same as it was the first time. One would 
like to avoid repeating the parts that are the same, and do 
only the parts that are different because of the presence of 
the additional element. 

The extra element theorem provides this shortcut. The 
gain (or any other transfer function) in the presence of ‘an 
extra element is given by a correction factor multiplying 
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the gain already calculated in the absence of the extra ele- 
ment. The correction factor contains only the extra ele- 
ment itself and two driving point impedances, both cal- 
culated at the place where the extra element is to be added, 
but under two different conditions. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the work 
done on the original circuit is utilized and only the two 
driving point impedances “seen” by the extra element 
need to be determined. Moreover, the correction-factor 
format itself is useful because it exposes directly the mod- 
ification to the original result caused by the extra element. 

The extra element theorem is of benefit if calculation 
of the two driving point impedances is easier, or is less 
work, than calculation of the gain directly from the aug- 
mented circuit. While there is no guarantee, this is usually 
so, and leads to usefulness of the theorem in another con- 
text. 

Since the gain and the two driving point impedances are 
calculated for the circuit in the absence of the extra ele- 
ment, no calculations are done on the augmented circuit 
itself; one merely inserts the extra element into the cor- 
rection factor. This affords a method of obtaining transfer 
function results by analysis only of a circuit that is less 
complicated by one element. Thus, in analysis of a given 
circuit, one may designate an element as “extra” and omit 
it, perform the analysis for the desired transfer functions 
and driving-point impedances on the simpler “reference” 
circuit, and then restore the missing element by the extra 
element theorem correction factor. It will be seen in the 
examples to follow that this approach is particularly sim- 
ple and illuminating when the reference circuit is resistive 
and the extra element is a reactance, since then the driving 
point impedances are resistive and the correction factor 
gives directly the pole and zero due to the reactance. 

There are several ways of establishing the extra element 
theorem. However, since one of the driving point imped- 
ances involves a null double injection condition, I have 
found it pedagogically preferable to introduce null double 
injection first, as is done here, since this concept is also 
useful for other purposes. Indeed, since most students 
have not previously heard of null double injection, most 
of the time spent on the extra element theorem is devoted 
to convincing them, through practice, that null double in- 
jection calculations are always simpler than single injec- 
tion calculations; it is only because the concept is unfa- 
miliar that the null double injection calculations appear at 
first to be more difficult. 

0018-9359/89/0800-0167$01 .OO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 1989 IEEE 
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11. NULL DOUBLE INJECTION 

Consider a linear system with two driving signals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu l I  
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu f 2 ,  as indicated schematically in Fig. 1. These driv- 
ing signals can be voltage, current, torque, or any inde- 
pendent “inputs.” 

These two “input” signals cause the various branch 
currents, node voltages, etc. to take on certain values. If 
the system is linear, the only constraint to be placed upon 
it, each such dependent signal, by superposition, is the 
linear sum of the two values it would have due to each 
input signal alone. 

Let two dependent signals be designated as “outputs” 
u , ~  and uO2. Thus, 

U01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AI41 + A242 

U 0 2  = BPfI  + B242 

( 1 )  

( 2 )  

where the coefficients are transfer functions, or “gains, ” 
formally defined as 

Usually, only one input is considered at a time, and the 
system is analyzed separately for the transfer functions 
A , ,  B I  and A 2 ,  B2 .  However, some additional useful re- 
sults can be obtained by application of both inputs simul- 
taneously, which is the condition of ‘‘double injection. ” 

At first sight, it may seem that double injection is of 
little use since either output can have any value. The use- 
fulness appears, however, when one output is made to 
have the specific value zero, which is the condition of null 
double zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinjection. 

come 
Let output number 1 be 

0 = AIuil 

U02 1 = o  = BlUil 

A specific ratio of the two 

nulled. Then (1) and (2) be- 

u , , = ~ , u , 1 * ~ 2 u i 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ “  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q” - u , 2 = ~ , u , l + ~ 2 u l 2  

Fig. 1 ,  Model of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa linear system with two inputs and two outputs 

By elimination of u f l  I = o  from (7) and (8) 

U02 - AlB2 - A2Bl -I 4 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,,1=0 - AI 

Note the difference from (6), repeated here: 

The algebra of the above steps is simple. The important 
thing is the physical interpretation of the null double in- 
jection condition and the understanding of why the two 
results of ( IO)  and (1 1) are different. I use a hardware 
demonstration to illustrate the above sequence of steps. 
The two input sine waves and the two output sine waves 
are observed on a four-trace scope. 

First, with u12 zero, u f I  is varied up and down in am- 
plitude, and both uo1 and uO2 vary up and down in (differ- 
ent) proportions, corresponding to the two gains A ,  and 
B ,  . The process is repeated with u12 alone, and the (same) 
two outputs vary up and down in different proportions 
representing the gains A ,  and B2.  

With u12 fixed at some arbitrary value, together with the 
corresponding values of uOI and uO2, an arbitrary value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U,, is simultaneously applied: U , ,  and uO2 suddenly change 
to different values, representing the superposition of (1) 
and (2). 

Now, with one input remaining fixed in amplitude, the 
other is varied; both outputs vary. At some value of the 
variable input one of the outputs goes through a null (if it 
doesn’t, the phase of one input is reversed and the search 
repeated). Once the null at one output has been achieved, 
the other output takes on a fixed value. Conditions are 
now as expressed in (7) and (8).  

Several other points can now be demonstrated. Either 
or both inputs can be varied to establish the null; since 
the null is determined solely by their ratio, (9), the two 
inputs can be varied up or down in proportion, and the 
null remains. At the same time, the output which is not 
nulled varies up and down in proportion to either input, 
and it can easily be seen that its ratio to one input, ( lo), 
is not the same as when the other input is zero, (1 1). 

In setting up this demonstration, one requires both in- 
puts to be sine waves of the same frequency with fixed 
phase relationship, and one therefore derives both from 
the same oscillator. If the test circuit is purely resistive, 
one input can be derived from the other by a potentiom- 
eter and reversing switch since only in-phase or out-of- 
Dhase signals are reauired to achieve a null. However. if 

is needed to null U , , ,  and a specific ratio of output number 
2 to either input results, as indicated by the constraints in 
(7) and (8) .  ” 
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the test circuit is reactive, a null cannot be obtained merely 
by adjustment of the amplitude of one input with respect 
to the other and a phase adjustment is also required. For 
convenience in demonstration, independent magnitude 
and phase adjustments are desired, and it is an instructive 
laboratory project for a student to determine how to obtain 
a wide-range phase adjustment independent of frequency 
and with constant amplitude output. 

Although the experimental demonstration is helpful to 
students in understanding the physical meaning, null dou- 
ble injection is valuable principally as an analytical tool. 
At this stage, its value is not yet clear; it lies in the fact 
that the transfer function expressed by (10) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAboth phys- 
ically significant and useful in its own right, and easy to 
calculate for a given circuit. Its applications lie in sensi- 
tivity theory, feedback theory, and in the extra element 
theorem to be developed in the next section. 

Fig. 2.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. with second input a current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and second output a volt- 
age zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 .  

4 
I. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  As Fig. 2, with second output at the same node pair as the second 
input. 

111. THE EXTRA ELEMENT THEOREM (EET) FOR A 

PARALLEL ELEMENT 

The extra element theorem (EET) is developed from a 
sequence of two special cases of the pair of transfer func- 
tions given by (10) and (1 1). 

First, identify the input number 2 as a current ui2 = i 
and output number 2 as a voltage u02 = U ,  as in Fig. 2. 

Equations (1) and (2) become 

uClI = Alu i l  + A2 i  (12) 

Fig. 4. As Fig. 3,  with second output and second input related by an extra 
impedance Z .  

tionship between ui2 = i and u02 = U ,  namely i = - v / Z  
by Ohm’s law. Equations (1) and (2) then become 

U = Blu;l + BZi (13) 

and (10) and ( 1 1) become 

= Bz. 

By elimination of U :  

The transfer functions v / i  l U O l  = 0  and v / i  = 0  are now 

Second, identify the output voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv as being the volt- 

as in Fig. 3. The two transimpedances now become self- 
impedances interpreted as driving point impedances Zdp 
“seen” by the second input: 

1 AIB2 - A2B, 
identified as transimpedances. 1 + -  

age across the terminals at which the current i is injected, 
z AI 

(20) - = AI 
U; I 1 

1 + - B ,  
Z 

which, by substitution of (16) and (17), becomes 

According to the following interpretation, this result is 
the extra element theorem. In the absence of Z (that is, Z 
= 03 ) neither the second input nor the second output need 
be identified, and U,, and u , ~  become the single system 
“input” and “output.” So, by (3), A ,  is identified as the 
system transfer function, or gain, A 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz= 

In the final step, consider the linear system with an 
impedance Z in place of the second input 4 2 ,  as in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. The system does not “know” whether the entering cur- 
rent i is an independent signal or not; (1) and (2) still 
hold. However, there is now an externally imposed rela- = A , .  
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R, written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C,“ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ 

1 + -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z 

1 + -  z 
- VI 

(22) A I ,  = A I , , ,  ~ 

which is the extra element theorem in its final form, and 

- 

:; R2 

I?:: == 
c2 

Suppose the basic common-em~tter (CE) amplifier stage Fig. 6. Simple small-signal ac model of amplifier of Fig. 5 ,  for calculation 
of gain z ~ , / z , ,  with C ,  taken as short and C, as open. 

of Fig. 5 has been designed. A suitable ac small-signal 

‘E 
has already been calculated then, as described in the In- 
troduction, the EET has value if it is easier to calculate 
the two driving point impedances (on the reference cir- 

model is shown in Fig. 6, with the transistor replaced by 
a simple T model in which the nonlinear emitter diode 
slope resistance rE = ( k T / e ) / I , .  The base bias divider 
is replaced by RB = R I  11 R2, and the coupling capacitance 
C ,  is taken to be an ac short. However, the emitter bypass 
capacitance is omitted. 

Straightforward analysis of the model of Fig. 6 leads to 
the following result for the gain A,, = v 2 / v l :  

* 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / (  1 + 0). 
Suppose now that one wishes to account for the effect 

the external emitter resistance R .  Instead of recalculating 

Fig. 7. Conditions for calculation of the single-injection driving point 

of the emitter bypass capacitance C 2 ,  to be added across impedance Z,, seen by C, as an “extra” element in the model of Fig. 6. 

cuit) than it is to calculate the gain A I z  directly on the 
circuit augmented by the extra element. 

the entire circuit, let us use the EET to find a correction 
factor on the gain A. already determined. Thus, the model 
of Fig. 6 is now identified as the “reference” circuit, and 
A,, is the “reference gain” corresponding to A 1 Z = m  

where Z is the impedance to be added across R .  
To find the correction factor, the two driving point 

impedances across R are to be calculated. 
Fig. 7 shows the circuit model modified for the condi- 

tions under which Z, is to be calculated: a “second” or 
“test” input-signal is applied across R ,  and the “origi- 
nal” input u1  is made zero, since Zd = [ v / i ] , , ,  =,,. In this 
simple example, the result can be written by inspection: 

z d  = Rd E 1 1  [ r E  + ( R ,  ( 1  R B ) / (  + 011. (24) 

“I 

The test signal source can be a voltage or a current 
source, whichever makes the calculation easier; here, 
since the answer is obviously the parallel combination of 
the impedances looking into R and RE, the test signal is 
shown as a general Thevenin source. 

Fig. 8 shows the circuit model modified for the condi- 
tions under which Zn is to be calculated: a test signal is 
again applied across R ,  and the original input U ,  is re- 
stored. Thus, double injection is established, and the two 
inputs are imagined to be mutually adjusted until the orig- 
inal output v 2  is nulled. Then, Z, E [ z ~ / i ] ~ , ~ = ~  is the 
driving point impedance at the test signal input under this 
null double injection condition. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 .  Conditions for calculation ofthe null double injection driving point 
impedance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,, seen by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACz as an “extra” element in the model of Fig. 6. 

Fig. 9. Qualitative representation of the current distribution in the model 
of Fig. 6, for calculation of the gain i ~ ~ / i i ,  in the absence of the “extra” 
element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2.  

The following logical sequence of steps leads to the re- 
sult. Output voltage u 2  = 0 * current in RL = 0 * col- 
lector current = 0 * emitter current = 0. Therefore, all 
of the current i from the test source goes through R, so 

Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = R  11 E R .  ( 2 5 )  

Student reaction at this point is usually one of surprise 
that the answer is so simple. They understand the steps, 
but that is not enough, and so I have found it useful to 
illustrate this process with overhead projection overlays. 
The reference circuit of Fig. 6 is the “base” picture, and 
an overlay is added that shows, by trace width, a quali- 
tative representation of the relative magnitudes of the cur- 
rents in the various branches that result from the original 
input voltage U , .  The overlay, Fig. 9, is in a solid blue 
color, and shows the signal distributions that correspond 
to the original conditions from which the reference gain 
A.  of ( 2 3 )  are calculated. 

The blue overlay is removed, and replaced by a yellow 
one that shows the currents that result from the test signal 
alone, as in Fig. 10, and represents the signal distribu- 
tions from which the single-injection driving point imped- 
ance Zd is calculated. The driving point current clearly 
divides into two paths and, for typical numbers, the bulk 
of it.goes into the r, branch. 

Finally, the blue and yellow overlays are superimposed 
simultaneously upon the reference circuit. This cannot be 
illustrated here, but with the overhead projection a rather 
dramatic result is achieved: the trace representing the cur- 
rent through RL turns green, which is identified as the null 
resulting from cancellation, at the output, of the signals 
separately proportional to each of the inputs. 

It is also seen that several of the branch currents are 
green, which means that the null “propagates” : in par- 
ticular, because of the properties of the transistor T model, 
if one current is zero, then all three terminal currents are 
zero. In the present example, nulled collector current im- 
plies nulled emitter current, which leads immediately to 
the conclusion that all the injected current from the test 
source goes through R, so that Z,, = R. 

Useful Observation 1): To calculate the null driving 
point impedance Z,,, see how the null propagates to the 

t 
Fig. 10. Qualitative representation of the current distribution in the model 

of Fig. 6,  for calculation of the driving point impedance Z ,  seen by the 
“extra” element C2. 

vicinity of the test signal source. Students having initial 
difficulty doing this may find it helpful to visualize the 
superposition of signals from the two sources, as illus- 
trated by the overhead projection overlays. 

Although unnecessary for calculation of Z,, it is helpful 
to students to notice also the parts of the superimposed 
blue and yellow overlays that are not green. A separate 
overlay shows only these nonzero currents, which consti- 
tute two separate loop currents, one through u l ,  R,, and 
R,, and the other through the test source and R. The ab- 
sence of current (the null) in all three legs of the transistor 
model clearly illustrate that the null is achieved by bal- 
ancing the base-to-ground voltage across RB, determined 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 1 ,  against the emitter-to-ground voltage across R,  de- 
termined by the test source. 

Useful Observation 2): To calculate the null driving 
point impedance Z,, it is never necessary to know the re- 
lation between the two signal sources. The existence of 
the null is used instead: the process of null achievement 
by mutual adjustment of the two sources is irrelevant, and 
the fact that the null exists is equivalent information. 
Thus, in the example under discussion, it was not neces- 
sary to know ul to find Z,. 

Useful Observation 3): It is easier to calculate Z,, than 
Z,, because the null propagates, so there are fewer contri- 
butions to the result, and the answer is simpler. Students 
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initially tend to disbelieve this statement, because the zero. Hence, the dual form of the EET is 
concept of single injection (to find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ( / )  is familiar, whereas 
the concept of null double injection ( to  find Z,,) is not; 
however, with practice, they eventually realize that null 
double injection is a simple yet powerful technique. 

It is now but a short step to complete the example with 
addition of the extra element, the emitter bypass capaci- 

Z 
I + -  

(30)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,, 

Zd 

Iz= Iz=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
1 + -  

which says that the gain of a linear system i n  the presence 
of an element Z is the gain of the system when Z is zero, tance Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 1 /sC2. By the EET of (22), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA I z= = A.  from (23), and R,, and R,, have been 
found in (24) and (25). 

Useful Observation 4): I f  the reference circuit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis resis- 
tive and the extra element is a reactance, the EET cor- 
rection factor gives directly the pole and/or zero due to 
the reactance. This is because both driving point imped- 
ances, which are calculated on the reference circuit, are 
resistive in this case. 

Usefil Observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5): The extra element irself need 
not be ident$ed until the lasr step of substitution into the 
EET correction factor. Only its future position needs to 
be identified since all the other quantities A I z= m, Z,, and 
Z,, are calculated on the reference circuit. 

IV. THE EXTRA ELEMENT THEOREM (EET) FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

SERIES ELEMENT 

Since the extra element theorem of the previous section 
permits addition of an extra element across a node pair, 
it is to be expected that a similar, or dual, form of the 
theorem would permit addition of an extra element in se- 
ries with a branch. Such an alternative form need not be 
derived independently, but can easily be obtained from 
the original form. 

Let A again represent any transfer function of a linear 
system, such as the gain. The EET for an extra parallel 
element Z is 

multiplied by a correction factor involving the extra ele- 
ment Z itself, and two driving point impedances Z,, and 
Z, seen by the extra element. 

These are the same words that describe the original 
EET; the difference is that the reference circuit has Z = 

0 instead of Z = 03, and the correction factor provided by 
the theorem has the Z terms inverted. The two driving 
point impedances Z,, and Z, are calculated in the same 
way. 

Example 2: Inclusion of Bypassed Emitter Resistance to 
Common-Emitter Amplijier Stage 

Consider the same CE amplifier stage of Fig. 5 from a 
different point of view. At “midband” frequencies where 
both capacitive reactances are negligible, the ac small- 
signal model is as in Fig. 11, which is the reference cir- 
cuit. The reference gain is the midband gain A,,, = u 2 / u I :  

(31 1 RB URL 
A,,, = ~ 

R, + RB rE + (R,  11 R ~ ) / ( I  + 6) ‘  

Suppose now that one wishes to account for the gain 
change at lower frequencies caused by increasing react- 
ance of C 2 :  the emitter bias resistance R is no longer com- 
pletely bypassed, and so a nonzero impedance Z needs to 
be added in series with rE. 

The EET for an extra series impedance Z ,  (30), can 
now be invoked, and the two driving point impedances 
seen by the extra element are calculated on the reference 
circuit. 

Zfl I + -  Z 

A I z  = ~ 

1 + -  Zd 
Z 

Conditions for calculation of Z, are shown in Fig. 12. 
A test input signal is applied in series with rE,  and the 
original input u1 is made zero. Again, the result can be 
written by inspection: 

(27)  

Zd = RA = r, + ( R ,  1 1  R B M 1  + P ) .  (32) 
which can be written 

A prime is used to distinguish this result from that in the 

Conditions for calculation of Z,, are shown in Fig. 13. 
The original input z i l  is restored, and mutually adjusted 
together with the test signal to set up a null at the original 
output U ? .  Null double injection conditions are thus es- 
tablished, and the same logical sequence of steps is fol- 
lowed as in the previous example. The null propagates, 
and nulled u 2  implies nulled emitter current. This time, 
however, the emitter current is the only current through 
the test source, so 

Z . Z + I  previous example. 

z z,, 
Zd - _  z + 

z Zd 

(28) A I ,  = AI,,, - ~ 

Z 

Z ’  (29) 
1 + -  

Zd 

What is the interpretation of the quantity in the square 
Z,, = R:, = 03 ( 3 3 )  

bracket? It must be the gain of the system when Z = 0 
since the remaining factor goes to unity when Z goes to 

since a zero i results from nonzero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZI at the test source 
driving point. 
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Fig. 11. Small-signal ac model of amplifier of  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  with both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ,  and 
C, taken as shorts. 

Fig. 12. Conditions for calculation of Z,, seen by Cz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR in the model 
o f  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 .  

Fig. 13. Conditions for calculation of Z,, seen by C2 and R in the model 
of Fig. I I .  

With Z, and Z,, now determined, the extra element itself 
is identified as the parallel combination R ) I  ( 1 /se2); and 
insertion into the EET of (30) gives 

However, R 11 R:, = R,/ by (24), and R = RI, by (25), so 

Useful Observation 6): The “extra element” Z can be 
any two-terminal combination of elements. 

The two results, (26) and (36), are the same since both 
describe the circuit of Fig. 5 with the bypass capacitance 
C2 in place, but the coupling capacitance C ,  still consid- 
ered an ac short. Equation (26) gives the gain with the 
zero-frequency gain A. as reference, modified by a normal 
pole and zero; (36) gives the gain with the midband-fre- 
quency gain A, as reference, modified by an inverted pole 
and zero. 

Example 2 was chosen specifically to demonstrate that 
the extra element need not be a single element. A third 
starting point that leads to the same result illustrates an- 
other feature of the EET. 

Example 3: Extension of Example 2 

Identify the extra element Z = 1 / s e 2 ,  as in example 
I ,  so that Z ,  and Z,, are determined from Figs. 7 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8,  

respectively, with the results of (24) and (25). However, 
take the reference value to be Z = 0 instead of Z = 03: 

the reference circuit is now as in Fig. 11 (imagine the 
emitter resistance R to be present, but shorted out by the 
reference value Z = 0).  Therefore, the reference gain is 
A 1 Z = O  = A,,, of (3 I ) ,  and the appropriate form of the EET 
is (30) for the added series element. Substitution of Z,, and 
Z,, from (24) and (25) and A,,, from (31) leads directly to 
(36). 

Useful Observation 7), extension of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4): Either the zero 
or the injnite frequency gain can be chosen as the refer- 
ence gain, by choice of Z = 03 or Z = 0 as reference 
value for a capacitance, vice versa for an inductance, as 
extra element. The frequency response due to Z is then 
in terms of a normal pole and zero modifying the zero 
frequency gain, or an inverted pole and zero modifying 
the infinite frequency gain. 

In summary, with respect to the original “input” and 
“output” signals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, and uo, ,  the extra element theorem 
states that 

(34) 

~- ‘‘output” - - A =  
“input” 

(35) 

Z I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ y  

(37) 
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where Z is an “extra” element inserted across a node pair, 
(23), or in series with a branch, (24), and Z, and Z, are 
the driving point impedances seen by Z ,  defined by 

z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ZdP IU,,,=” (null double injection) (39) 

zd zdp I (single injection). (40) 
Useful Observation 8): Nulling is not the same as 

shorting (of a voltage). The distinction is important: 
shorting a node pair changes the system determinant; 
nulling a voltage across a node pair (or a current through 
a branch) does not. Wrong answers for Z, are often ob- 
tained by students not yet clear about this distinction, and 
they need to be led through several examples of the “null 
propagation” process to appreciate at which step their 
logical error occurs. 

A useful first example for students to work out, in class, 
is to account for the frequency response due to the cou- 
pling capacitance CI  in the CE amplifier stage of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  
in which so far C,  has been taken to be an ac short. The 
bypass capacitance C2 can be taken either as an open or 
as a short throughout the exercise, by selection of either 
Fig. 6 or Fig. 11 as reference circuit. The reference value 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = l / s C l  is zero, and the test signal is inserted in 
series with R, in place of C,. Students now derive Z,, 
which (for C 2  short) is 

z d  = Rd = R, -k RBI) (1  + / 3 ) r ~ .  (41 1 
A common mistake is to place the two contributing terms 
in parallel instead of in series. 

The result for Z, is 

z, = 03 (42 1 
the derivation of which often causes mental distress. The 
“null propagation” logical sequence of steps is: output 
voltage v 2  = 0 current in RL = 0 collector current 
= 0 = base current = 0. Also, emitter current = 0 = 
voltage across R, = 0 = current through R, = 0. There- 
fore, since both the base current and the current through 
RB are zero, there is zero current through the test signal 
source regardless of its voltage, so Z, = 03. The most 
common mistake is forgetting that both emitter and base 
currents are zero if the collector current is zero, an error 
which leads to the incorrect result Z, = R, + R, or 2, = 

R, + ( 1  + P ) T E .  

Students can be recommended to visualize the super- 
position of currents due to the two sources under the nulled 
output condition. It becomes immediately clear that since 
the two sources are in direct series, the only way that a 
nulled output can exist is for all signals to be zero, that 
is, the null is established by adjustment of the two sources 
to be equal and opposite. 

The final step of substitution into the EET for the series 
extra element, (38), leads to 

with Rd given by (41). 

V.  THE EXTRA ELEMENT THEOREM AS A N  ANALYSIS 
TOOL 

Although the original motivation for the EET was to 
allow building on a previous result when a new element 
is to be added, it can also be useful in shortening and 
simplifying a derivation of a given complete circuit. One 
of the elements is designated as “extra,” and is omitted. 
Analysis is done for the transfer function of interest, and 
for the two driving point impedances where the element 
was removed. Finally, the element is replaced and the 
correction factor for the previous result is given by the 
EET. 

In this approach, one calculation on the complete cir- 
cuit is replaced by three calculations on a simpler circuit, 
with one fewer elements. Of course, there is no guarantee 
that there will be any benefit in using the EET in this way, 
but it does have the advantage that the effect of the se- 
lected “extra” element is illuminated in the bilinear form 
of the correction factor. As already mentioned, this is par- 
ticularly helpful when the selected element is the only re- 
actance, since then the EET correction factor gives the 
pole and zero directly. 

Analysis for the voltage transfer function, or gain, A = 
v2/v1 of the simple lag-lead network of Fig. 14 provides 
a class practice example. With the capacitance designated 
the “extra” element 2 = l / s C ,  students have a choice 
of whether to take the reference value Z = 03 or Z = 0; 
for 2 = 03, the reference gain is the zero-frequency gain 
Ao, and for 2 = 0 the reference gain is the infinite-fre- 
quency gain A,.  In either case, the two driving point re- 
sistances are 

(44) 

Z, = R, = R2. (45) 

Students should be given enough time to draw the circuit 
under each injection condition, and to understand clearly 
how these results come aboyt. Those having difficulty can 
be reminded to visualize the superposition of signals that 
establishes the nulled output for the null double injection 
calculation. Once they are confident about these deriva- 
tions, the result follows immediately by the EET: 

1 
1 + -  

1 + sCR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs CR, 

1 + s C R ~  1 
1 +-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s CRd 

A = A0 = A ,  . (46) 

Other simple examples can easily be invented. 

VI. APPLICATION OF THE EET TO ANY TRANSFER 
FUNCTION 

The EET may be used to find an extra element correc- 
tion factor for any transfer function of a linear system. It 
is necessary merely to identify the “input” and “output” 
signals; Zd and Z,l are then calculated as the driving point 
impedance seen by the extra element with the “input” 
zero and with the “output” nulled, respectively. 
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Fig. 14. A lag-lead network. 

Some examples of transfer functions are 

current drawn from power supply 
input voltage 

( a  transadmittance) 

output voltage ripple component 

power supply ripple voltage 

( a  voltage gain; audio susceptibility of a power supply) 

corresponding driving voltage 

any driving current 

(a self-impedance, e.g., input or output impedance). 

In all cases, the denominator of the transfer function is 
the “input” (independent) signal, and the numerator is 
the “output” (dependent) signal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Input Impedance of the CE AmplGer Stage 
of Example I 

Consider the amplifier stage of Fig. 5 and its ac small- 
signal model of Fig. 6, in which C,  is taken to be a short 
and C2 is omitted. The input impedance is to be deter- 
mined in the presence of C 2 ,  identified as an extra ele- 
ment. 

At this stage, students can begin doing more of the steps 
without drawing a separate model for each injection con- 
dition. The circuit of Fig. 15 contains the necessary fea- 
tures for all the calculations: the extra element C 2  is 
shown, but detached, and the test input signal source can 
be visualized connected across the terminals to which C 2  
is to be attached. 

The ‘‘reference transfer function” is the input imped- 
ance Z, = R, calculated from the circuit of Fig. 15 without 
the test signal: 

= RI = R, + RB ( 1  ( 1  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) ( r E  + R ) .  

(47) 
Here, i ,  is the “input” signal, visualized as a current 
source in Fig. 15, and z i ,  is the “output” signal. 

The driving point impedance Z, is found from Fig. 15 
with the test signal source visualized as connected across 
R, and with the “input” set to zero. Students are cau- 
tioned that zero input in this case means i ,  = 0, so the 
input is open and there is no current in R,; hence the result 
is 

1 
J 

Fig. 15. Small-signal ac model of Fig. 5 for calculation of the input 
impedance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, as short and Cz considered as an “extra” element. 

The driving point impedance Z,, is found from Fig. 15 
with the test signal source visualized as connected across 
R,  and with the “input” restored and adjusted to null the 
“output,” which in this case is the voltage U , .  Thus, Rs 
is effectively across RB, and the result is 

zdp I “output” - zdp I ,$, = o  
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

zn 
nulled 

The last step is connection of the extra element C z  
across R, and substitution of the above results into the 
EET: 

1 + sC~R, ,  Z.  = R. 
‘ 1 + sC2Rd 

Useful Observation 9): For the same circuit and same 
extra element, the two driving point impedances may be 
different in the EET correction factor f o r  diferent transfer 
functions. In example 4 ,  the EET for C 2  applied to the 
input impedance, Z, and Z,, are different from what they 
were in example 1,  the EET for C2 applied to the voltage 
gain of the same circuit. Students should think carefully 
about why this is so and, in any application of the EET, 
be sure they properly identify the “input” and “output” 
signals. In example 4, they should also think about why 
Z,, for the input impedance is the same as Z, in example 
1 for the voltage gain. 

Usefi l  Observution I O ) :  In the special case where the 
transfer function is a sew-impedance, setting the input to 
zero to calculate Z, is the same as opening the input, and 
nulling the output to calculate Z,, is the sume as shorting 
the input. This is because the “output” and “input” are 
at the same node pair. Note that in this special case the 
double injection condition is obviated, and the two driv- 
ing point impedances can be calculated directly from the 
two equivalent circuits shown in Fig. 16. 

Students can do in-class practice on the calculation of 
the input and output impedances Z, and Z,, for the lag-lead 
circuit of Fig. 14, again with designation of C as an extra 
element. 
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RL 

z ; l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S C Z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
_J 

(h) 

Fig. 16. Conditions for calculation of the two driving point impedances 
seen by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 2  in  the model of Fig. 15: (a) for Z,,, (h) for Z,r. 

VII. SYMMETRY OF THE TWO FORMS OF THE EET 

A useful but implicit feature of the two forms of the 
EET displayed in (37) and (38) will be introduced in this 
section by means of an example. 

Example 5: Inclusion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Transistor Collector Transition 
Layer Capacitance CT to CE Amplifier Stage 

For the CE amplifier stage of Fig. 5 ,  the midband gain 
A,,, has been calculated in example 2 from the model of 
Fig. 11  as (31). There is nothing in this model that pre- 
dicts the fall-off of gain at higher frequencies, so one 
might wish to determine the effect of the transistor collec- 
tor-base transition layer capacitance CT. This can conve- 
niently be done by the EET for an extra parallel element 
Z = 1 / s C ,  whose reference value is Z = CQ so that the 
reference gain is the A,,, already found. 

The reference circuit model of Fig. 11  is first simplified 
by removal of the R, - RB loop by Thevenin’s theorem, 
which leads to the model of Fig. 17. Since A,,, is already 
known, the Thevenin voltage generator coefficient is not 
needed: U ,  = 0 for calculation of Z(/, and U ,  need not be 
known for calculation of Z,z. 

For calculation of Z</, a test signal is applied as shown 
in Fig. 18(a) with = 0. In this example, the driving 
point impedance is not immediately obvious by inspec- 
tion, so an actual calculation of Z, = u / i  is required. This 
can be done in a variety of ways; the one chosen here 
starts with choice of the test signal as an independent cur- 
rent source i .  

17. Reduced small-signal ac model of Fig. 5 for calculation of the 
gain 1 t 2 / t j ,  of the common-emitter amplifier stage. 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘E 

( )v ,=O 

( C )  

Fig. 18. (a) Conditions for calculation of Z,, in the model of Fig. 17 for 
the collector transition layer capacitance C,  as “extra“ element; (b )  and 
(c) ,  successively reduced models. 

Successively reduced equivalent circuits are shown in 
Fig. 18(b) and (c), and since 2 1 B E  = [ R, 11 ( 1 + 0) r E ]  i .  
an expression for Z,, can be written 

= Z,, = R,/ = R, 11 ( 1 + 0 ) r t  
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Application of some algebraic force leads to the result in 
a more compact form: 

For calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,, the current-source test signal is ap- 
plied in the presence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu l ,  and imagined adjusted to null 
the output voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 2 .  This null double injection condition 
is shown in Fig. 19. The null propagates according to the 
following logical sequence of argument. Output voltage 
u2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 current in RL = 0 3 test signal current source 
= collector current # 0, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = -aiE. Also, since U ?  = 
0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) = V B E .  

Hence, 

The collector capacitance CT can now be added to the 
model of Fig. 17, and the EET gives the result for the 
gain as 

where 

(55) 

There can be class discussion of the relative values of 
the pole and zero frequencies, and why the zero is right 
half-plane. The multiplier m can be related to the Miller 
effect, and its value as a function of R, can be examined 
by arranging (55) in the bilinear form 

R, 

r€ 1 )  RL 

R, 

l + -  

( 5 6 )  m =  

1 +  
( 1  + 6 ) r E  

Hence, 

r n I R , - - O  = (57)  

This exposes the importance of the value of R,? as well as 
of RL in determining the pole frequency. 

In this rather more difficult example of the EET, the 
simplicity of the calculation of the null double injection 
calculation for Z,, with respect to that of the single injec- 
tion calculation for Z, is more apparent than in the pre- 
vious examples, in accordance with useful observation 3) .  

Whichever of the numerous methods for finding Z,, is used, 

177 

I I + 
Fig. 19. Conditions for calculation of Z,, in the model of Fig. 17 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, as 

“extra” element. 

it is bound to be fairly complicated because the answer is 
complicated. 

It is the relative difficulty of calculating Z,, with respect 
to Z,, that provides the motivation for employing the im- 
plicit symmetry feature of the two forms of the EET. 

In the derivation of the EET for an extra series element 
from that for a parallel element, the quantity in the square 
bracket in (29) was identified as the gain when Z = 0. 
This constitutes the symmetry feature 

(59) 

Alternatively, it is a redundancy relationship, which says 
that if any three of the quantities are calculated directly 
from the system model, then the fourth can be found from 
the redundancy relationship. 

In the application of the EET, either A I z = ,  or A [ Z = O  
is already known (the reference gain), and Z,, is easy to 
calculate. One therefore has the choice of calculating Zd 
directly from the circuit model or from the redundancy 
relationship, whichever is shorter or easier. 

Example 5, continued: Alternative Calculation of Zd 

It has already been seen that calculation of Zll directly 
from the circuit model from Fig. 18 required a significant 
amount of analytic force. To see whether calculation of 
Z, from (59) is any easier, let us calculate the remaining 
quantity A I z=o.  

The appropriate model is shown in Fig. 20. The short 
between collector and emitter kills the collector current 
generator, and reduces the model to a simple resistive di- 
vider from which 

- RE r~ 11 RL - -~ 
R,  + R, R, + rE 1 1  RL 

Hence, by the redundancy relationship (59), with A 1 z =  
= A,,, from (31) and Z,, = R,, from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(53), 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A 

Fig. 20. Model of Fig. 17 with the "extra" element C, shorted. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w = o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(65 1 

This derivation requires considerably less effort than the 
direct calculation leading to (52). 

Usejkl Observation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11): It is often easier to find the 
other reference gain and to use the redundancy relation- 
ship (59) for  &, than t o j n d  Z, directly. Note that if in 
general the reference gains and the null driving point 
impedance Z,, are already known in factored pole-zero 
form, then z d  is automatically obtained in factored pole- 
zero form since no sums or differences of terms appear in 
the redundancy relationship (59). 

A = (  

VIII. THE EET FOR A DEPENDENT GENERATOR 

The EET for the parallel extra element was developed 
from a sequence of two special cases starting from Fig. 
1 .  If, instead, the second input and output are left un- 
specified as ui2 and u02, respectively, the derivation of the 
theorem can continue in general with W representing any 
element that connects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu02 to ui2 externally to the reference 
system. The two symmetric forms of the result are 

A I  w = o  (62)  Consider the basic CE amplifier stage of Fig. 5 whose 
midband model is shown in Fig. 17. Identify W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 as 
the extra element, a current-controlled current generator. 
Identify the controlling signal iB  as po2, and the polarity 
reversed controlled signal - P i B  as u I 2 ,  as shown in Fig. 
21(a). Note that both u I 2  and u , ~  are currents, in this case. 
Remove the 0-generator, and replace it with an indepen- 
dent driving signal, as shown in Fig. 21(b). 

Calculation of U , ~ / U , ~  1 If,l =cl  from Fig. 22, single injec- 
tion with U ,  = 0, gives 

1 + w-1 4 2  

u,2 U , I = O  

1 + 1/w- 

1 + I / W ?  

U, l=O 

(63) 
I 

A I  W = m  

L 4 2  Uil = o  

to be a special case this general result, in which the iden- 
tification of quantities is 

uO2 
ui2 i i2 current into port 

v,2 = voltage at same port - 

= driving point impedance 

= zdp. 
Therefore, the extra element W is identified as 

1 
w a y = -  

Z 

together with the redundancy relationship 

If the u02 port is different from the U,? port, W represents 
a dependent generator at the u , ~  port controlled by the 
signal at the U,? port, and uO2/u l2 represents the transfer 
function between the same two ports in the absence of W .  

The EET for an extra self-impedance Z is easily checked 

Calculation of uO2/u i2 1 ,,,,I = "  from Fig. 23, null double 
injection with u 2  = 0, gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= a  (67) %I 4 2  I l , , l = O  

because uI2  = 0 if u 2  = 0, but U,? # 0. 
Since AI,,, = 0, only the form of (63) can be used. 

However, the principal application of the EET for a de- 
pendent generator is not to find the gain in the presence 



MIDDLEBROOK: EXTRA ELEMENT THEOREM I79 

The general EET of (62) through (64) can be written 

with the redundancy relationship 

(b) 

Fig. 21. (a) Small-signal ac model of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l  dependent gener- 
ator designated as “extra” element; (b) the “extra” element replaced 
by an independent generator. 

Fig. 2 2 .  Condit~ona in  Fig. 21(b) for calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,,,, ,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- V z = O  fy 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 .  Conditions in Fig. 21(b) for calculation of u,,?/u,? I ,,,, ,, 

of the dependent generator, but to examine the sensitivity 
of the gain to variations in the value of the dependent gen- 
erator, as described in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ix. RETURN RATIOS AND SENSITIVITY 

The EET for a linear system in its general form of (62) 
and (63) exposes the bilinear dependence of any transfer 
function A upon any single element Win the system. It is 
therefore a convenient starting point for finding the sen- 
sitivity of A to variations in W. 

where 

and 

are, respectively, the return ratio and the null return ratio 
for the element W .  Note that Tdw and TI,, are each directly 
proportional to W ,  and W does not appear elsewhere in 
the expression for A .  

The sensitivity S$ of the gain A (or of any transfer 
function) to the element W can be found as follows. From 

In A = In A (  ,=” + In ( 1  + TI,,) - In ( 1  + Tow) 

(68), 

Hence, 

Equation (73) is computationally preferable when both Td, 
and TI,, are small; (74) is preferable when both are large. 

Thus, the sensitivity of any transfer function to varia- 
tions in any element is determined by the return ratio and 
the null return ratio for that element. 

Example 6, continued: Sensitivity of Gain to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
For the CE transistor amplifier stage whose midband 

model is shown in Fig. 17, the two return ratios, from 
(66), (67) and (71), (72) are 

(75) 

Hence, from (74), 
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It is seen that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS i  approaches unity if r E / R x  + 0; the fact 
that it is otherwise less than unity can be ascribed to the 
“feedback” effect of rE. 

IX. CONCLUSIONS 

The extra element theorem is really nothing more than 
a statement of the fact that any transfer function of a linear 
system is a bilinear function of any constituent element. 
This was one of the first results given by Bode in his sem- 
inal book [ 11; specifically, on p. 10. Bode’s principal mo- 
tivation, however, was to study sensitivity properties, and 
he did not identify the two driving point impedances in 
the bilinear function. 

Whereas the entire edifice of Bode’s work is based upon 
circuit determinants obtained from mesh or nodal analy- 
sis, the opposite approach has been taken here. The extra 
element theorem is developed as an analytical tool, whose 
motivation is to save work. The result contains only quan- 
tities having direct physical interpretation in the system, 
in particular the two driving point impedances. One un- 
familiar concept is needed: null double injection, which 
has other labor-saving applications, and which is intro- 
duced as part of the derivation of the EET in Section 11. 

The extra element theorem states that any transfer func- 
tion of a linear system can be expressed in terms of its 
value when a given “extra” element is absent, and a cor- 
rection factor involving the given element and two driving 
point impedances seen by the element. The two versions 
of the theorem, for the absence of an element correspond- 
ing to an infinite impedance value and to a zero value, are 
displayed in (37) and (38), respectively. The driving point 
impedance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, is that seen by the extra element when the 
system “input” is zero. The driving point impedance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,, 
is that seen by the extra element when the system “input” 
is restored and adjusted, in the presence of the second 
driving signal being used for the driving point impedance 
determination, to null the system “output.” This is the 
null double injection condition, unfamiliar to students; 
however, with practice they become convinced that the 
calculation of Z,, is actually easier than that for Z,. Circuit 
analysis methods utilizing driving-point impedances have 
been emphasized by others [2], [ 3 ] ,  although these pub- 
lications are not readily accessible. 

Although the original motivation for the EET was as a 
method for finding a transfer function in the presence of 
an extra element in terms of its value before the element 
was added, which avoids the necessity of reanalyzing the 
system from scratch, the EET is also useful as a tool to 
simplify the analysis of a given linear system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA given 
element can be designated as “extra,” removed from the 
system, and the (simpler) system can be solved for the 
desired transfer function. By calculation of the two driv- 
ing point impedances (also for the simpler system), the 
removed element can be restored by use of the EET. This 
is particularly easy and useful when the designated “ex- 
tra” element is a reactance and the simpler “reference” 
circuit is resistive, since then both driving point imped- 
ances are resistances and the EET correction factor gives 
directly the pole and/or zero resulting from the reactance. 

The EET applies to any transfer function of a linear 
system, not only to a gain but also to a transfer or self- 
impedance such as input or output impedance. When ap- 
plied to an impedance, the EET is equivalent to a form of 
Blackman’s theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. For a self-impedance, the con- 
ditions for calculation of the extra element driving point 
impedances reduce to an especially simple form: Z, is cal- 
culated with the terminals open at which the self-imped- 
ance is to be calculated, and Z, is calculated with the same 
terminals shorted. 

In the two forms of the EET given in (37) and (38),  
there is a redundancy relation given by (59) between the 
two reference gains and the two driving point imped- 
ances. Therefore, whichever of the four parameters is the 
most difficult to calculate directly can instead be found 
from the other three. Since only products and quotients 
are involved in the redundancy relation, use of this alter- 
native does not require refactoring of polynomials in com- 
plex frequency to find new poles and zeros. Since one 
reference gain is usually already known, and since cal- 
culation of 2, is always easier than of Z,, the choice com- 
monly is between calculation of 2, directly or by calcu- 
lation of the other reference gain and use of the 
redundancy relation. The latter turns out to be preferable 
in the example of Section VII, in which the collector tran- 
sition layer capacitance is to be added to the model of a 
transistor amplifier stage. 

In Section VIII, the EET is extended to include the case 
where the extra element is a dependent generator. In this 
form, the theorem is best suited for calculation of sensi- 
tivities. 
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