
December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

Parallel Processing Letters
c© World Scientific Publishing Company

NUMA-aware Multicore Matrix Multiplication

WAIL Y. ALKOWAILEET

Department of Computer Science (Systems),
University of California, Irvine, CA 92697, USA

DAVID CARRILLO CISNEROS

Department of Computer Science (Systems),

University of California, Irvine, CA 92697, USA

ROBERT V. LIM

Department of Computer Science (Systems),

University of California, Irvine, CA 92697, USA

ISAAC D. SCHERSON

Department of Computer Science (Systems),

University of California, Irvine, CA 92697, USA

Received (received date)

Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

A novel user-level scheduling, along with a specific data alignment method is presented
for matrix multiplication in cache-coherent Non-Uniform Memory Access (ccNUMA) ar-

chitectures. Addressing the data locality problem that occurs in such systems alleviates

memory bottlenecks in problems with large input data sets. It is shown experimentally
that a large number of cache misses occur when using an agnostic thread scheduler (such

as OpenMP 3.1) with its own data placement on a ccNUMA machine. The problem is al-

leviated using the proposed technique for tuning an existing matrix multiplication imple-
mentation found in the BLAS library. The data alignment with its associated scheduling
reduces the number of cache-misses by 67% and consequently the computation time by

up to 22%. The evaluating metric is a relationship between the number of cache-misses
and the gained speedup.

Keywords: ccNUMA, matrix multiplication, multicore, multi-socket.

1. Introduction

The first cache-coherent Non-Uniform Memory Access architecture was introduced

by Advanced Micro Devices (AMD) in 2004 to replace the shared-bus (Front-Side

Bus or FSB) [1]. Figure 1 shows the two architectures side-by-side. This architectural

shift was necessary by the vendors to overcome the electrical limitation of increasing

1



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

2 Parallel Processing Letters

the bus frequency for higher granularity of processors. However, this shift has added

another dimension of complexity to the programmer due to the different latencies

of different memory accesses. For a memory and processor intensive computation,

it may require the programmer to address the architectural differences before using

any existing software packages. In this paper, we show the impact of such compu-

tation by evaluating an optimized and multithreaded BLAS (Basic Linear Algebra

Subprograms) double-precision matrix multiplication routine (DGEMM) on such

architecture. After analyzing the behavior of the DGEMM routine, we identify the

bottlenecks and propose a solution that requires no modification in the underlying

implementation to overcome those bottlenecks.

The rest of this paper is organized as follows: In Section 2, we explain briefly

the architectural background of a dual-socket ccNUMA machine and the theoreti-

cal background of the matrix multiplication algorithms. In Section 3, we evaluate

a general matrix multiplication routine (DGEMM) in an optimized Basic Linear

Algebra Subroutines (BLAS) implementation. In Section 4, we detail our user-level

scheduling and data alignment for matrix multiplication. In Section 5, we present

the result of our experiment and the relationship between the cache-misses and

gained speedup. In Section 6, finally, we presents our conclusion.

2. Background

2.1. Dual-socket ccNUMA Architecture

In a dual-socket architecture, each socket has an Integrated Memory Controller

(IMC) to control the access to the main memory. Therefore, there are two different

un-core (out of core) memory accesses. The first accessess the local memory through

the local IMC. The second accesses remote memory by utilizing the remote IMC

through the point-to-point interconnect (HyperTransport for AMD or QuickPath

Interconnect for Intel) between the two sockets. Figure 4 shows the local and remote

memory access.

Fig. 1. (a) Shared-Bus Architecure. (b) ccNUMA Architecture.

For a SMP architecture, a protocol is required to maintain the coherency of

the data in the distributed memories in addition to the distributed caches. Intel



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

NUMA-aware Multicore BLAS Matrix Multiplication 3

implements MESI[F] (Modified, Exclusive, Shared, Invalid, Forward) protocol in

Intel Nehalema processors to maintain the data coherency [2] [3]. In a multi-core

processor, one of four un-core memory accesses will be initiated if a cache-line

request missed the L1 and L2 caches: 1) local last level cache, 2) remote last level

cache, 3) local DRAM or 4) remote DRAM, ordered by latency from lower to higher

latency. When a Last Level (LL) cache-miss occurs and the cache-line is stored in

the local memory address space, a request to the local IMC will be initiated to

get the required cache-line. At the same time, a snooping [4] [1] [5] request to the

remote cache will be initiated to check for a recent copy of the cache-line, Figure

2. On the other hand, if the required cache-line resides in the address space of the

remote memory, a remote memory access will be initiated, Figure 3. Table 1 [5]

shows the different latencies for the different types of un-core memory accesses in

Intel Nehalem processor.

A study [6] targeted the data shuffling problem on similar architecture to maxi-

mize the overall performance of data shuffling applications (e.g sorting) in addition

to the links throughput. In this study, we pursue a different objective where we

want to minimize the inter-socket communication by improving the data locality of

matrix multiplication routine.

Fig. 2. Local memory access Fig. 3. Remote memory access

Fig. 4. cache-coherent Non-Uniform Memory Access.

Source Cache-line State Latency

L3 CACHE hit
Not Shared 40 cycles
Shared in one of the lower level caches 65 cycles
Modified 75 cycle

Remote L3 CACHE - 100-300 cycles

Local DRAM - 60 ns

Remote DRAM - 100 ns

aWe focus on Intel Nehalem in this paper as it is our experiment environment.



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

4 Parallel Processing Letters

2.2. Matrix Multiplication Asymptotic and Practical Complexities

A study [7] has shown cache-oblivious matrix multiplications algorithms have the

same cache-complexity as cache-aware algorithms for ideal caches b. Additionally,

Prokop has shown that asymptotically faster algorithm (i.e Strassen’s algorithm [8],

which requires O(N log27) operations) has lower cache-complexity than the conven-

tional divide-and-conquer algorithm, which requires O(N3) operations, for multiply-

ing two square matrices. Table 2 compares the two algorithms’ cache-complexities

as in [7].

Algorithm Asymptotic cache complexity

Straightforwardc Θ(N + N2/L + N3/L
√
Z)

Strassen Θ(N + N2/L + N log27/L
√
Z)

Different studies have shown that asymptotically faster algorithms are not al-

ways fast in practice. [9] [10] [11] and [12] have shown that for small matrices,

the näıve 3-Nested-loops outperforms Strassen’s algorithm. For larger matrices, a

hybrid algorithm is suggested to compensate for the recursion overhead by fixing

a cutoff point µ (or Recursion Point as in [12]). Therefore, when multiplying two

square matrices A and B of size N×N , the algorithm will run Strassen’s recursively

until N ≤ µ, then it will switch to the 3-Nested-loops algorithm. The cutoff point µ

is architecture dependent and can be determined in a linear time. Finally, [12] has

shown that exploiting data locality can be more beneficial for some architectures

than reducing the asymptotic number of operations. In the next section, we evaluate

an optimized matrix multiplication routine in BLAS (DGEMM) and relate those

findings to our observation.

3. Parallel DGEMM Implementation Evaluation

A study has shown that UMA processors outperform ccNUMA ones in matrix mul-

tiplication. As a first attempt to see the effect of the ccNUMA architecture, we

evaluated the DGEMM routine in Intel’s BLAS implementation in Intel Math Ker-

nel Library [13] using a dual-socket Quad-core Intel Nehalem processor. See Ta-

ble 3 in Section 4 for more information about the experiment setup. At first, we

used only one socket and 4 threadsd to multiply two large matrices of size N ×N
where N = {8000, 12000, 16000, 20000, 24000, 32000}. In each run with different

N , the DGEMM routine peaked at 36.1 GFLOPS (99.7% of the theoretical peak

performance[14]). Running the same routine using the two sockets, got us only 56.0

GFLOPS of the 72.0 GFLOPS theoretical peak performance (22% less than the

peak performance).

bIdeal caches are defined by the formula Z = Ω(L2), Z is the cache size in words and L is the

number of words in a cache-line
dNo Hyper-threading.



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

NUMA-aware Multicore BLAS Matrix Multiplication 5

To identify the bottlenecks of DGEMM routine multithreaded by OpenMP, we

used Intel vTune [15] and Intel Performance Counter Monitor (PCM) [16] to un-

derstand the routine behavior of how threads were accessing the matrix elements.

First, we monitored the QPI traffic using PCM. We found that the sockets exchange

almost 8 GB/s. We suspected two possible problems that could explain the high

volume of data exchange. First, there is a data locality problem where there is a

high number of remote memory accesses. The second possibility is that there is

a large number of LL cache-misses, where each requires snooping to the remote

cache. Therefore, we profiled the number of LL cache-misses on both sockets. We

found that as N increases, the number of cache-misses grows significantly. Figure 7

summarizes the experiment results.

Fig. 5.

N # of Cache misses

8000 16430

12000 58620

16000 141880

20000 293210

24000 556480

32000 893040

Fig. 6.

Fig. 7. LL cache-misses produced by multiplying two square matrices of size N ×N

4. NUMA-aware Matrix Multiplication

In this section, we detail our strategy to add NUMA-awaeness to matrix multipli-

cation. This section shows how to 1) align the data and 2) schedule the threads for

multiplying two matrices. We use the DGEMM routine provided by MKL as our

low-level optimized matrix multiply implementation.

4.1. Data Alignment

BLAS matrix is represented as a one dimensional array. Figure 8 shows BLAS

representation for a row-major matrix. [17] shows that certain matrix formats can

reduce the number of cache-misses in a hierarchical memory. The study suggests

wrapping the matrix elements into blocks where each block has its elements aligned

in a Z-like shape (z-morton). In this work, we tile the two matrices A and B using

the same transformation but with different blocks order. Figure 9 and Figure 10



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

6 Parallel Processing Letters

show both matrices A and B tiled into blocks of size 2× 2 respectively. The blocks

order will be beneficial, as explained later in this section, to reduce the calculation

required to compute the blocks’ indices and to remove any dependencies between

the blocks to compute the result matrix C.

Fig. 8. BLAS row-major matrix of size 4× 4

Fig. 9. Matrix A Fig. 10. Matrix B

Fig. 11. Tiled Matrices

4.2. Threads Scheduling

Our approach divides the available threads into two categories: Primary and Sec-

ondary threads. Primary threads (POSIX threads) prepare the the correspondent

blocks of A and B before calling the matrix multiply routine. Secondary threads

(OpenMP threads) are created after the blocks preparation to help the primary

threads during the multiplication. The Primary-Secondary threads approach is tar-

geted towards multiplying considerably large matrices. The size of N varies for dif-

ferent architectures and it can be determined in a linear search (N ≥ 4000 for Intel

Nehalem). One benefit of this approach is that it minimizes the calling overhead of

the DGEMM routine. Additionally, it does not require any low-level tuning for any

parameter (e.g block size), as we benefit from the DGEMM low-level optimizations.



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

NUMA-aware Multicore BLAS Matrix Multiplication 7

Algorithm 1 shows the steps for each Primary-Secondary thread pair. In the

case of dual Nehalem processors, there are 4 primary threads; 2 in each socket.

Each primary thread prepares the same block of matrix A to be multiplied with a

distinct block of matrix B to obtain a distinct result block of matrix C, Figure 12.

Figure 13 shows an example of multiplying two square matrices tiled to 4 blocks.

The main idea of our thread scheduling is to minimize retrieving the blocks from

the main memory by keeping the block of matrix A and the blocks of matrix B in

cache for as long as possible

Algorithm 1: 3-Nested-loop ccNUMA-aware matrix multiply algorithm

/* Do the outer-loop in parallel */

foreach Thread t in PrimaryThreads do

foreach Block blockA in Matrix A do
for j ← 0 .. j ← B.NumberOfBlocks /

PrimaryThreads.NumberOfThreads do

/* Get the corespondent of Matrix B and Matrix C to the

Thread t and blockA of Matrix A */

blockB = B.getBlock(t.id, j, blockA) ;

blockC = C.getBlock(t.id, j, blockA) ;

/* Prepare the secondary thread */

t.PrepareSecondaryThread() ;

/* Do the blocked multiply using the primary and

secondary threads. MKL DGEMM call */

doBlockMultiply(blockA, blockB, blockC) ;

end

end

end



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

8 Parallel Processing Letters

Main

Socket1

Aα ×Bj3
Thread7

Thread6

Aα ×Bj2
Thread5

Thread4

Socket0

Aα ×Bj1
Thread3

Thread2

Aα ×Bj0
Thread1

Thread0

Fig. 12. Thread scheduling

Fig. 13. Multiplying two matrices A and B of size 4 blocks using Algorithm 1



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

NUMA-aware Multicore BLAS Matrix Multiplication 9

4.3. Matrix Allocatoion

Another important aspect that has to be taken into consideration is where to allo-

cate the matrices among the distributed memories. Using only the malloc routine

to allocate the space will end up placing the matrices in one memory (or two if

the first is maxed out). This can lead to several problems like memory contentions

and higher access latency for the remote socket. Therefore, a balanced allocation

should be done to overcome such problems. In this work, we allocate the matrix A in

socket’s 0 memory and matrix C in socket’s 1 memory. For matrix B, we distribute

the blocks in an interleaved manner among the memories.

5. Experiment and Result

Table 3 summarizes the experiment environment setup. In this experi-

ment, we are multiplying two square matrices of size N × N , for N =

{8000, 12000, 16000, 20000, 24000, 32000}, 10 times and measure the following:

• QPI traffic for one second interval.

• Number of cache-misses.

• Elapsed time.

• Floating-point Operations Per Second (FLOPS).

For the first measurement, Table 4 shows that our thread scheduling and the data

alignment (MKL-NUMA) significantly reduced the inter-socket communication to

one-third (on average compared with MKL-OpenMP). The correlation between the

inter-socket communication reduction and the LL cache-miss rate of our strategy

appears in Figure 14, which proves our premise about the data locality problem

in MKL-OpenMP. Overcoming those issues may not give us the same percentage

in the elapsed time to finish the multiplication, Figure 15. However, the gained

speedup percentage of MKL-NUMA against MKL-OpenMP grows significantly as

N increases, Figure 17. For N = 32000, the gained speedup reached 22% of the

total execution time of MKL-OpenMP. Finally, we observed that the number of

LL cache-misses of MKL-OpenMP grows in a way similar to that of the gained

speedup percentage of our approach. After normalizing the two charts, Figure 19,

we can see the relationship between the two measurements which gives us a better

understanding of the nature of the memory effect and the projected speedup gain.

Processor 2 x Intel Xeon E5520 - Quad Core

QPI 2 x 5.86 GT (22 GB/s)

Memory Bandwidth 25.6 GB/s

OS Ubuntu Server 12.04 LTS, kernel 3.5.0-23-generic

Compiler GCC 4.6.3

Optimization Flag -O2

OpenMP ver. OpenMP 3.1

BLAS MKL 11.0



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

10 Parallel Processing Letters

N MKL-OpenMP MKL-NUMA

32000 7.34 GB/s 1.86 GB/s

16000 8.31 GB/s 1.51 GB/s

12000 8.46 GB/s 1.58 GB/s

8000 2.41 GB/s 1.57 GB/s

Fig. 14. # of LL cache-misses Fig. 15. Execution time

Fig. 16. Gflops Fig. 17. Speedup %

Fig. 18. Experiment results



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

NUMA-aware Multicore BLAS Matrix Multiplication 11

Fig. 19. The relationship between the gained speedup and the number of LL cache-misses in

MKL-OpenMP

6. Conclusion

A NUMA-aware matrix multiplication implementation was presented. Simple user-

level thread scheduling along with data alignment result in significant improvement

towards utilizing memory hierarchy by addressing architectural awareness. Finally,

we have shown through the relationship between the number of cache-misses and

the gained speedup that our methods address the memory bottleneck issue.

References

[1] C.N. Keltcher, K.J. McGrath, A. Ahmed, and P. Conway. The amd opteron processor
for multiprocessor servers. Micro, IEEE, 23(2):66–76, 2003.

[2] R.A. Maddox, G. Singh, and R.J. Safranek. Weaving high performance multipro-
cessor fabric: architectural insights into the Intel QuickPath Interconnect. Books by
engineers, for engineers. Intel Press, 2009.

[3] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for mul-
tiprocessors with private cache memories. In Proceedings of the 11th annual inter-
national symposium on Computer architecture, ISCA ’84, pages 348–354, New York,
NY, USA, 1984. ACM.

[4] James Archibald and Jean-Loup Baer. Cache coherence protocols: evaluation using a
multiprocessor simulation model. ACM Trans. Comput. Syst., 4(4):273–298, Septem-
ber 1986.

[5] David Levinthal. Performance analysis guide for intel core i7 processor and intel xeon
5500 processors. Intel Performance Analysis Guide, 2009.

[6] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and Guy M Lohman.
Numa-aware algorithms: the case of data shuffling. In CIDR, 2013.

[7] Harald Prokop. Cache-oblivious algorithms, 1999.
[8] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(3):354–

356, 1969.
[9] R. P. Brent. Error analysis of algorithms for matrix multiplication and triangular

decomposition using Winograd’s identity. Numerische Mathematik, 16:145–156, 1970.



December 15, 2013 13:29 WSPC/INSTRUCTION FILE ws-ppl

12 Parallel Processing Letters

[10] R. P. Brent. Algorithms for matrix multiplication. Technical Report TR-CS-70-157,
Stanford University, Mar 1970.

[11] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 blas.
ACM Trans. Math. Softw., 16(4):352–368, December 1990.

[12] P. D’Alberto and A. Nicolau. Adaptive strassen and atlas’s dgemm: a fast square-
matrix multiply for modern high-performance systems. In High-Performance Com-
puting in Asia-Pacific Region, 2005. Proceedings. Eighth International Conference
on, pages 8 pp.–52, 2005.

[13] Intel Math Kernel Library reference manual. http://download-software.

intel.com/sites/products/documentation/doclib/mkl_sa/111/mklman.pdf. Ac-
cessed: 2012-11-05.

[14] Intel xeon processor 5500 series. http://download.intel.com/support/processors/
xeon/sb/xeon_5500.pdf. Accessed: 2013-06-20.

[15] Intel VTune Amplifier XE 2013 product brief. http://software.intel.com/en-us/
sites/default/files/Intel_VTune_Amplifier_XE_2013_PB.pdf. Accessed: 2013-
06-20.

[16] Intel performance counter monitor - a better way to measure cpu utilization. http:
//www.intel.com/software/pcm. Accessed: 2013-06-20.

[17] M. Thottethodi, Siddhartha Chatterjee, and A.R. Lebeck. Tuning strassen’s ma-
trix multiplication for memory efficiency. In Supercomputing, 1998.SC98. IEEE/ACM
Conference on, pages 36–36, 1998.

http://download-software.intel.com/sites/products/documentation/doclib/mkl_sa/111/mklman.pdf
http://download-software.intel.com/sites/products/documentation/doclib/mkl_sa/111/mklman.pdf
http://download.intel.com/support/processors/xeon/sb/xeon_5500.pdf
http://download.intel.com/support/processors/xeon/sb/xeon_5500.pdf
http://software.intel.com/en-us/sites/default/files/Intel_VTune_Amplifier_XE_2013_PB.pdf
http://software.intel.com/en-us/sites/default/files/Intel_VTune_Amplifier_XE_2013_PB.pdf
http://www.intel.com/software/pcm
http://www.intel.com/software/pcm

