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Abstract Minimizing the rank of a matrix subject to constraints is a challenging
problem that arises in many applications in Machine Learning, Control Theory,
and discrete geometry. This class of optimization problems, known as rank mini-
mization, is NP-HARD, and for most practical problems there are no efficient al-
gorithms that yield exact solutions. A popular heuristic replaces the rank function
with the nuclear norm—equal to the sum of the singular values—of the decision
variable and has been shown to provide the optimal low rank solution in a variety
of scenarios. In this paper, we assess the practical performance of this heuristic
for finding the minimum rank matrix subject to linear equality constraints. We
characterize properties of the null space of the linear operator defining the con-
straint set that are necessary and sufficient for the heuristic to succeed. We then
analyze linear constraints sampled uniformly at random, and obtain dimension-
free bounds under which our null space properties hold almost surely as the ma-
trix dimensions tend to infinity. Finally, we provide empirical evidence that these
probabilistic bounds provide accurate predictions of the heuristic’s performance
in non-asymptotic scenarios.
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1 Introduction

The rank minimization problem consists of finding the minimum rank matrix in a
convex constraint set. Though this problem is NP-Hard even when the constraints
are linear, a recent paper by Recht et al. [29] showed that most instances of the lin-
early constrained rank minimization problem could be solved in polynomial time
as long as there were sufficiently many linearly independent constraints. Specifi-
cally, they showed that minimizing the nuclear norm (also known as the Ky Fan
1-norm or the trace norm) of the decision variable subject to the same affine con-
straints produces the lowest rank solution if the affine space is selected at random.
The nuclear norm of a matrix—equal to the sum of the singular values—can be
optimized in polynomial time. This paper initiated a groundswell of research, and,
subsequently, Candès and Recht showed that the nuclear norm heuristic could be
used to recover low-rank matrices from a sparse collection of entries [8], Ames
and Vavasis have used similar techniques to provide average case analysis of NP-
HARD combinatorial optimization problems [1], and Vandenberghe and Zhang
have proposed novel algorithms for identifying linear systems [23]. Moreover, fast
algorithms for solving large-scale instances of this heuristic have been developed
by many groups [7,21,24,26,29]. These developments provide new strategies for
tackling the rank minimization problems that arise in Machine Learning [2,3,31],
Control Theory [6,17,16], and dimensionality reduction [22,36,37].

Numerical experiments in [29] suggested that the nuclear norm heuristic sig-
nificantly out-performed the theoretical bounds provided by their probabilistic
analysis. They showed numerically that random instances of the nuclear norm
heuristic exhibited a phase transition in the parameter space, where, for suffi-
ciently small values of the rank the heuristic always succeeded. Surprisingly, in
the complement of this region, the heuristic never succeeded. The transition be-
tween the two regions appeared sharp and the location of the phase transition
appeared to be nearly independent of the problem size. A similar phase transi-
tion was also observed by Candès and Recht when the linear constraints merely
revealed the values of a subset of the entries of the matrix [8].

In this paper we provide an approach to explicitly calculate the location of
this phase transition and provide bounds for the success of the nuclear norm
heuristic that accurately reflect empirical performance. We describe a necessary
and sufficient condition for the solution of the nuclear norm heuristic to coincide
with the minimum rank solution in an affine space. This condition, first reported
in [30], characterizes a particular property of the null space of the linear map
which defines the affine space and is generalized from similar properties in com-
pressed sensing [12,38,33]. We then show that when the null space is sampled from
the uniform distribution on subspaces, the null space characterization holds with
overwhelming probability provided the number of equality constraints exceeds a
threshold. We provide explicit formulas relating the dimension of the null space
to the largest rank matrix that can be found using the nuclear norm heuristic.
We also compare our results against the empirical findings of [29] and demon-
strate that they provide a good approximation of the phase transition boundary
especially when the number of constraints is large.
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1.1 Main Results

Let X be an n1 × n2 matrix decision variable. Without loss of generality, we will
assume throughout that n1 ≤ n2. Let A : Rn1×n2 → Rm be a linear map, and let
b ∈ Rm. The main optimization problem under study is

minimize rank(X)
subject to A(X) = b .

(1)

This problem is known to be NP-HARD and is also hard to approximate [26].
As mentioned above, a popular heuristic for this problem replaces the rank function
with the sum of the singular values of the decision variable. Let σi(X) denote
the i-th largest singular value of X (equal to the square-root of the i-th largest
eigenvalue of XX∗). Recall that the rank of X is equal to the number of nonzero
singular values. In the case when the singular values are all equal to one, the sum
of the singular values is equal to the rank. When the singular values are less than
or equal to one, the sum of the singular values is a convex function that is strictly
less than the rank. This sum of the singular values is a unitarily invariant matrix
norm, called the nuclear norm, and is denoted

‖X‖∗ :=
rX
i=1

σi(X) .

This norm is alternatively known by several other names including the Schatten
1-norm, the Ky Fan norm, and the trace class norm.

As described in the introduction, our main concern is when the optimal solution
of (1) coincides with the optimal solution of

minimize ‖X‖∗
subject to A(X) = b .

(2)

This norm minimization problem is convex, and can be efficiently solved via a va-
riety of methods including semidefinite programming. See [29] for a survey and [7,
23,24] for customized algorithms.

We characterize an instance of the affine rank minimization problem (1) by
three dimensionless parameters that take values in (0, 1]: the aspect ratio γ, the
constraint ratio µ, and the rank ratio β. The aspect ratio is the number of rows
divided by the number of columns: γ = n1/n2. The constraint ratio is the number
of constraints divided by the number of parameters needed to fully specify an
n1×n2 matrix. That is,m = µn1n2. The rank ratio is the minimum rank attainable
in Problem (1) divided by the number of rows of the decision variable. That is, if
the minimum rank solution of (1) has rank r, then β = r/n1. The main focus of
this paper is determining for which triples (β, γ, µ) the problem (2) has the same
optimal solution as the rank minimization problem (1).

Our first result characterizes when a particular low-rank matrix can be recov-
ered from a random linear system via nuclear norm minimization.

Theorem 1 (Weak Bound) Set n1 ≤ n2, γ = n1/n2, and let X0 be an n1× n2

matrix with of rank r = βn1. Let A : Rn1×n2 → Rµn1n2 denote the random linear
transformation

A(X) = A vec(X) ,
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where each entry of A is sampled independently from a normal distribution with
mean zero and variance one. Define the function ϕ : (0, 1]→ R by

ϕ(γ) :=
1

2π

Z (1+
√
γ)2

(1−√γ)2

r
−z2 + 2(1 + γ)z − (1− γ)2

z
dz . (3)

Then whenever

µ ≥ 1−
 
ϕ

„
γ − βγ
1− βγ

«
(1− βγ)3/2

γ
− 8

3π
γ1/2β3/2

!2

(4)

there exists a numerical constant cw(µ, β, γ) > 0 such that with probability exceed-

ing 1− e−cw(µ,β,γ)n2
2+o(n2

2),

X0 = arg min{‖Z‖∗ : A(Z) = A(X0)} .

In particular, if β,γ, and µ satisfy (4), then nuclear norm minimization will recover
X0 from a random set of µγn2

2 constraints drawn from the Gaussian ensemble
almost surely as n2 →∞.

Formula (4) provides a lower-bound on the empirical phase transition observed
in [29]. Since A is Gaussian, the null space of A, that is the set of Y such that
A(Y ) = 0, is identically distributed to the uniform distribution of (1 − µ)n1n2

dimensional subspaces. Since the constraint set is uniquely determined by the
null space of A, Thereom 1 holds for any distribution of linear maps whose null
spaces are uniformly distributed. From this perspective, the theorem states that
the nuclear norm heuristic succeeds for almost all instances of the affine rank
minimization problem with parameters (β, γ, µ) satisfying (4). A particular case
of interest is the case of square matrices (γ = 1). In this case, the Weak Bound (4)
takes the elegant closed form:

µ ≥ 1− 64

9π2

“
(1− β)3/2 − β3/2

”2
. (5)

Figure 1(a) plots these thresholds for varying γ. The y-axis here denotes the
ratio of the number of parameters of a low-rank matrix divided by the number of
measurements. The model size is the number of parameters required to define a low
rank matrix. An n1× n2 matrix of rank r is defined by r(n1 + n2− r) parameters
(this quantity can be computed by calculating the number of parameters needed to
specify the singular value decomposition). In terms of the parameters β and γ, the
model size is equal to β(1 +γ−βγ)n2

2. The bounds in Figure 1a demonstrate that
when the number of measurements is a constant fraction of the total number of
entries in the unknown matrix, the nuclear norm heuristic will succeed as long as
the number of constraints is a constant factor larger than the number of intrinsic
parameters of a low-rank matrix. In other words, the number of measurements
required to recover a low-rank matrix scales proportionally to the model size in
some measurement regimes. Larger oversampling is required to recover matrices
with larger aspect ratio γ. In fact, as γ approaches 0, an oversampling of the model
size by a factor of 2 suffices for exact recovery for most values of µ and β. These
patterns are also observed experimentally in Section 3.

The second theorem characterizes when the nuclear norm heuristic succeeds at
recovering all low rank matrices.
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Theorem 2 (Strong Bound) Let A be defined as in Theorem 1. Define the two
functions

f(γ, β, ε) =
ϕ
“
γ−βγ
1−βγ

”
(1− βγ)3/2 − 8

3πγ
3/2β3/2 − 4εϕ(γ)

1 + 4ε

g(γ, β, ε) =

s
2βγ(1 + γ − βγ) log

„
3π

ε

«
.

with ϕ as in equation (3). Then there exists a numerical constant cs(µ, β) > 0

such that with probability exceeding 1− e−cs(µ,β)n2+o(n2), for all γn× n matrices
X0 of rank r ≤ βγn

X0 = arg min{‖Z‖∗ : A(Z) = A(X0)}

whenever
µ ≥ 1− sup

ε>0
f(β,ε)−g(β,ε)>0

γ−2 (f(β, ε)− g(β, ε))2 .
(6)

In particular, if β, γ, and µ satisfy (6), then nuclear norm minimization will
recover all rank r matrices from a random set of γµn2 constraints drawn from the
Gaussian ensemble almost surely as n→∞.

Figure 1(b) plots the bound from Theorems 1 and 2 with γ = 1. We call (4) the
Weak Bound because it is a condition that depends on the optimal solution of (1).
On the other hand, we call (6) the Strong Bound as it guarantees the nuclear
norm heuristic succeeds, no matter what the optimal solution, as long as the true
minimum rank is sufficiently small. The Weak Bound is the only bound that can
be tested experimentally, and, in Section 3, we will show that it corresponds well to
experimental data. Moreover, the Weak Bound provides guaranteed recovery over
a far larger region of the (β, µ) parameter space. Nonetheless, the mere existence
of a Strong Bound is surprising, and results in a far less conservative bound than
what was available from previous results (c.f., [29]).

Both Theorems 1 and Theorem 2 were first announced in [30] in the case of
γ = 1 without proof. The present work provides the previously unpublished proofs
and generalizes to matrices with arbitrary aspect ratios.

1.2 Related Work

Optimization problems involving constraints on the rank of matrices are pervasive
in engineering applications. For example, in Machine Learning, these problems
arise in the context of inference with partial information [31] and multi-task learn-
ing [3]. In Control Theory, problems in controller design [17,27], minimal realiza-
tion theory [16], and model reduction [6] can be formulated as rank minimization
problems. Rank minimization also plays a key role in the study of embeddings of
discrete metric spaces in Euclidean space [22] and of learning structure in data
and manifold learning [36].

In certain instances with special structure, the rank minimization problem can
be solved via the singular value decomposition or can be reduced to the solution
of a linear system [27,28]. In general, however, minimizing the rank of a matrix
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Fig. 1 (a) Bounds on low-rank recovery varying the aspect ratio of the matrix. Here the
x-axis denotes the measurement ratio, µ, or the number of linear equations divided by the
total number of entries in the unknown matrix. The y-axis denotes the ratio of the number of
parameters in the unknown matrix to the number of measurements. δ is the number of true
parameters (called the model size) divided by the number of entries. As described in the text,
δ = r(n1 + n2 − r)/(n1n2). γ is the aspect ratio of the matrix equal to n1/n2. (b) The Weak
Bound (4) versus the Strong Bound (6). The axes here are the same as in (a), and γ = 1 in
both cases.

subject to convex constraints is NP-HARD. Even the problem of finding the lowest
rank matrix in an affine space is NP-HARD. The best exact algorithms for this
problem involve quantifier elimination and such solution methods require at least
exponential time in the dimensions of the matrix variables.

Nuclear norm minimization is a recent heuristic for rank minimization in-
troduced by Fazel in [15]. When the matrix variable is symmetric and positive
semidefinite, this heuristic is equivalent to the “trace heuristic” from Control The-
ory (see, e.g., [6,27]). Both the trace heuristic and the nuclear norm generalization
have been observed to produce very low-rank solutions in practice, but, until very
recently, conditions where the heuristic succeeded were only available in cases that
could also be solved by elementary linear algebra [28]. As mentioned above, the
first non-trivial sufficient conditions that guaranteed the success of the nuclear
norm heuristic were provided in [29].

The initial results in [29] build on seminal developments in “compressed sens-
ing” that determined conditions for when minimizing the `1 norm of a vector over
an affine space returns the sparsest vector in that space (see, e.g., [10,9,5]). There
is a strong parallelism between the sparse approximation and rank minimization
settings. The rank of a diagonal matrix is equal to the number of non-zeros on the
diagonal. Similarly, the sum of the singular values of a diagonal matrix is equal to
the `1 norm of the diagonal. Exploiting the parallels, the authors in [29] were able
to extend much of the analysis developed for the `1 heuristic to provide guarantees
for the nuclear norm heuristic.

Building on this work, Candès and Recht showed that most n × n matrices
with rank at most r can be recovered from a sampling of on the order of (n1.2r)
of the entries [8] using nuclear norm minimization. In another recently provided
extension, Meka et al. [26] have provided an analysis of the multiplicative weights
algorithm for providing very low-rank approximate solutions of systems of inequal-
ities. Ames and Vavasis have demonstrated that the nuclear norm heuristic can
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solve many instances of the NP-Hard combinatorial optimization problems maxi-
mum clique and maximum biclique [1].

Focusing on the special case where one seeks the lowest rank matrix in an affine
subspace, Recht et al. generalized the notion of “restricted isometry” from [10] to
the space of low rank matrices. They provided deterministic conditions on the lin-
ear map defining the affine subspace which guarantees the minimum nuclear norm
solution is the minimum rank solution. Moreover, they provided several ensem-
bles of affine constraints where this sufficient condition holds with overwhelming
probability. They proved that the heuristic succeeds with large probability when-
ever the number m of available measurements is greater than a constant times
2nr logn for n×n matrices. Since a matrix of rank r cannot be specified with less
than r(2n − r) real numbers, this is, up to asymptotic scaling, a nearly optimal
result. However, the bounds developed in this paper did not reflect the empirical
performance of the nuclear norm heuristic. In particular, it gave vacuous results
for practically sized problems where the rank was large. The results in the present
work provide bounds that much more closely approximate the practical recovery
region of the heuristic.

The present work builds on a different collection of developments in compressed
sensing [12–14,33,38]. In these papers, the authors studied properties of the null
space of the linear operator that gives rise to the affine constraints. The bounds
resulting from these approaches were significantly sharper than those obtained in
earlier work on sparse recovery such as [10]. In particular, the thresholds obtained
in [11] closely approximate actual experimental results. The null space criteria
described in Section 2.1 generalize the concepts of the same name in Compressed
Sensing.

Unfortunately, the polyhedral analysis of the null spaces arising in compressed
sensing does not extend to the low-rank matrices as the unit ball in the nuclear
norm is not a polyhedral set. Figure 2 plots a simple three dimensional example,
depicting the unit ball of the nuclear norm for matrices parameterized as

X : X =

»
x y
y z

–
, ‖X‖∗ ≤ 1

ff
. (7)

In order to extend null space analysis to the rank minimization problem, we need to
follow a different path. In [33], the authors provide a probabilistic argument spec-
ifying a large region where the minimum `1 solution is the sparsest solution. This
works by directly estimating the probability of success via a simple Chernoff-style
argument. Our work follows this latter approach, but requires the introduction of
specialized machinery to deal with the asymptotic behavior of the singular values
of random matrices. We provide a sufficient statistic that guarantees the heuristic
succeeds, and then use comparison lemmas for Gaussian processes to bound the
expected value of this heuristic (see, for example, [20]). We then show that this
random variable is sharply concentrated around its expectation.

1.3 Notation and Preliminaries

For a rectangular matrix X ∈ Rn1×n2 , X∗ denotes the transpose of X. vec(X)
denotes the vector in Rn1n2 with the columns of X stacked on top of one another.
A projection operator always refers to a square matrix P such that P 2 = P . We
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Fig. 2 The unit ball of the nuclear norm. The figure depicts the set of all matrices of the form
of equation (7) with nuclear norm less than one.

say that a projection operator projects onto a d-dimensional subspace if its range
has dimension d.

For vectors v ∈ Rd, the only norm we will ever consider is the Euclidean norm

‖v‖`2 =

 
dX
i=1

v2
i

!1/2

.

On the other hand, we will consider a variety of matrix norms. For matrices X
and Y of the same dimensions, we define the inner product in Rn1×n2 as 〈X,Y 〉 :=
trace(X∗Y ) =

Pn1
i=1

Pn2
j=1XijYij . The norm associated with this inner product

is called the Frobenius (or Hilbert-Schmidt) norm || · ||F . The Frobenius norm is
also equal to the Euclidean, or `2, norm of the vector of singular values, i.e.,

‖X‖F :=

 
rX
i=1

σ2
i

! 1
2

=
q
〈X,X〉 =

0@ n1X
i=1

n2X
j=1

X2
ij

1A 1
2

The operator norm (or induced 2-norm) of a matrix is equal to its largest singular
value (i.e., the `∞ norm of the singular values):

‖X‖ := σ1(X).

The nuclear norm of a matrix is equal to the sum of its singular values, i.e.,

‖X‖∗ :=
rX
i=1

σi(X) .

These three norms are related by the following inequalities which hold for any
matrix X of rank at most r:

||X|| ≤ ||X||F ≤ ||X||∗ ≤
√
r||X||F ≤ r||X||.
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To any norm, we may associate a dual norm via the following variational
definition

‖X‖d = sup
‖Y ‖p=1

〈Y,X〉 .

One can readily check that the dual norm of the Frobenius norm is the Frobenius
norm. Less trivially, one can show that the dual norm of the operator norm is the
nuclear norm (See, for example, [29]). We will leverage the duality between the
operator and nuclear norm several times in our analysis.

Finally, we define the random ensemble of d1× d2 matrices G(d1, d2) to be the
Gaussian ensemble, with each entry sampled i.i.d. from a Gaussian distribution
with zero-mean and variance one.

2 Proofs of the Probabilistic Bounds

We now turn to the proofs of the probabilistic bounds (4) and (6). We first review
necessary and sufficient null space conditions for the nuclear norm presented in [30].
Then, noting that the null space of A is spanned by Gaussian vectors, we use
bounds from probability on Banach Spaces to show that the respective sufficient
conditions are met when the Weak Bound (4) or the Strong Bound (6) hold. This
will require the introduction of two useful auxiliary functions whose actions on
Gaussian processes are explored in Section 2.4.

2.1 Sufficient Conditions for null space Characterizations

Whenever µ < 1, the null space of A contains a non-zero matrix. Note that X is
the unique optimal solution for (2) if and only if for every Y in the null space of
A

‖X + Y ‖∗ > ‖X‖∗ . (8)

The following theorem, originally proven in [30], generalizes this null space criterion
to a critical property that guarantees when the nuclear norm heuristic finds the
minimum rank solution of A(X) = b as long as the minimum rank solution is
sufficiently small.

Theorem 3 Let X0 be the optimal solution of (1) and suppose rank(X0) ≤ r.

1. If for every nonzero Y in the null space of A and for every decomposition

Y = Y1 + Y2,

where Y1 has rank r and Y2 has rank greater than r, it holds that

‖Y1‖∗ < ‖Y2‖∗,

then X0 is the unique minimizer of (2).
2. Conversely, if the condition of part 1 does not hold, then there exists a vector

b ∈ Rm such that the minimum rank solution of A(X) = b has rank at most r
and is not equal to the minimum nuclear norm solution.
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For completeness, a short proof of this theorem is included in the appendix.
For the purposes of proving the Strong Bound, the following theorem gives us a
sufficient but more easily analyzed condition that implies Condition 1 in Theo-
rem 3.

Theorem 4 Let A be a linear map of n1 × n2 matrices into Rm. Let P and Q
be projection operators onto r-dimensional subspaces of Rn1 and Rn2 respectively.
Suppose that for every Y in the null space of A

‖(I − P )Y (I −Q)‖∗ ≥ ‖PY Q‖∗ . (9)

Then for every matrix Z with row and column spaces equal to the range of Q and
P respectively,

‖Z + Y ‖∗ ≥ ‖Z‖∗
for all Y in the null space of A. Moreover, if the condition (9) holds for every pair
of projection operators P and Q onto r-dimensional subspaces, then for every Y
in the null space of A and for every decomposition Y = Y1 +Y2 where Y1 has rank
r and Y2 has rank greater than r, it holds that ‖Y1‖∗ ≤ ‖Y2‖∗.

We will need the following lemma

Lemma 1 For any block partitioned matrix

X =

»
A B
C D

–
we have ‖X‖∗ ≥ ‖A‖∗ + ‖D‖∗.
Proof This lemma follows from the dual description of the nuclear norm:

‖X‖∗ = sup

fi»
Z11 Z12

Z21 Z22

–
,

»
A B
C D

–fl ˛̨̨̨ ‚‚‚‚»Z11 Z12

Z21 Z22

–‚‚‚‚ = 1

ff
, (10)

and similarly

‖A‖∗ + ‖D‖∗ = sup

fi»
Z11 0
0 Z22

–
,

»
A B
C D

–fl ˛̨̨̨ ‚‚‚‚»Z11 0
0 Z22

–‚‚‚‚ = 1

ff
. (11)

Since (10) is a supremum over a larger set that (11), the claim follows.

Theorem 4 now trivially follows.

Proof (of Theorem 4) Without loss of generality, we may choose coordinates such
that P and Q both project onto the space spanned by first r standard basis vectors.
Then we may partition Y as

Y =

»
Y11 Y12

Y21 Y22

–
and write, using Lemma 1,

‖Y − Z‖∗ − ‖Z‖∗ =

‚‚‚‚»Y11 − Z Y12

Y21 Y22

–‚‚‚‚
∗
− ‖Z‖∗

≥ ‖Y11 − Z‖∗ + ‖Y22‖∗ − ‖Z‖∗
≥ ‖Y22‖∗ − ‖Y11‖∗

which is non-negative by assumption. Note that if the theorem holds for all pro-
jection operators P and Q whose range has dimension r, then ‖Z + Y ‖∗ ≥ ‖Z‖∗
for all matrices Z of rank r and hence the second part of the theorem follows.
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2.2 Proof of the Weak Bound

Now we can turn to the proof of Theorem 1. The key observation in proving this
theorem is the following characterization of the null space of A provided by Stojnic
et al [33]

Lemma 2 Let A be sampled from G(µn1n2, n1n2). Then the null space of A is
identically distributed to the span of n1n2(1 − µ) matrices Gi where each Gi is
sampled i.i.d. from G(n1, n2). In other words, we may assume that w ∈ ker(A)

can be written as
Pn1n2(1−µ)
i=1 viGi for some v ∈ Rn1n2(1−µ).

This is nothing more than a statement that the null space of A is a random sub-
space. However, when we parameterize elements in this subspace as linear combi-
nations of Gaussian vectors, we can leverage Comparison Theorems for Gaussian
processes to yield our bounds.

Let M = n1n2(1−µ) and let G1, . . . , GM be i.i.d. samples from G(n1, n2). Let
X0 be a matrix of rank βn1. Let PX0 and QX0 denote the projections onto the
column and row spaces of X0 respectively. By Theorem 4 and Lemma 2, we need
to show that for all v ∈ RM ,‚‚‚‚‚(I − PX0)

 
MX
i=1

viGi

!
(I −QX0)

‚‚‚‚‚
∗

≥
‚‚‚‚‚PX0

 
MX
i=1

viGi

!
QX0

‚‚‚‚‚
∗

. (12)

That is,
PM
i=1 viGi is an arbitrary element of the null space of A, and this equation

restates the sufficient condition provided by Theorem 4. Now it is clear by homo-
geneity that we can restrict our attention to those v ∈ RM with Euclidean norm
1. The following lemma characterizes when the expected value of this difference is
nonnegative:

Lemma 3 Let n1 = γn2 for some γ ∈ (0, 1] and r = βn1 for some β ∈ (0, 1].
Suppose P and Q are projection operators onto r-dimensional subspaces of Rn1

and Rn2 respectively. For i = 1, . . . ,M let Gi be sampled from G(n1, n2). Then

E

"
inf

‖v‖`2=1

‚‚‚‚‚(I − P )

 
MX
i=1

viGi

!
(I −Q)

‚‚‚‚‚
∗

−
‚‚‚‚‚P
 
MX
i=1

viGi

!
Q

‚‚‚‚‚
∗

#

≥
“
α1(1− βγ)3/2 − α2γ

3/2β3/2
”
n

3/2
2 −

p
Mγn2 ,

(13)

where α1 = ϕ
“
γ−βγ
1−βγ

”
+ o(1) and α2 = 8

3π + o(1).

We will prove this lemma and a similar inequality required for the proof of the
Strong Bound in Section 2.4 below. But we now show how using this lemma and
a concentration of measure argument, we can prove Theorem 1.

First note, that if we plug in M = (1− µ)n1n2, divide the right hand side by

n
3/2
2 , and ignore the o(1) terms, the right hand side of (13) is non-negative if (4)

holds. To bound the probability that (12) is non-negative, we employ a power-
ful concentration inequality for the Gaussian distribution bounding deviations of
smoothly varying functions from their expected value.

To quantify what we mean by smoothly varying, recall that a function f is
Lipschitz with respect to the Euclidean norm if there exists a constant L such



12 Benjamin Recht et al.

that |f(x) − f(y)| ≤ L‖x − y‖`2 for all x and y. The smallest such constant L is
called the Lipschitz constant of the map f . If f is Lipschitz, it cannot vary too
rapidly. In particular, note that if f is differentiable and Lipschitz, then L is a
bound on the norm of the gradient of f . The following theorem states that the
deviations of a Lipschitz function applied to a Gaussian random variable have
Gaussian tails.

Theorem 5 Let x ∈ RD be a normally distributed random vector with zero-mean
variance equal to the identity. Let f : RD → R be a function with Lipschitz constant
L. Then

P[|f(x)− E[f(x)]| ≥ t] ≤ 2 exp

 
− t2

2L2

!
.

See [20] for a proof of this theorem with slightly weaker constants and a list of
several references to more complicated proofs that give rise to this concentration
inequality. The following lemma bounds the Lipschitz constant of interest

Lemma 4 For i = 1, . . . ,M , let Xi ∈ RD1×D2 and Yi ∈ RD3×D4 with D1 ≤ D2

and D3 ≤ D4. Define the function

FI(X1, . . . , XM , Y1, . . . , YM ) = inf
‖v‖`2=1

‚‚‚‚‚
MX
i=1

viXi

‚‚‚‚‚
∗

−
‚‚‚‚‚
MX
i=1

viYi

‚‚‚‚‚
∗

.

Then the Lipschitz constant of FI is at most
√
D1 +D3.

The proof of this lemma is straightforward and can be found in the Appendix.
Using Theorem 5 and Lemmas 3 and 4, we can now bound

P

"
inf

‖v‖`2=1

‚‚‚‚‚(I − PX0)

 
MX
i=1

viGi

!
(I −QX0)

‚‚‚‚‚
∗

−
‚‚‚‚‚PX0

 
MX
i=1

viGi

!
QX0

‚‚‚‚‚
∗

≤ tn3/2
2

#
≤ exp

 
−u

2
wn

2
2

2γ
+ o(n2

2)

!
(14)

with

uw = ϕ

„
γ − βγ
1− βγ

«
(1− βγ)3/2 − 8

3π
γ3/2β3/2 − γ

p
1− µ− t .

Here, we use D1 = D2 = n1 − r and D3 = D4 = r in Lemma 4. Setting t = 0,
we see that uw is non-negative as long as the triple (β, γ, µ) satisfies (4). This
completes the proof of Theorem 1. We will use the concentration inequality (14)
with a non-zero t to prove the Strong Bound.

2.3 Proof of the Strong Bound

The proof of Theorem 2 is similar to that of Theorem 1 except we prove that (12)
holds for all operators P and Q that project onto r-dimensional subspaces. Our
proof will require an ε-net for the projection operators. By an ε-net, we mean a
finite set Ω consisting of pairs of r-dimensional projection operators such that for
any P and Q that project onto r-dimensional subspaces, there exists (P ′, Q′) ∈ Ω
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with ‖P −P ′‖+‖Q−Q′‖ ≤ ε. We will show that if a slightly stronger bound than
(12) holds on the ε-net, then (12) holds for all choices of row and column spaces.

Let us first examine how (12) changes when we perturb P and Q. Let P , Q, P ′

and Q′ all be projection operators onto r-dimensional subspaces of Rn1 and Rn2

respectively. Let W be some n1 × n2 matrix and observe that

‖(I − P )W (I −Q)‖∗ − ‖PWQ‖∗ − (‖(I − P ′)W (I −Q′)‖∗ − ‖P ′WQ′‖∗)
≤‖(I − P )W (I −Q)− (I − P ′)W (I −Q′)‖∗ + ‖PWQ− P ′WQ′‖∗
≤‖(I − P )W (I −Q)− (I − P ′)W (I −Q)‖∗

+ ‖(I − P ′)W (I −Q)− (I − P ′)W (I −Q′)‖∗
+ ‖PWQ− P ′WQ‖∗ + ‖P ′WQ− P ′WQ′‖∗

≤‖P − P ′‖‖W‖∗‖I −Q‖+ ‖I − P ′‖‖W‖∗‖Q−Q′‖
+ ‖P − P ′‖‖W‖∗‖Q‖+ ‖P ′‖‖W‖∗‖Q−Q′‖

≤2(‖P − P ′‖+ ‖Q−Q′‖)‖W‖∗ .

Here, the first and second inequalities follow from the triangle inequality, the third
inequality follows because ‖AB‖∗ ≤ ‖A‖‖B‖∗, and the fourth inequality follows
because P , P ′, Q, and Q′ are all projection operators. Rearranging this inequality
gives

‖(I − P )W (I −Q)‖∗ − ‖PWQ‖∗ ≥ ‖(I − P ′)W (I −Q′)‖∗ − ‖P ′WQ′‖∗
− 2(‖P − P ′‖+ ‖Q−Q′‖)‖W‖∗ .

(15)

Let us now suppose that with overwhelming probability

‖(I − P ′)W (I −Q′)‖∗ − ‖P ′WQ′‖∗ − 4ε‖W‖∗ ≥ 0 (16)

for all (P ′, Q′) in our ε-net Ω. Then by (15), this means that ‖(I−P )W (I−Q)‖∗−
‖PWQ‖∗ ≥ 0 for any arbitrary pair of projection operators onto r-dimensional
subspaces. Thus, if we can show that (16) holds for all (P ′, Q′) in an ε-net and for
all W in the null space of A, then we will have proven the Strong Bound.

To proceed, we need to know the size of an ε-net. The following bound on such
a net is due to Szarek.

Theorem 6 (Szarek [35]) Consider the space of all projection operators on Rn

projecting onto r dimensional subspaces endowed with the metric

d(P, P ′) = ‖P − P ′‖ .

Then there exists an ε-net in this metric of cardinality at most
`

3π
2ε

´r(n−r/2−1/2)
.

With this covering number in hand, we now calculate the probability that for
a given P and Q in the ε-net,

inf
‖v‖`2=1

(‚‚‚‚‚(I − P )

 
MX
i=1

viGi

!
(I −Q)

‚‚‚‚‚
∗

−
‚‚‚‚‚P

 
MX
i=1

viGi

!
Q

‚‚‚‚‚
∗

)

≥ 4ε sup
‖v‖`2=1

‚‚‚‚‚
MX
i=1

viGi

‚‚‚‚‚
∗

.

(17)
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As we will show in Section 2.4, we can upper bound the right hand side of this
inequality using a similar bound as in Lemma 3.

Lemma 5 For i = 1, . . . ,M let Gi be sampled from G(γn, n) with γ ∈ (0, 1]. Then

E

"
sup
‖v‖`2=1

‚‚‚‚‚
MX
i=1

viGi

‚‚‚‚‚
∗

#
≤ (ϕ(γ) + o(1))n3/2 +

p
γMn . (18)

Moreover, we prove the following in the appendix.

Lemma 6 For i = 1, . . . ,M , let Xi ∈ RD1×D2 with D1 ≤ D2 and define the
function

FS(X1, . . . , XM ) = sup
‖v‖`2=1

‚‚‚‚‚
MX
i=1

viXi

‚‚‚‚‚
∗

.

Then the Lipschitz constant of FS is at most
√
D1.

Using Lemmas 5 and 6 combined with Theorem 5, we have that

P

"
sup
‖v‖`2=1

‚‚‚‚‚
MX
i=1

viGi

‚‚‚‚‚
∗

≥ tn
3/2
2

4ε

#
≤ exp

 
−
`
ϕ(γ)− γ

√
1− µ− t

4ε + o(1)
´2
n2

2

2γ

!
.

(19)
Here, D1 = n1 and D2 = n2 when applying Lemma 6. Let t0 be such that the
exponents of (14) and (19) equal each other. Then we find after some algebra and
the union bound

P [(17) holds for fixed P and Q]

≥1− P

"
inf

‖v‖`2=1

‚‚‚‚‚(I − P )

 
MX
i=1

viGi

!
(I −Q)

‚‚‚‚‚
∗

−
‚‚‚‚‚P
 
MX
i=1

viGi

!
Q

‚‚‚‚‚
∗

< t0n
3/2
2

#

− P

"
4ε sup
‖v‖`2=1

‚‚‚‚‚
MX
i=1

viGi

‚‚‚‚‚
∗

> t0n
3/2
2

#

≥1− 2 exp

 
−u

2
sn

2
2

2γ
+ o(n2

2)

!

with

us =
ϕ
“
γ−βγ
1−βγ

”
(1− βγ)3/2 − 8

3πγ
3/2β3/2 − 4εϕ(γ)

1 + 4ε
− γ

p
1− µ .

Now, let Ω be an ε-net for the set of pairs of projection operators (P,Q) such
that P (resp. Q) projects Rn1 (resp. Rn2) onto an r-dimensional subspace. By

Theorem 6, we may assume |Ω| ≤
`

3π
ε

´r(n1+n2−r). Again by the union bound, we
have that

P [(17) holds ∀(P,Q) ∈ Ω]

≥ 1− 2 exp

„
− 1

2γ

“
f(β, γ, ε)− γ

p
1− µ

”2
− g(β, γ, ε)2

ff
n2

2 + o(n2
2)

«
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where

f(γ, β, ε) =
ϕ
“
γ−βγ
1−βγ

”
(1− βγ)3/2 − 8

3πγ
3/2β3/2 − 4εϕ(γ)

1 + 4ε

g(γ, β, ε) =

s
2βγ(1 + γ − βγ) log

„
3π

ε

«
.

We have already shown that if (17) holds for all pairs in Ω, it holds for all pairs
of projection operators projecting onto subspaces of dimension at most r. Thus,
finding the parameters µ, β, γ, and ε that make the terms multiplying n2

2 negative
completes the proof of the Strong Bound.

2.4 Comparison Theorems for Gaussian Processes and the Proofs of Lemmas 3
and 5

Both of the two following Comparison Theorems provide sufficient conditions for
when the expected supremum or infimum of one Gaussian process is greater to
that of another. Elementary proofs of both of these theorems and several other
Comparison Theorems can be found in §3.3 of [20].

Theorem 7 (Slepian’s Lemma [32]) Let X and Y be Gaussian random vectors
in RN such that (

E[XiXj ] ≤ E[YiYj ] for all i 6= j

E[X2
i ] = E[Y 2

i ] for all i

Then
E[max

i
Yi] ≤ E[max

i
Xi] .

Theorem 8 (Gordan [18,19]) Let X = (Xij) and Y = (Yij) be Gaussian ran-
dom matrices in RN1×N2 such that8><>:

E[XijXik] ≤ E[YijYik] for all i, j, k

E[XijXlk] ≥ E[YijYlk] for all i 6= l and j, k

E[X2
ij ] = E[X2

ij ] for all i, j

Then
E[min

i
max
j
Yij ] ≤ E[min

i
max
j
Xij ] .

The next two lemmas follow from applications of these Comparison Theorems.
We prove them in more generality than necessary for the current work because
both lemmas are interesting in their own right. Let ‖ · ‖p be any norm on D1×D2

matrices and let ‖·‖d be its associated dual norm (See Section 1.3). Again without
loss of generality, we assume D1 ≤ D2. This first lemma is now a straightforward
consequence of Slepian’s Lemma

Lemma 7 Let ∆ > 0, σd ≥ sup‖Z‖d=1 ‖Z‖F , and let g be a Gaussian random

vector in RM . Let G,G1, . . . , GM be sampled i.i.d. from G(D1, D2).Then

E

"
sup
‖v‖`2=1

sup
‖Y ‖d=1

∆〈g, v〉+

*
MX
i=1

viGi, Y

+#
≤ E[‖G‖p] +

q
M(∆2 + σ2

d) .
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Proof We follow the strategy used to prove Theorem 3.20 in [20]. LetG,G1, . . . , GM
be sampled i.i.d. from G(D1, D2) and g ∈ RM be a Gaussian random vector and
let γ be a zero-mean, unit-variance Gaussian random variable. For v ∈ RM and
Y ∈ RD1×D2 define

QL(v, Y ) = ∆〈g, v〉+

*
MX
i=1

viGi, Y

+
+ σdγ

QR(v, Y ) = 〈G,Y 〉+
q
∆2 + σ2

d〈g, v〉 .

Now observe that for any M-dimensional unit vectors v, v̂ and anyD1×D2 matrices
Y , Ŷ with dual norm 1

E[QL(v, Y )QL(v̂, Ŷ )]− E[QR(v, Y )QR(v̂, Ŷ )]

=∆2〈v, v̂〉+ 〈v, v̂〉〈Y, Ŷ 〉+ σ2
d − 〈Y, Ŷ 〉 − (∆2 + σ2

d)〈v, v̂〉

=(σ2
d − 〈Y, Ŷ 〉)(1− 〈v, v̂〉) .

The first quantity is always non-negative because 〈Y, Ŷ 〉 ≤ max(‖Y ‖2F , ‖Ŷ ‖2F ) ≤
σ2
d by definition. The difference in expectation is thus equal to zero if v = v̂

and is greater than or equal to zero if v 6= v̂. Hence, by Slepian’s Lemma and a
compactness argument (see Proposition 1 in the Appendix),

E

"
sup
‖v‖`2=1

sup
‖Y ‖d=1

QL(v, Y )

#
≤ E

"
sup
‖v‖`2=1

sup
‖Y ‖d=1

QR(v, Y )

#

which proves the lemma.

The following lemma can be proved in a similar fashion

Lemma 8 Let ‖ · ‖p be a norm on RD1×D2 with dual norm ‖ · ‖d and let ‖ · ‖b be a
norm on RD3×D4 . Let σd ≥ sup‖Z‖d=1 ‖Z‖F . Let g be a Gaussian random vector

in RM . Let G0, G1, . . . , GM be sampled i.i.d. from G(D1, D2) and G′1, . . . , G
′
M be

sampled i.i.d. from G(D3, D4). Then

E

"
inf

‖v‖`2=1
inf

‖Y ‖b=1
sup
‖Z‖d=1

*
MX
i=1

viGi, Z

+
+

*
MX
i=1

viG
′
i, Y

+#

≥ E [‖G0‖p]− E

"
sup
‖v‖`2=1

sup
‖Y ‖b=1

σd〈g, v〉+

*
MX
i=1

viG
′
i, Y

+#
.

Proof Let η be a normally distributed random variable and define the functionals

PL(v, Y, Z) =

*
MX
i=1

viGi, Z

+
+

*
MX
i=1

viG
′
i, Y

+
+ ησd

PR(v, Y, Z) = 〈G0, Z〉+ σd〈g, v〉+

*
MX
i=1

viG
′
i, Y

+
.
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Let v and v̂ be unit vectors in RM , Y and Ŷ be D3 ×D4 matrices with ‖Y ‖b =
‖Ŷ ‖b = 1, and Z and Ẑ be D1 × D2 matrices with ‖Z‖d = ‖Ẑ‖d = 1. Then we
have

E[PL(v, Y, Z)PL(v̂, Ŷ , Ẑ)]− E[PR(v, Y, Z)PL(v̂, Ŷ , Ẑ)]

=〈v, v̂〉〈Z, Ẑ〉+ 〈v, v̂〉〈Y, Ŷ 〉+ σ2
d − 〈Z, Ẑ〉 − σ2

d〈v, v̂〉 − 〈v, v̂〉〈Y, Ŷ 〉

=(σ2
d − 〈Z, Ẑ〉)(1− 〈v, v̂〉) .

Just as was the case in the proof of Lemma 7, the first quantity is always non-
negative. Hence, the difference in expectations is greater than or equal to zero
and equal to zero when v = v̂ or Y = Ŷ . Hence, by Gordan’s Lemma and a
compactness argument,

E

"
inf

‖v‖`2=1
inf

‖Y ‖b=1
sup
‖Z‖d=1

QL(v, Y, Z)

#
≥ E

"
inf

‖v‖`2=1
inf

‖Y ‖b=1
sup
‖Z‖d=1

QR(v, Y, Z)

#
completing the proof.

Together with Lemmas 7 and 8, we can prove Lemma 3.

Proof (of Lemma 3) For i = 0, . . . ,M , let Gi ∈ G(γn2, n2). Since the Gaussian
distribution and the nuclear norm are rotationally invariant, we may perform a
change of coordinates such that

P =

»
Ir 0
0 0

–
and Q =

»
Ir 0
0 0

–
where Ir denotes the r× r identity matrix. Under such a transformation, we may
make the identifications

PGiQ =

»
G′i 0
0 0

–
and (I − P )Gi(I −Q) =

»
0 0

0 Ĝi

–
Ĝi ∈ G((1 − β)γn2, (1 − βγ)n2) and G′i ∈ G(γβn2, γβn2). Note that G′i and Ĝi
are independent for all i.

Recall that the dual norm of the nuclear norm is the operator norm. Moreover,
if W is a D1 ×D2 matrix with D1 ≤ D2, then sup‖Z‖=1 ‖Z‖F =

√
D1. We now

apply Lemmas 8 and 7 to find

E

"
inf

‖v‖`2=1

‚‚‚‚‚(I − P )

 
MX
i=1

viGi

!
(I −Q)

‚‚‚‚‚
∗

−
‚‚‚‚‚P
 
MX
i=1

viGi

!
Q

‚‚‚‚‚
∗

#

= E

"
inf

‖v‖`2=1

‚‚‚‚‚
MX
i=1

viĜi

‚‚‚‚‚
∗

−
‚‚‚‚‚
MX
i=1

viG
′
i

‚‚‚‚‚
∗

#

= E

"
inf

‖v‖`2=1
inf
‖Y ‖=1

sup
‖Z‖=1

*
MX
i=1

viĜi, Z

+
+

*
MX
i=1

viG
′
i, Y

+#

≥ E
h
‖Ĝ0‖∗

i
− E

"
sup
‖v‖`2=1

sup
‖Y ‖=1

q
(1− β)γn2〈g, v〉+

*
MX
i=1

viG
′
i, Y

+#

≥ E
h
‖Ĝ0‖∗

i
− E

ˆ
‖G′0‖∗

˜
−
√
M
q

(1− β)γn2 + γβn2

= E
h
‖Ĝ0‖∗

i
− E

ˆ
‖G′0‖∗

˜
−
√
M
√
γn2
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where the first inequality follows from Lemma 8, and the second inequality follows
from Lemma 7. We use σd =

p
(1− β)γn2 when applying Lemma 8 and σd =√

βγn2 when applying Lemma 7.
Now we only need to plug in the asymptotic expected value of the nuclear norm

which may be asymptotically approximated using a classical result of Marčenko
and Pastur. Let G be sampled from G(D1, D2). Then

E‖G‖∗ = ϕ

„
D1

D2

«
D

3/2
2 + q(D2) (20)

where ϕ(·) is is defined by the integral in Equation (3) (see, e.g., [25,4]) and

q(D2)/D
3/2
2 = o(1). Note that ϕ(1) can be computed in closed form:

ϕ(1) =
1

2π

Z 4

0

√
4− t dt =

8

3π
≈ 0.85 .

Plugging these values in with the appropriate dimensions completes the proof.

Proof (of Lemma 5) This lemma immediately follows from applying Lemma 7
with ∆ = 0 and from the calculations at the end of the proof above. It is also an
immediate consequence of Lemma 3.21 from [20].

3 Numerical Experiments

We now show that these asymptotic estimates hold even for moderately sized
matrices. We conducted a series of experiments for a variety of the matrix sizes
n, ranks r, aspect ratios γ, and numbers of measurements m. As in the previous
section, we let β = r

n and µ = m
n2 . For a fixed n, we constructed random recovery

scenarios for low-rank γn × n matrices. For each n, we varied µ between 0 and 1
where the matrix is completely determined. For a fixed n, γ, and µ, we generated
all possible ranks such that γβ(1 − γ − βγ) ≤ µ. This cutoff was chosen because
the quantity on the left hand side is the number of parameters of a rank r matrix
of size γn × n. Beyond this value of β, there would be an infinite set of matrices
of rank r satisfying the m equations.

For each (n, µ, β, γ) tuple, we repeated the following procedure 10 times. A
matrix of rank r was generated by choosing two random factors YL and YR (of size
γn×r and n×r respectively) with i.i.d. random entries and setting Y0 = YLY

∗
R. A

matrix A was sampled from the Gaussian ensemble with m rows and γn2 columns.
Then the nuclear norm minimization

minimize ‖X‖∗
subject to A vecX = A vecY0

was solved using the freely available software SeDuMi [34] using the semidefinite
programming formulation described in [29]. On a 2.0 GHz Laptop, each semidefi-
nite program could be solved in less than two minutes for 40× 40 dimensional X.
We declared Y0 to be recovered if ‖X − Y0‖F /‖Y0‖F < 10−3.

Figure 3 displays the results of these experiments for six settings of the pa-
rameters. The color of the cell in the figures reflects the empirical recovery rate
of the 10 runs (scaled between 0 and 1). White denotes perfect recovery in all
experiments, and black denotes failure for all experiments. We observe that the
Weak Bound falls completely within the white region in all of our experiments and
is an good approximation of the boundary between success and failure for large µ.
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(a) (d)

(b) (e)

(c) (f)

Fig. 3 Random rank recovery experiments for matrices of size (a) 20 × 20, (b) 30 × 30, (c)
40× 40, (d) 20× 30, (e) 20× 40, and (f) 30× 40. The color of each cell reflects the empirical
recovery rate. White denotes perfect recovery in all experiments, and black denotes failure for
all experiments. The axes are the same as in FIgure 1, and the y-axis denotes the ratio of
the model size to the number of measurements. In all frames, we plot the Weak Bound (4),
showing that the predicted recovery regions are contained within the empirical regions, and
the boundary between success and failure is well approximated for large values of µ.



20 Benjamin Recht et al.

4 Discussion and Future Work

Future work should investigate if the probabilistic analysis that provides the
bounds in Theorems 1 and 2 can be further tightened at all. There are two partic-
ular regions where the bounds can be improved. First, when β = 0, µ should also
equal zero. However, in our Weak Bound, γ = 1 and β = 0 tells us that µ must be
greater than or equal to 0.2795. In order to provide estimates of the behavior for
small values of µ, we will need to find a different lower bound than (13). When
µ is small, M in (13) is very large causing the bound on the expected value to
be negative. This suggests that a different parametrization of the null space of A
could be the key to a better bound for small values of β. It also may be fruitful
to investigate if some of the techniques in [13,14] on neighborly polytopes can be
generalized to yield tighter approximations of the recovery region. It would also be
of interest to construct a necessary condition, parallel to the sufficient condition
of Section 2.1, and apply a similar probabilistic analysis to yield an upper bound
for the phase transition.

The comparison theorem techniques in this paper add a novel set of tools to the
behavior of the nuclear norm heuristic, and they may be very useful in the study
of other rank minimization scenarios. For example, the structured problems that
arise in Control Theory can be formulated in the form of (1) with a very structured
A operator (see, e.g., [30]). It would be of interest to see if these structured prob-
lems can also be analyzed within the null space framework. Using the particular
structure of the null space of A in these specialized problems may provide sharper
bounds for these cases. Along these lines, a problem of great interest is the Matrix
Completion Problem where we would like to reconstruct a low-rank matrix from
a small subset of its entries. In this scenario, the operator A reveals a few of the
entries of the unknown low-rank matrix, and the null space of A is simply the set
of matrices that are zero in the specified set. The Gaussian comparison theorems
studied above cannot be directly applied to this problem, but it is possible that
generalizations exist that could be applied to the Matrix Completion problem and
could possibly tighten the bounds provided in [8].
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A Appendix

A.1 Proof of Theorem 3

We begin by proving the converse. Assume the condition of part 1 is violated, i.e., there exists
some Y , such that A(Y ) = 0, Y = Y1 + Y2, rank(Y2) > rank(Y1) = r, yet ‖Y1‖∗ > ‖Y2‖∗.
Now take X0 = Y1 and b = A(X0). Clearly, A(−Y2) = b (since Y is in the null space) and so
we have found a matrix of higher rank, but lower nuclear norm.

For the other direction, assume the null space property of part 1 holds. Note that this
property implies that there are no matrices in the kernel of A with rank less than or equal to
r. To see this, let W have rank less than or equal to r and choose an appropriate basis such
that

W =

»
W11 0

0 0

–
where W11 is r × r. Let ∆ be any matrix such that

∆ =

»
0 ∆12

∆21 0

–
.

in this same basis with ∆12 and ∆21 both non-zero. Let I denote the r × r identity matrix.
Then there exists an arbitrarily small δ > 0 such that W11 + δI is invertible. For such a δ,

S =

»
W11 + δI δ∆12

δ∆21 δ2∆21(W11 + δI)−1∆12

–
has rank r and W − S has rank strictly greater than r. Certainly S + (W − S) is in the null
space of A, but, for δ sufficiently small, we will have ‖S‖∗ > ‖W − S‖∗. This violates our
assumption about the null space of A.

To complete the proof, we now proceed again by contradiction. LetX0 denote the minimum
rank solution and X∗ denote the minimum nuclear norm solution, and suppose that X0 6= X∗.
Then, in an appropriate basis, we may write

X0 =

»
X11 0

0 0

–
and X∗ −X0 =

»
Y11 Y12

Y21 Y22

–
(21)

where X11 and Y11 are r× r, and X11 is a diagonal matrix with nonnegative diagonal entries.
Note that either Y22 is non-zero or both Y12 and Y21 are nonzero as otherwise, X∗−X0 would
have rank less than or equal to r. Therefore, it is always possible to find an ε > 0 such that
Y11 − εI has full rank and Y22 − Y21(Y11 − εI)−1Y12 6= 0. Define the matrices

Z1 :=

»
εI 0
0 Y22 − Y21(Y11 + εI)−1Y12

–
Z2 :=

»
Y11 − εI Y12

Y21 Y21(Y11 − εI)−1Y12

–
with I denoting the r× r identity matrix. Then Z1 +Z2 = X∗ −X0 is nonzero and lies in the
null space of A. Moreover, since Y1 − εI has full rank, the rank of Z2 is r. On the other hand,
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Y22 − Y21(Y11 + εI)−1Y12 6= 0 implies that the rank of Z1 is strictly greater than r. So by the
assumption of Condition 1 of the theorem, we must have that ‖Z1‖∗ > ‖Z2‖∗. It now follows
that

‖X∗‖∗ = ‖X0 +X∗ −X0‖∗
≥ ‖X0 + Z1‖∗ − ‖Z2‖∗
= ‖X11 + εI‖∗ +

‚‚Y22 − Y21(Y11 + εI)−1Y12

‚‚
∗ − ‖Z2‖∗

= ‖X0‖∗ + ‖εI‖∗ +
‚‚Y22 − Y21(Y11 + εI)−1Y12

‚‚
∗ − ‖Z2‖∗

= ‖X0‖∗ + ‖Z1‖∗ − ‖Z2‖∗
> ‖X0‖∗ .

Here, the first inequality follows from the triangle inequality and the definitions of Z1 and Z2.
The next equality holds by the partitioning of Equation (21) and because the nuclear norm of
a block diagonal matrix is equal to the sum of the nuclear norms of each block. The subsequent
inequality follows because the nuclear norm of the sum of two nonnegative diagonal matrices is
equal to the sum of the nuclear norms of the individual summands. The next line again follows
because Z1 is block diagonal. The final inequality is strict and follows because, as discussed
above, ‖Z1‖∗ > ‖Z2‖∗. But X∗ is the minimum nuclear norm solution, so we have arrived at
a contradiction. Consequently, this means that X0 must equal X∗.

A.2 Lipschitz Constants of FI and FS

We begin with the proof of Lemma 6 and then use this to estimate the Lipschitz constant in
Lemma 4.

Proof (of Lemma 6) Note that the function FS is convex as we can write as a supremum of a
collection of convex functions

FS(X1, . . . , XM ) = sup
‖v‖`2=1

sup
‖Z‖<1

〈
MX
i=1

viXi, Z〉 . (22)

The Lipschitz constant L is bounded above by the maximal norm of a subgradient of this
convex function. That is,

L ≤ sup
X̄

sup
Z̄∈∂FS(X̄)

 
MX
i=1

‖Zi‖2F

!1/2

.

where X̄ := (X1, . . . , XM ) and Z̄ := (Z1, . . . , ZM ). Now, by (22), a subgradient of FS at X̄ is
given of the form (v1Z, v2Z, . . . , vMZ) where v has norm 1 and Z has operator norm 1. For
any such subgradient

MX
i=1

‖viZ‖2F = ‖Z‖2F ≤ D1

bounding the Lipschitz constant as desired.

Proof (of Lemma 4) For i = 1, . . . ,M , let Xi, X̂i ∈ RD1×D2 , and Yi, Ŷi ∈ RD3×D4 . Let

w∗ = arg min
‖w‖`2=1

‖
MX
i=1

wiX̂i‖∗ − ‖
MX
i=1

wiŶi‖∗ .
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Then we have that

FI(X1, . . . , XM , Y1, . . . , YM )− FI(X̂1, . . . , X̂M , Ŷ1, . . . , ŶM )

=

 
inf

‖v‖`2=1
‖
MX
i=1

viXi‖∗ − ‖
MX
i=1

viYi‖∗

!
−
 

inf
‖w‖`2=1

‖
MX
i=1

wiX̂i‖∗ − ‖
MX
i=1

wiŶi‖∗

!

≤‖
MX
i=1

w∗iXi‖∗ − ‖
MX
i=1

w∗i Yi‖∗ − ‖
MX
i=1

w∗i X̂i‖∗ + ‖
MX
i=1

w∗i Ŷi‖∗

≤‖
MX
i=1

w∗i (Xi − X̂i)‖∗ + ‖
MX
i=1

w∗i (Yi − Ŷi)‖∗

≤ sup
‖w‖`2=1

‖
MX
i=1

wi(Xi − X̂i)‖∗ + ‖
MX
i=1

wi(Yi − Ŷi)‖∗ = sup
‖w‖`2=1

‖
MX
i=1

wiX̃i‖∗ + ‖
MX
i=1

wiỸi‖∗

where X̃i = Xi − X̂i and Ỹi = Yi − Ŷi. This last expression is a convex function of X̃i and Ỹi,

sup
‖w‖`2=1

‖
MX
i=1

wiX̃i‖∗+‖
MX
i=1

wiỸi‖∗ = sup
‖w‖`2=1

sup
‖ZX‖<1

sup
‖ZY ‖<1

〈
MX
i=1

wiX̃i, ZX〉+〈
MX
i=1

wiỸiZY 〉

with ZX D1 ×D2 and ZY D3 ×D4. Using an identical argument as the one presented in the
proof of Lemma 6, we have that a subgradient of this expression is of the form

(w1ZX , w2ZX , . . . , wMZX , w1ZY , w2ZY , . . . , wMZY )

where w has norm 1 and ZX and ZY have operator norms 1, and thus

MX
i=1

‖wiZX‖2F + ‖wiZY ‖2F = ‖ZX‖2F + ‖ZY ‖2F ≤ D1 +D3

completing the proof.

A.3 Compactness Argument for Comparison Theorems

Proposition 1 Let Ω be a compact metric space with distance function ρ. Suppose that f
and g are real-valued function on Ω such that f is continuous and for any finite subset X ⊂ Ω

max
x∈X

f(x) ≤ max
x∈X

g(x) .

Then
sup
x∈Ω

f(x) ≤ sup
x∈Ω

g(x) .

Proof Let ε > 0. Since f is continuous and Ω is compact, f is uniformly continuous on Ω.
That is, there exists a δ > 0 such that for all x, y ∈ Ω, ρ(x, y) < δ implies |f(x) − f(y)| < ε.
Let Xδ be a δ-net for Ω. Then, for any x ∈ Ω, there is a y in the δ-net with ρ(x, y) < δ and
hence

f(x) ≤ f(y) + ε ≤ sup
z∈Xδ

f(z) + ε ≤ sup
z∈Xδ

g(z) + ε ≤ sup
z∈Ω

g(z) + ε .

Since this holds for all x ∈ Ω and ε > 0, this completes the proof.


