
 Open access Proceedings Article DOI:10.1109/IROS.2012.6385960

Null space optimization for effective coverage of 3D surfaces using redundant
manipulators — Source link

Jurgen Hess, Gian Diego Tipaldi, Wolfram Burgard

Institutions: University of Freiburg

Published on: 24 Dec 2012 - Intelligent Robots and Systems

Topics: Travelling salesman problem, Graph theory, Motion planning and Inverse kinematics

Related papers:

 Towards a comprehensive chore list for domestic robots

 Robotic Agents Representing, Reasoning, and Executing Wiping Tasks for Daily Household Chores

 Integrated Symbolic Planning in the Tidyup-Robot Project

 Automated construction of robotic manipulation programs

 Vision based behavior verification system of humanoid robot for daily environment tasks

Share this paper:

View more about this paper here: https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-
3mm6ne4hvg

https://typeset.io/
https://www.doi.org/10.1109/IROS.2012.6385960
https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-3mm6ne4hvg
https://typeset.io/authors/jurgen-hess-zto3l0tb7n
https://typeset.io/authors/gian-diego-tipaldi-1l2xgp9ecg
https://typeset.io/authors/wolfram-burgard-4yc6ydefjy
https://typeset.io/institutions/university-of-freiburg-2b0u9qv3
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/travelling-salesman-problem-3gwwm99n
https://typeset.io/topics/graph-theory-1ze17v9w
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/topics/inverse-kinematics-nhklieku
https://typeset.io/papers/towards-a-comprehensive-chore-list-for-domestic-robots-1mdrty735w
https://typeset.io/papers/robotic-agents-representing-reasoning-and-executing-wiping-42q33hs03n
https://typeset.io/papers/integrated-symbolic-planning-in-the-tidyup-robot-project-5dsf1t9vuz
https://typeset.io/papers/automated-construction-of-robotic-manipulation-programs-22c8lwty9k
https://typeset.io/papers/vision-based-behavior-verification-system-of-humanoid-robot-j5f1z6b6x7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-3mm6ne4hvg
https://twitter.com/intent/tweet?text=Null%20space%20optimization%20for%20effective%20coverage%20of%203D%20surfaces%20using%20redundant%20manipulators&url=https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-3mm6ne4hvg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-3mm6ne4hvg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-3mm6ne4hvg
https://typeset.io/papers/null-space-optimization-for-effective-coverage-of-3d-3mm6ne4hvg

Null Space Optimization for Effective Coverage of 3D Surfaces

using Redundant Manipulators

Jürgen Hess Gian Diego Tipaldi Wolfram Burgard

Abstract— In this paper we consider the problem of null
space minimization in coverage path planning of 3D surfaces
for redundant manipulators. Existing coverage solutions only
focus on Euclidean cost functions and often return suboptimal
paths with respect to the joint space. In the approach described
here, we explicitly consider the null space by treating different
inverse kinematics solutions as individual nodes in a graph
and model the problem as a generalized traveling salesman
problem (GTSP). The GTSP is a generalization of the TSP
where the nodes of the graph are subdivided into clusters
and at least one node in each cluster needs to be visited.
We evaluate our approach using a PR2 robot and complex
objects. Our results demonstrate that our method outperforms
Euclidean coverage algorithms in terms of manipulation effort
and completion time.

I. INTRODUCTION

Coverage of 3D surfaces is becoming an important and

interesting problem for personal robotics, mainly due to

its interesting and potential applications (e.g., autonomous

cleaning, painting, or scraping of complex 3D objects). As

for today, cleaning services are envisioned to be one of

the most relevant applications of mobile service robots in

the near future. Prassler and Kosuge [12] list thirteen com-

mercially available domestic cleaning robots, all of which

are floor cleaning robots and thus operate on a 2D planar

environment. To the best of our knowledge there is no

manipulation robot that can clean arbitrary 3D surfaces.

In this paper we consider the problem of coverage path

planning for robotic manipulators where the task space is

constrained to lie on the surface and specific costs in joint

space need to be minimized. We further assume that the

orientation of the end effector is orthogonal to the direction

of travel, which is the case for a variety of different tools

including paintbrushes, sponges, and squeegees.

A popular solution to the problem is to transform the

surface into a graph and solve the associated traveling

salesman problem (TSP). Although this approach is well

suited in order to minimize the Euclidean path length, it

limits the possibility to define appropriate cost functions in

joint space to perform null space optimization. There are

two reasons for this limitation. The first reason is that the

orientation of the end effector is only known after a full path

is available. The second reason is that the cost of travel from

a node to another one depends on the configuration of the

robot in the first node. This configuration is not unique for

All authors are with the Autonomous Intelligent Systems Lab,
Computer Science Department, University of Freiburg, Germany.
{hess,tipaldi,burgard}@informatik.uni-freiburg.de

Fig. 1. PR2 robot using a sponge to clean a bobby car.

redundant manipulators and may depend on the sequence in

which the nodes are visited.

To overcome these limitations, we model the problem

as a generalized traveling salesman problem (GTSP), a

generalization of the TSP, where a set of clusters is defined

over the nodes. As a result, our approach generates coverage

strategies that are optimized with respect to user-defined cost

functions over the joint-space.

We evaluate our approach using real data collected from a

PR2 robot. Fig. 1 shows a typical setup of our experiments,

where the robot is confronted with the task of cleaning the

surface of a bobby car using its arm. The results show that

our approach generates paths covering the object while min-

imizing the target cost defined by the above-mentioned cost

functions. We evaluate our approach using two different cost

functions, which are the completion time and the distance

in the joint space. According to the results, our method

outperforms Euclidean coverage algorithms with respect to

both cost functions.

II. RELATED WORK

In general, the term coverage path planning refers to the

problem of finding a path in a fully connected graph that

covers all nodes and minimizes some cost measure. Most of

the approaches for coverage assume that the environment is

known and seek the shortest path that traverses each location

once, which corresponds to the traveling salesman prob-

lem (TSP). Finding the optimal solution for a TSP is well-

known to be NP-hard. Practical solutions for 2D surfaces

typically rely on heuristics to reduce the problem size or

(a) Object Image (b) Surface Patches and Normals (c) Euclidean Graph (d) Joint-GTSP Solution

Fig. 2. Illustration of the coverage planning process. A solution generated with the Joint-GTSP is shown in (d).

utilize specific structures of environments.

Gabriely et al. [7], for example, decompose the surface

into a grid and suggest different coverage strategies based

on spanning trees. Other approaches use a decomposition

into non-overlapping cells of different shapes. Latombe, for

example, uses a trapezoidal decomposition [10]. Another

approach is the Boustrophedon cellular decomposition [5]

which divides the free space into cells which can be covered

with vertical back and forth motions that can be connected

across the cells. Huang et al. [9] use this decomposition and

compute an optimal coverage path by minimizing the number

of turns of the robot. Mannadiar and Rekleitis [11] propose

a graph structure based on the Boustrophedon cellular de-

composition and show that a complete minimal path through

this graph can be computed in polynomial time. All of these

approaches, however, assume a planar robot moving on a 2D

plane.

Recently, coverage algorithms have also been extended to

non-planar surfaces. Xu et al. [14], for example, extend the

work of Mannadiar and Rekleitis [11] to the field of aerial

coverage of terrain with unmanned aerial vehicles (UAVs).

Cheng et al. [4] focus on 3D urban coverage with UAVs.

Coverage has also been addressed in the field of spray

painting automotive parts. Atkar et al. [1] show how simple

automotive parts like convex bent sheets can be covered

such that the resultant paint deposition on the target sur-

face achieves acceptable uniformity. In these applications

however, the robot does not operate on the surface. They

also do not address the problem of minimizing costs in

the configuration space of the robot and do not consider

robotic manipulators. Breitenmoser et al. [3] extended 2D

coverage for mobile robots to 3D surfaces, by using Voronoi

tessellations to map the surface to a 2D plane. Although

closely related, they only considered mobile robots moving

on the surface and coverage in terms of Euclidean distance.

This paper presents a novel solution to the problem of cov-

ering 3D surfaces with a redundant manipulator. In contrast

to the majority of previous work, our method furthermore

addresses the problem of null space minimization.

III. FORMULATING A COVERAGE PROBLEM AS A GTSP

In this section we will present the formulation of the

coverage problem in terms of a GTSP. The GTSP is a

generalization of the TSP, where a set of clusters is defined

over the nodes. Each solution to a GTSP includes at least one

node from each cluster and, as in the TSP, the goal is to find

a tour with minimum cost. In our case, we are confronted

with a special version of the GTSP where the clusters do

not intersect and where we search for a tour that visits each

cluster exactly once.

First, we show how we convert the surface of the object

into set of locally planar patches. Then, we describe how

we use this representation to generate a Euclidean graph

which encodes collision-free traveling paths over the surface.

Finally, we use this graph to construct a GTSP that solves the

coverage problem by minimizing a user-defined cost function

in joint space.

A. Euclidean Graph Construction from Point Clouds

Our robot is equipped with a Kinect sensor that generates

a point cloud of the object to be covered. We approximate

the resulting point cloud with a set of planar patches, which

comprises the object model. Given the point cloud, we first

randomly select a point. We then determine the points that

lie within an ε-neighborhood, where the value of ε depends

on the size of the tool used to accomplish the task, and

use RANSAC to fit a plane. We accept the plane as a new

surface patch if the root mean square error (RMSE) is below

a threshold and mark the points used for calculation. The

process is restarted with the remaining points until all points

are marked or were drawn. An example of the resulting

surface representation is shown in Fig. 2b.

Having modeled the surface as a set of locally planar

patches and their surface normals, we aim at constructing

a graph G = (V,E), where V is the set of nodes and E is the

set of edges, with the following properties:

• The nodes correspond to the set of reachable patches.

• The edges represent collision free paths for the end

effector.

The construction of the graph proceeds as follows. We check

reachability of each patch. If a patch is not reachable, we

mark it accordingly and delete the node from the graph. For

each remaining node, we select the top k nearest neighbors

within a radius r and connect them linearly with an edge.

We then simulate an end effector movement along each of

the edges and check them for collision. If there is no valid

path along an edge, we delete the edge from the graph. As

a result, each node can be reached on a collision free path

along the edges through the graph. If the graph construction

results in more than one connected component, we apply

the optimization approach described below to each of the

components seperately. The resulting graph is shown in

Fig. 2c. The red patches were marked as not reachable.

j

i

k

(a) TSP

pj

pi

pk

(b) Joint-GTSP

pj

pi

pk

(c) Curvature-GTSP

Fig. 3. The different graph representations used. Edges between nodes respectively clusters which are not adjacent in the Euclidean graph are assigned
a constant high weight and not visualized in the figure.

B. GTSP for Joint Space Minimization

To perform joint space minimization, we formulate the

problem as a GTSP which we obtain by extending the Eu-

clidean graph to account for the possible joint configurations

for each pose. Each cluster pi of the GTSP corresponds

to a node i in the Euclidean graph. For each edge ei, j in

the Euclidean graph, we sample a set of inverse kinematics

solutions for both the start position i and the end one j.

The inverse kinematics solutions are samples in the null

space and due to redundancies. The solution sets are then

inserted in the respective clusters and used in the GTSP.

Nodes within the same cluster are not connected. Fig. 3b

illustrates the resulting graph. The nodes corresponding to

joint space solutions are marked solid black. The solid circles

mark the ends of each edge in the Euclidean graph and the

dotted circles the clusters.

The final step is to define the cost functions of the GTSP

in terms of joint space configurations. In this paper we are

interested in two cost functions, namely the manipulation

effort and the time to completion. For simplicity we model

the manipulator as being able to be controlled in velocity and

neglect the dynamics and accelerations. Note that they can

be easily taken into account by appropriately modifying the

expressions to be computed. We define the distance between

two nodes with respect to the manipulation effort as the

total amount of displacement of each joint between two

configurations:

dist(pk
i , pl

j) = ∑
m

‖∆qm‖, (1)

where pk
i and pl

j are the node k and l of the clusters pi and

p j and ∆qm is the displacement of the m-th joint between the

respective joint configurations. Similarly, with respect to the

time to completion, the distance is the minimal time needed

for the movement between the joint configurations assuming

maximum velocity vmax:

dist(pk
i , pl

j) = max
m

(
‖∆qm‖

vmax
). (2)

The cost assigned to edges in the GTSP graph are given by:

c(pk
i , pl

j) =







dist(pk
i , pl

j), if A(i, j) = 1 and i 6= j

h, if A(i, j) = 0 and i 6= j

∞, if i = j

,

(3)

where A is the adjacency matrix of the Euclidean graph and

A(i, j) = 1 if the two nodes i and j are adjacent. We assign

a constant value h to all edges leading from pk
i to pl

j if the

nodes i and j are not connected in the Euclidean graph. This

ensures that a solution can be found as the clusters are fully

connected. The quantity h is set to a high value to indicate

that those edges require additional path planning. Having

constructed this graph, we transform the GTSP into a TSP

using the method of Behzad et al. [2]. We then compute the

solution for the TSP using dedicated solvers described below.

As a result we obtain an effective coverage path with respect

to the cost function selected. In the following, we refer to

this GTSP as Joint-GTSP.

IV. HIERARCHICAL APPROXIMATION FOR EFFICIENT

PLANNING

Unfortunately, the size of the GTSP described above is

exponential in the number of nodes that correspond to inverse

kinematics solutions, which limits us to only a few inverse

kinematics samples. In this section we describe a hierarchical

approximation of the Joint-GTSP that scales quadratically in

the number of inverse kinematics solutions and exponentially

only in the number of edges in the Euclidean graph.

To find a suitable approximation, we analyzed the cost

profile of each joint in both the Joint-GTSP and the TSP

solution (see Fig. 4). The TSP solution was obtained by using

the Euclidean graph for solving for a solution, computing

the end effector orientations along the path and querying

for inverse kinematics solutions. Fig. 4 shows that most of

the gain of the GTSP solution is due to a cost reduction

of the joint corresponding to the end effector orientation.

Minimizing the effort of this joint in turn means minimiz-

ing the curvature of the path in Euclidean space. Using

this insight, we decided to decouple the full minimization

problem by first optimizing for the end effector orientation

and then optimizing the remaining joints. More formally, we

first generate a simplified GTSP problem that minimizes a

weighted cost function on the Euclidean distance and the

curvature of the path on the manifold (Curvature-GTSP). As

in the general case, each cluster pi of the Curvature-GTSP

corresponds to node i in the Euclidean graph. We then

consider only each start and end point of an edge in the

Euclidean graph as a node in the Curvature-GTSP. Thus,

the number of nodes in a cluster pi only corresponds to the

number of edges of node i in the Euclidean graph and is

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300

Jo
in

t
D

is
p

la
ce

m
en

t

Time Step

q1

q2

q3

q4

q5

q6

q7

(a) TSP

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300

Jo
in

t
D

is
p

la
ce

m
en

t

Time Step

q1

q2

q3

q4

q5

q6

q7

(b) Joint-GTSP

Fig. 4. Joint displacement for different TSP solutions. Joint q7 corresponds
to the end effector. Note the reduced impact of joint q7 when using the
Joint-GTSP.

independent of the number of inverse kinematics samples.

Each node pk
i in the graph defines its own coordinate system,

where the x axis is oriented with respect to the direction of

travel and the z axis with respect to the normal of the patch.

Let ∆X =
[

t R(u,θ)
]

be the transformation between the

coordinate frames of the nodes k and l of the clusters pi and

p j, where t is the translational and R(u,θ) the rotational part

expressed in axis-angle notation. The distance between the

two nodes is then:

dist(pk
i , pl

j) = (1−β)‖t‖+βθ , (4)

where β is a parameter, weighting between the Euclidean

distance and the curvature of the path. The cost assigned to

edges in the Curvature-GTSP graph are then computed in

the same way as in the general setting described in Eq. 3.

Fig. 3c shows an example of such a graph. The dotted

circles denote the nodes in the Euclidean graph and the

clusters in the GTSP. The smaller circles denote the end

points of each edge in the Euclidean graph and form the

new set of nodes in the Curvature-GTSP.

As the second step we solve the Curvature-GTSP using

the same reduction to a TSP as for the general case. For

further optimization of the path in joint space, we construct

a directed source to target graph of joint space positions

(see Fig. 5). The graph is constructed in the following way.

From the TSP solution we extract the sequence of 6 DoF end

source target

layer l layer l + 1

Fig. 5. Directed source to target graph. Each node corresponds to a joint
configuration and each layer to one end effector pose. The thick (blue) path
marks the solution.

effector positions of the tour. For each position, we compute

a set of inverse kinematics solutions that forms the nodes

of an intermediate layer l of the graph. Thus, each layer

corresponds to one end effector pose from the path and each

node to one inverse kinematics solution. We select the current

joint position of the manipulator as the source and connect it

to the first layer. The first layer is determined as the position

of the TSP tour closest to the current end effector position.

All nodes in layer l are connected forward to all nodes in

layer l+1. The target node of the graph is an artificial sink

as we do not require an exact final joint position. The weight

of each edge in this graph is equivalent to the cost functions

computed between the joint configurations of the respective

nodes in the Joint-GTSP. The solution is then found using

the Dijkstra algorithm to compute the shortest path through

the graph which is visualized in Fig. 5.

V. EXPERIMENTS

We validated our approach using real data recorded with

the PR2 mobile manipulation robot. The data has been

recorded from two different objects, a chair and a bobby car,

using a Kinect sensor. We used a single view of each object

but our approach also extends to multiple views that are

fused, for example using the method of Ruhnke et al. [13].

We chose the bobby car and the chair for their very different

surface structure. The bobby car is a complex non-convex

object whereas the chair is largely planar. For the construc-

tion of the Euclidean graph we chose the number of nearest

neighbors k to be 8 and set the search distance to 10 cm

to limit the graph complexity. These settings resulted in a

sufficiently dense graph. The β parameter in the cost function

of the Curvature-GTSP (see Eq. (3)) was set to 0.9, favoring

solutions with smoother curvature changes. The exact setting

was not crucial for the experiments. We evaluated three

approaches, the Joint-GTSP, the Curvature-GTSP, and the

TSP with a different number of inverse kinematics samples.

For the TSP construction, we used the Euclidean graph and

also fully connected the graph, setting a constant high weight

to all edges not adjacent in the Euclidean graph. After the

tour construction, we computed the end effector orientation

and optimized the joint space in the same way as for the

Curvature-GTSP. For the cases with a small number of

samples < 10, we manually sampled the joint around the

middle of the configuration space. The 100 samples were

obtained by sampling uniformly. We also simulated a non-

redundant manipulator by fixing one of the joints. This is

equivalent to the one sample case described below. The

(a) Chair (b) TSP (c) Curvature-GTSP (d) Joint-GTSP

Fig. 6. Sample coverage paths for the chair experiment.

TABLE I

RESULTS FOR THE CHAIR EXPERIMENT, OPTIMIZING FOR TASK TIME (LEFT) AND EFFORT (RIGHT).

Task Time Effort

TSP Curvature-GTSP Joint-GTSP TSP Curvature-GTSP Joint-GTSP

1 Sample 1 Sample

Dist. [m] 9.54 ± 0.00 12.03 ± 0.23 12.26 ± 0.18 9.54 ± 0.00 12.11 ± 0.25 12.09 ± 0.21

Effort 336.46 ± 3.34 228.25 ± 5.21 218.59 ± 5.05 335.88 ± 3.27 228.70 ± 5.67 215.65 ± 3.37

Task Time [s] 153.46 ± 1.55 97.76 ± 2.17 94.58 ± 2.15 153.19 ± 1.51 98.15 ± 2.34 95.43 ± 1.56

Calc. Time [s] 3.84 ± 0.36 114.40 ± 9.20 118.03 ± 6.68 4.12 ± 0.48 133.27 ± 8.07 131.06 ± 7.83

3 Samples 3 Samples

Dist. [m] 9.54 ± 0.00 12.04 ± 0.12 13.03 ± 0.26 9.54 ± 0.00 12.19 ± 0.19 13.10 ± 0.35

Effort 327.66 ± 2.29 220.41 ± 2.97 214.24 ± 5.69 305.39 ± 1.96 204.59 ± 3.28 183.73 ± 4.02

Task Time [s] 138.34 ± 1.47 87.15 ± 1.48 84.53 ± 2.64 141.67 ± 1.42 93.48 ± 1.97 86.98 ± 1.99

Calc. Time [s] 3.73 ± 0.15 129.60 ± 7.76 1649.11 ± 150.90 4.19 ± 0.31 137.88 ± 8.50 1808.6 ± 182.45

100 Samples 100 Samples

Dist. [m] 9.54 ± 0.00 12.09 ± 0.16 N/A 9.54 ± 0.00 12.18 ± 0.30 N/A

Effort 303.54 ± 4.93 205.17 ± 4.53 N/A 206.81 ± 1.44 134.49 ± 5.66 N/A

Task Time [s] 101.60 ± 1.53 69.91 ± 1.47 N/A 159.46 ± 3.57 101.56 ± 1.51 N/A

Calc. Time [s] 23.92 ± 0.69 148.42 ± 8.64 N/A 12.01 ± 0.41 152.72 ± 14.40 N/A

samples were obtained by fixing one joint and then using

OpenRAVE [6] to calculate the inverse kinematics solution.

The TSP has been solved using the LKH solver, a state-of-

the-art TSP solver based on the Lin-Kernighan heuristic [8].

Due to a random element in the selection of the initial tour

of the LKH solver, we repeated the experiments 10 times.

The results of our experiments are shown in Table I for

the chair and in Table II for the bobby car. To illustrate the

difference of the Cartesian path on the surface of the objects,

a sample solution for both objects can be found in Fig. 6

and Fig. 7. For both objects and minimization strategies,

i.e., effort and time (see Eq. (1) and Eq. (2)), we compute

the total Euclidean distance, the total effort, and the total

time for task completion as well as the calculation time.

In the calculation of the task completion time, we assume

a maximum velocity of vmax = 2rad/s for each joint and a

bang-bang velocity profile which is equivalent to impulsive

accelerations. The calculation time specifies the time needed

for solving for a coverage path given the Euclidean graph.

The table shows the results for one sample (no redun-

dancy), the maximum number of samples usable for the

Joint-GTSP (three for the chair and nine for the bobby car),

and 100 samples (only for the TSP and the Curvature-GTSP).

As can be seen, the TSP results in the shortest Cartesian path

but also in the highest effort and execution time. This comes

with no surprise as it is not possible to encode these costs

in the Euclidean graph. More interestingly, this also shows

that the shortest Euclidean path is not always the best one

with respect to execution time. The Joint-GTSP results in a

significant reduction in terms of effort and time although the

length of its Cartesian path increases.

For both the one sample and the maximum samples cases,

we see that the Joint-GTSP and the Curvature-TSP perform

significantly better than the TSP in both experiments (min-

imum effort and minimum time) while the Joint-GTSP per-

forms slightly better. If we increase the number of samples

to 100, we see that the Curvature-GTSP is able to perform

better than the Joint-GTSP at the maximum number of usable

samples, with no significant overhead on the calculation time.

VI. CONCLUSION

In this paper we presented a novel approach to perform

null space minimization for coverage path planning problem

on 3D surfaces. Existing coverage algorithms mostly focus

on robots moving on a planar surface, minimizing Euclidean

properties on the plane. We showed that when considering

redundant manipulators this property does not hold anymore

and costs in joint space need to be explicitly considered.

We showed how these costs can be expressed by modeling

the problem in terms of a generalized traveling salesman

problem and presented a general framework for null space

(a) TSP (b) Curvature-GTSP (c) Joint-GTSP

Fig. 7. Sample coverage paths for the bobby car experiment.

TABLE II

RESULTS FOR THE BOBBY CAR EXPERIMENT, OPTIMIZING FOR TASK TIME (LEFT) AND EFFORT (RIGHT).

Task Time Effort

TSP Curvature-GTSP Joint-GTSP TSP Curvature-GTSP Joint-GTSP

1 Sample 1 Sample

Dist. [m] 5.89 ± 0.00 7.61 ± 0.19 7.48± 0.15 5.89 ± 0 7.49 ± 0.12 7.53± 0.16

Effort 206.66± 3.52 180.27 ± 3.52 157.29 ± 4.02 205.33 ± 3.49 176.95 ± 6.95 153.07 ± 3.57

Task Time [s] 85.00 ± 0.36 72.08 ± 1.65 63.31 ± 1.59 84.80 ± 0.60 70.92 ± 2.45 63.67 ± 1.48

Calc. Time [s] 1.06 ± 0.25 30.01 ± 1.89 31.07± 3.38 1.11 ± 0.24 32.16 ± 2.51 26.58 ± 0.81

9 Samples 9 Samples

Dist. [m] 5.89 ± 0.00 7.88 ± 0.22 8.49 ± 0.29 5.89 ± 0.00 7.73 ± 0.14 8.97 ± 0.30

Effort 202.70 ± 3.93 174.92 ± 7.90 169.28 ± 6.13 171.67 ± 2.22 143.83 ± 4.15 137.50 ± 7.78

Task Time [s] 72.25 ± 0.56 61.60 ± 1.93 60.85 ± 1.65 81.00 ± 0.41 67.10 ± 2.55 68.42 ± 3.37

Calc. Time [s] 1.15 ± 0.09 30.84 ± 1.86 1549.44 ± 183.41 1.17 ± 0.13 31.98 ± 2.10 2255.48 ± 213.98

100 Samples 100 Samples

Dist. [m] 5.89 ± 0.00 7.60 ± 0.15 N/A 5.89 ± 0.00 7.61 ± 0.16 N/A

Effort 202.19 ± 3.84 164.03 ± 4.04 N/A 159.70 ± 2.67 131.88 ± 5.86 N/A

Task Time [s] 68.14 ± 0.32 54.86 ± 1.34 N/A 85.44 ± 0.90 68.63 ± 3.05 N/A

Calc. Time [s] 4.29 ± 0.29 35.25 ± 3.43 N/A 2.47 ± 0.36 33.50 ± 1.94 N/A

optimization of arbitrary cost functions. We further showed

an efficient approximation of the general approach that scales

quadratically with the number of inverse kinematics samples.

The approach has been evaluated using real data collected

from a PR2 robot. Results obtained with real-world objects

show that we are able to obtain paths that cover the object

thereby minimizing a user-defined cost function in the null

space. They furthermore show that our approach outperforms

Euclidean coverage algorithms in terms of manipulation

effort and completion time. Interestingly, the experiments

also show that the shortest path in Euclidean distance is not

always the best one with respect to execution time. In the

future we plan to extend the approach to incorporate the

mobility of the base and the potentially more flexible bi-

manual manipulation.

REFERENCES

[1] P.N. Atkar, A. Greenfield, D.C. Conner, H. Choset, and A.A. Rizzi.
Uniform coverage of automotive surface patches. The International

Journal of Robotics Research, 24(11):883–898, 2005.
[2] A. Behzad and M. Modarres. A new efficient transformation of

the generalized traveling salesman problem into traveling salesman
problem. In Proc. of the Intl. Conf. of Systems Engineering, pages
6–8, 2002.

[3] A. Breitenmoser, J. Metzger, R. Siegwart, and D. Rus. Distributed
coverage control on surfaces in 3d space. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages 5569–
5576, 2010.

[4] P. Cheng, J. Keller, and V. Kumar. Time-optimal UAV trajectory
planning for 3d urban structure coverage. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages 2750–
2757, 2008.

[5] H. Choset and P. Pignon. Coverage path planning: The boustrophedon
cellular decomposition. In Intl. Conf. on Field and Service Robotics,
1997.

[6] R. Diankov. Automated Construction of Robotic Manipulation Pro-

grams. PhD thesis, Carnegie Mellon University, Robotics Institute,
2010.

[7] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin
uous areas by a mobile robot. In Proc. of the IEEE Intl. Conf. on

Robotics & Automation (ICRA), volume 2, pages 1927–1933, 2001.

[8] K. Helsgaun. An effective implementation of the Lin-Kernighan trav-
eling salesman heuristic. European Journal of Operational Research,
126:106–130, 2000.

[9] W.H. Huang. Optimal line-sweep-based decompositions for coverage
algorithms. In Proc. of the IEEE Intl. Conf. on Robotics & Automation

(ICRA), volume 1, pages 27–32, 2006.

[10] J.C. Latombe. Robot motion planning. Springer Verlag, 1990.

[11] R. Mannadiar and I. Rekleitis. Optimal coverage of a known arbitrary
environment. In Proc. of the IEEE Intl. Conf. on Robotics &

Automation (ICRA), pages 5525–5530, 2010.

[12] E. Prassler and K. Kosuge. Domestic robotics. In Springer Handbook

of Robotics, pages 1253–1281. Springer, 2008.

[13] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly
accurate 3d surface models by sparse surface adjustment. In Proc. of

the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2012.

[14] A. Xu, C. Viriyasuthee, and I. Rekleitis. Optimal complete terrain
coverage using an unmanned aerial vehicle. In Proc. of the IEEE

Intl. Conf. on Robotics & Automation (ICRA), pages 2513–2519, 2011.

