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Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel
interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights
computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to
reduce the interference by placing null at the interference sources. It is di�cult to improve and optimize the LCMV beamforming
technique through conventional empirical approach. To provide a solution to this problem, arti�cial intelligence (AI) technique is
explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated
arti�cial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique
in order to improve the weights of LCMV. �e simulation result demonstrates that received signal to interference and noise ratio
(SINR) of target user can be signi�cantly improved by the integration of PSO, DM-AIS, andGSA in LCMV through the suppression
of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more e	ective technique in LCMV
beamforming optimization as compared to the PSO technique. �e algorithms were implemented using Matlab program.

1. Introduction

Adaptive beamforming was inaugurated to evolvement in
aerospace and military applications with technology �rmly
�xed on phased-array via the electronically steered antennas
[1]. Adaptive antennas were then supposed appropriate to
solve the cochannel interference and multipath fading prob-
lem for mobile wireless communication. Adaptive antenna
array was created in the 1950s by Howells identi�ed as
the intermediate frequency side lobe canceller (SLC) [2].
Although SLC technique encompasses the ability of auto-
matic interference nulling, it was not fully adaptive due to
�xed pattern for main beam and few controlled elements for
ancillary array. �is technology simpli�ed the improvement
of quali�ed adaptive array in 1965 by Applebaum. �is

algorithm was employed to increase the signal-to-noise ratio
(SNR) in order to have more e�ciency of adaptive antenna.
Meanwhile, another adaptive array technique known as
linear constraint minimum variance (LCMV) was created by
Windrow [3]. �is algorithm was developed based on the
conventional minimum mean square error (MMSE) for the
automatic adjustment of array weights with the privilege of
simplicity. Low convergence rate is the main disadvantage
of LCMV technique that makes it inappropriate for some
applications, while the advantage of it is only that it requires
the direction of arrival (DOA) for maximizing the SNR.
Formerly, di	erent research works have been presented,
which used LCMV for beamforming applications [3–5].
According to the characteristics of LCMV beamforming
technique, it has a weak beam pattern and low signal to
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interference-noise ratio (SINR) value. Solving this problem
through conventional empirical approach is very di�cult,
time consuming, and sometimes in the applied case unman-
ageable. Consequently, many metaheuristics and exploratory
methods have been settled to get the best results for these
types of di�culties. Previous studies show that the employ-
ment of metaheuristics algorithm has been growing instead
of exhaustive and exact procedures. In this regard, approaches
such as genetic algorithms (GA) [6, 7], arti�cial bee colony
(ABC) [8, 9], di	erential evolution (DE) [10], particle swarm
optimization (PSO) [11, 12], ant colony optimization (ACO)
[13–15], tabu search (TS) [8, 16, 17], arti�cial immune system
(AIS) [18], and clonal selection (CS) [19, 20] have been used to
solve a variety of problems in order to improve various issues
in antenna system. According to the above-mentioned study,
the main goal of this paper is to optimize the LCMV beam-
forming weights by PSO and gravitational search algorithm
(GSA) technique to improve the performance of system in
the expect of SINR.

In this investigation, PSO, DM-AIS, and GSA have been
applied in uniform linear antenna arrays with 0.5� spacing
between adjacent elements at a frequency of 2.3 GHz. �e
rest of this paper is organized as follows. Section 2 introduces
system model which contains the basics of adaptive beam-
forming, LCMV technique, and its algorithm. �e arti�cial
intelligence (AI) techniques including PSO, DM-AIS, and
GSA are summarized in Section 3. Section 4 shows the
application of presented AI in LCMV technique. Simulation
results are reported in Section 5, and �nally Section 6 con-
cludes this investigation.

2. System Model

In this section, the mathematical formulation of the design
model for an adaptive beamforming and LCMV technique
will be presented in detail.

2.1. Adaptive Beamforming. �e beamforming technique
attempts tomake beam toward the signal of interest (SOI) and
produce null toward the direction of signals not of interest
(SNOI). Signal processing technique automatically adjusts
incoming SOIs and SNOIs from collected information and
weight. �e outputs of the individual sensors were linearly
combined a�er being scaled with the corresponding weights.
�is process optimizes the antenna array to achieve maxi-
mum gain in the direction of the desired signal and nulls in
the direction of interferers. For a beamformer, the output at
any time �, �(�) is given by a linear combination of the data at� antennas, with�(�) being the input vector,�(�) theweight
vector, and � the Hermitian transpose. Consider

� (�) = �� (�) � (�) . (1)

Weight vector �(�) can be de�ned as follows

� (�) = �−1∑
�=0

��,

� (�) = �−1∑
�=0


�.
(2)

�e weight vector at time � + 1 for any system that uses the
direct gradient vector for upgrading weight vector and avoid
the matrix inverse process can be as follows

�(� + 1) = � (�) + 1
2� [∇� (�)] , (3)

where � is the step size parameter, which controls the speed
of convergence and lies between 0 and 1. While the smallest
quantity of � assists the cost function superior estimation and
sluggish concurrence, the huge quantity of it may result in a
quick union. Nevertheless, the constancy over the minimum
value could disappear. Consider

0 < � < 1
� . (4)

Estimation of gradient vector is written as

∇� (�) = −2� (�) + 2� (�)� (�) ,
� (�) = 
 (�)
� (�) ,
� (�) = � (�) ∗ 
 (�) ,

(5)

where � is the covariance matrix and � is the cross-correla-
tion vector.

By integrating (5) into (3), the weight vector can be
derived as follows

�(� + 1) = � (�) + � [� (�) − � (�)� (�)]
= � (�) + �
 (�) [�∗ (�) − 
 (�)� (�)]
= � (�) + �
�∗ (�) .

(6)

�e following three formulas further de�ne the desired
signal as

� (�) = �� (�) � (�) ,
� (�) = � (�) ⋅ � (�)� (� + 1)

= � (�) + �
 (�) �∗ (�) .
(7)

2.2. Conventional LCMV Beamforming. Numerous algo-
rithms were introduced for the design of an adaptive beam-
former [21]. One of the popular approaches for adaptive
beamforming was generated by Windrow [3]. His technique
leads to an adaptive beamformer with the LCMV. �e form
of radiation beam in LCMV depends on the knowledge of
the received desired signal. Moreover, LCMV technique can
estimate the source of interference and control radiation lobe
in order to accumulate high power to the desired direction.
Although this system does not have to know the radiated
power of the desired signal or the direction of interference
and white noise, it is capable of suppressing the disturbances
as much as possible. �e total signal is given by

�Total = �� (�) + �� (�) + �� (�) , (8)

where �� is the desired signal, �� is the interference signal, ��
is the noise signal added from Gaussian noise, and �� + �� is
the undesired signal.
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Asmentioned in Section 2.1, the array output can be writ-
ten as follow

� = ���. (9)

�e output power is given by

� = {����������2} = � {������} = ��� {����} = ���,
(10)

where the � covariance matrix should be (�, 1) for the
received signal �.

�e LCMV algorithm depends on the steering vector,
based on the incident angle that is obtained from the incident
wave on each element. �e optimum weights are selected to
minimize the array output power while maintaining unity
gain in the look direction. �e LCMV adaptive algorithm
is shown in formula (11) when a constant beam pattern is
required. Consider

min {���		�} conditional on��� (�0) = !, (11)

where ! is the complex scalar.

Steering vector �(�) is given by [22]

� (�) =
[[[[[
[

1
exp {&2'� (sin ��) �}

exp {&2'� (sin ��) (- − 1) �}

]]]]]
]

, (12)

where �� is the desired angle, � is the space between elements
of antenna, and- is number of elements. All assumptions in
this work will be shown later in Sections 4 and 5.

�e optimization weight vectors can be calculated by the
following formula [22, 23]:

�LCMV = ! ∗ �−1		� (�0)�� (�0) �−1		� (�0) . (13)

�at means � number of weights as below will be obtained
by using � number of adaptive antenna elements. Consider

�MVDR = [[[[
[

�1�2⋅ ⋅ ⋅
��

]]]]
]

. (14)

�e total noise, containing uncorrelated noise and interfer-
ences, is decreased by the minimization procedure. Notably,
continually sustaining the output signal, the minimization of
the total interference and noise is the same asmaximizing the
output SINR. �e number of interference sources should be
equal to or less than�−2 since an array with� elements has
only�−1 degrees of freedom and has been employed by the
constraint in the look direction for cancelling interferences
in order to maximize the SINR. �e LCMV algorithm is
unsuitable when the users spread in all directions. �is is
called a multipath environment due to capability of incresing

sensitivity in only one direction [24]. �e multipath inter-
ference occurs where numeorus scatterers neighbor in the
same base station and users are in populated urban regions.
Consequantly, LCMV beamforming technique may have an
inappropriately low null level, in the situation of undesired
interference signals which may have signi�cant e	ect on
performance of the system.

3. Methodology

In this section, the PSO, DM-AIS, and GSA are summarized
as a basis to describe the proposed model which is used to
solve adaptive beamforming problems in LCMV technique.

3.1. Particle SwarmOptimization (PSO). Particle swarm opti-
mization (PSO) is a heuristic robust stochastic optimization
technique that was introduced byKennedy andEberhart [25].
�is method is inspired from the simulation of the social
behaviors of animals (�ock of birds). PSO updates the popu-
lation of particles by adding an operator based on the �tness
information achieved from the environment. �erefore, the
individuals of the population would be estimated to move
to the improved solution. �e position and velocity of every
population member are updated via the following formula
[26]:

V


� (� + 1) = �V
� (�) + 61�1 (�best
� (�) − �
� (�))

+ 62�2 (!best(�)
 − �
� (�)) ,
(15)

�
� (� + 1) = �
� (�) + V


� (� + 1) . (16)

In the mentioned formula, velocity is V
� with dimension �
and particle 9, �
� shows the position of particle 9, � is the
iteration number, and � represents the dimension of search
space.�1 and�2 are uniform randomvariables as the random
cognitive coe�cient and random social coe�cient, respec-
tively, that are applied to make a randomized characteristic
in the search region. � is the inertia weight to balance the
local and global search abilities of the particles. 61 and 62
are cognitive and social coe�cient, �best is the individual
best solution for 9th particle, and !best represents the global
best solution for the population. �e positions are updated
according to formula (16) and their �tnesses are evaluated.
�is process is repeated untill a termination criterion is met.
�e work in [27] has suggested six di	erent steps for solving
the problem by using the PSO as below.

Step 1. Generate randomly the particles and their velocity in
the dimensional search space.

Step 2. Evaluate the �tness function for each one.

Step 3. Update �best for each position; if the �best value is
lower than current �tness value of the particle, replace it by
current value.
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Step 4. Update !best; if the !best value is lower than current
�tness value of the particle, replace it by current value.

Step 5. Update the velocity and position of each particle using
(15) and (16), respectively.

Step 6. Repeat Steps 2–5, until the maximum number of
iteration is met.�e explanations on how PSO is used to opti-
mize the weights of LCMV technique is given in Section 4.

3.2. Dynamic Mutated Arti	cial Immune System (DM-AIS).
One of the metaheuristic algorithms is arti�cial immune
systems (AIS) [28, 29] with signi�cant popularity in the �eld
of optimization. AIS is mimicking the behavior of human
immune system towards foreign elements in a host body.�e
human immune system makes active antibodies when anti-
gens attack the body. In addition, the human immune system
produces great amount of antibodies that �x powerfully to
a speci�c antigen through its cloning process. �e mutation
rate of cloned antibodies is inversely proportionate to the
a�nity of antigens. �us, the lowest a�nity antibodies will
result in the highest mutation rates. �e general steps of AIS
are described as below.

(i) Initialize of random solutions (antibodies).

(ii) Calculate �tness for each solution.

(iii) Store the best �tness value and its associated solution.

(iv) Select a subset of antibodies for cloning.

(v) Apply mutation for each cloned antibody.

(vi) Calculate �tness for each cloned antibody a�er muta-
tion.

(vii) Compare new �tness with best �tness value.

(viii) If �tness of cloned antibody better than previous
�tness, replace cloned antibody as antibody.

(ix) Repeat until termination criteria are met.

DM-AIS [18] is a type of AIS algorithm with a new dynamic
mutation function. �e new population of antibodies is
derived from the �tness value based on dynamic mutation
rate. �e new dynamic mutation rate is then able to improve
the convergence rate of the antibody solution.

3.3. Gravitational Search Algorithm (GSA). One of the latest
search algorithms for heuristic population is gravitational
search algorithm (GSA). GSA is employed as an arti�cial
world of masses following the gravitation of Newtonian laws
[30]. All the GSA search agents (individuals) can be consid-
ered as objects and their masses are the factors of evaluate
them.

Gravity force is the cause of the movement of all objects
globally toward the objects with heaviermasses. It means that
optimum solutions of the problems are represented by the
heavy masses. In this method, the new position and velocity
of agent 9 will be upgraded based on the formula below:

V


� (� + 1) = rand� × V



� (�) + �
� (�) ,

�
� (� + 1) = �
� (�) + V


� (� + 1) . (17)

In thementioned formula, velocity of 9th agent is V
� in dimen-

sion �, �
� is position of 9th agent at iteration number �. rand�
represents a random variable in order to provide a random-
ized characteristic for the search space as well as enhance-

ment of the �nding the global optimal chance, �
� is the accel-
eration of agent 9 in dimension �, and could be obtained as
below:

�
� (�) = ∑
�∈best,� ̸=�

rand�: (�) �� (�)
��,� (�) + ; (�
� (�) − �
� (�)) ,

(18)

where �
� is the acceleration of 9th agent in dimension �
and rand� is random value; according to formula (19), the
gravitational constant at time � is:(�);�� is mass of &th agent
represented in formula (20); ; is a minor element to prevent
division by zero and the��,�(�) is the Euclidean distance that is
represented as��,�(�) = ‖��(�), ��(�)‖2. It is valued to reference
that we employ � as a replacement of �2 in formula (18) due
to the tests o	ered in [30] which illustrate that � o	ers better
output in comparison with�2. ?best is a control function that
is able to advance the performance of GSA. �is function
controls the exploitation and exploration with initialization
to ?0 at the starting and reducing with each iteration [30]. ?0
is adjusted to @ (overall amount of agents) and is reduced to
1 linearly. In formula (18), the gravitational constant :(�) is a
reducing function of time when it is set to :0 at the starting
and will be decreased exponentially as shown in formula
below:

: (�) = :0 × exp(−B × �
�max

) . (19)

In formula (19), B is a gradient constant value, � is the current
repetition, and �max is the maximum repetition number.
Furthermore, the mass of agents in formula (18) is examined
with employing the formula (20) as a below:

�� (�) = -� (�)
∑��=1-� (�) , (20)

in which

-� (�) = �t� (�) − worst (�)
best (�) − worst (�) . (21)

In formula (21), �t�(�) is the �tness value of the agent 9 at time�. worst(�) and best(�) are the worst and best �tness of all
agents, respectively.

4. Proposed LCMV Beamforming Assisted
by Gravitational Search Algorithm, Dynamic
Mutated Artificial Immune System, and
Particle Swarm Optimization

�e PSO, DM-AIS, and GSA were utilized to enhance the
SINR value of the LCMV beamforming technique in this
paper. �e smart antenna will try to optimize via PSO, DM-
AIS, andGSA iteration process tomake deep null at the inter-
ference sources in order to get the maximum SINR.
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Table 1: Used parameters of PSO and GSA brie�y in this study.

Parameter Description PSO GSA

N Population size 10 10

d Dimension of the search space 4,8 4,8

�
max

Maximum iteration 500 500

W Weight Start weight = 0.9
End weight = 0.4

N.A

61 Cognitive coe�cient 2 N.A

�1 Random cognitive coe�cient Rand(0, 1) N.A

62 Social coe�cient 2 N.A

�2 Random social coe�cient Rand(0, 1) N.A

:0 Initial value of gravitational constant N.A 100

B Gradient constant N.A 20

; Zero o	set constant N.A 2.22e − 16

In these algorithms, the � (weight vector) will be used
as the system population. �ese algorithms will initiate by
generating the @ particles, which is indicated by �� weight
vectors. Moreover, the number of produced weight vectors is
dependent on the population size �size. For the �rst genera-
tion, the �rst set of weight vectors �1 is obtained from the
computation of the conventional LCMV weight vector. �e
weight vectors in every particle contain an � number of
weight vectors, depending on the antenna elements usedor
the number of sensors. �e weight vectors in the population
of any iteration can be illustrated inmatrix format as a below:

��� =
[[[[[[[[[
[

�lcmv1 �lcmv2 ⋅ ⋅ ⋅ �lcmv��11 �12 ⋅ ⋅ ⋅ �1��21 �22 ⋅ ⋅ ⋅ �2�⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

��1 ��2 ⋅ ⋅ ⋅ ���

]]]]]]]]]
]

, (22)

where��� are the weight vectors of total population@with� sensors in each antenna and �lcmv are the weight vectors
from LCMV beamformer.

PSO, DM-AIS, and GSA: �
� = ��� , where � = �, 9 =�, and 9th Particle at �th dimension can be presented as �th
weight at dimension �.

Each set of particles � has amplitude and phase (E∀�)
to steer the radiation beam toward its target user and place
the deep null toward the interference sources to achieve
the optimum SINR. �e best weight vector is determined
according to the �tness value obtained from �tness function
as shown below. Consider

Fitness Function (FF) = �User
∑��=1 �Inter � + Noise

, (23)

where �User is the power of target user, �Inter is the power of
interference, and � is the number of interference sources.

Table 1 shows the used parameters of PSO and GSA in
this study. �e parameters of GSA are chosen according to

the guidelines and recommendations presented in [30].�ese
con�gurations of GSA have also been utilized extensively
a�er the development ofGSA [31–34].�e linearly decreasing
inertia coe�cient of PSO was chosen to allow initial explora-
tion while not degrading the convergence rate. �e cognitive
and social coe�cients were chosen based on the recommen-
dations in the literature [35, 36]. �e maximum iterations for
DM-AIS are 500 for fair comparisonwithGSA andPSO.DM-
AIS parameters implemented in this study were the same as
in [18].

5. Experimental Results and Discussion

�e e	ectiveness of the proposed PSO, DM-AIS, and GSA
techniques in LCMV in comparison with the conventional
LCMVbeamforming is investigated by considering four cases
of di	erent interferences and elements in this section. All
cases have one user at 0∘, while the number of interferences
and elements changes in each case. �e �rst case is inter-
ference signal at 20∘ by using 4-element patch antenna; the
second case is two interference signals at 20∘ and 60∘ by using
4-element patch antenna. �ird and fourth cases include
same interference at cases 1 and 2 but using 8-element patch
antenna. Optimization result of PSO and GSA are obtained
from 10 cycle’s simulation and the best results are plotted.

5.1. Case 1: One User, One Interference, Four Elements. One
interference source at 20∘ and user at 0∘ by using 4-element
patch antenna has been assumed in the �rst case study. �e
simulation result is shown in Figure 1.

Table 2 compares the power values of the above-
mentioned four methods. It is obvious that the GSA method
performs better than PSO and DM-AIS with the same num-
ber of iterations. It means GSA is superior as compared to
PSO and DM-AIS because it creates deeper null in the inter-
ference direction while increasing power at desired direction.
�is result also demonstrates that the improvements of SINR
are 52.01%, 53.63%, and 54.14%, respectively, by PSO, DM-
AIS, and GSA as compared to conventional LCMVmethod.
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Table 2: Comparison of weight vectors, power values, and SINR calculation for conventional LCMV, PSO-LCMV, DM-AIS-LCMV, and
GSA-LCMV for user at 0∘ with interference at 20∘ by using 4 elements.

Algorithm Weights Power at 0∘ (W) Power at 20∘ (W) SINR (dB)

LCMV

−0.0034 − 0.9316i−2.1723 − 1.8276i−2.1723 + 1.827i−0.0034 + 0.9316i

4.35 4.07 × 10−5 50.27

PSO

−1.0592 − 0.3784i−1.1478 − 0.3784i−1.8144 + 1.27657i
0.0176 + 1.2784i

4.38 1 × 10−15 76.42

DM-AIS

1.2962 + 0.9929i
0.3293 + 0.9559i
1.2026 + 0.3361i
1.9141 + 0.1246i

5.31 6.29 × 10−10 77.23

GSA

0.6579 + 0.8473i
1.3924 + 1.1853i
0.6916 + 0.5625i
2.5054 − 0.4960i

5.65 5.03 × 10−10 77.50
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Figure 1: Comparison of performance of power response LCMV,
PSO-LCMV, DM-AIS-LCMV, and GSA-LCMV for user at 0∘ with
interference at 20∘ by using 4 elements.

5.2. Case 2: One User, Two Interferences, Four Elements. Two
interference sources at 20∘, 60∘ by using 4-element patch
antenna and user at 0∘ has been assumed in the second case
study. �e simulation outcome is displayed in Figure 2.

Table 3 compares the power values and SINR of the
methods mentioned previously. �e GSA method achieves
better performance with the same iterations in Case 2 also.
�is shows that the proposed methods can achieve better
nulls than conventional LCMV for two interference cases.
In addition, this table presents the ratio of SINR 4.40 dB
through conventional LCMV while the PSO, DM-AIS, and
GSA improve these values 1176.81%, 1556.59%, and 1732.95%,
respectively.
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Figure 2: Comparison of performance of power response LCMV,
PSO-LCMV, DM-AIS-LCMV, and GSA-LCMV for user at 0∘ with
interference at 20∘ and 60∘ by using 4 elements.

5.3. Case 3: One User, One Interference, Eight Elements. One
interference at 20∘ by using 8-element patch antenna and
user at 0∘ has been assumed in the third case study.

�e results of Case 3 are consistent with the �ndings of
previous two cases. GSA-LCMV outperforms conventional
LCMV, DM-AIS-LCMV, and PSO-LCMV signi�cantly for
eight-element array also, as illustrated in Figure 3. �us, the
superiority of GSA over other techniques is independent of
number of array elements. Table 4 demonstrates the ratio of
SINR 38.93 dB through conventional LCMV, while the PSO,
DM-AIS, and GSA improve these values 49.73%, 72.61%, and
105.26%, respectively.

5.4. Case 4: One User, Two Interferences, and Eight Elements.
Two interference sources at 20∘, 60∘ by using 8-element patch
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Table 3: Comparison of weight vectors, power values, and SINR calculation for conventional LCMV, PSO-LCMV, DM-AIS-LCMV, and
GSA-LCMV for user at 0∘ with interference at 20∘ and 60∘ by using 4 elements.

Algorithm Weights Power at 0∘ (W) Power at 20∘ (W) Power at 60∘ (W) SINR (dB)

LCMV

0.0067 − 0.7860i−1.7890 − 1.6179i−1.7888 + 1.6184i
0.0069 + 0.7860i

3.56 1.5 × 10−1 1.14 × 100 4.40

PSO

0.2620 + 1.0535i
0.1924 + 0.6244i
0.5209 + 0.8704i
1.3205 + 0.3789i

3.72 8.69 × 10−6 1.54 × 10−7 56.18

DM-AIS

0.7471 + 1.2004i
0.4117 + 0.5250i
0.7398 + 0.8941i
1.7452 + 0.1232i

4.56 9.44 × 10−8 3.96 × 10−8 72.89

GSA

−4.1832 − 1.6647i−2.5456 + 0.9557i−1.8412 + 0.4129i−3.3839 + 2.0752i

12.08 1.78 × 10−9 2.18 × 10−9 80.65

Table 4: Comparison of weight vectors, power values, and SINR calculation for conventional LCMV, PSO-LCMV, DM-AIS-LCMV, and
GSA-LCMV for user at 0∘ with interference at 20∘ by using 8 elements.

Algorithm Weights Power at 0∘ (W) Power at 20∘ (W) SINR (dB)

LCMV

0.0317 + 0.1445i
0.1194 + 0.0909i−0.2264 + 0.1311i
0.0990 − 0.2212i
0.1017 + 0.2525i−0.1896 − 0.12725i
0.1060 − 0.1115i
0.0227 − 0.1350i

6.90 × 10−2 8.71 × 10−6 38.93

PSO

0.0317 + 0.1445i
0.1194 + 0.0909i−0.2263 + 0.1311i
0.0990 − 0.2212i
0.1017 + 0.2525i−0.1897 − 0.1271i
0.1061 − 0.1115i
0.0227 − 0.1349i

6.92 × 10−2 2.23 × 10−9 58.30

DM-AIS

−0.0864 + 0.7410i
0.9922 + 0.1975i
1.6119 + 0.4745i
0.1607 + 0.5461i
1.3573 + 0.2932i−0.1193 + 0.6657i
0.9244 + 0.7284i
0.0049 + 0.5399i

6.40 × 100 1.11 × 10−6 67.20

GSA

−0.6737 + 0.8571i
0.6194 − 0.0643i
1.3861 + 0.6505i
0.8473 + 0.8198i
1.1431 + 0.9980i
1.5379 + 1.0542i
1.8363 + 0.9692i
1.3944 + 0.42148i

9.90 × 100 6.30 × 10−10 79.92
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Table 5: Comparison of weight vectors, power values, and SINR calculation for conventional LCMV, PSO-LCMV, DM-AIS-LCMV, and
GSA-LCMV for user at 0∘ with interference at 20∘, 60∘ by using 8 elements.

Algorithm Weights Power at 0∘ (W) Power at 20∘ (W) Power at 60∘ (W) SINR (dB)

LCMV

−0.6890 + 0.4136i
0.2415 + 1.1050i−0.6307 − 0.3236i−0.2050 + 0.4525i−0.1819 − 0.4779i−0.5573 + 0.2462i
0.2360 − 1.2187i−0.7214 − 0.4358i

2.51 2.98 × 10−5 7.66 × 10−5 43.73

PSO

−0.6004 + 0.5241i
0.2293 + 1.1021i−0.5799 − 0.3262i−0.5170 + 0.9217i−0.1831 − 0.3784i−1.0433 + 0.2464i
0.0982 − 0.3784i−0.6887 − 0.3784i

3.54 1 × 10−15 1 × 10−15 75.49

DM-AIS

−0.4890 + 0.5137i−0.2718 + 0.6251i
0.0371 + 0.4669i
0.2083 + 0.6415i−0.6586 + 0.7074i−0.1554 + 0.7897i
0.3603 + 0.5786i
0.3198 + 0.5346i

4.90 1.70 × 10−9 1.79 × 10−9 76.75

GSA

−0.3417 + 0.1177i
0.1586 + 1.0271i
1.1506 + 0.3389i
1.8499 + 0.6928i
1.5246 + 1.0174i
0.7917 + 0.3530i
1.5273 + 0.7368i
1.4564 + 0.8934i

9.62 2.64 × 10−9 6.36 × 10−10 79.69
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Figure 3: Comparison of performance of power response LCMV,
PSO-LCMV, DM-AIS-LCMV, and GSA- LCMV for user at 0∘ with
interference at 20∘ by using 8 elements.

antenna and user at 0∘ have been assumed in the fourth case
study.

Case 4 con�rms the �ndings of Case 3 in terms of superi-
ority of GSA, as shown in Figure 4. Table 5 shows that GSA-
LCMV achieves highest power in desired direction and lower
power at nulls than conventional LCMV. PSO is known to
have premature convergence issues. �us, GSA is able to
consistently outperformPSO in array optimization problems.
Besides, this result also illustrates that the development of
SINR is 72.62%, 75.50%, and 82.22%, respectively, by PSO,
DM-AIS, andGSA as compared to conventional LCMV tech-
nique. �e DM-AIS was developed to improve the perfor-
mance of AIS for beamforming applications [18]. Based on
the results presented in this section, it converges to signi�-
cantly better solutions than PSO consistently. However, GSA
still outperformsDM-AISwith superior SINR in all scenarios.

6. Conclusion

�is paper applied PSO, DM-AIS, and GSA in linear antenna
arrays with di	erent number of elements to control the
nulling of interference and the directionality towards the
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Figure 4: Comparison of performance of power response LCMV,
PSO-LCMV, DM-AIS-LCMV, and GSA-LCMV for user at 0∘ with
interference at 20∘, 60∘ by using 8 elements.

desired signal. �e results of the LCMV assisted by proposed
approaches were compared with conventional LCMV, and
the e	ectiveness of the proposed approaches in minimizing
the power of interference and increasing SINR was observed.
�e result of LCMV beamforming assisted by GSA algo-
rithm is better than PSO and DM-AIS algorithm and also
its conventional LCMV beamforming algorithm. �is new
proposedGSA-LCMVcan be useful for smart antenna for the
radiation pattern synthesis because of its good accuracy and
not requiring complicated mathematical functions.
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