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The standard concordance model of the Universe is based on the cosmological constant as the driver

of accelerating expansion. This concordance model is being subjected to a growing range of interlocking

observations. In addition to using generic observational tests, one can also design tests that target the

specific properties of the cosmological constant. These null tests do not rely on parametrizations of

observables, but focus on quantities that are constant only if dark energy is a cosmological constant.

We use supernova data in null tests that are based on the luminosity distance. In order to extract derivatives

of the distance in a model-independent way, we use Gaussian processes. We find that the concordance

model is compatible with the Union 2.1 data, but the error bars are fairly large. Simulated data sets

are generated for the Dark Energy Survey supernova survey and we show that this survey will allow

for a sharper null test of the cosmological constant if we assume the Universe is flat. Allowing for spatial

curvature degrades the power of the null test.

DOI: 10.1103/PhysRevD.89.023503 PACS numbers: 98.80.-k, 98.80.Es, 95.36.+x

I. INTRODUCTION

The simplest model that can explain the apparent accel-

eration of the Universe is the “concordance” ΛCDMmodel,

with Ωm ≈ 0.3 and zero spatial curvature ΩK ¼ 0. The con-

cordance model is consistent with all observations to date

[1]. Current observations favor a dark energy model with

equation of state wðzÞ ≈ −1, although there are modified

gravity models with no dark energy that are also consistent

with the data [2]. Next-generation experiments such as

Dark Energy Survey (DES) [3], LSST [4], EUCLID [5],

and the SKA [6] are expected to dramatically improve

on current constraints and introduce new observables.

It is typical to parametrize wðzÞ in order to differentiate

between various dark energy models, or to parametrize

background and perturbation variables to test classes of

modified gravity models. A complementary approach is

to test the consistency of the concordance model itself,

independent of the values of Ωm and ΩK . A range of null

tests designed specifically to probe various aspects of the

concordance model have been introduced (see e.g. [7–14]

and [15] for a review).

Type Ia supernovae (SNIa) are the best distance indica-

tors to probe the expansion history of the Universe. These

“standardizable candles” can be observed to high redshift,

and have produced convincing evidence that the Universe

has undergone a recent phase of accelerated expansion.

Current samples of SNIa (e.g. [16–20]) comprise several

hundred SNIa with z < 1.8. Forthcoming surveys of

SNIa, such as DES [21], will produce well-measured light

curves for over 4000 SNIa, improving the cosmological

constraints by an order of magnitude.

In this paper we use luminosity distances dLðzÞ
determined from SNIa observations to test the consistency

of the concordance model, through a set of null tests.

Reconstructing the expansion history of the Universe in

a model-independent fashion is essential for these tests.

To do this, we use Gaussian processes (GP), which have

previously been used to reconstruct wðzÞ from SNIa lumi-

nosity distances [22–26]. Our analysis is built on [14],

which used HðzÞ data from the baryon acoustic oscillation

(BAO) scale and galaxy ages to test the validity of the con-

cordance model. We use GaPP (Gaussian processes in

PYTHON),
1
a package developed by Seikel and introduced

in [25].

The tests based onHðzÞ are potentially stronger discrim-

inators of the concordance model than those using SNIa

data, since the null tests using dLðzÞ require higher deriva-
tive terms than those using HðzÞ. However, null tests based
on direct distance measurements currently have the advan-

tage that the data sets are much larger and the errors are

smaller.

II. NULL TESTS OF ΛCDM—THEORY

The Friedmann equation,

H2ðzÞ
H2

0

¼Ωmð1þ zÞ3þΩKð1þ zÞ2

þð1−Ωm−ΩKÞexp
�

3

Z

z

0

1þwðz0Þ
1þ z0 dz0

�

; (1)

1
http://www.acgc.uct.ac.za/~seikel/GAPP/index.html.
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determines the Hubble rateH in terms of today’s values for

the density parameters for matter Ωm and curvature ΩK .

This is integrated over to obtain the luminosity distances

of SNIa:

dLðzÞ ¼
ð1þ zÞ

H0

ffiffiffiffiffiffiffiffiffiffi

−ΩK

p sin

�

ffiffiffiffiffiffiffiffiffiffi

−ΩK

p

Z

z

0

dz0

Hðz0Þ=H0

�

: (2)

The equation of state parameter of dark energy, w ¼
pde=ρde, can be expressed in terms of the dimensionless

comoving luminosity distance,

DðzÞ≡H0ð1þ zÞ−1dLðzÞ; (3)

as [27–29]:

wðzÞ ¼ f2ð1þ zÞð1þΩKD
2ÞD00

− ½ð1þ zÞ2ΩKD
02

þ 2ð1þ zÞΩKDD0
− 3ð1þ ΩKD

2Þ�D0g=
f3fð1þ zÞ2½ΩK þ ð1þ zÞΩm�D02

− ð1þ ΩKD
2ÞgD0g: (4)

Given an observed distance-redshift relationship DðzÞ, it is
possible to reconstruct the equation of state of dark energy

and test the ΛCDM model [25]. However, a disadvantage

of this method is that it depends on the values of the

density parameters, Ωm and ΩK , which must be measured

independently [25].

To avoid this problem and test ΛCDM using SNIa

data, we use the consistency tests introduced in [9]

(see also [10,11]). Following this approach, we test the null

hypothesis that the expansion of the Universe can be

described by a flat or a curved ΛCDM model.

The assumptions underlying the consistency tests and the

null hypothesis are: (1) the universe is homogeneous and

isotropic on large scales; (2) gravity obeys general relativ-

ity; (3) the Universe contains cold matter (with w ¼ 0) and

dark energy. Photons and neutrinos can be included (Ωγ ,Ων

are known independently, from CMB data), but it is reason-

able to neglect radiation at the low redshifts probed by

SNIa data. Detection of a deviation from the consistency

tests would imply a violation of at least one of these

assumptions: (1) large-scale nonlinear inhomogeneity or

anisotropy; (2) modified gravity; (3) dynamical dark energy

(w ≠ −1), or alternatively, a cosmological constant plus an

unknown additional species with equation of state which

deviates from that of cold matter, curvature, or vacuum

energy. Any of these possibilities imply that the standard

ΛCDM is ruled out. Note that the tests cannot identify

which of these possibilities applies.

For a flat concordance model, i.e. w ¼ −1 and ΩK ¼ 0,

from (2) we find that

Ωm½ð1þ zÞ3 − 1�D02 ¼ 1 −D02: (5)

If we define

O
ð1Þ
m ðzÞ ¼ 1 −D0ðzÞ2

½ð1þ zÞ3 − 1�D0ðzÞ2 ; (6)

then

flatΛCDM impliesO
ð1Þ
m ðzÞ ¼ Ωm: (7)

Thus we obtain a null test of the concordance model:

O
ð1Þ
m ðzÞ ≠ Ωm falsifies flatΛCDM: (8)

Any variation of O
ð1Þ
m ðzÞ with redshift reflects an incon-

sistency between the flat ΛCDM model and observations.

To detect evolution of O
ð1Þ
m with redshift we can dif-

ferentiate O
ð1Þ
m ðzÞ, from which we define the additional

diagnostic:

Lð1ÞðzÞ ¼ ð1þ zÞ−6f2½ð1þ zÞ3 − 1�D00ðzÞ
þ 3ð1þ zÞ2D0ðzÞ½1 −D0ðzÞ2�g; (9)

which vanishes if and only if dO
ð1Þ
m =dz ¼ 0. The factor

ð1þ zÞ−6 (which was not used in [9]), ensures stability

of the errors (see below). If Lð1Þ is nonzero at any redshift,

then observations are incompatible with ΛCDM:

Lð1Þ ≠ 0 falsifies flatΛCDM: (10)

We can extend this approach to include spatial curvature,

and derive null tests for general (curved) ΛCDM. Using (1),

(2), and (5) with wðzÞ ¼ −1, and solving for Ωm and ΩK ,

we find [12,15]

Ωm ¼ 2ϒðzÞf½ð1þ zÞ2 −D2
− 1�D00

− ðD02
− 1Þ½ð1þ zÞD0

−D�g≡O
ð2Þ
m ðzÞ; (11)

ΩK ¼ ϒðzÞf2½1 − ð1þ zÞ3�D00 þ 3D0ðD02
− 1Þð1þ zÞ2g

≡OKðzÞ: (12)

Here ΥðzÞ is defined by

ϒ−1 ¼ −2½1 − ð1þ zÞ3�D2D00

− fð1þ zÞ½ð1þ zÞ3 − 3ð1þ zÞ þ 2�D02

− 2½1 − ð1þ zÞ3�DD0
− 3ð1þ zÞ2D2gD0: (13)

Then we have

O
ð2Þ
m ðzÞ ≠ Ωm falsifies curvedΛCDM; (14)
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O
ð2Þ
K ðzÞ ≠ ΩK falsifies curvedΛCDM: (15)

These are not independent tests: the derivative of O
ð2Þ
K

vanishes if and only if the derivative of O
ð2Þ
m vanishes.

Hence, we need only a single diagnostic for vanishing

derivative. We use the derivative of O
ð2Þ
m to define

Lð2Þ ¼ ð1þ zÞ−6D02fD½−3ð1þ zÞ
× ðD02

− 1Þð2D0 þ 3ð1þ zÞD00Þ
þ 2zD000ð3þ zð3þ zÞÞ� þ 9ð1þ zÞ2D2D002

þ 3ð1þ zÞD2D0ð2D00
− ð1þ zÞD000Þ

þ 6ð1þ zÞ2D02ðD02
− 1Þ − ½3z2ð3þ zÞD002

þ zD0ðzð3þ zÞD000
− 6ð2þ zÞD00Þ�ð1þ zÞg; (16)

which vanishes if and only if dO
ð2Þ
m =dz ¼ 0. (Again we use

the prefactor to stabilize the errors.) Then we have the null

test for curved ΛCDM:

Lð2ÞðzÞ ≠ 0 falsifies curvedΛCDM: (17)

In principle, Lð1Þ and Lð2Þ provide no additional informa-

tion compared to O
ð1Þ
m and O

ð2Þ
m . However, it is easier to

detect a deviation from zero than to confirm that a quantity

is constant, especially since the exact value of this constant

is not known a priori. The disadvantage of Lð1Þ and Lð2Þ is
that they require higher derivatives than O

ð1Þ
m and O

ð2Þ
m ,

which are more challenging to constrain.

Another problem with Lð1Þ and Lð2Þ is the degeneracy

between w and Ωm: a model with redshift dependent w
can be formally consistent with ΛCDM within the error

bars of the reconstruction if the value of Ωm is adjusted

accordingly. Such cases can only be identified with the

Om tests, but not with L (see Sec. IV for details).

Note that Lð1Þ and Lð2Þ are not identical to dOð1Þ
m =dz and

dO
ð2Þ
m =dz, respectively. Starting from these two derivatives,

we have neglected the denominators, which add significant

noise to the tests without adding extra information,

and used a prefactor ð1þ zÞ−6 to obtain Lð1Þ and Lð2Þ.
We are free to do this without loss of generality, since

we are testing the equality of these quantities with zero.

As a consequence, the error bands of the reconstructions

do not necessarily increase with redshift as one might

expect, and the size of the errors of Lð1Þ and Lð2Þ are

not directly comparable. In addition, the errors added from

extra redshift factors are small when we have spectroscopic

redshift measurements.

III. NULL TESTS USING SNIA DATA

To apply these null tests using current data sets, it is

essential to choose a model-independent method to recon-

struct DðzÞ and its derivatives. For this purpose, we use GP

(via the GaPP code [25]) to smooth the data and reconstruct

the derivatives.

A. Gaussian processes

GP provide a distribution over functions that are

suitable to describe the data. At each point zi, the distri-

bution of function values fðziÞ is a Gaussian. Thus, the

reconstruction consists of a mean function with Gaussian

error bands. The function values at different points are cor-

related by a covariance function kðz; ~zÞ, which depends on

a set of hyperparameters (e.g. the characteristic length scale

l and the signal variance σf). This also provides a robust

way to estimate derivatives of the function in a stable

manner.

In contrast to parametric methods, GP do not assume a

specific form for the reconstructed function. Instead only

typical changes of the function are considered. The hyper-

parameter l corresponds roughly to the distance one needs

to move in input space before the function value changes

significantly, while σf describes typical changes in the

function value.

The choice of covariance function affects the recon-

struction to some extent. A general purpose covariance

function is the squared exponential covariance function

kðz; ~zÞ ¼ σ
2
f exp ½−ðz − ~zÞ2=ð2l2Þ�. However, here we use

the Matérn (ν ¼ 9=2) covariance function:

kðz; ~zÞ ¼ σ
2
f exp

�

−
3jz − ~zj

l

�

×

�

1þ 3jz − ~zj
l

þ 27ðz − ~zÞ2
7l2

þ 18jz − ~zj3
7l3

þ 27ðz − ~zÞ4
35l4

�

: (18)

For a given covariance function, the probability distribution

of the hyperparameters depends only on the data. It is nec-

essary either to marginalize over the hyperparameters σf

and l or to fix the hyperparameters to their maximum like-

lihood values. Here we choose the latter approach, which is

a good approximation and computationally much less

expensive than marginalization.

We choose the Matérn (ν ¼ 9=2) covariance function

because it leads to the most reliable results amongst the

covariance functions that we have tested. Here, “reliable”

means the following: For various assumed cosmological

models and many realizations of mock data sets, the

assumed model on average lies within the reconstructed

1-σ limits for approximately 68% of the redshift range

(and within the reconstructed 2-σ limits for ∼95% of the

redshift range). These values are theoretically expected,

thus making Matérn (ν ¼ 9=2) a reliable covariance

function for our purposes. A detailed analysis regard-

ing the optimal choice of covariance function can be

found in [30]. (Note that these results only apply to GP
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reconstructions usingDmeasurements. When applying GP

to other data, another covariance function might be more

reliable.)

We follow [14,25], which contain a summary of the tech-

nical details of GP. The only difference in our approach

here is that we use the Matérn covariance function (18)

instead of the squared exponential. (For detailed reviews

of GP, see [31,32].)

B. Application to real data

We now apply GP to the Union 2.1 data set [17] and

determine the current constraints on the consistency of

ΛCDM. This data set comprises 580 SNIa, with

0.015 < z < 1.5, and includes a covariance matrix which

incorporates a systematic uncertainty.

The distance modulus, μ ¼ m −M, is the difference

between the observed magnitude mðzÞ and the absolute

magnitude of an object M, and is given by

μðzÞ þ 5 log H0 − 25 ¼ 5 log ½ð1þ zÞDðzÞ�: (19)

We chooseH0 ¼ 70 kms−1 Mpc−1, as in [17]. Note thatH0

and M are degenerate in (19) so we can fix H0 and only

consider the uncertainties in M which are included in

the covariance matrix of the Union 2.1 data set [17]—this

includes the errors on H0. We convert μ to D and add the

theoretical values Dðz ¼ 0Þ ¼ 0 and D0ðz ¼ 0Þ ¼ 1 to the

data set.

Figure 1 shows the reconstructed DðzÞ and its first three

derivatives for the Union 2.1 data set, while Fig. 2 shows

the inferred reconstructions for O
ð1Þ
m , O

ð2Þ
m and O

ð2Þ
K .

Figure 3 shows the reconstruction of Lð1Þ and Lð2Þ.
The errors on the reconstructed distances in Fig. 1

increase with increasing order of derivative. For example,

at z ¼ 1.5, the standard deviation is 0.05 for the

reconstruction of D, 0.12 for D0, 0.22 for D″, and 0.29

for D‴. The near constancy of the errors on D‴ reflects

the fact that we are unable to constrain rapid variations

(carried via higher derivatives) on scales below a typical

length scale, which is roughly associated with l. By using

Gaussian processes the scale l and the resulting smooth-

ness of the reconstruction is driven purely by the data.

Where there is insufficient evidence for rapid variations,

a smooth function will result, which we see in the second

and third derivatives. Further analysis of the redshift

dependence of the errors can be found in the Appendix.

C. Mock data

To demonstrate the ability of the null tests to distinguish

between different cosmological models when applied to

future SNIa data sets, we produce mock catalogues for

two fiducial models:
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FIG. 1 (color online). Gaussian processes reconstruction of D, D0 (top) and D00, D000 (bottom) for Union 2.1 data. The red (solid) line

is flat ΛCDM with Ωm ¼ 0.27. The blue (dashed) line is the mean of the reconstruction. Shaded areas give 95% (light) and 68%

(dark) confidence limits of the reconstructed function.
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m (middle) and O
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K (right) for Union 2.1 data. Lines and shadings are as in

Fig. 1.
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FIG. 4 (color online). O
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ð2Þ
K (right) reconstructed using simulated DES data, and assuming ΛCDM (top)

and the evolving w in (20) (bottom).
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FIG. 3 (color online). Reconstruction of Lð1Þ (left) and Lð2Þ (right) for Union 2.1 data. Lines and shadings are as in Fig. 1.
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(i) flat ΛCDM

(ii) dynamical dark energy model with ΩK ¼ 0 and

wðzÞ ¼ 1

2

�

−1þ tanh

�

3

�

z −
1

2

���

: (20)

We take Ωm ¼ 0.3. Using the redshift distribution and

scatter anticipated by the Dark Energy Survey (DES) [21],

we simulate ∼4000 data points in the redshift range

0 < z < 1.2. Note that the scatter only includes statistical

errors.

For each of the two simulated data sets, we reconstruct

DðzÞ and its derivatives and apply the null tests. Figure 4

shows the constraints and uncertainties on O
ð1Þ
m , O

ð2Þ
m , and

O
ð2Þ
K for both models, while Fig. 5 shows the results for Lð1Þ

and Lð2Þ.

IV. DISCUSSION

We have introduced an approach to applying null tests of

the ΛCDM models (flat and curved). Using a GP technique

to reconstruct the distance-redshift relationship and its deriv-

atives from SNIa data sets in a model-independent fashion,

we have shown that the flat concordance model is consistent

with current data, falling within the 1σ limits. The null tests

are stronger if we assume flatness, as expected.

For the Union 2.1 data set, the consistency tests are in

good agreement with a constant, indicating no evidence

of a deviation from a flat ΛCDM model (see Figs. 2 and 3).

For the O
ð1Þ
m and O

ð2Þ
m tests we find a value for Ωm ∼ 0.27.

O
ð2Þ
K is consistent with zero, as expected for flat ΛCDM. Due

to the limited number of SNIa in the Union 2.1 sample and

themodel-independentmethodweuse,thereconstructeduncer-

tainties are significant.

For a mock data set based on the DES supernova survey,

we find that our approach can distinguish between compet-

ing cosmological models. Using a simulated sample drawn

from a flat ΛCDMmodel, the recovered distribution ofO
ð1Þ
m

is constant over the redshift range considered (Fig. 4), con-

sistent with O
ð1Þ
m ¼ Ωm. For the evolving w model of (20),

O
ð1Þ
m deviates strongly from a constant value, so that flat

ΛCDM would be disfavored. This is confirmed by the

deviation of Lð1Þ from zero in Fig. 5.

When spatial curvature is allowed, the constraints from

the null tests tend to be weakened, as would be expected by

the degeneracy introduced by the extra degree of freedom

[33]. For a flat ΛCDM fiducial model, the reconstructed

distributions of O
ð2Þ
m and O

ð2Þ
K are consistent with being
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FIG. 5 (color online). Reconstruction of Lð1Þ (left) and Lð2Þ (right) for simulated DES data, and assuming ΛCDM (top) and

the evolving w in (20) (bottom). Due to the degeneracy between w and Ωm, the reconstruction of Lð2Þ for the model with evolving

dark energy is consistent with ΛCDM. However, the inferred values of Ωm and ΩK differ significantly from the input value as can be

seen in Fig. 4.
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constant and equal to Ωm and ΩK (Fig. 4), respectively,

confirming that the model does not deviate from

ΛCDM, as anticipated. But the errors are significantly

larger when curvature is allowed.

For the evolving w fiducial model, the reconstructions of

O
ð2Þ
m and O

ð2Þ
K are consistent with constants (Fig. 4)—but

these constant values differ significantly from the input

values of Ωm and ΩK , respectively. The evolving w model

can erroneously be interpreted as a ΛCDM model with

a large matter density Ωm and negative curvature ΩK .

Consequently, the reconstruction of Lð2Þ (Fig. 5) is consistent
with a constant, indicating that ΛCDM is not disfavored. In

both cases, the errors are large and the null tests are degraded.

This problem reflects the degeneracy between the

density parameters and the dark energy equation of state

(see also [25,33,34]). The reconstructions are formally

consistent with a constant, and thus with ΛCDM, due to

their incorrectly inferred values. Additional constraints

on the value of Ωm and ΩK from, for instance, BAO or

CMB measurements, are needed to break this degeneracy.

V. CONCLUSIONS

In this paper, we described a series of null tests that can be

applied to SNIa data to determine the consistency of obser-

vations with a (flat) ΛCDM model—without the need to

parametrize the equation of state of dark energy. The tests

require that the distance D and the diagnostics O
ð1Þ
m , O

ð2Þ
m ,

O
ð2Þ
K ,Lð1Þ, andLð2Þ are reconstructed in amodel-independent

way. We used GP to perform these reconstructions.

We applied the null tests to the Union 2.1 SNIa data set.

The results were consistent with a flat ΛCDM model

(Figs. 2 and 3).

Using the anticipated redshift distribution for the DES

supernova survey, we produced mock data sets of 4000

SNIa,with twocompeting fiducial cosmologicalmodels: flat

ΛCDM and an evolving w model. The reconstructed distri-

butions ofO
ð1Þ
m for these data sets show that the consistency

tests are able to distinguish between different cosmological

models, and can correctly identify deviations from ΛCDM,

in the case when spatial flatness is assumed. However,

allowing for spatial curvature degrades the null tests in gen-

eral (although not always— see Fig. 2). The inherent degen-

eracy between the equation of state of dark energy and the

density parameters (Ωm, ΩK) reduces our ability to distin-

guish between various models. The distributions of O
ð2Þ
m ,

O
ð2Þ
K , andLð2Þ were consistent with a constant for the evolv-

ing w model (Fig. 5), but the inferred values of Ωm and ΩK

from theO
ð2Þ
m andO

ð2Þ
K distributionswere unrealistic (Fig. 4).

The degeneracy needs to be broken using other data.

For future data sets which will have the power to probe

ΛCDM at high precision, the null tests we have introduced

will require further refinement. In particular, we need to

develop a method of quantifying the significance of any

possible deviation. This is left for future work.
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APPENDIX: REDSHIFT DEPENDENCE OF THE

ERRORS ON THE GP RECONSTRUCTIONS

The error of the GP reconstruction of the nth derivative

on D at point z� is given by

σðDðnÞðz�ÞÞ¼ðkðn;nÞðz�;z�Þ

−Kðn;0Þðz�;ZÞ½KðZ;ZÞþC�−1Kð0;nÞðZ;z�ÞÞ12:

(A1)

Here, Z is a vector containing the locations zi of the data

and C is the covariance matrix of the data. k denotes the

covariance function [here, Matérn (ν ¼ 9=2) as given by

Eq. (18)] and K a matrix containing covariances between

the redshift points: ½KðZ;ZÞ�ij ¼ kðzi; zjÞ. Taking the nth
derivative of k with respect to the first argument and the

mth derivative with respect to the second argument is

denoted as kðn;mÞ.
Note that the first term in the equations for the errors is

constant for a given covariance function and hyperpara-

meters. Stationary covariance functions kðzi; zjÞ, such as

Matérn (ν ¼ 9=2), only depend on jzi − zjj, but not on
zi and zj individually. Therefore, kðn;nÞðz�; z�Þ does not

depend on the value of z�.
We rewrite the equation for the errors (A1) as

σðDðnÞðz�ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t1;n − t2;nðz�Þ
q

; (A2)

where

t1;n¼kðn;nÞðz�;z�Þ;
t2;nðz�Þ¼Kðn;0Þðz�;ZÞ½KðZ;ZÞþC�−1Kð0;nÞðZ;z�Þ: (A3)

t1;n is determined by the covariance function and the hyper-

parameters. It is constant in redshift and does not explicitly

depend on the data. (Note that the data are used to optimize

the hyperparameters and thus indirectly affect the value of

t1;n.) t2;nðz�Þ is redshift dependent and also depends on the

position and covariance matrix of the data.

Figure 6 shows t1 and t2ðz�Þ for the reconstructions of D
and its derivatives. For D, D0, and D″, we observe strong
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relative changes in t1 − t2ðz�Þ with redshift. We denote the

maximum value of this term within the considered red-

shift range as ft1 − t2ðz�Þgmax and the mean value as

ft1 − t2ðz�Þgmean. Then we can quantify the redshift

dependence of t1 − t2ðz�Þ by the relative variation

vr ¼ ft1 − t2ðz�Þgmax=ft1 − t2ðz�Þgmean. vr ¼ 1 implies

that the errors of the reconstruction are constant, while a

large value would indicate strong redshift dependence.

We find the following results for vr:

vrðDÞ ¼ 6.9; vrðD0Þ ¼ 5.6;

vrðD00Þ ¼ 3.2; vrðD000Þ ¼ 1.3:

The values forD,D0, andD00 are much larger than 1, imply-

ing a strong redshift dependence of the errors. However, for

the reconstruction of D000 the relative variation is much

smaller, namely vr ¼ 1.3. The smallness of this value

can be understood by the following consideration: t1 ≫

t2ðz�Þ∀z� ensures that the absolute variations of t1 −

t2ðz�Þ (which are large compared to those for the lower

derivatives of D) translate into small relative variations.

Therefore, the dominance of the constant term t1 is the

main reason for the small value of vr and thus the near con-

stancy of the errors on D000.
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