
NUMARCK: Machine Learning Algorithm for

Resiliency and Checkpointing

Zhengzhang Chen, Seung Woo Son, William Hendrix, Ankit Agrawal, Wei-keng Liao, and Alok Choudhary

Electrical Engineering and Computer Science Department

Northwestern University

Evanston, IL 60208

Email: {zzc472, sson, whendrix, ankitag, wkliao, choudhar}@eecs.northwestern.edu

Abstract—Data checkpointing is an important fault tolerance
technique in High Performance Computing (HPC) systems. As
the HPC systems move towards exascale, the storage space and
time costs of checkpointing threaten to overwhelm not only
the simulation but also the post-simulation data analysis. One
common practice to address this problem is to apply compression
algorithms to reduce the data size. However, traditional lossless
compression techniques that look for repeated patterns are
ineffective for scientific data in which high-precision data is used
and hence common patterns are rare to find. This paper exploits
the fact that in many scientific applications, the relative changes
in data values from one simulation iteration to the next are not
very significantly different from each other. Thus, capturing the
distribution of relative changes in data instead of storing the data
itself allows us to incorporate the temporal dimension of the data
and learn the evolving distribution of the changes. We show that
an order of magnitude data reduction becomes achievable within
guaranteed user-defined error bounds for each data point.

We propose NUMARCK, Northwestern University Machine
learning Algorithm for Resiliency and ChecKpointing, that makes
use of the emerging distributions of data changes between con-
secutive simulation iterations and encodes them into an indexing
space that can be concisely represented. We evaluate NUMARCK
using two production scientific simulations, FLASH and CMIP5,
and demonstrate a superior performance in terms of compression
ratio and compression accuracy. More importantly, our algorithm
allows users to specify the maximum tolerable error on a per point
basis, while compressing the data by an order of magnitude.

I. INTRODUCTION

The challenges of extreme scale computing systems [24],
[9] exist across multiple dimensions including architecture,
energy constraints, memory scaling, limited I/O, scalability
of software and applications. It is clear that the larger the
simulations using extreme-scale systems, (1) the greater the
need for effective resiliency, (2) at a faster pace, and (3) within
the constrains of limited (relatively) storage space, deeper
and more complex memory hierarchies, minimization of data
movement (particularly external to the systems) due to energy,
I/O and other constraints. The traditional models of storing raw
and uncompressed data as checkpoints will frequently become
cost prohibitive. On the other hand, it will remain necessary
to be able to store the states of simulations for resiliency and
restart purposes. Lossy compression [7], [10], on the other
hand, can help somewhat in reducing data size, but the error
rates are not easy to bound, and in large scale simulations
significant deviation from values can impact the outcome of
the simulation. Thus brute-force solutions that don’t consider
multiple dimensions of the problem to scale resilience via

checkpointing are unlikely to satisfy the constraints posed by
such a large system. Some rethinking is required that considers
the problem top-down and within multiple constraints.

A simulation calculates values on points (nodes, particles,
etc.) in a discretized space based on mathematical models and
proceeds along the temporal dimension. One can think of this
as the system transitioning from one state to the next. There
are data values (variable values) in each state and there is a
transition (call it change) from one state to the next. A typical
checkpoint attempts to store a state regardless of transition or
change. For argument sake, let’s assume that only one point’s
value changes from one time-step to the next out of a hundred
million points. Traditional techniques would still store 100
million points for both time steps regardless of this fact. What
if we stored the change or relative change? In this case, one
needs to only note the fact that one point changed and one can
rebuild the next state based on this fact. Of course, the previous
example is trivial. The following questions arise. (1) How do
we calculate change at scale? (2) How do we represent change
at scale so that the representation reduces the data size to be
stored by an order of magnitude or more, thereby addressing
the I/O problem and storage size problem? (3) How do we
learn the patterns of change? (4) How do we perform the above
tasks while minimizing data movement (more computations
locally for learning patterns of change)? (5) How do we
bound any errors from approximations? And, (6) How do we
engineer scalable software for storing, replaying, and restarting
simulations?

What if we could guarantee point-wise error bounds at
levels never imagined before, defined by a user as a design
goal, while reducing the space to store data by an order of
magnitude or more, while performing lot of the computations
locally (to reduce data movement) and taking advantage of
data reduction by potentially being able to use node-local
non-volatile storage? This paper presents a set of techniques
to achieve the above goals based on algorithms and machine
learning techniques to learn temporal change patterns, along
with a data representation to capture changes along with
algorithms and engineering solutions for storing the data in
which a user can indicate the maximum point-wide tolerable
error.

We consider that checkpointing will continue to be a very
important component of resiliency, particularly if the data
can be significantly reduced with guaranteed point-wise error
bounds that a user can control. Furthermore, the error tolerance
can be specified by the user as a parameter. For example, in

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis

978-1-4799-5500-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SC.2014.65

733

our approach, a user can indicate that maximum tolerable error
per point should be less than 0.1%, and our techniques will
meet that bound, while further reducing the mean error by
two orders of magnitude below the point-wise tolerable error.
Our approach also reduces data movement, thereby potentially
reducing the power usage which is expected to be dominated
by data movement.

To address this problem, we propose NUMARCK (pro-
nounced “Nu-Mark”), the NU Machine learning Algorithm
for Resiliency and ChecKpointing. The fundamental idea of
NUMARCK is to learn emerging distributions by capturing
temporal changes, thereby performing in-situ checkpoint ap-
proximation and reducing the data significantly (an order of
magnitude) with guarantees of error-bounds for every point.
More specifically, (1) similar to forward predictive coding in
video compression, we first compute the relative change in data
values between two consecutive timestamps or iterations; (2)
then a machine learning-based data approximation algorithm
is designed to determine the distribution of change and encode
it with low cost in space and minimal data movement (mostly
in place). Each data point is represented by its corresponding
group’s approximation value. If the difference ratio between
the approximated value and true value is larger than a user
defined error threshold, the exact value is stored; and (3)
when some fault interrupts the systems or the simulations are
aborted, our framework can restart the simulation by using
the compressed data. We successfully apply our algorithm
to climate CMIP5 (Coupled Model Intercomparison Project)
simulation and the FLASH simulation. Our experimental
results show that our algorithm outperforms existing lossy
compression methods such as B-Splines.

The remainder of this paper is organized as follows. Our
design of our methodology is described in Section II. Sec-
tion III presents our experimental setup and evaluation results.
We discuss related work in Section IV. Finally, we summarize
our findings and discuss future work in Section V.

II. METHOD

A. Overview

The intuition behind our NUMARCK method stems from
the following three observations. First, scientific simulation
data, like climate CMIP5 rlus (Surface Upwelling Longwave
Radiation) data, are considered as one type of high entropy
data [8], [18]. Such data often exhibits randomness without
any distinct repetitive patterns in one single timestamp or
iteration (see Fig. 1 (A) or (B)). Thus, traditional lossless
compression approaches [4], [17] cannot achieve appreciable
data reduction. Second, in many scientific applications, relative
changes in data values from one simulation iteration to the
next are often not very significant from the perspective of
the distribution of the change itself. For example, more than
75% of climate rlus data remains unchanged or only changes
with a percentage less than 0.5% (see Fig. 1 (C) and (D)).
Third, unlike observational data, many scientific applications
can tolerate some error-bounded loss in their simulation data
accuracy. Thus, lossy compression methods can offer some
attractive features for simulation data reduction. However, the
effectiveness of lossy compression heavily depends on the
domain knowledge to select the right compression algorithms,

Fig. 1: A slice of climate rlus simulation data: (A) original
data of iteration 1; (B) original data of iteration 2; (C) the
changing percentage of data values between two iterations; (D)
the distribution of relative data change between two iterations.

and it is very difficult to get compression beyond a small factor
with desired accuracy, not to speak of guaranteeing that the
compression error will be smaller than user’s specified error
rate.

In order to achieve the exascale goals, we must use scalable
thinking, which is orthogonal to current approaches. What if
we could learn temporal patterns and evolving distributions
of data that also involves time dimension with the goal of
data reduction? Furthermore, what if we could bound the error
to some user defined parameter? The checkpoint approxima-
tion framework for exascale scientific simulations consists of
several main continuous procedures, which are illustrated in
algorithm 1. In this paper, we propose a temporal data approx-
imation approach for scientific simulation checkpointing. An
overview of our NUMARCK approach vs. traditional check-
pointing mechanism is given in Fig. 2. The fundamental idea is
to learn emerging distributions by capturing temporal changes,
thereby performing in-situ checkpoint approximation, reducing
the data significantly (an order of magnitude) with guarantees
of per point error-bounds. Our approach consists of three
stages: (1) forward predictive coding by calculating the relative
change in data values between two consecutive timestamps or
iterations; (2) data approximation by determining distribution
of change and encoding it into another space that can be
concisely represented with low cost in space and minimal
data movement (mostly in place); and (3) simulation restart
by using the compressed data during the system restart/failure
stage.

Scientific simulations use predominantly double-precision
floating-point variables, so the remainder of the paper will
focus on data approximation/compression for these variables,
though our method can be applied to floating point numbers
of different precision as well.

B. Forward Predictive Coding

As a first step, we transform the data by computing the
relative change in data values from one iteration to the next.

734

��������

	�
�����
�

�������

��������	
��
����

��
��	������

������
������
��

�����
���	
��

��������
��
��
���

����

�������������

������
��
������������

��
�����
������
�����

	�����
�������

��������	�
���
����

�������	���
�����

��

�������������
����������

������
��
����������
����
����������

����
���������
��

���
���������

��

��

��

��

��

��

��

��

��

��

��

��
����
���������

��
�����
������

Fig. 2: Overview of traditional checkpoint vs. NUMARCK.

Algorithm 1: NUMARCK: Checkpoint Approximation
Framework for Large Scale Scientific Simulations

Input:

D: scientific simulation data
E : user tolerance error threshold
B : the approximation precision
: (i.e., the number of bytes to store each data point)

I : the number of checkpoint iterations
J : the number of data points in each iterations
S : the beginning iteration of restart
Output:

D′: approximation data
ǫ : restart data

/* The first checkpoint is compressed
by using lossless compression or
storing as it is; */

1 C0 ← Lossless(D0);
2 for ∀i ≤ I do

/* Forward predictive coding; */

3 △Di ←
Di−Di−1

Di−1

;

4 for ∀j ≤ J do
5 if abs(Di,j) < E then
6 Di,j ← Di−1;
7 end
8 else
9 D′

i,j ← approximation(△Di,j , B,E);
10 end
11 end
12 end
13 for ∀S ≤ s ≤ I do

/* Restart using the approximation
data; */

14 ǫs ← restart(D′

S , S);
15 end

Our data transformation idea shares the same spirit with video
compression algorithms especially MPEG [16] which stores
the differences between successive frames using temporal
compression. To exploit temporal redundancy between frames,
MPEG codes the remaining frames using two prediction tech-
niques: (a) forward predictive coding, which codes the actual
frame with reference to a past frame; and (b) bidirectional
prediction, which uses a past and a future frame to code the
current frame [16]. But because our checkpointing framework
is designed to enable the computing systems to recover the data
after some fault interrupts the systems or when the simulations
are aborted, only forward predictive coding is employed in our
work.

And instead of computing the difference between two
successive frames, we calculate the relative change (called
“change ratio”) as follows:

∆Di,j =
Di,j −Di−1,j

Di−1,j

, (1)

where Di,j and Di−1,j is the value of the jth data point in
iteration i and iteration i−1, respectively, and i ≥ 1. Note that
Di−1,j cannot be zero. If Di−1,j is zero, Di,j will be stored
as it is. And D0 is the first checkpoint, which will be stored
as the exact values.

One question one might ask is what is so special about
“change” in data values between two snapshots as opposed
to the values in individual snapshots? Let us take an example
of a checkpoint with 100 million data points where there are
potentially 100 million changes. Two data points where one
changes from 10 to 11 and the other from 100 to 110 have
the identical relative changes which can be represented as 10
percent change. Similarly, data points with the same change
percentage can be indexed by one number. Our idea of consid-
ering the data changes along temporal domain transforms the
data where repeated patterns are rare in individual snapshots
into a space where common patterns in change percentages
are easier to find. To ensure the quality of reduced data, one
challenge of this approach is to select a set of change values
that can represent a large number of neighbors within a small
radius, a tolerable error rate specified by the user. We will
address this challenge in next subsection.

C. Data Approximation by Learning Distribution

Once the change ratios of all data points have been cal-
culated, using machine learning techniques, we first calculate
the distributions of changes and then transform them into an
indexed space to achieve the goals of maximal data reduction.
In contrast to traditional lossy compression algorithms, our
data compression algorithm is designed to process data under
the condition that the compressed data is guaranteed with a
user-specified error bound or a user tolerance error rate E.
The value of E is usually determined based on the application
domain knowledge. In addition to E, we provide another user
parameter for controlling the precision of the approximation,
B the number of bits used to store the index of a transformed
data point. Since B bits can represent up to a maximum of
2B different values and if the number of different change
ratios in ∆Di, |∆Di|, is larger than 2B , then some of ∆Di

must be grouped together and approximated by a representative

735

−20 0 20 40

0
1

0
0

2
0

0
3

0
0

change ratio (%)

c
o

u
n

ts

(a) Equal-width binning.

−30 −20 −10 0 10 20 30

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

change ratio (%)

c
o

u
n

ts

(b) Log-scale binning.

−20 0 20 40

0
5

0
1

0
0

1
5

0
2

0
0

change ratio (%)

c
o

u
n

ts

(c) Clustering-based approximation.

Fig. 3: The histogram of the 255 bins for the dens FLASH data between iteration 32 and 33 using three different approximation
strategies.

ratio in the same group. We compute such approximation
to fit all representative change ratios into a index table of
size 2B . For each ∆Di,j , if abs(∆Di,j) < E, we use 0
as its approximation value because it already meets the user
tolerance error threshold. For abs(∆Di,j) >= E, in order
to meet the user tolerance error-bound E, we design several
strategies to learn the distribution of ∆Di and partition the
data in ∆Di based on their similarity.

1) Equal-width Binning: Histogram is a popular method to
learn the data distribution (as shown in Fig. 1 (D)). Histogram
estimates the probability distribution by partitioning the data
into discrete intervals or bins. The number of data points falling
in a bin indicates the the frequency of the observations in that
interval. Given k bins, we can only assign data points to a
maximum of k = 2B − 1 bins, as 0 being used to store all
∆Di,j with abs(∆Di,j) < E.

The equal-width binning method partitions the change
ratios in ∆Di into 2B − 1 bins of equal width. Each ratio
∆Di,j is then represented by the bin ID and approximated
by the bin center. If the difference between the original value
and the approximated one is larger than user-specified error
rate E, we store it as is (i.e., uncompressed). One obvious
disadvantage of this equal-width binning strategy is that it is
highly dependent on the range of all ratios in ∆Di, as the bin
width is calculated by dividing the range by the number of
bins. If the bin width W is smaller than 2 ∗E, then ∆Di can
be perfectly compressed by B bits, meaning all compressed
ratios are within the user-specified error threshold. However,
the maximum range of the change ratios that can be covered
by the equal-width binning strategy is 2 ∗ E ∗ (2B − 1). If
W > 2 ∗ E, and majority of the data points are distributed at
the edges of the bins, equal-width binning will produce a poor
compression result.

2) Log-scale Binning: To address the limitation of equal-
width binning when data covers a large range of values, we
propose a log-scale binning method, which assigns data points
into bins based on their e-based logarithm values. Similar
to the equal-width binning, log-scale binning also partitions
the change ratios into 2B − 1 bins, but the bin widths are
in log scale. This strategy allows to cover larger range of
change ratios, and more finer (narrower) bins can be assigned
to smaller changes and coarser (wider) bins for larger changes.
An example is shown in Fig. 3b.

3) Clustering-based Approximation: Although both equal-
width and log-scale binning methods can depict the probability
distribution of the data values, they do not perform well for
highly irregularly distributed data. For instance, when there
are multiple dense areas in the histogram and the dense areas
are spread unevenly, neither methods can capture distribution
with such characteristics. Data clustering, also known as vector
quantization, is a technique to partition data into groups of
similar data objects while maximizing the difference between
groups. Clustering has also been used in compression for
multimedia data, such as image, sound, and video data, [14],
[6], [26], as they exhibit the following common characteristics:
(1) the data objects are highly similar to one another, (2)
some loss of information is acceptable, and (3) a substantial
reduction in the data size is desired [22]. If viewed along the
temporal dimension, most of the scientific simulation data have
the similar behaviors as the multimedia data. Therefore, we
employ a cluster analysis technique to obtain locally dense
areas that can help derive a better binning result.

Our approach first applies the parallel K-means clustering
algorithm1 [1], [13] on the temporal change ratios ∆Di to get
2B −1 clusters. One intrinsic limitation in K-means clustering
is that the choice of initial clustering centroids has been proved
to influence significantly the performance of the algorithm and
quality of the results. To overcome this limitation, we initialize
the cluster centroids for K-means with prior-knowledge from
the equal-width histogram to achieve more reliable segmen-
tation results. Then a table is created that consists of the
prototypes of 2B − 1 clusters. A cluster prototype contains
information of the number of change ratios fall into this bin,
the centroid of the bin, and other metadata. Each prototype is
indexed in the table with an integer of length B bits. Each data
∆Di,j is represented by the index of the cluster it belongs. The
cluster centroid becomes the approximation value for all the
data contained in the corresponding cluster.

D. Restart With Compressed Data

During restart, NUMARCK first reads the latest uncom-
pressed, complete full checkpoint (denoted as D0) as the data
in all intermediate checkpoint files are in approximated change

1The software package for parallel K-means clustering developed by our
group can be found in http://users.eecs.northwestern.edu/∼wkliao/Kmeans/
index.html.

736

ratios between two consecutive checkpoints. NUMARCK then
reads the intermediate checkpoint files and applies each of
them to the full checkpoint data in order to build the restart
file.

Our restart mechanism rebuilds each data point using the
following method:

ǫi,j =

{

Di,j , if ζi,j = 0

D′

i−1,j ∗ (1 +△D′

i,j), otherwise,

where Di,j is the value for j-th data points in iteration i, D
′

i,j

and D′

i−1,j are the jth data points in an approximated form
at iteration i and i − 1, respectively, ǫi,j is a re-constructed
restart data, and ζi,j is the index of data Di,j to indicate if
Di,j is compressible or not. If ζi,j is equal to zero, it means
that Di,j is incompressible thus stored as an exact value (i.e.,
Di,j). Otherwise, ζi,j is equal to 1, which means Di,j is
compressible.

Note that, ǫi,j can be either an exact value (i.e., the same as
in the full checkpoint data) or approximated value. We repeat
this step for all the intermediate checkpoint files.

Since our restart phase is built from the approximated
change ratios, the reconstructed restart data points inherently
include some error. Depending on how far a restart point
from the last full checkpoint, different amount of error can
be accumulated depending on error rate exhibited at each
checkpoint step.

III. RESULTS

In this section, we first describe the datasets and evaluation
metrics used in our experiments, then evaluate NUMARCK
algorithm on two production scientific simulations, FLASH
and CMIP5. We focus on answering the following four ques-
tions:

1) What is the performance of our algorithm using the
three different approximation techniques? See Section
III-C.

2) What is the effect of our approximation parameters
like user tolerant error-bound and approximation pre-
cision? See Section III-D and Section III-E.

3) What is the performance of our algorithm compared
to other benchmark lossy compression algorithms?
See Section III-F.

4) Will the checkpointing restart mechanism be affected
by our approximation results or not? See Section
III-G.

A. Datasets

To evaluate our checkpoint compression and restart per-
formance, we use a collection of simulation checkpoint data
generated by the FLASH and climate CMIP5 simulation.

The FLASH [11] is a block-structured adaptive mesh hy-
drodynamic code that solves the compressible Euler equations
on a block structured adaptive mesh and incorporates the
necessary physics to describe the environment, including the
equation of state, reaction network, and diffusion. The problem
domain is divided into blocks distributed among a number of

MPI processes. A block is a three-dimensional array with an
additional 4 elements as guard cells in each dimension on both
sides to hold information from its neighbors. There are 24
data variables per array element, and about 80 blocks on each
MPI process. A variation in block numbers per MPI process
is used to generate a slightly unbalanced I/O load. Because of
the fixed number of blocks for each process, an increase in
the number of processes linearly increases the total number of
blocks. We set the block size to be 16×16, which corresponds
to about 64 MB of data per process. There are 24 variables,
each of which is written using collective write calls. During
checkpointing, FLASH writes one checkpoint file and two plot
files for visualization, which contain centered and corner data.
Since we focus on checkpoint/restart, in our experiments, we
evaluated the checkpoint files only. Among all 24 variables,
only 10 variables are written to checkpoint files: dens, eint,
ener, gamc, game, pres, temp, velx, vely, velz.

CMIP (Coupled Model Intercomparison Project) is sup-
ported by WCRP (World Climate Research Program). The
CMIP5 (CMIP Phase 5) experiment design [23] has been
finalized with the following suites of experiments: (1) Decadal
Hindcasts and Predictions simulations, (2) “long-term” sim-
ulations, (3) “atmosphere-only” simulations for especially
computationally-demanding models. Out of the dozens vari-
ables available in CMIP5, we randomly chose five including
mrsos (Moisture in Upper Portion of Soil Column), mrro
(Total Runoff), mc (Convective Mass Flux), rlds (Surface
Downwelling Longwave Radiation), rlus (Surface Upwelling
Longwave Radiation), and abs550aer (Ambient Aerosol Ab-
sorption Optical Thickness at 550 nm). The resolution for these
data is 2.5◦ by 2◦. mc is a monthly simulation data, while other
four are daily data.

B. Evaluation Metrics

We utilize several metrics to evaluate the performances:
mean error rate, incompressible ratio, and compression ratio.

Mean error rate is used to measure the accuracy of our data
approximation algorithm. It is the average difference between
the approximated change ratio and the real change ratio across
all data points for each iteration.

We also used the maximum error rate, which is the max-
imum difference between the approximated change ratio and
the real change ratio across all data points for each iteration.

Incompressible ratio γ is the fraction of the data needed to
be stored as exact values in one iteration.

The compression ratio R for data D of size |D| reduced to
size |D

′

| is defined as:

R =
|D| − |D

′

|

|D|
× 100%. (2)

With incompressible ratio γ, the bit number B used to
store the approximation index, our NUMARCK algorithm’s
compression ratio R can be defined as:

R =
|D| − ((1− γ) ∗ B

64
+ γ ∗ |D|+ (2B − 1) ∗ 64)

|D|
(3)

737

(a) Incompressible ratio (%) for the equal-
width binning.

(b) Incompressible ratio (%) for the log-scale
binning.

(c) Incompressible ratio (%) for the
clustering-based approximation.

(d) Mean error rate (%) for the equal-width
binning.

(e) Mean error rate (%) for the log-scale
binning.

(f) Mean error rate (%) for the clustering-
based approximation.

Fig. 4: NUMARCK’s performance on CMIP5 simulation data. The point-wise user specified error rate E = 0.1%.

(a) Incompressible ratio (%) for the equal-
width binning.

(b) Incompressible ratio (%) for the log-scale
binning.

(c) Incompressible ratio (%) for the
clustering-based approximation.

(d) Mean error rate (%) for the equal-width
binning.

(e) Mean error rate (%) for the log-scale
binning.

(f) Mean error rate (%) for the clustering-
based approximation.

Fig. 5: NUMARCK’s performance on FLASH simulation data. The point-wise user specified error rate E = 0.1%.

738

where (1− γ) ∗ B
64
is the storage requirement for the index of

the compressed data, γ ∗ |D| is for the incompressible data,
and (2B − 1) ∗ 64 is for the approximation values/representive
values of the 2B − 1 bins or clusters.

We can further use a lossless compression technique like
FPC [4] on our compressed data to achieve higher compression
ratio. But since how to design a lossless algorithm to compress
the data approximation result is out of the scope of this work,
we will not include lossless compression result in this paper.

C. Approximation Performance of Different Strategies

We tested the three data approximation strategies, including
equal-width binning, log-scale, and clustering-based method,
on FLASH and CMIP5 simulation data with ten different vari-
ables. We set the user tolerance error threshold to be 0.1% and
the approximation precision to be 8 bits. Fig. 4 and 5 show that
the clustering-based strategy achieves the best performance on
all ten datasets in terms of incompressible ratio, and log-scale
method outperforms the equal-width binning. We also observe
that CMIP5 data are more challenging than the FLASH data for
data approximation task. For example, clustering-based method
achieves less than 7% incompressible ratio on all FLASH
data, while it only gets maximum 25% incompressible ratio in
CMIP5 data. In terms of mean error rate, three approximation
strategies achieve comparable results with less than 0.025% on
all datasets.

D. Effect of Different Data Approximation Precision

So far, we used 8 bits to store the approximation results. In
this experiment, we want to demonstrate how NUMARCK’s
performance gets affected by the approximation precision.
Here, the simple equal-width binning strategy is used, and
CMIP rlds data is chosen. The user tolerance error threshold
is set to be 0.1%. As shown in Fig. 6, if the approximation
precision is increased to 9 bits instead of 8 bits, the average
incompressible ratio decreases dramatically from 60% to 20%,
and the average compression ratio increases by more than
30%, while the mean error rate only increases by less 0.02%.
Even better, if the approximation precision is increased to 10
bits, all data points now become compressible and the average
compression ratio increases to nearly 85%, while all mean
error rate are below than 0.05% which is only an half of the
user tolerance error threshold. Log-scale binning strategy and
clustering-based strategy achieved similar trends on the rlds
data and other simulation data.

E. Effect of Different Error Rates

So far, we fixed the user tolerance error threshold to be
0.1%. In this experiment, we want to demonstrate how our
NUMARCK algorithm’s performance gets affected by the
user tolerance error threshold. Here, the clustering-based ap-
proximation strategy is used, and one of the most challenging
simulation data–CMIP abs550aer data is chosen. The user
tolerance error threshold is set to be 0.1%. As shown in Fig.
7, with the user tolerance error is increasing from 0.1% to
0.5%, the average incompressible ratio keeps decreasing from
more than 40% to less than 10%, and the average compression
ratio keeps increasing from less than 50% to more than 80%.
Although the mean error rate increases from 0.02% to 0.12%,

(a) Incompressible ratio (%).

(b) Mean error rate (%).

(c) Compression ratio (%).

Fig. 6: NUMARCK’s performance with different data approx-
imation precisions on rlds data for 100 iterations when the
equal-width binning is used.

all mean error rate is way smaller than the user tolerance error.
For example, for the fixed the user tolerance error 0.4%, the
average mean error rate is still less than 0.1%.

739

(a) Incompressible ratio (%).

(b) Mean error rate (%).

(c) Compression ratio (%).

Fig. 7: NUMARCK’s performance with different user toler-
ance error threshold on abs550aer data for 60 iterations when
the clustering-based approximation is used.

F. Comparison with Lossy Compression Algorithms

In this section, we compare the performance of NU-
MARCK with B-Splines [7] and ISABELA [15] algorithms
on 10 scientific datasets from CMIP5 and FLASH simulations.
The compression accuracy is measured by using Pearson’s
correction coefficient (ρ) and root mean square error (ξ)
between the original data vector D = (d1, d2, ..., dn) and
decompressed data vector D

′

= (d
′

1
, d

′

2
, ..., d

′

n) defined as
follows:

ξ =

√

∑n

i=1
(di − d

′

i)
2)

n
(4)

TABLE I: Compression ratio comparison on ten simulation
data.

B-Splines ISABELA NUMARCK

rlus 20±0.000 80.078±0.000 81.776±0.014

mrsos 20±0.000 80.078±0.000 81.947±0.012

mrro 20±0.000 80.078±0.000 77.587±0.000

rlds 20±0.000 80.078±0.000 80.756±0.097

mc 20±0.000 80.078±0.000 82.002±0.000

dens 20±0.000 75.781±0.000 87.476±0.000

pres 20±0.000 75.781±0.000 86.725±0.009

temp 20±0.000 75.781±0.000 86.876±0.004

ener 20±0.000 75.781±0.000 86.849±0.004

eint 20±0.000 75.781±0.000 86.856±0.002

We compare the averages of compression ratioR, Pearson’s
correction coefficient (ρ) and root mean square error (ξ) across
50 iterations. The compression ratio of ISABELA algorithm
is decided by the window sizeW0 and the number of B-splines
constants PI [15], while the compression ratio of regular B-
splines algorithm is solely dependent on the number of con-
stants PS , which requires PS ∗64 bits to store the compressed
data. And the compression ratio of our NUMARCK algorithm
is defined by Eq.3.

For fair comparison, we assign the same number of
bits for storing the approximation index in ISABELA and
NUMARCK, that is the window size W0 and B. More
specifically, we use W0 = 29 = 512 and B = 9 for
compressing the CMIP5 simulation data including rlus, mrsos,
mrro, rlds and mc, while we use W0 = 28 = 256 and
B = 8 for compressing the FLASH simulation data because
previous experimental results showed that FLASH data is
easier to compress than CMIP5 data. The PI is fixed to be
30 as suggested in paper [15]. The user tolerant error-bound
E = 0.5% and clustering-based approximation strategy are
used in NUMARCK for all datasets. For B-Splines algorithm,
because it requires PS ∼ n, where n is the dimension of
the data vector of one iteration, to provide accurate lossy
compression, we assign PS = 0.8 ∗ n for all datasets.

The comparison results can be seen in Table I and II.
Our NUMARCK algorithm got higher compression ratio than
ISABELA and B-Splines in 9 out of 10 datasets. Table II
shows that out of 10 datasets, 9 datasets exhibit ρ = 0.999 with
our algorithm. The ξ values for B-Splines are consistently an
order of magnitude higher than ISABELA and NUMARCK.
NUMARCK outperforms ISABELA on all datasets with

740

TABLE II: Compression accuracy comparison on ten simulation data.

ρ ξ

B-Splines ISABELA NUMARCK B-Splines ISABELA NUMARCK

rlus 0.999± 0.000 0.999±0.000 0.999±0.000 2.677±0.010 0.703±0.002 0.524±0.034

mrsos 0.987±0.000 0.989±0.000 0.987± 0.000 1.874±0.001 0.397±0.001 0.365±0.000

mrro 0.968±0.001 0.967±0.001 0.999± 0.000 0.000±0.000 0.000±0.000 0.000±0.000

rlds 0.999±0.001 0.999±0.000 0.999±0.000 3.213±0.025 0.638±0.003 0.567±0.007

mc 0.999±0.000 0.999±0.000 0.999±0.000 207.561±1.876 215.727±1.791 188.488±159.827

dens 0.989±0.000 0.998±0.000 0.999±0.000 0.048± 0.000 0.014±0.000 0.000±0.000

pres 0.994±0.000 0.998±0.000 0.999±0.000 0.950± 0.022 0.287±0.004 0.008±0.000

temp 0.993±0.000 0.997±0.000 0.999±0.000 0.000±0.000 0.000±0.000 0.000±0.000

ener 0.993±0.000 0.998±0.000 0.999±0.000 15.178 ±0.113 4.833±0.097 0.176 ±0.004

eint 0.993±0.000 0.998±0.000 0.999±0.000 15.030±0.053 4.891±0.085 0.171±0.004

smaller average root mean square errors. Note that the larger
variance (i.e., 159.827) of ξ, NUMARCK got, on mrsos is
due to the big range of ξ values ([155.196, 214.864]) over the
50 iterations. But even the maximum ξ value of NUMARCK
on mrsos is still smaller than the mean ξ value (i.e., 215.727)
of ISABELA.

G. Checkpoint/Restart

This experiment shows how the application restart mech-
anism works using our checkpoint files. Fig. 8 shows the
mean and maximum error rate when the FLASH was rerun
using reconstructed restart file when the equal-width, log-
scale and clustering-based binning strategy, respectively. In
order to show the impact of accumulated error rates through
intermediate checkpoint files (in approximated value), we
varied the reconstruction points up to 4 from the full complete
checkpoint files. In order to see the impact of restarting
simulation at different checkpoint steps, we ran all restart runs
up to 8 consecutive checkpoints. We measured the mean and
maximum error, both are accumulated, throughout all restart
experiments.

We make several observations. First of all, we observe that
FLASH can run successfully using the restart files that are
reconstructed from approximated values. This is a promising
result because simulation codes can run with restart files that
have a certain error bounds. We also observe that two variables
(pres and temp) showed very similar behaviors because the
computation applied to both is actually the same. Therefore,
the error rate are affected the same way for both. In general,
although there are some variations throughout checkpoints, the
mean error rate are very small; most are far below the threshold
we used (0.1%). As shown in the previous section, dens is
easy to compress regardless of whichever binning strategy is
used, so it showed minimal variations in error rates during
restarted checkpoints. Another important thing we observed
is that the farther restart points from the full checkpoint, the
higher maximum error rate. This is expected because higher
restart point means more accumulated error. The last important
observation from these results is that in certain checkpoints, the
restart files made out of the log binning showed higher error
rates than the equal-width binning. This is because there is a
tradeoff between the compression ratio and the error tolerated
between two binning strategies. Remember that we showed
that the equal-width binning strategy achieved lower compres-
sion ratio than the logging binning. This means that more data

points are stored as exact values (i.e., incompressible) in the
equal-width binning, thereby introducing less error rates during
restart phases. Lastly, we observe that the clustering-based
binning strategy gives the lowest maximum error rates. Also,
only the clustering-based strategy does not exceed our specified
error bound (0.1%). Combined with the highest compression
ratio we achieved, we conclude that bins identified by our
clustering-based method best represent the distribution of ratio
changes in terms of data reduction and error rates.

IV. RELATED WORK

Given the looming challenge of I/O scalability in breaking
the barrier to exascale, it is not surprising that several other
approaches have already been proposed to overcome the chal-
lenges of I/O at exascale. However, in the context of check-
pointing, much of this work has focused on the application of
lossless compression techniques, as many researchers assume
that restart data must replicate the previous state exactly.
As such, we primarily contrast our work against lossless
techniques for reducing checkpointing overhead. In reality,
however, simulation parameters are often calibrated using data
that are themselves subject to measurement error or other
inaccuracies. Critically, very small deviations (< 1%) in restart
fidelity are unlikely to obscure the actionable insights from
scientific simulations, allowing for much higher performance
gains than much of the existing work in this area.

Welton et al. [25] describe IOFSL, an I/O middleware
that invisibly integrates compression algorithms with standard
POSIX and MPI I/O. They evaluate their framework on using
widely-available compression algorithms on synthetic and real
datasets. The framework could potentially serve as a baseline
I/O utility for HPC systems; however, the algorithms they se-
lected performed rather poorly on scientific data. Incorporating
other algorithms, though, such as the one described in this
paper, could enable seamless integration with existing scientific
simulation codes.

Islam et al. [12] present MCRENGINE, a software frame-
work that interleaves compatible data between checkpoint files
before applying a compression algorithm selected by data type
(double vs. float vs. other) and compressing the output of
this algorithm with a general purpose compression algorithm.
The authors tested MCRENGINE on five different codes that
exhibited this type of compaitibility between checkpoint files
and compressed the checkpoint data by a factor of 1.2–5. While

741

(a) mean error (%): equal-width (b) mean error (%): log-scale (c) mean error (%): clustering-based

(d) max error (%): equal-width (e) max error (%): log-scale (f) max error (%): clustering-based

Fig. 8: Mean and maximum error rate when FLASH is restarted with reconstructed checkpoint files using different binning
strategies. The reconstructed restart files at different checkpoint (2, 3, and 4), and the FLASH simulation continued 8 more
checkpoints (iterations) from restarting. Note that the error rates in (a), (c), and (d) are very close to zero except one case.

this checkpoint-level similarity may not be applicable to every
simulation code, the technique of recombining this data before
compression has clear strengths.

Bicer et al. [3] propose a novel compression algorithm
for climate data, CC, that takes advantage of the spatial and
temporal locality inherent in climate data to accelerate storage
and retrieval for climate applications. Their methodology uses
an exclusive or (xor) of adjacent or consecutive data to
reduce the entropy in the data, which is analogous to taking
a difference or ratio in the sense that similar data values will
“cancel out” to form easily compressed datasets. Their method
can also be extended to lossy compression, though they do not
present any results showing compression greater than 65%.

Schendel et al. propose ISOBAR [20], [19], [21], an I/O
framework that incorporates data compression to accelerate
I/O at scale. While their technique also divides the data
into compressible and incompressible segments, ISOBAR uses
lossless compression to reduce data size, resulting in lower
performance than lossy techniques.

Bautista-Gomez and Capello [2] propose an algorithm

related to ISOBAR in that both are lossless compression algo-
rithms that seek to identify low-entropy segments of floating-
point data and compress these independently. Bautista-Gomez
and Capello, however, “pre-condition” the data by applying
a bitwise (xor) mask to the data in order to reduce its
entropy before compression. They present results for a number
of scientific datasets, achieving a maximum of around 40%
compression.

While not targeted to work on checkpoint data, other work
on lossy compression could potentially be applied in this
space to a similar effect. For example, Lakshminarasimhan et
al. [15] described ISABELA, a compression technique based
on applying B-splines to sorted data. By preconditioning the
data, ISABELA was able to achieve high compression on data
that was previously regarded as “incompressible,” while losing
minimal data fidelity (≥ 0.99 correlation with original data).
Lakshminarasimhan et al. did not consider applying ISABELA
to checkpoint data because they assume checkpoint data do not
permit approximation.

As an alternative technique, Chen [5] describes Algorithm-
Based Fault Tolerance (ABFT), a technique that eschews

742

traditional checkpointing techniques to incorporate error re-
covery into algorithmic design. Chen demonstrates essentially
overhead-free recovery mechanisms for the Jacobi method
and conjugate gradient descent, algorithmic error recovery
mechanisms are by necessity specific to the code being run.
Moreover, they are potentially vulnerable to compound or
cascading failures, which periodic checkpointing would help to
alleviate, even in cases where such techniques are applicable.

V. CONCLUSION

Many scientific applications rely on a checkpoint/restart
mechanism to tolerate system failures, which is becoming
increasingly challenging for extreme-scale computing systems
because of limited I/O, storage capacity, power requirements
and other costs. This paper has demonstrated that capturing
the distribution of relative changes in data instead of storing
data itself allows us to bring in the temporal dimension of
the checkpoint data and learn the evolving distribution of the
changes. We show that an order of magnitude data reduction
becomes achievable with user-defined and guaranteed error
bounds by transforming the learned distributions into another
space. We applied several machine learning-based binning
mechanisms to store those relative changes approximately
within a guaranteed user-specified error rate. Our evaluation
with the checkpoint data from two scientific simulations
(CMIP5 and FLASH) indicates that our mechanism allows
for a very high compression ratio while guaranteeing user-
specified error rate. We also showed that our approach achieves
better compression ratio with the fixed error rate or higher
accuracy with the fixed compression ratio than existing lossy
compression techniques. Finally, we showed that how restart
files can be reconstructed from approximated checkpoint files,
and that the FLASH simulation can actually restart success-
fully while maintaining the error rate within user-specified
bounds.

What we present in this paper is just a first step towards a
scalable resiliency solution including checkpoint/restart mech-
anism for extreme scale systems. Design of functions, local
computations, minimizing data movements and other aspects
are a part of future work. NUMARCK’s mechanisms in
learning the evolving data distributions can also enable un-
derstanding anomalies at scale, thereby potentially identify-
ing erroneous calculations due to soft errors or hardware
errors. Furthermore, adaptation of these techniques can help
enable scalable in-situ analysis as well as determining dynamic
checkpointing frequency based on how evolving distributions
change.

ACKNOWLEDGMENT

This work is supported in part by the following grants: NSF
awards CCF-1409601, CCF-1029166, and ACI-1144061, and
IIS-1343639; DOE awards DE-SC0005309, DESC0005340,
and DESC0007456; AFOSR award FA9550-12-1-0458.

REFERENCES

[1] A. Agrawal, M. Patwary, W. Hendrix, W.-k. Liao, and A. Choudhary,
High Performance Big Data Clustering. IOS Press, 2013, pp. 192–211.

[2] L. A. Bautista-Gomez and F. Cappello, “Improving floating point
compression through binary masks,” in Proceedings of the IEEE In-
ternational Conference on Big Data, 2013, pp. 326–331.

[3] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt, “Integrating
Online Compression to Accelerate Large-Scale Data Analytics Appli-
cations,” in IEEE 27th International Symposium on Parallel Distributed
Processing, May 2013, pp. 1205–1216.

[4] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor
for double-precision floating-point data.” IEEE Trans. Computers,
vol. 58, no. 1, pp. 18–31, 2009. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/tc/tc58.html#BurtscherR09

[5] Z. Chen, “Algorithm-based Recovery for Iterative Methods Without
Checkpointing,” in Proceedings of the International Symposium on High
Performance Distributed Computing, 2011, pp. 73–84.

[6] C.-H. Chou, M.-C. Su, and E. Lai, “A New Cluster Validity Measure
and Its Application to Image Compression,” Pattern Anal. Appl., vol. 7,
no. 2, pp. 205–220, July 2004.

[7] J. J. Chou and L. A. Piegl, “Data Reduction Using Cubic Rational B-
splines,” IEEE Computer Graphics and Applications, vol. 12, no. 3, pp.
60–68, May 1992.

[8] T. M. Cover and J. Thomas, Elements of Information Theory. Wiley,
1991.

[9] D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen, J. Krueger,
S. Kamil, and M. Mohiyuddin, “Energy-Efficient Computing for
Extreme-Scale Science,” IEEE Computer, vol. 42, no. 11, pp. 62–71,
2009.

[10] M. Frazier, An introduction to wavelets through linear algebra, ser.
Undergraduate texts in mathematics. Springer, 1999.

[11] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q.
Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “FLASH:
An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical
Thermonuclear Flashes,” The Astrophysical Journal Supplement Series,
vol. 131, no. 1, p. 273, 2000.

[12] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R. de Supinski,
and R. Eigenmann, “McrEngine: A Scalable Checkpointing System
Using Data-aware Aggregation and Compression,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, 2012, pp. 17:1–17:11.

[13] R. Jin, A. Goswami, and G. Agrawal, “Fast and Exact Out-of-core and
Distributed K-means Clustering,” Knowl. Inf. Syst., vol. 10, no. 1, pp.
17–40, 2006.

[14] N. B. Karayiannis and P.-I. Pai, “Fuzzy Vector Quantization Algorithms
and Their Application In image Compression,” IEEE Transactions on
Image Processing, vol. 4, pp. 1193–1201, 1995.

[15] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the Incompressible with
ISABELA: In-situ Reduction of Spatio-temporal Data,” in Proceedings
of the 17th International Conference on Parallel Processing, 2011, pp.
366–379.

[16] D. Le Gall, “MPEG: A Video Compression Standard for Multimedia
Applications,” Commun. ACM, vol. 34, no. 4, pp. 46–58, April 1991.

[17] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast Lossless Compres-
sion of Scientific Floating-Point Data,” in DCC, 2006, pp. 133–142.

[18] K. Sayood, Introduction to Data Compression (2nd Ed.). San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000.

[19] E. Schendel, Y. Jin, N. Shah, J. Chen, C. Chang, S.-H. Ku, S. Ethier,
S. Klasky, R. Latham, R. Ross, and N. Samatova, “ISOBAR Precondi-
tioner for Effective and High-throughput Lossless Data Compression,”
in Proceedings of the 28th IEEE International Conference on Data
Engineering, 2012.

[20] E. Schendel, S. Pendse, J. Jenkins, D. B. II, Z. Gong, S. Lakshmi-
narasimhan, Q. Liu, S. Klasky, R. Ross, and N. Samatova, “ISOBAR
Hybrid Compression-I/O Interleaving for Large-scale Parallel I/O Op-
timization,” in Proceedings of the International ACM Symposium on
High Performance Parallel and Distributed Computing, June 2012.

[21] N. Shah, E. R. Schendel, S. Lakshminarasimhan, S. V. Pendse,
T. Rogers, and N. F. Samatova, “Improving I/O Throughput with
PRIMACY: Preconditioning ID-Mapper for Compressing Incompress-
ibility,” in Proceedings of the IEEE International Conference on Cluster
Computing, September 2012.

[22] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison Wesley, May 2005.

743

[23] K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An Overview
of CMIP5 and the Experiment Design,” Bull. Amer. Meteor. Soc.,
vol. 93, no. 4, pp. 485–498, Oct. 2012. [Online]. Available:
http://dx.doi.org/10.1175/bams-d-11-00094.1

[24] J. Torrellas, “Architectures for Extreme-Scale Computing,” Computer,
vol. 42, no. 11, pp. 28–35, November 2009.

[25] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross,
“Improving I/O Forwarding Throughput with Data Compression,” in
Proceedings of the IEEE International Conference on Cluster Comput-
ing, 2013, pp. 438–445.

[26] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra, “Adaptive Key
Frame Extraction using Unsupervised Clustering,” in Proceedings of
the International Conference on Image Processing, 1998, pp. 866–870.

744

