
NUMA Policies and Their Relation to Memory Architecture

William J. Bolosky1,2 Michael L. Scott1

Robert P. Fitzgerald2

Robert J. Fowler1 Alan L. Cox1

Abstract

Multiprocessor memory reference traces provide a wealth
of information on the behavior of parallel programs. We
have used this information to explore the relationship be-
tween kernel-based NUMA management policies and mul-
tiprocessor memory architecture. Our trace analysis tech-
niques employ an off-line, optimal cost policy as a baseline
against which to compare on-line policies, and as a policy-
insensitive tool for evaluating architectural design alterna-
tives. We compare the performance of our optimal policy
with that of three implementable policies (two of which ap-
pear in previous work), on a variety of applications, with
varying relative speeds for page moves and local, global, and
remote memory references. Our results indicate that a good
NUMA policy must be chosen to match its machine, and
confirm that such policies can be both simple and effective.
They also indicate that programs for NUMA machines must
be written with care to obtain the best performance.

1 Introduction

As multiprocessors increase in size, truly uniform-speed
shared memory becomes possible only by making memory
uniformly slow. In other words, systems with a sufficiently
large number of processors necessarily have shared memory
that is physically closer to some processors than to others, in
the form of caches, distributed main memory, or some com-
bination thereof. To best take advantage of such systems,
threads and the data they access must be placed near one an-

0This material is based upon work supported by the Na-
tional Science Foundation under Grant number CDA-8822724,
by ONR/DARPA under research contract no. N00014-82-K0193,
by an IBM summer student internship, and by a Joint Research
Agreement for Loan of Equipment (Number 14520052) between
IBM and the University of Rochester.

1Department of Computer Science,
University of Rochester, Rochester, NY 14620
internet: bolosky, scott, fowler or cox @cs.rochester.edu

2IBM TJ Watson Research Center,
PO Box 704, Yorktown Heights, NY 10598
internet: fitzgerald@ibm.com

other. In a machine with hardware coherent caches, data is
moved automatically. In other machines, the kernel or other
software must decide to move data explicitly. The acronym
NUMA is used to refer to multiprocessors in which the non-
uniformity of memory access times is explicitly visible to the
programmer, and in which the placement of data is under
software control. The task of the software—deciding when
to move data, and where—is called the “NUMA problem.”3

Several groups have explored kernel-based solutions to the
NUMA problem on machines with distributed main memory.
Solutions focus on replicating and migrating pages, generally
in response to page faults. Holliday has explored migration
based on periodic examination of reference bits [16], and has
suggested [17] that good dynamic placement of code and
data offers little additional benefit over good initial place-
ment. In [10] and [13] we argue that simple mechanisms
in the kernel work well, and probably achieve most of the
benefits available without application-specific knowledge.

A major weakness of past work has been its lack of a for-
mal framework or of solid quantitative comparisons. Black
and Sleator have devised a dynamic page placement algo-
rithm with provably optimal worst-case behavior [9], and
Black, Gupta and Weber have simulated it on address traces
[7], but their approach does not appear to exploit “typical”
program behavior, and requires a daunting amount of hard-
ware assistance. LaRowe and Ellis [18] have compared com-
peting policies by implementing many alternatives in their
DUnX version of the operating system for the BBN Butter-
fly. We adopted an alternate approach.

We use multiprocessor memory reference traces to drive
simulations of NUMA policies. We implement page place-
ment policies and simulate architectures in our trace analy-
sis program. At the same time, we present a formal model
of program execution “cost,” and an efficiently-computable
off-line policy that is optimal with respect to this metric. In
comparison to implementation-based experiments, our ap-
proach has two principal advantages:

1. Our optimal algorithm gives us a tight lower bound on
the cost savings that could be achieved by any place-
ment policy. We can quantify the differences between
policies, and assess the extent to which NUMA man-
agement contributes to overall program performance.

2. By varying architectural parameters we can investigate
the extent to which policies should be tuned to the ar-

3It is possible, of course, to move threads as well as data, but
this option is beyond the scope of the work described here.

1

mls
ASPLOS '91



chitecture, and can assess the utility of novel architec-
tural features. We observe, as one might expect, that
to perform well different architectures require different
management policies. The optimal algorithm allows us
to avoid a bias toward any particular policy in making
these assessments.

In addition, the off-line nature of our analysis allows us to
examine program executions at a very fine level of detail. We
observe that program design, and memory usage patterns
in particular, can have a profound effect on performance
and on the choice of a good NUMA policy. Obtaining the
best performance from a NUMA machine will require that
compilation tools be aware of memory sharing patterns in
the programs they are producing, that programmers work to
produce “good” sharing, or, more likely, some combination
of the two.

The design space of policies is large [18], but our experi-
ence suggests that simple policies can work well, and that
minor modifications are likely to yield only minor variations
in performance. Major changes in policy are likely to be jus-
tified only by changes in architecture. Rather than search for
the perfect policy on any particular machine, we have there-
fore chosen to investigate the way in which architectural pa-
rameters determine the strategy that must be adopted by
any reasonable policy.

Section 2 presents our methodology, defining our cost met-
ric, presenting the optimal policy, and explaining how we
collected and analyed traces. Section 3 presents the basic
results of our analysis. For each application in our test suite,
we show the optimal memory and page placement cost, and
compare that with the cost achieved by each of the on-line
policies. We compare the policies presented in our previous
papers, and argue that each is appropriate for the machine
for which it was designed. We suggest that a small amount
of hardware support could help eliminate inappropriate page
moves, and may be desirable on a machine in which such
moves are comparatively expensive. Section 4 focuses on
the tradeoff between block transfer time and the latency of
remote memory references. We study one application in de-
tail to identify the points at which it is able to exploit faster
page moves.

2 Methodology

Our trace analysis techniques rely on a formal model of ma-
chine behavior (described informally here) that captures the
essential elements of the NUMA problem while abstracting
away much of the complexity of an implementation. In par-
ticular, we have chosen a model of program “cost” that is
consistent with post-mortem analysis of traces, and that is
amenable to optimization by an efficient off-line algorithm.

2.1 Execution and Cost Model

Our model of program execution cost approximates the to-
tal amount of processor time spent on page movement and
latency of accesses to data memory. It does not attempt to
model elapsed wall-clock time, nor does it model contention,
either in the memory or the interprocessor interconnect, or
instruction-fetch references.

We consider two types of NUMA architectures: lo-
cal/remote and local/global/remote. A local/remote ma-
chine is one in which all memory is associated with a given

processor, and accessing another processor’s memory is pos-
sible but slower than local. The BBN Butterfly Parallel Pro-
cessor [4] is a local/remote machine. A local/global/remote
architecture is one in which in addition to memory at ev-
ery node, there is global memory: intermediate in speed be-
tween local and remote, and not associated with any par-
ticular processor. The IBM ACE multiprocessor [15] is a
local/global/remote machine. The IBM RP3 [21] can be
considered a local/global/remote machine if its interleaved
memory system is used for global memory.

A machine is characterized by the size of a page and by
four memory-latency parameters: g, r, G, and R. In a lo-
cal/global/remote architecture, it costs g to access a single
word of global memory, G to move a page from global to a
local memory (or vice-versa), r to access a single word of re-
mote memory, and R to move a page from one local memory
to another. In a local/remote architecture, g and G are not
used, while r and R retain their meaning. In this paper we
assume a page size of 1K 4-byte words. By definition, the
cost of a full-word local memory reference is one, so the unit
for the other costs is the local memory reference time.

A trace is a record of the data references made by a par-
allel program, with accesses from different processors inter-
leaved as they occurred during tracing. A placement for a
trace is a choice of location(s) for each data page at each
point in time, with the restriction that exactly one copy of
each page exists after each write to that page.4 A policy
is a function that maps traces to placements. We assume
that individual memory accesses take a predictable amount
of time, and that the total cost for a page is the sum of these
individual times (1, g, or r), plus the time required for any
page move operations that occur (G or R per move). Pages
are assumed to be independent, so the locations chosen and
costs incurred for one page have no effect on another. The
total cost of a placement is the sum of the costs for its indi-
vidual pages.

The cost of invalidations (eliminating replicas of a page) is
implicit in this model. The page move costs G and R include
a certain amount of overhead for the eventual invalidation of
the copy being made, as well as overhead for processing the
memory fault (or other event) used to trigger the copy or
move operation. Pages are initially placed in global mem-
ory if it is available and otherwise in the local memory of
processor 0.

Our measure of policy performance is mean cost per refer-
ence (MCPR), which is the cost of the placement chosen by
the policy divided by the number of data references. If all
data references were made by processor 0 on a local/remote
machine, and if a policy left all pages on that processor,
then the MCPR of that policy on that trace would be 1. For
any trace on a local/global/remote machine, the MCPR of
a policy that never moved or replicated pages would be g.

2.2 Discussion

As in any trace-based study, our results are interesting to
the extent that they successfully model some important as-
pect of real-world behavior, despite simplifying assumptions.
In our case, one major simplifying assumption is that the
memory locations accessed by a program, and the order in
which those accesses occur, are independent of the NUMA
placement policy. This assumption is fundamental to the
trace-based methodology. In practice, of course, a change

4This definition precludes write-update replication schemes.



in policy will alter program timings, leading to a different
trace, which in turn may change the behavior of the policy,
and so on. At the very least a change in policy will change
the interleaving of references from different processors. One
could adjust the interleaving during trace analysis, based on
per-processor accumulated costs, but this approach would
run the risk of introducing interleavings forbidden by syn-
chronization constraints in the program. It would also at
best be a partial solution, since the resolution of race con-
ditions (including “legitimate” races, such as removing jobs
from a shared work queue) in a non-deterministic program
could lead to a different execution altogether. Forbidden in-
terleavings could be avoided by identifying synchronization
operations in a trace, and never moving references across
them, but even this approach fails to address race conditions.
On-the-fly trace analysis, such as performed in TRAPEDS
[24], could result in better quality results, but only at a sig-
nificant cost for maintaining a global notion of time (ie.,
possibly synchronizing on every simulated machine cycle).

The execution of a parallel program can be characterized
by a set of executed instructions, linked into a partial order
by control and data dependencies. This partial order cap-
tures one possible outcome of any non-determinism in the
program, and a reference trace such as ours captures one to-
tal order consistent with the partial order. Establishing the
interleaving of data references during trace collection guar-
antees that analysis is performed on a valid total order. It
also results in a simple formal model. Intuitively, we expect
the results of analyses based on one valid total order to be
close to those of another valid order. Since conflicting writes
are likely to represent synchronization operations or delib-
erate data dependencies, changes in interleaving consistent
with program logic are unlikely to alter the behavior of the
optimal algorithm.

In an attempt to validate our methodology we performed
a pair of experiments to test the sensitivity of our results
to changes in the order of references in our traces. In the
first experiment we locally reordered references from differ-
ent processors to simulate small perturbations in their rel-
ative rates of progress. In the second experiment we in-
troduced pauses in the execution of individual processors
long enough to simulate the overhead of a page move oper-
ation. The change in the cost of the optimal policy never
exceeded 0.3% in either experiment on any of our traces, and
was typically much smaller. The on-line policies described
in section 2.5 were somewhat more sensitive, but typically
changed by less than 1%—well below the level of changes
considered significant for them elsewhere in this paper.

2.3 Trace Collection

The traces used in this paper were collected on an IBM ACE
Multiprocessor Workstation [15] running the Mach operating
system [1]. The ACE is an eight processor machine in which
one processor is normally used only for processing Unix sys-
tem calls and the other seven run application programs.

We collected traces by single-stepping each processor and
decoding the instructions to be executed, to determine if
they accessed data. We did not record instruction fetches.
Our single-step code resides in the kernel’s trap handler, re-
sulting in better performance (and therefore longer traces)
than would have been possible with the Mach exception fa-
cility [8] or the Unix ptrace call. Execution slowdown is
typically a factor of slightly over 200. Other tracing tech-

niques range from about an order of magnitude slower [25]5

to two orders of magnitude faster [19].
Our kernel tracer maintains a buffer of trace data. When

that buffer fills, the tracer stops the threads of the traced
application and runs a user-level process that empties the
buffer into a file. To avoid interference by other processes,
we ran our applications in single-user mode, with no other
system or user processes running.

2.4 An Efficiently-Computable Optimal Policy

Recall that a policy is a mapping from traces to page place-
ments. An optimal policy is one that for any trace produces
a placement whose cost is as low or lower than that of any
other placement. Policies may be on-line or off-line. An
on-line policy makes its placement decisions based only on
references which have already happened, while an off-line
policy may use future knowledge. It is easy to show that
any optimal policy must be off-line; all the other policies
described in this paper are on-line.

Our algorithm for computing an optimal policy employs
dynamic programming, and executes in O(x + py) time,
where x is the number of reads, y the number of writes and p
the number of processors. The essential insight in the algo-
rithm is that after each write a page must be in exactly one
place. To first approximation, we can compute the cheapest
way to get it to each possible place given the cheapest ways
to get it to each possible place at the time of the previous
write. If there are reads between a pair of writes, then a
page may be replicated during the string of reads; whether
this replication occurs depends on the starting and ending
locations of the page and the number of reads made by each
processor during the interval. Replication and migration are
not entirely independent: if processor A reads a page several
times between writes y and y + 1, but not often enough for
the reads themselves to warrant replication of the page, it
may be cheaper in the long run to place the page at location
A at write y, even if location B is cheaper at that time.

The placement generated by an optimal policy is interest-
ing because, to the extent that the cost metric is realistic, it
demonstrates the best possible use of available hardware. It
provides a tighter lower bound against which to compare the
performance of implementable policies than the more obvi-
ous “MCPR = 1.” More important, it provides a policy-
insensitive tool for evaluating architectural tradeoffs. We
can use it, for example, to determine whether remote access
is useful in a local/global/remote machine, or to estimate
how aggressive a policy should be in migrating pages on a
machine with a fast block transfer, without being biased by
a policy that favors one type of architecture or another.

2.5 Implementable (Non-Optimal) Policies

In addition to the optimal policy, we consider three imple-
mentable alternatives. Two of them have been used in real
systems and are described in prior papers: the ACE pol-
icy [10] and the PLATINUM policy [13]. The third policy,
Delay, is based on the ACE policy, and exploits simple hy-
pothetical hardware to reduce the number of pages moved
or “frozen” incorrectly.

The ACE policy can be characterized as a dynamic tech-
nique to discover a good static placement. The expectation

5They report “50Mbytes” of trace; we assume that they are
using 4 bytes/trace entry.



is that the chosen placement will usually be nearly as good
as a user-specified placement, and often better, and will be
found with minimal overhead. The ACE policy was designed
for a machine that has fast global memory (g = 2) and no
mechanism to move a page faster than a simple copy loop
(G = 2 ∗ pagesize+200 (200 is fault overhead)). It operates
as follows: Pages begin in global memory. When possible,
they are replicated to each processor reading them. If a page
is written by a processor that has no local copy, or if mul-
tiple copies exist, then a local copy is made and all others
are invalidated. After a fixed, small number of invalidations,
the page is permanently frozen in global memory. We permit
four invalidations per page in the studies in this paper.

The PLATINUM policy was designed for a machine with
no global memory, slow remote memory (r = 15), and a com-
paratively fast block transfer (R = 3 ∗ pagesize + 200). Its
principal difference from the ACE policy is that it continues
to attempt to adapt to changing reference patterns by pe-
riodically reconsidering its placement decisions. PLATINUM

replicates and moves pages as the ACE algorithm does, us-
ing an extension of a directory-based coherent cache protocol
with selective invalidation [11]. The extension freezes a page
at its current location when it has been invalidated by one
processor and then referenced by another within a certain
amount of time, t1. Once every t2 units of time, a daemon
defrosts all previously frozen pages. On the Butterfly, t1 and
t2 were chosen to be 10ms and 1s respectively. Since time
is not explicitly represented in our simulations, t1 and t2
are represented in terms of numbers of references processed.
The specific values are obtained from the mean memory ref-
erence rate on an application-by-application basis, by divid-
ing the number of references into the (wall clock) run time of
the program and multiplying by 10ms and 1s respectively.
The PLATINUM algorithm was designed to use remote rather
than global memory, but could use global memory to hold
its frozen pages.

Because they are driven by page faults, the ACE and
PLATINUM policies must decide whether to move or freeze
a page at the time of its first (recent) reference from a new
location. Traces allow us to study the pattern of subse-
quent references, and confirm that the number of references
following a page fault sometimes fails to justify the page
move or freeze decision. Bad decisions are common in some
traces, and can be quite expensive. An incorrect page move
is costly on a machine (like the ACE) that lacks a fast block
transfer. An incorrect page freeze is likewise costly under
the ACE policy, because pages are never defrosted. Moti-
vated by these observations, we postulate a simple hardware
mechanism that would allow us to accumulate some reason-
able number of (recent) references from a new location before
making a placement decision.

The mechanism we suggest is a counter implemented in
the TLB that is decremented on each access, and that pro-
duces a fault when it reaches zero. When first accessed from
a new location, a page would be mapped remotely, and its
counter initialized to n. A page placement decision would
be made only in the case of a subsequent zero-counter fault.
This counter is similar to the one proposed by Black and
Sleator [9] for handling read-only pages, but unlike their
proposal for handling writable pages, it never needs to be
inspected or modified remotely, and requires only a few bits
per page table entry. We set n = 100 for the simulations
described in this paper. Our observations are that a delay
of 100 is more than is normally needed, but the marginal
cost of a few remote references as compared to the benefit

of preventing unnecessary moves seems to justify it.

3 Experiments

Our analysis of traces attempts to answer the following kinds
of questions within the formal framework of our model:

• To what extent can one hope to improve the perfor-
mance of multiprocessor applications with kernel-based
NUMA management—is the NUMA problem impor-
tant?

• How closely do simple, easily implemented policies ap-
proach the performance limit of the optimal off-line pol-
icy?

• How does the choice of application programming sys-
tem and style affect the effectiveness of each of the poli-
cies?

• To what extent does the effectiveness of policies vary
with changes in memory architecture? Can we charac-
terize the “strategy” used by the optimal policy as a
function of these parameters?

We begin our discussion of experiments with a brief de-
scription of our application suite. We then turn to the ques-
tions above in sections 3.2.1 through 3.2.4, deferring full con-
sideration of the final question to section 4.

3.1 The Application Suite

We traced a total of sixteen applications, written under three
different programming systems. Each of the three systems
encourages a distinctive programming style. Each is charac-
terized by its memory access patterns and granularity and
by its style of thread management. Table 1 shows the sizes of
our traces in millions of references. Presto and EPEX have
regions of memory that are addressable by only one thread.
References to these explicitly private regions are listed in
the column named “Private Refs,” and are not represented
under “References.”

EPEX [23] is an extension to FORTRAN developed for
parallel programming at IBM. EPEX applications typically
are numeric. The programmer explicitly identifies the pri-
vate and shared data in source code and as a result the
amount of shared data can be relatively small [3]. Paral-
lelism arises from the distribution of DO loops to the set
of available processors. The EPEX applications traced were
e-fft, a fast Fourier transform; e-simp, a version of the
Simple benchmark [14]; e-hyd, a hydrodynamics code; and
e-nasap, a program for computing air flow. The prefix e-

indicates an EPEX application.
Mach C-Threads [12] is a multi-threaded extension to C.

Our C-Threads programs were either written for the ACE, or
for PLATINUM and ported to the ACE. In either case, they
were written with a NUMA architecture in mind, and employ
a programming style that can be characterized as coarse-
grain data parallelism: a single thread of control is assigned
statically to each available processor and data is partitioned
evenly among them. All data is potentially shared, and the
pattern of access is not identified in the program.

The C-Threads programs traced were bsort, a simple
merge sort program in which half of the processors drop
out in each phase; kmerge, a merge sort program in which



Application References Private Refs

e-fft 10.1 81.1
e-simp 27.8 109
e-hyd 49.8 445
e-nasap 20.9 326

gauss 270 0
chip 412 0
bsort 23.6 0
kmerge 10.9 0
plytrace 15.4 0
sorbyc 105 0
sorbyr 104 0
matmult 4.64 0

p-gauss 23.7 4.91
p-qsort 21.3 3.19
p-matmult 6.74 .238
p-life 64.8 8.0

Table 1: Trace Sizes and Breakdowns (in millions of data
references)

groups of processors cooperate in each merge step, thus keep-
ing all processors busy to the end of the computation [2];
matmult, a straightforward matrix multiplier; plytrace, a
scene rendering program; sorbyr and sorbyc, a pair of red-
black successive over-relaxation [20] programs that differ in
the order of their inner loops, and thus in their memory ac-
cess patterns; and chip, a simulated annealing program for
chip placement.

In many of the C-Threads applications two-dimensional
numerical matrices are represented as an array of pointers
to single-dimensional arrays representing the rows, as recom-
mended in Numerical Recipes in C [22]. In these programs
the unit of data-sharing is the row, so data sharing patterns
exhibit a fairly coarse grain.

Presto [6] is a parallel programming system based on
C++. Because Presto was originally implemented on a Se-
quent Symmetry, a coherent cache machine, its applications
were written without consideration of NUMA memory is-
sues. The Presto programs we traced are characterized by
fine-grain data sharing and by a programming style that al-
locates a large number of threads of control, regardless of
the number of physical processors actually available. Presto
was ported to the ACE and the applications were run un-
modified. The applications traced were: p-qsort, a par-
allel quicksort; p-gauss, a Gaussian elimination program;
p-matmult, a matrix multiplier; and p-life, an implemen-
tation of Conway’s cellular automata. The behavior of these
programs was studied in a different context in [5].

3.2 Performance of the Various Policies

The performance of each of our policies on each of our ap-
plications, expressed as Mean Cost Per Reference (MCPR),
appears in Figures 1 and 2–3, for architectures resembling
the ACE and the Butterfly, respectively. Each application
has a group of four bars, which represent the performance
of Optimal, ACE, Delay and PLATINUM, from top to bot-
tom. To place the sizes of the bars in context, recall that
an MCPR of 1 would result if every memory reference were
local. For ACE hardware parameters, an MCPR of 2 is triv-

-0 1 2

e-fft

e-simp

e-hyd2

e-nasap

gauss

chip

bsort

kmerge

plytrace

sorbyc

sorbyr

matmult

p-gauss

p-qsort

p-matmult

p-life

Optimal
ACE
Delay
PLATINUM

Figure 1: MCPR for ACE Hardware Parameters

ially achievable by placing all shared data in global memory:
any policy that does worse than this is wasting time on page
moves or remote references

3.2.1 The importance of the NUMA problem

For the NUMA problem to be of importance, several things
must be true: memory access time must be a significant frac-
tion of the execution time of a program; the performance
difference between executions with correctly and incorrectly
placed pages must be large; there must be some reasonably
good solution to the problem. In [10] we estimate the mem-
ory times for programs running on an ACE to be in the
25%–60% range. Newer, more aggressive processor architec-
tures will only increase this percentage, as demonstrated by
the increasing emphasis on cached memory systems.

One possibility for NUMA management is to statically
place all private data and to leave shared data in global
memory or in an arbitrary local memory. This strategy will
work well for applications such as e-fft, which have only
private and fine-grained shared data, but it will not work
well for others. Many programs require data to migrate,
particularly when remote references are costly. Examples in-
clude matrix rows lying at the boundaries between processor
bands in sorbyr, and dynamically-allocated scene informa-
tion in plytrace. This is demonstrated by the number of
page moves performed by the optimal policy, presented in
Figure 6. It explains why the PLATINUM policy (which is
more aggressive about moving pages) generally does better
than the ACE or Delay policies on a machine such as the
Butterfly, in which a page move can be justified to avoid a



-0 1 2 3 4 5

e-fft

e-simp

e-hyd

e-nasap

gauss

chip

bsort

kmerge

plytrace

sorbyc

sorbyr

matmult

Optimal
ACE
Delay
PLATINUM

Figure 2: MCPR for Butterfly Hardware Parameters

-0 5 10

p-gauss

p-qsort

p-matmult

p-life

Figure 3: MCPR for Butterfly Hardware Parameters,
PRESTO applications

relatively small number of remote references.
Even on a machine like the ACE, in which frozen pages

are only twice as expensive to access as local pages, there
is a large benefit in correctly placing pages. For all but
the Presto applications, an optimal placement results in an
MCPR below 1.23 on the ACE (as compared to 2 for static
global placement) and 2.35 on the Butterfly (as compared
to 14–15 for random placement). For a program that spends
50% of its time accessing data memory, these MCPR val-
ues translate to a 26% improvement in running time on the
ACE, and a 56% improvement on the Butterfly, in compar-
ison to naive placement, assuming no contention. As shown
in the following section, our implementable policies achieve
a substantial portion of this savings.

3.2.2 The success of simple policies

Both the ACE and Delay policies do well on the ACE. The
MCPR for Delay is within 15% of optimal on all applica-
tions other than plytrace. The ACE policy similarly per-
forms well for applications other than plytrace, bsort and
kmerge. These programs all display modest performance im-
provements when some of their pages migrate periodically,
and the ACE and Delay policies severely limit the extent to
which this migration takes place.

All of the policies keep the MCPR below 4 for the non-
Presto applications on the Butterfly, with the exception of
ACE on bsort, and that case could be corrected by increas-
ing the number of invalidations allowed before freezing. For
all applications other than plytrace, PLATINUM stays near
or below 2.5. This is quite good, considering that a random
static placement would yield a number close to 15. The ACE
and Delay policies perform slightly better than PLATINUM

on applications that have only fine grained shared and pri-
vate data (e-hyd and e-fft), but the cost of moving pages
that should be frozen is low enough on the Butterfly that
the difference between the policies in these cases is small.

The difference between the ACE and Delay policies dis-
plays a bimodal distribution. In most cases the difference is
small, but in a few cases (bsort and kmerge) the difference
is quite large. In essence, the additional hardware required
by Delay serves to prevent mistakes.

3.2.3 The importance of programming style

The Presto applications have much higher MCPRs for both
architectures, in both the on-line and optimal policies. This
disappointing performance reflects the fact that these pro-
grams were not designed to work well on a NUMA. They
have private memory but do not make much use of it, and
their shared memory shows little processor locality. The
shared pages in the EPEX e-fft and e-hyd programs sim-
ilarly show little processor locality, but because these pro-
grams make more use of private memory, they still perform
quite well.

The programs that were written with NUMA architec-
tures in mind do much better. Compared to the Presto
programs they increase the processor locality of memory us-
age, are careful about which objects are co-located on pages
with which other objects, and limit the number of threads to
the number of processors available. It is not yet clear what
fraction of problems can be coded in a “NUMAticized” style.

3.2.4 The impact of memory architecture

From the discussions above it is clear that the difference in
architecture between the ACE and Butterfly machines man-
dates a difference in NUMA policy. It pays to be aggressive
about page moves on the Butterfly. Aggressiveness buys a
lot for applications such as plytrace and e-simp, which need
to move some pages dynamically, and doesn’t cost much for
applications such as e-fft, which do not. At the same time,
aggressiveness is a bad idea on the ACE, as witnessed by the
poor performance of the PLATINUM policy on many appli-
cations (sorbyc, e-simp, matmult, e-fft, p-gauss). In
as much as the ACE and Butterfly represent only two points
in a large space of possible NUMA machines, it seems wise
to explore the tradeoffs between architecture and policy in
more detail. This exploration forms the subject of the fol-
lowing section.

4 Variation of Architectural Parameters

Figures 4 and 5 show how the performance of the optimal
policy varies with the cost of a page move (G or R), for
remote and global access times comparable to those of the
ACE and the Butterfly, respectively. Results for the Presto
applications are not shown, because they are off the scale of



1

1.05

1.1

1.15

Global Move Cost

200 500 1000 1500 2000 ace 2500

2 2 e-fft

2 2 2 2 2 2 2 2 2 2 2 2 2

× × e-nasap

×
× × × × × × × ×

×
× ×× ×

× × gauss

×
× × × × × × × ×

×

×
×

×

• • chip

• • • • • • • • • • • • •

4 4 bsort

4

4

4

4
4

4
4

4
4

4

4

4

4

4 4 kmerge

4

4

4

4

4

4

4

4

4

4

4

4

4

• • plytrace

•

••

••

••

•

•

•

•

•

•

•

•

•

2 2 sorbyr

2
2

2
2

2
2

2
2

2

2
2 2 2

• • matmult

•

•

•

•

•

•

•

•

•

•

•
•

••

Figure 4: MCPR vs. G for optimal, g=2, r=5

1

1.5

2

2.5

3

3.5

Remote Move Cost

200 bfly 10000 200007000 15000

2 2 e-fft

22222
222 2 2

2
2

4 4 e-simp

4

4

4
4
4

4

4

4

4

4

4

4

× × e-nasap

××
××××

××× ×
×

×
×

• • gauss

••••• • • • •
•

•

• • chip

•

•
••
•

• • • • • • •

4 4 bsort

4444
4444

4

4

4

4

4 4 kmerge

444
44

4
4

4
4

4

4

4

• • plytrace

•

•
•
•
•

•
•

•

•

•

•

•

2 2 sorbyr

22222
222 2

2

2

2

• • matmult

•

•
•
•
•

•

•
•

•

•

•

•

Figure 5: MCPR vs. R for optimal, no global, r=15

the graphs; however, their shape is not significantly different
from the other applications.

The minimum page move time represented on each graph
is 200, which is assumed to be a lower bound on the time
required to process a fault and initiate a page move in the
kernel. 200 therefore corresponds to an infinite bandwidth,
zero latency hardware block transfer. The maximum page
move times on the graphs are the page size times g or r,
plus a more generous amount of overhead, corresponding to
a less tightly coded kernel.

If R is considered to be a real-valued variable, then the
cost of the optimal policy on a trace is a continuous, piece-
wise linear function of R. Furthermore, its slope is the num-
ber of page moves it makes, which in turn is a monotoni-
cally decreasing step function in R. Similar functions exist
for G, g, and r, except that their slopes represent global
page moves, global references, and remote references respec-
tively. An important implication of continuity is that, given
optimal placement, there is no point at which a small im-
provement in the speed of the memory architecture produces
a disproportionately large jump in performance.

At a G or R of 0, page moves would be free. The optimal
strategy would move all pages on any non-local reference.
This means that for a G or R of 0 the optimal MCPR of
any application must be 1, regardless of the values of g and
r. Since the optimal cost is continuous, the curve for every
application must fall off as G or R approaches 0. This means
that all the curves in Figures 4 and 5 go smoothly to 1 below
their left ends. For applications such as e-fft that don’t
show much benefit from G and R down to 200, this drop is
very steep.

Though different machines require different policies, any
given policy6 will be oblivious to the speed of memory opera-
tions. The curve for a given policy will therefore be a straight
line on a graph like Figure 4, and will lie on or above the
optimal curve at all points (see Figure 7 for an example).
Because the optimal curve is concave down, no straight line
can follow it closely across its entire range. This means that
no single real policy will perform well over the whole range
of architectures. Thus, to obtain best performance over a
range of page move speeds in Figures 4 and 5 in which the
optimal line curves, one must change the real policies used
accordingly. However, for the applications whose curves are
largely flat lines, the same policy works over the entire range.

One can plot MCPR, g (or r), and G (or R) on orthog-
onal axes to obtain multi-dimensional surfaces. Figures 4
and 5 show two-dimensional cuts through these surfaces.
They are interesting cuts in the sense that one can imagine
spending extra money on a machine to increase the speed
of block transfer relative to fixed memory reference costs.
It makes less sense to talk about varying the memory ref-
erence costs while keeping the block transfer speed fixed.
Moreover, figures 4 and 5 capture all of the structure of the
surfaces, at least in terms of the relationship between page
move cost and memory reference cost. We have proved that
the behavior of the optimal algorithm on a given trace is
completely determined by the ratios of g − 1, r − 1, G,
and R. Scaling them by the same multiplicative factor s
changes the MCPR m according to mnew = 1+ s(mold − 1),
but does not change the optimal placement. Each multi-
dimensional surface consists of rays pointing up and out from

6Here, “policy” is used in the strictest sense of the word.
Changing t1 or t2 in PLATINUM would thus yield a new policy
for our purposes.



(g, r, G, R, m) = (1, 1, 0, 0, 1). If we slide figure 5 in toward
the r origin, the curves retain their shape, but shrink in the
R and MCPR dimensions.

1

10

100

1000

Global Move Cost

200 500 1000 1500 2000 ace 2500

4 4 e-simp

4

4
4

4

4

4 4 4 4

4

4 4 4

× × e-nasap

×

×

×

×

×

×
×

×
×

×

×

××
×

• • plytrace

•

••

••
•• • • • •

•

•
• • •

2 2 sorbyr

2 2 2

2 2
2

2 2 2

2 2 2 2

• • matmult

•
•

•
•

•
•

•
•

•

•

• • ••

× × p-gauss

×

× × ×

× ×

×
× ×

×

×
×

×

2 2 p-qsort

2

2

2

2

2

2

2

2

2

2

2

2

2

× × p-life

×

×

×

×
×

×
×

× ×
×

×

× ×

Figure 6: Mean Page Moves per Page for optimal, g=2, r=5

Figure 6 presents, on a logarithmic scale, the mean num-
ber of page moves per page as a function of G for an ACE-like
machine. Many of the applications have large jumps in the
number of moves made around 1024 and 512. These are
points at which referencing each word on a page, or half of
the words, is sufficient to justify a page move. Some appli-
cations show large jumps at other multiples or fractions of
the page size, but large changes at other values of the page
move cost are rare.

When designing a NUMA policy for a given machine, one
should take into account where on our move cost spectrum
the architecture lies. Machines to the left of jumps benefit
from more aggressive policies, machines to the right from
more conservative policies. A machine that lies near a jump
point will run well with policies of varying aggressiveness.
When designing a NUMA machine, the lessons are less clear.
Obviously, faster machines run faster. Also, the marginal
benefit of a small speedup increases at faster speeds. How-
ever, moving across a jump point will not produce a corre-
sponding jump in performance: the jump is in the slope of
the cost curve, not in the cost curve itself.

4.1 Case Study: Successive Over-Relaxation

To illustrate what is happening to the optimal placement as
we vary page move speed, we examined one of the successive

over-relaxation (SOR) applications, sorbyr, in some depth.
Sorbyr is an algorithm for computing the steady-state tem-
perature of the interior points of a rectangular object given
the temperature of the edge points. It represents the object
with a two-dimensional array, and lets each processor com-
pute values in a contiguous band of rows. Most pages are
therefore used by only one processor. The shared pages are
used alternately by two processors; one processor only reads
the page, while the other makes both reads and writes, for
a total of four times as many references.

Almost all of sorbyr’s references are to memory that is
used by only one processor. Thus, the MCPR values are
all close to 1. However, this case study concentrates on the
portion of references that are to memory that is shared, and
the effects of management of this memory are still clearly
visible in the results presented, and is fairly typical of shared
memory in other NUMA applications.

The optimal placement behavior for a shared page de-
pends on the relative costs of page moves to local, global
and remote references. This behavior is illustrated in Fig-
ure 7 as a function of page move cost. In this graph the cost
of the optimal policy is broken down into components for
page moves, remote references, global references and local
references. Since most pages are used by only one processor,
the major cost component is local references; in this figure,
however, the local section is clipped for readability.

1.05e+08

1.1e+08

Global Move Cost

200 500 1000 1500 2000 ace 2500

•
•

•
••

•
•

•
•

•
•

•
•

•
•

Move

Remote

Global

Local (extends down to 0)

PLATINUM

ACE

DELAY

Optimal

Figure 7: sorbyr Placement Cost vs. Page Move Cost w/
Optimal Breakdown, g=2, r=5

As page move cost decreases, remote references are traded
for copies and global references, and then for more copies
and local references. This can be seen in Figure 7 at points
near G = 1200 and G = 400 respectively. It is important
to note that while the cost breakdown of the optimal policy
undergoes large sudden changes, the cost itself as a function
of G is continuous.

The performance of the other policies is also included.



The PLATINUM policy works best for small G. This is ex-
pected, since it is designed for a machine with a relatively
fast page move. However, since it must be above optimal at
all points and is a straight line (i.e., is architecture insen-
sitive), it must be bad for large G in order to be good for
small G. Conversely, for the ACE or Delay policies to do
well for large G they must not do as well for small G.

4.2 Global Memory

Our results suggest that global memory is useful in NUMA
machines. It is the cheapest place to put data that are shared
on a sufficiently fine grain to preclude migration, and that
are not accessed predominately by a single processor. With
global memory available remote references would be reserved
for data such the rows at the boundaries between processor
bands in sorbyc, which are accessed by one processor sig-
nificantly more than all the rest combined, and would not
benefit from migration unless it was extremely fast.

In our application suite on an ACE-like machine (g = 2,
r = 5), the largest use of remote references by the optimal
strategy occurred in sorbyr, where even with an extremely
slow page move (G = 5000) it made only 320K references
remotely out of a total of 104M, or 0.3%. This does not
imply that remote references are useless in the presence of
global memory, but only that they need not be used often,
and consequently increasing their cost will have only minor
effects on overall program run time.

5 Summary and Conclusions

Our work has addressed issues in the design of kernel-based
NUMA management policies. Our approach has been to
use multiprocessor memory reference traces, from a variety
of applications, to drive simulations of alternative policies
under a range of architectural parameters. In the area of
NUMA policy design, we have found that:

• The problem is important. In comparison to naive
placement of shared data, optimal placement can im-
prove overall program performance by as much as 25 to
50%.

• Good performance on NUMA machines depends crit-
ically on appropriate program design. Trace analysis
supports the intuition that NUMA policies will achieve
the best performance for applications that minimize
fine-grain sharing and the false sharing that occurs
when data items accessed by disjoint sets of processors
are inadvertently placed on a common page.

• Given good program design, simple kernel-based
NUMA policies can provide close to optimal perfor-
mance. Averaged over all 16 applications on the ACE,
the ACE policy achieved 82% of the savings achieved
by the optimal algorithm over static global placement
of shared data. Averaged over all applications on the
Butterfly, the PLATINUM policy achieved 94% of the
savings achieved by the optimal algorithm over random
placement of shared data.

• Different memory architectures require different poli-
cies for high-quality NUMA management. Dynamic
discovery of a good static placement works well on a

machine in which page movement is expensive in com-
parison to the cost of remote (or global) access. As
the cost of page movement decreases, it becomes in-
creasingly profitable to move pages between program
phases. The PLATINUM policy achieved only 40% of
the optimal improvement on average on the ACE. The
ACE policy achieved only 87% of the optimal improve-
ment on average on the Butterfly.

In terms of architectural design, we have found that:

• Global memory provides an attractive location for data
that are shared by several processors at a fine grain. It
is cheaper for all processors to access intermediate-cost
memory than for all processors but one to access costly
memory.

• A policy that is (wisely) unaggressive about dynamic
page placement due to high page move cost could use
a mechanism such as our proposed per-page reference
counter to significantly reduce the number of page-
placement errors, thereby improving performance. On
average on the ACE, the Delay algorithm achieved an
additional 4.6% of the improvement of the optimal al-
gorithm. On the Butterfly, it prevented two disastrous
mistakes.

• Improving block transfer speed by some multiplicative
factor f can lead to an improvement of more than f in
memory cost, because a good policy is likely to move
more pages when doing so is cheap. At the same time,
there are no points at which a small improvement in
block transfer speed produces a large improvement in
memory cost. Fast block transfer will be most effec-
tive on machines in which remote memory references
are comparatively expensive, and then only for certain
applications; it is unlikely to be cost-effective on a ma-
chine with cheap remote memory.

The NUMA problem is likely to become increasingly im-
portant as improvements in CPU performance outstrip im-
provements in memory performance, forcing future proces-
sors to spend a larger fraction of their time waiting for mem-
ory. It is possible that scalable cache-coherent architectures
will supplant machines with visibly-distributed shared mem-
ory, but many of the issues central to NUMA management
will remain. To first approximation, hardware cache coher-
ence can be captured by our model in the form of unusually
small “pages” and very fast page moves. Contention may
need to be addressed more carefully in the simulation of
cache-based machines, but even in its current form our trace
analysis system can provide valuable insights into such issues
as the incidence of false sharing, the importance of program
phase changes, the degree of cache-line replication, and the
frequency of invalidations.

There appear to be two possible avenues for further im-
provements in the quality of NUMA management: bet-
ter policies and better programs. There exist applications
(plytrace, for example) in which the optimal policy per-
forms significantly better than any of its on-line competi-
tors. One might be able to narrow the gap with a smarter
kernel or, more likely, with application-specific hints from
the compiler, run-time system, or programmer. Hints might
suggest times and places for page moves. They might also
identify periods of false sharing during which replicas of a



page should be allowed to grow inconsistent, for example in
sorbyc. Our experience strongly suggests, however, that the
largest improvements in NUMA management will come from
changes in program behavior to increase memory reference
locality.

References

[1] Mike Accetta, Robert Baron, William Bolosky, David
Golub, Richard Rashid, Avadis Tevanian, and Michael
Young. Mach: A New Kernel Foundation for UNIX
Development. In Proc. Summer 1986 USENIX, July
1986.

[2] R. J. Anderson. An Experimental Study of Parallel
Merge Sort. Technical Report 88-05-01, Univ. of Wash-
ington Dept. of Comp. Sci., May 1988.

[3] S. J. Baylor and B. D. Rathi. An Evaluation of Mem-
ory Reference Behavior of Engineering/Scientific Appli-
cations in Parallel Systems. Tech Report 14287, IBM,
June 1989.

[4] BBN. Inside the Butterfly–Plus. BBN Advanced Com-
puters, Cambridge, MA, October 1987.

[5] J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
Adaptive Software Cache Management for Distributed
Shared Memory Arichtectures. In Proc. 17th Intl.
Symp. on Comp. Arch., pages 125–134, 1990.

[6] Brian N. Bershad, Edward D. Lazowska, and Henry M.
Levy. PRESTO: A System for Object-Oriented Paral-
lel Programming. Software: Practice and Experience,
18(8):713–732, August 1988.

[7] David Black, Anoop Gupta, and Wolf-Dietrich Weber.
Competitive Management of Distributed Shared Mem-
ory. In Proc. Spring Compcon, pages 184–190, San Fran-
cisco, CA, February 1989.

[8] David L. Black, David B. Golub, Karl Hauth, Avadis
Tevanian, and Richard Sanzi. The Mach Exception
Handling Facility. In Proc., SIGPLAN/SIGOPS Work-
shop on Par. and Dist. Debugging, pages 45–56, May
1988. SIGPLAN Notices 24(1),1/89.

[9] David L. Black and Daniel D. Sleator. Competi-
tive Algorithms for Replication and Migration Prob-
lems. Technical report, Carnegie-Mellon University,
Computer Science Department, Pittsburgh, PA 15213,
November 1989. CMU-CS-89-201.

[10] William J. Bolosky, Robert P. Fitzgerald, and
Michael L. Scott. Simple But Effective Techniques
for NUMA Memory Management. In Proc. 12th ACM
Symp. on Operating Systems Principles, pages 19–31,
December 1989.

[11] Lucien M. Censier and Paul Feautrier. A New So-
lution to Coherence Problems in Multicache Systems.
IEEE Trans. on Computers, 27(12):1112–1118, Decem-
ber 1978.

[12] E. Cooper and R. Draves. C Threads. Technical report,
Carnegie-Mellon University, Computer Science Depart-
ment, March 1987.

[13] Alan L. Cox and Robert J. Fowler. The Implementation
of a Coherent Memory Abstraction on a NUMA Multi-
processor: Experiences with PLATINUM. In Proc. 12th
ACM Symp. on Operating Systems Principles, pages
32–44, December 1989.

[14] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The
SIMPLE code. Technical report, Lawrence Livermore
Laboratory, 1978. UCID-17715.

[15] A. Garcia, D. Foster, and R. Freitas. The Advanced
Computing Environment Multiprocessor Workstation.
Research Report RC-14419, IBM T.J. Watson Research
Center, March 1989.

[16] M. A. Holliday. Reference History, Page Size, and Mi-
gration Daemons in Local/Remote Architectures. In
ASPLOS III, April 1989.

[17] Mark A. Holliday. On the Effectiveness of Dynamic
Page Placement. Technical report, Department of Com-
puter Science, Duke University, Durham, NC 27706,
September 1989. CS-1989-19.

[18] R. P. LaRowe and C. S. Ellis. Experimental Compari-
son of Memory Management Policies for NUMA Multi-
processors. Technical report, Department of Computer
Science, Duke University, April 1990. CS-1990-10.

[19] James R. Larus. Abstract Execution: A Technique
for Efficiently Tracing Programs. To appear, Software:
Practice and Experience.

[20] James M. Ortega and Robert G. Voigt. Solution of
Partial Differential Equations on Vector and Parallel
Computers. SIAM Review, 27(2):149–240, June 1985.

[21] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Har-
vey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton,
V. A. Norton, and J. Weiss. The IBM Research Parallel
Processor Prototype (RP3): Introduction and Architec-
ture. In Proc. 1985 Intl. Conf. on Parallel Processing,
pages 764–771, 1985.

[22] W. A. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. Numerical Recipes in C. Cambridge Univer-
sity Press, Cambridge, U.K., 1988.

[23] J. Stone and A. Norton. The VM/EPEX FORTRAN
Preprocessor Reference. IBM, 1985. Research Report
RC11408.

[24] Craig B. Stunkel and W. Kent Fuchs. TRAPEDS:
Producing Traces for Multicomputers Via Execution
Driven Simulation. In Performance Evaluation Review,
17(1), pages 70–78, May 1989.

[25] W. Weber and A. Gupta. Analysis of Cache Invalida-
tion Patterns in Multiprocessors. In ASPLOS III, April
1989.


