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Abstract

We propose a novel framework for the deterministic construction of linear, near-isometric
embeddings of finite sets of data points. Given a set of training points X ⊂ RN , we consider
the secant set S(X ) that consists of all pairwise difference vectors of X , normalized to lie
on the unit sphere. We formulate an affine rank minimization problem to construct a
matrix Ψ that preserves the norms of all the vectors in S(X ) up to a distortion parameter
δ. While affine rank minimization is NP-hard, we show that this problem can be relaxed
to a convex program that can be solved using a tractable semidefinite program (SDP).
To enable scalability of the proposed SDP to very large-scale problems, we adopt a two-
stage approach. First, in order to reduce compute time, we develop a novel algorithm
based on the Alternating Direction Method of Multipliers (ADMM) that we call Nuclear
norm minimization with Max-norm constraints (NuMax). Second, we develop a greedy,
approximate version of NuMax based on the column generation method commonly used
to solve large-scale linear programs. We demonstrate that our framework is useful for a
number of applications in machine learning and signal processing via a range of experiments
on large-scale synthetic and real datasets.

Keywords: Linear Embeddings, Dimensionality Reduction, Compressive Sensing

1. Introduction

1.1 Motivation

We are in the throes of a “data crisis”. The sheer size of raw data acquired and processed by
data sources of diverse modalities poses a challenge to current state-of-the-art information
processing systems. Fortunately, a significant body of work has emerged in machine learning
research that can help counter this formidable challenge. This line of work is often termed
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dimensionality reduction and typically involves devising a very concise representation of the
high-dimensional data, with as little loss of intrinsic information as possible. Such a concise
representation is often called a low-dimensional embedding.

The canonical approach in statistics to constructing such an embedding is principal
components analysis (PCA) (Moore, 1981). A closely-related technique, better suited for
classification applications, is Linear Discriminant Analysis (LDA) (Fisher, 1936). PCA
and LDA are both linear techniques. Subsequently, several non-linear generalizations (e.g.,
metric- and non-metric multi-dimensional scaling (Cox and Cox, 1994), kernel PCA (Mika
et al., 1998)) have been developed; see Section 2.2 for a detailed discussion. Linear tech-
niques enjoy two broad advantages:

1. Computational efficiency: The dimensionality reduction process for linear embeddings
can be explicitly represented by a matrix mapping with fewer rows than columns. For
a specific high-dimensional data vector, the dimensionality reduction is achieved via
a simple matrix-vector multiplication.

2. Generalizability: Linear embeddings produce a smooth, globally defined mapping that
can be easily applied to unseen, out-of-sample data vectors.

In this paper, we will exclusively focus on linear dimensionality reduction techniques.
Consider PCA as a conceptual representative for such techniques. It is well-known that a
PCA embedding has an important drawback: PCA can arbitrarily distort pairwise distances
between sample data points (Achlioptas, 2001). Due to this behaviour, PCA can potentially
map two distinct points in the ambient signal space to a single point in the low-dimensional
embedding space, rendering them indistinguishable. Such a distortion of pairwise distances
is symptomatic of other linear embedding techniques developed in the literature, including
LDA, metric multi-dimensional scaling (Cox and Cox, 1994), metric learning (Yang and
Jin, 2006), locality-preserving projections (LPP) (He and Niyogi, 2010), and many others.

The susceptibility of linear embedding methods to produce arbitrary distortions of pair-
wise distances is an important pitfall, both in theory and practice. Algorithms in machine
learning often assume the availability of (reasonably) accurate estimates of pairwise dis-
tances between data points, and we will discuss some of these algorithms in Section 5. Any
embedding technique that does not guarantee preservation of pairwise distances, therefore,
violates this assumption and can potentially hamper the performance of such algorithms.

An example of a linear embedding technique that avoids the above pitfall is the method
of random projections. Consider X , a cloud of Q points in a high-dimensional Euclidean
space RN . The Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss, 1982) states
that X can be linearly mapped to a subspace of dimension M = O (logQ) with very small
distortion of the

(
Q
2

)
pairwise distances between the Q points (in other words, the mapping

is near-isometric). Further, this linear mapping can be easily implemented in practice; one
simply constructs a matrix Φ ∈ RM×N with M � N whose elements are drawn randomly
from a certain probability distribution. Then, with high probability, Φ is near-isometric
under a certain lower-bound on M (Johnson and Lindenstrauss, 1982; Achlioptas, 2001).

Random projections can be extended to more general signal classes beyond finite point
clouds. For example, random linear projections provably preserve, up to a given distortion,
all pairwise distances between points lying on compact, differentiable low-dimensional man-
ifolds (Baraniuk and Wakin, 2009; Clarkson, 2008) as well as pairwise distances between all
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sparse signals (Baraniuk et al., 2008). Random projections have attracted significant atten-
tion in machine learning and theoretical computer science over the last two decades. The
intuition of using random linear projections is also a fundamental component of compres-
sive sensing (CS), an emergent framework for signal acquisition and reconstruction (Candès,
2006; Donoho, 2006).

Despite their conceptual simplicity, random projections also suffer from certain short-
comings. Their theoretical guarantees are probabilistic (i.e., there is a non-zero chance that
the obtained embedding does not satisfy a (near) isometry), and asymptotic (i.e., the guar-
antees hold only when the problem dimensions are sufficiently high). Further, a random
mapping is independent of the data under consideration and hence cannot leverage any
special geometric structure of the data if present.

1.2 Our Contributions

In this paper, we propose a general deterministic approach for constructing linear, near-
isometric embeddings of a finite high-dimensional point cloud. Our approach is based on
a specific convex relaxation that lends itself both to efficient algorithms for constructing
embeddings as well as easy specialization to specific applications.

Optimization framework. Given a set of training points X ⊂ RN , we consider
the secant set S(X ) consisting of all pairwise difference vectors of X normalized to lie on
the unit sphere. We formulate an affine rank minimization problem (3) to construct a
matrix Ψ that preserves the norms of all of the vectors in S(X ) up to a desired distortion
parameter δ. The affine rank minimization problem is known to be NP-hard, and so we
perform a convex relaxation to obtain a trace-norm minimization (4), that is equivalent to
a tractable semidefinite program (SDP). The SDP can be solved using any generic interior-
point method for convex programming (for example, the solvers SDPT3 (Tütüncü et al.,
2003) or SeDuMi (Polik, 2010)).

Efficient algorithms. While our proposed formulation can be solved using out-
of-the-box convex solvers, the convergence of generic SDP solvers for our specific problem
is typically very slow, even for small problem sizes. Further, the presence of the max-
norm constraints in (4), though convex, negates the direct application of existing first-order
methods for large-scale semidefinite programming (Wen, 2009).

We resolve this issue by developing two new algorithms. First, we develop an algorithm
that we call Nuclear norm minimization with Max-norm constraints (NuMax) to solve (4).
NuMax is based on the Alternating Direction Method of Multipliers (ADMM); it decouples
the complex SDP formulation (4) into a sequence of easy-to-solve subproblems and enables
much faster rates of convergence than standard approaches. Second, we propose a modified,
greedy version of NuMax that mirrors the column generation (CG) approach commonly used
to solve large-scale linear programs (Dantzig and Wolfe, 1960). With this modification,
NuMax can efficiently solve problems where the number of elements in the secant set S(X ),
i.e., the number of constraints in (4), is extremely large (e.g., 109 or greater).

Applications. We demonstrate that the NuMax framework is useful for a number
of applications in machine learning and signal processing. First, if the training set X com-
prises sufficiently many points that are uniformly drawn from a low-dimensional smooth
manifoldM, then the matrix Ψ represents a near-isometric linear embedding over all pair-
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wise secants of M. In other words, Ψ satisfies the restricted isometry property (RIP) for
signals belonging to M and therefore enables the design of efficient measurement matrices
for the compressive sensing of manifold-modeled datasets. Second, since the embedding Ψ
(approximately) preserves all pairwise secants in the training set X , it is also guaranteed to
(approximately) preserve nearest-neighbors of all points of X . Therefore, NuMax produces
an efficient method to design linear hash functions for high-dimensional data retrieval.

Going further, by carefully pruning the secant set S(X ), we can tailor Ψ for more
general signal inference tasks, such as supervised classification. Specifically, in the context
of classification, instead of preserving the lengths of the secants, we can seek to increase
the inter-class distances while shrinking the intra-class distances. For a fixed distortion
parameter, this has the dual benefit of decreasing the dimensionality of the embedded
space while increasing the classification rate. Several numerical experiments in Section 5
demonstrate the advantages of this approach.

1.3 Paper outline

We organize this paper as follows. In Section 2 we provide a brief background on existing
methods for linear dimensionality reduction and highlight some connections with compres-
sive sensing. In Section 3 we introduce our main theoretical contributions and propose the
SDP formulation for designing “good” linear embeddings. In Section 4 we develop efficient
algorithms that can solve our proposed SDP for large-scale problems. In Section 5 we ap-
ply our linear embedding framework to a number of diverse problems and demonstrate its
efficiency both on synthetic and real-world datasets. In Section 6 we provide concluding
remarks and list potential directions for future work.

2. Background

2.1 Notation

In this paper, we will exclusively work with real-valued vectors and matrices; howecver
our techniques can be extended to the complex case mutatis mutandis. We use low-
ercase boldface letters to denote vectors, uppercase boldface letters to denote matrices,
and calligraphic letters to denote sets or set-valued operators. The `p-norm of a vector
x = [x1, . . . , xN ]T ∈ RN is defined as

‖x‖p =


(∑N

i=1 |xi|p
) 1

p
, p ∈ [1,∞)

max
i=1,2,...,N

|xi|, p =∞.

Given two symmetric matrices X,Y ∈ RN×N , we write X � Y if the matrix X − Y is
positive semidefinite (PSD). Denote the singular value decomposition (SVD) of a matrix
X ∈ RN×N as X = UΣVT , where Σ = diag(σ) is a diagonal, non-negative matrix where
σ is the vector of (sorted) singular values of X. The rank of X is equal to the number of
nonzero entries in σ. The Frobenius norm of X, denoted by ‖X‖F , is the square root of
the sum of squared entries of X, or equivalently, the `2-norm of σ. The nuclear norm of X,
denoted by ‖X‖∗, is equal to the sum of its singular values, or equivalently, the `1-norm of
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σ. When X is a positive semidefinite (PSD) symmetric matrix, ‖X‖∗ is equal to the trace,
or the sum of diagonal values, of X.

2.2 PCA and MDS

Consider a set of Q data vectors X = {x1,x2, . . . ,xQ} ⊂ RN , where N,Q are potentially
very large. We group the elements of X as columns in the matrix X ∈ RN×Q, which we
term the data matrix. Given a data matrix, a natural question is whether the Q points
can be embedded into a lower-dimensional space RM , M < N with minimal distortion.
One such embedding can be obtained via a popular statistical technique known as principal
components analysis (PCA). PCA was first proposed by Pearson (Pearson, 1901) and is
also sometimes referred to as the Karhunen-Loéve transform or the Hotelling transform.
The work of Eckart and Young showed that the principal components can be efficiently
discovered via a singular value decomposition (SVD) of the data covariance matrix (Eckart
and Young, 1936).

PCA is ubiquitous in machine learning and statistics (Dony and Haykin, 1995; Tipping
and Bishop, 1999). The method proceeds as follows; given X, we perform an SVD of X, i.e.,
compute X = UΣVT , and then linearly project the columns of X onto the subspace spanned
by the r leftmost columns of U (termed the PCA basis vectors). Denote the projected
columns by the rank-r matrix Xr (of size N × Q). Then, it is well-known that Xr is the
optimal approximation to X in terms of the Frobenius norm, i.e., ‖X−Xr‖F ≤ ‖X−Y‖F ,
where Y is any other rank-r matrix.

Since the Frobenius norm measures the error aggregated over all columns of a matrix,
PCA can be viewed as an efficient linear embedding method that incurs minimal distortion
of the data on average. Furthermore, PCA can be adapted to account for problem-specific
requirements. For example, if the data vectors originate from one of two classes and the goal
is to maintain class separability, then PCA can be modified to produce related techniques
such as Fisher’s Linear Discriminant Analysis (LDA) or Factor Analysis (Fisher, 1936;
Harman, 1976).

PCA can be viewed as a special case of the more general technique of multi-dimensional
scaling (MDS). Given a high-dimensional dataset X ∈ RQ×N , MDS constructs a Q × Q
matrix D(X ) of pairwise dissimilarities and tries to construct a lower-dimensional dataset
f(X ) ∈ RM×N , M < N such that the pairwise dissimilarity matrix in the lower-dimensional
space, D(f(X )) ≈ D(X ). If the pairwise dissimilarities correspond to Euclidean distances,
then MDS is equivalent to PCA (Cox and Cox, 1994) and f(X ) is simply a linear projection
of X . If the pairwise dissimilarities are captured by some other distance metric, then the
embedding is nonlinear, in general; see Section 2.3 for a discussion of nonlinear embedding
techniques.

PCA and MDS are conceptually simple. However, the convenience of PCA-like tech-
niques are balanced by certain drawbacks. Crucially, their optimality is not accompanied by
any guarantees regarding the local geometric properties of the resulting embedding (Achliop-
tas, 2001). Therefore, any information contained in the geometric inter-relationships be-
tween data points is irrevocably lost. One can easily generate examples of datasets where
the distance between the PCA embeddings of two distinct high-dimensional points is van-
ishingly small. In other words, PCA and MDS are not guaranteed to be isometric (i.e.,
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distance-preserving) or even invertible. This can severely affect both algorithm design and
analysis.

2.3 Nonlinear Embeddings

While the focus of this paper is primarily on linear embeddings, we point out that several
sophisticated nonlinear data embedding methods have emerged over the last decade; see,
for example, Tenenbaum et al. (2000); Roweis and Saul (2000); Belkin and Niyogi (2004);
Donoho and Grimes (2003); Weinberger and Saul (2006). These methods are sometimes
referred to as manifold learning algorithms. The list of manifold learning methods is far
too long to enumerate in full, so we will simply discuss a few representative approaches.

Our approach bears some resemblance to the Whitney Reduction Network (WRN) ap-
proach for computing auto-associative graphs (Broomhead and Kirby, 2001, 2005). The
WRN is a heuristic that is algorithmically similar to PCA. An important notion in the
WRN approach is the normalized secant set of X :

S(X ) =

{
x− x′

‖x− x′‖2
, x,x′ ∈ X ,x 6= x′

}
. (1)

The approach initializes an estimate of the desired embedding and iteratively refines the
embedding so as to ensure that the norms of the secants in S(X ) deviate from unity as little
as possible. Unfortunately, the WRN algorithm only makes locally optimal decisions and,
therefore cannot ensure that the final obtained mapping is (near) isometric.

Our approach also has connections to Locally Linear Embedding (LLE), proposed
in Roweis and Saul (2000). LLE takes as input an arbitrary dataset X and outputs a
set of (possibly overlapping) M -dimensional subspaces, each of which approximates a small
subset of X according to a Euclidean error criterion. Therefore, the embedding is locally
linear (as specified by the orthogonal projection onto the corresponding subspace), but
is globally nonlinear. It is unknown whether or not the LLE ensures a (near)-isometry.
The more recent Sparse Manifold Learning and Clustering (SMCE) approach, proposed
in Elhamifar (2011) aims to address this issue by constructing an embedding by directly
operating on the normalized secant set S(X ); however, the algorithm relies on a spectral
decomposition that does not seem to be accompanied by isometry guarantees.

Finally, we note that the idea of using semidefinite programming (SDP) to construct low-
dimensional embeddings has been explored; see, for example, the algorithms of Weinberger
and Saul (2006) and Shaw and Jebara (2007). Such approaches construct a low-dimensional
representation of an input data set X by performing a trace-norm optimization, subject to
a set of distance constraints. It is likely that these approaches can be modified to produce
near-isometric (nonlinear) embeddings of datasets. However, as above, the mappings ob-
tained are highly nonlinear and consequently are not easily generalizable to out-of-sample
data points. Further, it is unclear if the corresponding SDP formulations can be modified
to scale to very large datasets.

2.4 Random Projections

The problem of constructing a low-dimensional isometric embedding of a dataset, i.e., em-
beddings that preserves all pairwise distances between the data points, has been studied
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in depth and is quickly becoming classical (for an excellent introduction to this subject,
see Linial et al. (1995)). Concretely, we seek an embedding that satisfies the following
relaxed notion of isometry:

Definition 1 Suppose M ≤ N and consider X ⊂ RN . An embedding operator P : X → RM
satisfies the restricted isometry property (RIP) on X if there exists a positive constant δ > 0
such that, for every x,x′ in X , the following relations hold:

(1− δ)
∥∥x− x′

∥∥2
2
≤
∥∥Px− Px′

∥∥2
2
≤ (1 + δ)

∥∥x− x′
∥∥2
2
. (2)

The quantity δ encapsulates the deviation from perfect isometry and is called the isometry
constant. We (trivially) observe that the identity operator on X always satisfies the RIP
with δ = 0; however, in this case M = N . It is less clear whether embedding operators that
satisfy the RIP even exist for M < N . The celebrated Johnson-Lindenstrauss (JL) Lemma
answers this question in the affirmative (Johnson and Lindenstrauss, 1982). A simplified
version of the JL Lemma is as follows.

Lemma 1 Consider a dataset X = {x1,x2, . . . ,xQ} ⊂ RN . Let M ≥ O
(
δ−2 logQ

)
.

Construct a matrix Φ ∈ RM×N by drawing each element of Φ independently from a Gaussian
distribution with zero mean and variance 1/M . Then, with high probability, the linear
operator Φ : RN → RM satisfies the RIP on X .

We highlight some important features of the JL Lemma. First, like PCA, the linear
embedding Φ is computationally efficient and can be applied to out-of-sample points. Sec-
ond, unlike PCA, the constructed embedding Φ is universal, i.e., fully independent of the
dataset X . Instead of projecting the data onto the basis vectors of the subspace formed by
the singular vectors of X , one simply picks a few basis vectors at random and projects the
data onto these vectors. The JL Lemma guarantees that such an embedding preserves the
local geometric structure of X . Third, the dimension M of the lower-dimensional embed-
ding is only logarithmic in the number of data points and is independent of the ambient
dimension N ; therefore, potentially M � N .

The method of random projections can be extended to more general signal classes be-
yond finite point clouds. For example, random linear projections provably satisfy the RIP
for data modeled as compact, differentiable low-dimensional submanifolds (Baraniuk and
Wakin, 2009; Clarkson, 2008). A particularly striking connection has been made with
compressive sensing (CS), an emergent paradigm for efficient acquisition and processing of
K-sparse signals, i.e., signals that can be expressed as the sum of only K elements from a
basis (Baraniuk et al., 2008). The central result of CS asserts that if a matrix Φ ∈ RM×N
satisfies the RIP on the set of all K-sparse signals, then it is possible to stably recover a
sparse signal x from the linear embedding (or “measurements”) y = Φx, even when M
is only proportional to K logN/K. Further, this recovery can be achieved efficiently via
a convex program or a greedy pursuit (Candès, 2006; Donoho, 2006; Tropp and Gilbert,
2007). From a practical signal acquisition perspective, it is even possible to build practical
signal acquisition systems where the embedding y = Φx is performed in real-time (Wakin
et al., 2006; Laska et al., 2007).

Random projections provide a simple method to construct embeddings that satisfy the
RIP for arbitrary datasets. It can be shown that, in the worst case for a given isometry
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constant δ, there exist datasets that cannot be embedded into any M -dimensional space
where M ≤ δ−2 log(δ−1) logQ (Alon, 2003). However, this worst case only occurs for a
specific configuration of data points that rarely occurs in practice. Further, the universality
property of random projections negates its ability to construct embeddings that leverage
the intrinsic geometry of a given set of data vectors.

2.5 Metric learning

Closely related to the ideas proposed in this paper is the body of work on metric learning ;
see the survey articles (Yang and Jin, 2006; Kulis, 2012) for a full description. Given a
dataset and an intended task (for example, classification), the goal of metric learning is to
learn a distance metric that is better than (or at least, as good as) the Euclidean distance.
There has been significant recent work in this context for learning Mahalanobis distances,
i.e, metrics of the form d2(x,y) = (x− y)TΣ(x− y). Here, the metric is fully specified by
the positive semi-definite matrix Σ.

Xing et al. (2002) use the concept of metric learning for improved clustering by tuning
the metric to user labels. Blitzer et al. (2005) and Globerson and Roweis (2005) promote
nearest neighbor classification by learning metrics that seek to preserve local neighbor-
hoods containing points from the same class. Jain et al. (2012) show that metric learning
approaches can be scaled to high-dimensional data by using a LogDet divergence-based
regularization term. In all the cases discussed above, the problem is formulated as a semi-
definite program whose solution is the matrix Σ that defines the Mahalanobis distance.

There are several apparent similarities between metric learning and NuMax. For exam-
ple, both use convex optimization techniques to estimate a positive semi-definite matrix.
The Mahalanobis distance can be viewed as a linear transformation of the data points,
and if the solution to the metric learning problem happens to be low-rank, then this lin-
ear transformation is also dimensionality reducing. However, there are several important
differences. First, NuMax is a dimensionality reduction technique and hence, expressly op-
timizes for low rank solutions. To the best of our knowledge, none of the metric learning
techniques actively seek low rank solutions. In some metric learning approaches, a low rank
approximation of the final solution can be obtained, but often only via a post-processing
step after the main optimization (e.g. see Jain et al. (2012)). Second, NuMax is explicitly
geared towards producing embeddings that are (near) isometric, and this is typically not
the goal of metric learning.

3. Near-Isometric Linear Embeddings

3.1 Optimization Framework

Given a dataset X ⊂ RN , our goal is to find a linear embedding P : RN → RM , M � N,
that satisfies the RIP (2) on X with parameter δ > 0. Following (Baraniuk and Wakin,
2009), we will refer to δ as the isometry constant. We form the secant set S(X ) using (1)
to obtain a set of S =

(
Q
2

)
unit vectors S(X ) = {v1,v2, . . . ,vS}. Then, we seek a projection

matrix Ψ ∈ RM×N with as few rows as possible that satisfies the RIP on S(X ).

We cast this problem in terms of an optimization over the space of PSD symmetric
matrices. Let SN×N be the set of symmetric N ×N matrices. Define P

.
= ΨTΨ ∈ SN×N ;
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then, rank(P) = M . We also have the constraints that | ‖Ψvi‖22 − 1| =
∣∣vTi Pvi − 1

∣∣ is
no greater than δ for every secant vi in S(X ). Let 1S denote the S-dimensional all-ones
vector, and let A denote the linear operator that maps a symmetric matrix X to the S-
dimensional vector A : X → {vTi Xvi}Si=1. Then, the matrix P we seek is the solution to
the optimization problem

minimize rank(P) (3)

subject to ‖A(P)− 1S‖∞ ≤ δ,
P � 0.

Rank minimization is a non-convex problem and is known to be NP-hard, in general.
Therefore, following Fazel (2002), we propose to instead solve a nuclear-norm relaxation of
(3):

minimize ‖P‖∗ (4)

subject to ‖A(P)− 1S‖∞ ≤ δ,
P � 0.

Since P is a PSD symmetric matrix, the nuclear norm of P is equal to its trace. Thus,
the problem (4) consists of minimizing a linear objective function subject to linear inequality
constraints over the cone of PSD symmetric matrices. Hence, it is equivalent to a semidef-
inite program (SDP) and can be solved in polynomial time (Alizadeh, 1995). Once the
solution P∗ = UΛUT to (4) is found, rank(P∗) determines the value of M , the dimension-
ality of the linear embedding. The desired linear embedding Ψ can then be calculated using
a simple matrix square root

Ψ = Λ
1/2
M UT

M , (5)

where ΛM = diag{λ1, . . . ,λM} denotes the M leading (non-zero) eigenvalues of P∗, and
UM denotes the set of corresponding eigenvectors.1 In this manner, we obtain a low-rank
matrix Ψ ∈ RM×N that satisfies the RIP on the secant set S(X ) with isometry constant δ.
The convex optimization formulation (4) is conceptually very simple, the only inputs being
the input dataset X and the desired isometry constant δ > 0.

3.2 Analysis

Since we seek an embedding matrix Ψ with a minimal number of rows, a natural question
to ask is whether the nuclear-norm relaxation (4) is guaranteed to produce solutions P∗ of
minimum rank. The efficiency of nuclear-norm minimization for low-rank matrix recovery
has been thoroughly examined in a number of different settings (Recht et al., 2010; Candès
and Recht, 2012). However, we highlight two unique aspects of the optimization problem (4).
First, the `∞-norm constraints in (4) are non-standard. Second, the best known theoretical
results make certain restrictive assumptions on the linear operator A in (4); for example, one
common assumption is that the entries of the matrix representation of A are independently
drawn from a standard normal distribution. This assumption is clearly violated in our case,

1. An interesting question is whether other types of matrix square-roots provide added benefits. We defer
this to future work.
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since A is a function of the secant set S(X ), which depends heavily on the geometry of the
data at hand.

Nevertheless, the following classical result from SDP provides an upper bound of the
rank of the optimum P∗ in (4).

Proposition 1 (Barvinok, 1995; Moscato et al., 1998) Let r∗ be the rank of the optimum
to the SDP (4). Then,

r∗ ≤
⌈√

8|S(X )|+ 1− 1

2

⌉
. (6)

In essence, the rank of P∗ grows as the square root of the cardinality of the secant set
S(X ). The upper bound on the optimal rank r∗ provided in (6) can be loose, since the
cardinality of S(X ) can potentially be very large. Additionally, one might intuitively expect
the optimal rank r∗ to depend on the geometric arrangement of the data vectors in X , as
well as the input isometry constant δ; however, the bound in Proposition 1 does not reflect
this dependence.

A full analytical characterization of the optimal rank obtained by the program (4) is
of considerable interest both in theory and practice. However, this seems to an extremely
challenging analytical problem for a generic point set X . The main question is to verify the
efficiency of the convex relaxation (4), which is essentially an SDP with rank-1 constraints
(specified by the secant set S(X )). The PhaseLift approach proposed by Candès et al. (2013)
has addressed this question in a somewhat different context. Specifically, they provide
sharp theoretical guarantees under which a similar nuclear-norm relaxation with rank-1
constraints produces the desired low-rank solution. However, the underlying assumption in
their work is that the rank-1 constraint vectors are independently and randomly generated
from a Gaussian distribution. This assumption does not typically hold for an arbitrary
dataset X , and therefore that theory does not apply in our case.

We also note that the recent results by Bah et al. (2013) and Grant et al. (2013) ad-
dress the theoretical properties of a convex program that resembles (4), albeit under more
stringent assumptions on the target embedding matrix Φ.

3.3 Linear Embeddings of Manifolds

The optimization framework (4) provides a novel method for producing an efficient, low-
dimensional, linear embedding of an arbitrary high-dimensional dataset X . More specifi-
cally, suppose X comprises points that are sampled from a K-dimensional smooth, compact
manifold M ⊂ RN . In such a scenario, we can make a stronger claim than Proposition
1: under certain assumptions on M and X , the near-isometry property of the proposed
embedding Ψ holds not only on pairwise secants of X , but more generally to all pairwise
secants in M. In other words, the near-isometry property of Ψ can be extended to new,
unseen data from the underlying manifold M.

More precisely, suppose that Ψ satisfies the RIP with constant δ over a training set
X ∈ RN . If the training set X comes from a particular high-resolution sampling of points
on or close to M, then Ψ provably satisfies the RIP with a slightly larger constant over
the entire manifold M; see Section 3.2.5 of Baraniuk and Wakin (2009) for the detailed
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Figure 1: A desirable objective for classification is to promote nearest neighbors of a point
to come from its own class. We achieve this by altering the near-isometric con-
straints for secants. First, we relax the upper bound on the near-isometry for the
inter-class secants; hence, they can expand in length unconstrained. Second, we
relax the lower-bound on the intra-class secants; hence, they can shrink in length
unconstrained. For the same distortion parameters, we observe a lower-rank so-
lution and higher-classification rates.

derivation. We numerically validate this phenomenon on synthetic manifold-modeled data
below in Section 5.

Several SDP-based approaches for processing manifold-modeled data have been devel-
oped in the literature (Weinberger and Saul, 2006; Kulis et al., 2007), but their focus
has been on producing general nonlinear mappings of high-dimensional datasets into a low-
dimensional space. In contrast, our optimization formulation (4) produces an explicit linear
embedding operator Ψ ∈ RM×N , thereby enabling easy application to out-of-sample, un-
seen data points. Furthermore, since Ψ satisfies the RIP for all signals belonging to M,
Ψ can be interpreted as a highly optimized compressive sensing matrix specifically tailored
for signals belonging to M. We explore this further in our numerical experiments below in
Section 5.

An important challenge in this context is the size of the sampled dataset X . The proof
techniques of Baraniuk and Wakin (2009) assume that the training set X is an ε-cover of
M, i.e., for every m ∈M, there exists an x ∈ X such that minx∈X dM(m,x) ≤ ε for a small
constant ε > 0. However, covering results from high-dimensional geometry state that the
cardinality of such a set X , in the worst case, can be exponential in the manifold dimension
K, i.e.,

|X | = O
((

1

δ

)K)
.

For practical real-world problems, computations involving such large training sets X may be
intractable, and thus one may have to resort to heuristic sub-optimal methods. In Section
4 below, we develop one such sub-optimal but efficient method. Nevertheless, our approach
can be viewed as an initial step towards obtaining provably efficient linear embeddings that
preserve the isometric structure of arbitrary nonlinear submanifolds of the signal space.
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3.4 Class-specific Linear Dimensionality Reduction

We observe that the inequality constraints in (4) are derived by enforcing an approximate
isometry condition on all pairwise secants {vi}Si=1. While the need to enforce the (approx-
imate) isometry of all pairwise secants might be important in applications such as signal
reconstruction, such a criterion could prove to be too restrictive for other tasks.

For example, consider a supervised classification scenario, where the points in the dataset
X arise from two classes of interest. Suppose that we wish to use the classical nearest
neighbor (NN) classifier to classify data points based on the labeled training data. In this
scenario, preserving the lengths of the secants is no longer the goal; instead we really need
an embedding matrix Ψ that tries to separate the two classes. It would not really affect
classification performance if two data points from the same class somehow were mapped
to the same lower-dimensional point, as long as pairs of points from different classes were
mapped to points sufficiently far apart.

There are many ways for translating this idea into a precise criterion for optimization.
Here is one intuitive approach. Suppose that we have labeled training data from multiple
classes. We can identify two flavors of secants — inter-class secants vi which connect points
from different classes, and intra-class secants ui which connect points from the same class.
A simple extension to (4) applies different constraints to the inter and intra-class secants
(see Fig. 1). Specifically, we let the length of inter-class secants to expand by an arbitrary
factor while not allowing their length to shrink; this enables points from different classes to
move apart from one another. Similarly, we let the length of intra-class secants to shrink
by an arbitrary factor while not allowing their lengths to expand; this is formulated as

minimize ‖P‖∗ (7)

subject to vTi Pvi ≥ 1− δ, ∀ vi ∈ inter-class secants

uTi Pui ≤ 1 + δ, ∀ ui ∈ intra-class secants

P � 0.

This convex program has the same objective as the one in (4); however, the feasible set is
vastly expanded since the near-isometric constraints are significantly weakened. Hence, we
can hope not just to obtain a low-rank solution (since our feasibility set has been expanded)
but also to promote improved classification (since we can expect points from different classes
to be embedded differently). We examine this type of “class-specific” linear embeddings
further in our numerical experiments in Section 5.

4. Efficient Algorithms for Designing Embeddings

The SDP (4) admits a tractable solution in polynomial time using interior-point methods.
However, for a generic SDP with S constraints and a matrix variable of size N×N , interior-
point methods incur memory costs that scale as O

(
S2
)

and time-complexity costs that
scale as O

(
N6
)
. Therefore, solving (4) using traditional SDP solvers (Tütüncü et al., 2003;

Polik, 2010) quickly becomes infeasible. Here, we develop two algorithms that exploit the
special structure of the optimization problem (4) to produce very efficient solutions at vastly
reduced costs.

12



4.1 ADMM

We develop an efficient algorithm to solve (4) based on the Alternating Direction Method
of Multipliers (ADMM). We dub our algorithm NuMax, an abbreviation for Nuclear norm
minimization with Max-norm constraints. We rewrite (4) by introducing the auxiliary vari-
ables L ∈ SN×N and q ∈ RS to obtain the optimization problem

min
P,L,q

‖P‖∗ (8)

subject to P = L, A(L) = q, ‖q− 1S‖∞ ≤ δ, P � 0.

This approach can be viewed as an instance of the Douglas-Rachford variable splitting
method in convex programming (Douglas and Rachford, 1956). Next, we relax the linear
constraints and form an augmented Lagrangian of (8) as follows:

min
P,L,q

‖P‖∗ +
β1
2
‖P− L−Λ‖2F +

β2
2
‖A(L)− q− ω‖22 (9)

subject to ‖q− 1S‖∞ ≤ δ, P � 0.

Here, the symmetric matrix Λ ∈ SN×N and vector ω ∈ RS represent the scaled Lagrange
multipliers. The optimization in (9) is carried out over the variables P,L ∈ SN×N and
q ∈ RS , while Λ and ω are iteratively updated as well. Instead of jointly optimizing over
all three variables, we optimize the variables one at a time while keeping the others fixed.
That is, we can solve the optimization (9) via a sequence of three sub-problems, each of
which admits a computationally efficient solution. Let the subscript k denote the estimate
of a variable at the kth iteration of the algorithm. The following steps are performed until
convergence.

1. Update q: Isolating the terms that involve q, we obtain a new estimate qk+1 as the
solution of the constrained optimization problem

qk+1 ← arg min
q

β2
2
‖A(Lk)− ωk − q‖22, s.t. ‖q− 1S‖∞ ≤ δ.

This problem has a closed-form solution using a component-wise truncation procedure
for the entries in q. Denote z = A(Lk)− ωk − 1S . Then, it is easily seen that

qk+1 = 1S + sign(z) ·min(|z|, δ), (10)

where the sign and min operators are applied component-wise. Therefore, this step
can be performed in O (S) operations.

2. Update P: Isolating the terms that involve P, we obtain a new estimate Pk+1 as
the solution of the constrained optimization problem

Pk+1 ← arg min
P
‖P‖∗ +

β1
2
‖P− Lk −Λk‖2F , s.t. P � 0.

This problem also admits an efficient closed form solution via the eigenvalue shrinkage
operator (similar to the approach described in (Ma et al., 2011)). Denote P′ = Lk+Λk

13



and perform the eigen decomposition P′ = VΣVT , where Σ = diag(σ). Then, the
optimum Pk+1 can be expressed as

Pk+1 = VDα(Σ)VT , Dα(Σ) = diag({(σi − α)+}), (11)

where α = 1
β and t+ represents the positive part of t, i.e., t+ = max(t, 0). The dom-

inant computational cost for this update is incurred by performing the eigendecom-
position of P′ ∈ SN×N ; in general this step can be carried out in O

(
N3
)

operations.
This step can potentially be made even faster by using randomized numerical linear
algebra (RandNLA) techniques (Halko et al., 2011).

3. Update L: Isolating the terms that involve L, we obtain a new estimate Lk+1 as the
solution of the unconstrained optimization problem

Lk+1 ← arg min
L

β1
2
‖Pk − L−Λj‖2F +

β2
2
‖A(L)− qk+1 − ωk‖22. (12)

This is a least-squares problem, and the minimum is achieved by solving the linear
system of equations

β1(Pk − L−Λj) = β2A∗(A(L)− qk+1 − ωk), (13)

where A∗ represents the adjoint of A. The dominant cost in this step arises due to
the linear operator A∗A. A single application of this operator incurs a complexity
of O

(
N2S2

)
. The least-squares solution to (13) can be calculated using a number

of existing methods for solving large-scale linear equations, such as conjugate gradi-
ents (Meijerink and van der Vorst, 1977; Liu and Nocedal, 1989).

4. Update Λ,ω: Finally, as is standard in augmented Lagrange methods, we update
the parameters Λ,ω according to the equations

Λk+1 ← Λk − η(Pk − Lk), ωk+1 ← ωk − η(A(Lk)− qk).

The overall NuMax method is summarized in pseudocode form in Algorithm 1. The
convergence properties of NuMax, both in terms of precision as well as speed, are affected
by the user-defined parameters η, β1, and β2. In all of the experiments below in Section 5,
we set η = 1.618 and β1 = β2 = 1.

4.2 Column Generation

NuMax (Algorithm 1) dramatically decreases the time-complexity of solving the SDP (4).
However, for a problem with S input secants, the memory complexity of NuMax still remains
O
(
S2
)
, and this could be prohibitive in applications involving millions (or billions) of

secants. We now develop a heuristic optimization method that only approximately solves
(4) but that scales very well to such problem sizes.

Our key idea is based on the Karush-Kuhn-Tucker (KKT) conditions describing the
optimum of (4). Recall that (4) consists of optimizing a linear objective subject to inequality
constraints over the cone of PSD matrices. Suppose that strong duality holds, i.e., the
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Algorithm 1 NuMax

Inputs: Secant set S(X ) = {vi}Si=1, isometry constant δ
Parameters: Weights β1, β2, step size η

Output: Symmetric PSD matrix P̂

Initialize: P0,L0,ω0,q0, k ← 0, b← 1S , set A : X 7→ {vTi Xvi}Si=1

while not converged do
k ← k + 1

z← A(Lk)− ωk − b
qk+1 ← b + sign(z) ·min(|z|, δ) {Truncation}

P′ ← Lk + Λk, P′ = VΣVT

Pk+1 ← VDα(Σ)VT {Eigenvalue shrinkage}

Z← β2A∗(qk+1 + ωk), Z′ ← β1(Pk −Λk)
Lk+1 ← β2(A∗A+ I)†(Z + Z′) {Least squares}

Λk+1 ← Λk − η(Pk − Lk)
ωk+1 ← ωk − η(A(Lk)− qk) {Update Lagrange multipliers}

end while

return P̂← Pk

primal and dual optimal values of (4) are equal. Then, classical results in optimization
theory (Boyd and Vanderberghe, 2004) state that complementary slackness holds and that
the optimal solution is entirely specified by the set of those constraints that hold with
equality. Such constraints are also known as active constraints.

We propose a simple, greedy method to rapidly find the active constraints of (4). We
prescribe the following steps:

1. Solve (9) with only a small subset S0 of the input secants S(X ) using NuMax (Algo-
rithm 1) to obtain an initial estimate P̂. Identify the set Ŝ of secants that correspond
to active constraints, i.e.,

Ŝ ← {vi ∈ S0 : |vTi P̂vi − 1| = δ}.

2. Select additional secants S1 ⊂ S that were not selected previously and identify all the
secants among S1 that violate the infinity norm constraints at the current estimate P̂.
Append these secants to the set of active constraints Ŝ to obtain an augmented set Ŝ

Ŝ ← Ŝ
⋃
{vi ∈ S1 : |vTi Pvi − 1| ≥ δ}.

3. Solve (4) with the augmented set Ŝ using NuMax (Alg. 1) to obtain an new estimate
P̂.
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Algorithm 2 NuMax-CG

Inputs: Secant set S = {vi}Si=1, isometry constant δ, the NuMax algorithm
Parameters: Size of selected secant sets S′, S′′

Output: Symmetric PSD matrix P̂

Initialize: Select a subset of S′ secants S0, set A : X 7→ {vTi Xvi}S′
i=1

Obtain initial estimate P← NuMax(S0, δ)
while not converged do

Ŝ ← {vi ∈ S0 : |vTi Pvi − 1| = δ} {Retain active constraints}
S1 ← {vi ∈ S : vi /∈ S0}S′′

i=1 {Select additional test secants}
Ŝ ← Ŝ ⋃ {vi ∈ S1 : |vTi Pvi − 1| ≥ δ} {Add secants that violate constraints}

P← NuMax(Ŝ, δ) {Update estimate}
S0 ← Ŝ

end while

return P̂← P

4. Identify the secants that correspond to active constraints. Repeat Steps 2 and 3 until
convergence is reached in the estimated optimal matrix P̂.

Instead of performing a large numerical optimization procedure on the entire set of se-
cants S(X ), we perform a sequence of optimization procedures on small subsets of S(X ).
When the number of active constraints is a small fraction of the overall secants, the com-
putational gains are significant. This approach is analogous to the column generation (CG)
method used to solve very large-scale linear programs (Dantzig and Wolfe, 1960). There-
fore, we dub our overall algorithm NuMax-CG; this algorithm is listed in pseudocode form
in Algorithm 2.

A key benefit of NuMax-CG is that the set of secants upon which NuMax acts upon
within each iteration never needs to be explicitly stored in memory and can in fact be
generated on the fly. This can potentially lead to significant improvements in terms of
memory complexity of the overall procedure. An important caveat is that we are no longer
guaranteed to converge to the optimal solution of (4); nevertheless, as we see below in
Section 5, NuMax-CG yields excellent results on massively-sized, real-world datasets.

In practice, evaluating the KKT conditions for NuMax (and NuMax-CG) is computa-
tionally expensive. As a consequence, we use a notion of infeasibility as our main halting
criterion. Specifically, we measure the errors in the strict enforcement of the equality con-
straints P = L and q = A(L)

e1 =
2‖P− L‖F
‖P‖F + ‖L‖F

, e2 =
2‖q−A(L)‖2
‖q‖2 + ‖A(L)‖2

.

When max(e1, e2) is smaller than a user-specified parameter η, we proclaim convergence.
For the numerical experiments below in Section 5, we use η = 5× 10−5.
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4.3 Convergence

The convergence of NuMax can be understood in terms of the convergence properties of a
more general ADMM. An important distinction is that although there are three variables
L,P,q in (8), NuMax is indeed a standard ADMM (that is, with two blocks of variables)
rather than a three-block ADMM, whose convergence is not guaranteed without extra as-
sumptions or additional computation. In (8), one block of variables is (P,q), and the other
is L. In the standard ADMM, when one of the two blocks is fixed, the subproblem is mini-
mized over the entire other block. In NuMax, when L is fixed, the subproblem is minimized
over P,q jointly. But since P,q do not together appear any single objective term or con-
straint, the subproblem can be decoupled into minimizing over P and q separately. This
observation allows us to invoke the existing convergence results of standard ADMM.

For certain types of convex problems, ADMM converges at a rate of O(1/k) (He and
Yuan, 2012) (more recently, the rate has been slightly improved to o(1/k) (Deng et al.,
2013)). Although we have observed NuMax to have a rate of convergence that appears to be
linear, we are not able to establish its linear convergence for arbitrary data. In particular,
recent results in Deng and Yin (2012), Hong and Luo (2012), and Boley (2012) prove
the linear convergence of ADMM under assumptions such as a strongly convex objective
function or the underlying problem being a quadratic program. Unfortunately, these results
do not appear to apply to the problem formulation (8).

NuMax-CG calls NuMax to solve a sequence of instances of (8) with increasingly many
constraints. Since there are finitely many secants and thus finitely many constraints in total,
NuMax-CG is guaranteed to terminate after a finite number of iterations. However, it is
difficult to estimate the actual number of iterations, since it will vary significantly depending
on data, parameter choices, and the specific order in which the column generation procedure
adds constraints to (8).

4.4 Class-specific NuMax

We now discuss how to solve the classification optimization problem (7) using minor mod-
ifications to NuMax and NuMax-CG. Given the inter-class secants {vi, i = 1, . . . , Sv}, the
intra-class secants {ui, i = 1, . . . , Su}, and the distortion δ, we can define a linear operator
Ac : RN×N 7→ RSv+Su , and the vector bc ∈ RSv+Su as follows:

Ac(P) =



...
−vTi Pvi

...
uTi Pui

...


, bc =



...
−(1− δ)

...
1 + δ

...


(14)

The convex program (7) can now be succinctly represented as

minimize ‖P‖∗ (15)

subject to Ac(P) ≤ bc

P � 0.
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Algorithm 3 NuMax-Class

Inputs: Ac,A∗c , b
Parameters: Weights β1, β2, step size η

Output: Symmetric PSD matrix P̂ that solves (15)

Initialize: P0,L0,ω0,q0, k ← 0
while not converged do

k ← k + 1

z← Ac(Lk)− ωk − b
qk+1 ← min(b, z) {Truncation}

P′ ← Lk + Λk, P′ = VΣVT

Pk+1 ← VDα(Σ)VT {Eigenvalue shrinkage}

Z← β2A∗c(qk+1 + ωk), Z′ ← β1(Pk −Λk)
Lk+1 ← β2(A∗cAc + I)†(Z + Z′) {Least squares}

Λk+1 ← Λk − η(Pk − Lk)
ωk+1 ← ωk − η(Ac(Lk)− qk) {Update Lagrange multipliers}

end while

return P̂← Pk

Here, the Ac operator captures the specifics of the modified/relaxed isometry constraints
on the intra- and inter-class secants. Note that (15) is a more general form of the convex
program in (4). Specifically, solvers for either of the problems can be easily modified for the
other. Algorithm 3 summarizes NuMax-Class, a modification of NuMax for solving (15).
The sole difference between the two algorithms is in the truncation step, where a (slightly)
different truncation operator is used. Similarly, a CG version of NuMax-Class can be easily
derived with minor modifications.

5. Numerical Experiments

We illustrate the performance of the NuMax framework and algorithms via a number of nu-
merical experiments and show that our approach enables improved performance in machine
learning applications such as approximate nearest neighbor (ANN)-based data retrieval and
supervised binary classification. We use η = 1.6 and β1 = β2 = 1 for all our numerical sim-
ulations. Further, we use Algorithm 1 (NuMax) when S, the number of secants, is smaller
than 5000, and Algorithm 2 (NuMax-CG) for larger sized problems. For the rest of this
section, we will interchangeably use the terms “projections” and “measurements” whenever
the context is clear.
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5.1 Linear Low-Dimensional Embeddings

We first demonstrate that NuMax can be used to design linear, low-dimensional embeddings
of possibly complicated image datasets. We first consider a synthetic dataset X comprised
of N = 16 × 16 = 256-dimensional images of translations of a white square on a black
background (see Figure 2 for example images). We construct a training set S(X ) of S = 1000
secants by randomly sampling pairs of images from X , and normalizing the secants using (1).
We are interested in quantitatively studying the performance of different types of linear as
well as low-dimensional embeddings.

We begin with an empirical estimation of isometry constants via PCA. We achieve this
by projecting the secants onto M PCA basis functions learned on the secant set S(X ) and
calculating the norms of the projected secants. The worst-case deviation from unity gives the
estimate of the isometry constant δ. We also perform a similar isometry constant calculation
using M random Gaussian projections. Each entry of the M ×N linear embedding matrix
is sampled independently from a Gaussian distribution with zero mean and variance 1/M .
Third, for a desired value of isometry constant δ, we solve (4) using NuMax (Algorithm 1)
to obtain a positive semidefinite symmetric matrix P∗. We measure the rank of P∗ and
denote it by M . We are interested in characterizing the variation of the isometry constant
δ with the number of measurements M .

Figure 3(a) plots the variation of the number of measurements M as a function of
the isometry constant δ. We observe that the NuMax embedding Ψ achieves the desired
isometry constant on the secants using by far the fewest number of measurements. For
example, NuMax attains a distortion of δ = 0.1 with 4 times fewer measurements than the
next best algorithm (PCA). In Fig. 3(b), we include the numerical performance by several
other techniques, such as Kernel-PCA (with an radial basis function kernel), metric MDS,
locality preserving projections (LPP), and neighborhood preserving embedding (NPE). As
in the comparison with linear techniques, NuMax outperforms the nonlinear techniques by
achieving the desired isometric embedding using the fewest number of measurements.

We have defined the isometry constant in terms of the worst-case distortion of the norms
of the secants. However, for practical applications, it might be more instructive to consider
how the curves for the competing algorithms look like, when all but a fraction of the S
secant constraints are satisfied. Therefore, in Fig. 3(a), we have also included curves for
PCA and Random Projections which indicate the number of measurements at which all
but 1% of the secants achieve a distortion δ. It is clear that NuMax outperforms the other
algorithms even in this less restrictive setting.

This phenomenon can be better understood by considering Figure 4. For an embedding
dimension of r = 30, we record the norms of the projected secants using NuMax, PCA,
and random projections, and plot histograms of the secant distortions. We observe that for
NuMax, the norms of the (embedded) secants are sharply concentrated at 1± δ, δ = 0.03.
On the other hand, the norms of the embedded secants using PCA are more spread-out (in
fact, they are all smaller than 1, since PCA is a contractive mapping). Finally, the norms
of the secants under random projections are much more widely distributed.

Figures 3(a) and (b) can be viewed as analogous to the rate-distortion curve commonly
studied in information theory; here, δ represents the distortion and the undersampling factor
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Figure 2: Example images from a dataset of translating squares. Each image is a point in
N = 16× 16 = 256-dimensional space.

0 0.1 0.2 0.3 0.4 0.5 0.60

20

40

60

80

100

Isometry constant 

N
um

be
r o

f m
ea

su
re

m
en

ts
 M

 

 

NuMax
PCA
PCA 1%
Random
Random 1%

(a)

0 0.2 0.4 0.6 0.8 10

20

40

60

80

100

Isometry constant 

N
um

be
r o

f m
ea

su
re

m
en

ts
 M

 

 

Kernel PCA
MDS
LPP
NPE

(b)

Figure 3: (a) Empirical isometry constant δ vs. number of measurements M using NuMax,
PCA, and random embeddings. (b) Empirical isometry constant vs. number of
measurements using various other embeddings. NuMax ensures global approxi-
mate isometry using by far the fewest measurements.

M/N represents the compression rate. For illustration purposes, we display (in montage
form) the measurement basis functions (i.e., rows of Ψ) obtained by NuMax in Figure 5.

Next, we consider a more challenging real-world dataset. The MNIST dataset (LeCun
and Cortes, 1998) contains a large number of digital images of handwritten digits and is com-
monly used as a benchmark for machine learning algorithms. The images exhibit dramatic
variations (see Figure 6(a)) and presumably lie on a highly nonlinear, non-differentiable sub-
manifold of the image space. We construct a training dataset S(X ) comprising S = 3000
secants and estimate the variation of the isometry constant δ with the number of mea-
surements M . The results of this experiment are plotted in Figure 6(b). Once again, we
observe that NuMax provides the best linear embedding for a given value of δ in terms of
reduced dimensionality and that both NuMax and PCA outperform random projections.
For instance, for a distortion parameter δ = 0.2, NuMax produces an embedding with 8×
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Figure 4: Histograms of secant distortions using various embedding methods, for the trans-
lating squares dataset and an embedding dimension of r = 30. The input distor-
tion to NuMax is δ = 0.03.

(a) δ = 0.1,M = 38 (b) δ = 0.05,M = 62

Figure 5: Montage of basis functions (rows of Ψ) obtained by NuMax for the dataset in
Figure 2 with different values of δ.

fewer measurements than PCA. In essence, NuMax provides the best possible rate-distortion
curve in terms of compressing the given image database.

Next, we compare runtime performance of NuMax and NuMax-CG by testing them on
subsets of the MNIST dataset. We use the training dataset associated with the letter “5”.
We generate problems of different sizes by varying the number of secants. For each ensuing
collection of secants, we solve both NuMax and NuMax-CG and observe the individual
running times as well as the fraction of constraints that are active at the solution of NuMax-
CG. For each problem size, we perform 10 trials and compile average statistics.

Figure 7(a) demonstrates that the fraction of active secants can be significantly smaller
than the total number of secants, suggesting that NuMax-CG can be considerably faster
than NuMax. Figure 7(b) confirms this fact: for a problem size with S = 5× 104, NuMax-
CG outperforms NuMax in terms of running time by a full order of magnitude. Moreoever,
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Figure 6: (a) Example “5” images from the MNIST dataset. Each image is a point in
N = 28 × 28 = 784–dimensional space. (b) Empirical isometry constant δ vs.
number of measurements M using NuMax, PCA, and random embeddings. Nu-
Max ensures global approximate isometry using the fewest number of measure-
ments; for example, for a distortion parameter δ = 0.2, it produces an embedding
with 8× fewer measurements than PCA.

despite the heuristic nature of NuMax-CG, we observed in practice that the solutions ob-
tained NuMax and NuMax-CG are virtually identical. Table 2 provides runtime values on
the entire MNIST dataset for different values of δ. MNIST dataset has 60,000 datapoints;
thereby, producing a total of 1.8 billion secants/constraints. On this dataset, for values of
δ ∈ [0.1, 0.4], NuMax-CG and NuMax-Class-CG converge within a few hours.

5.2 Approximate Nearest Neighbors (ANN)

The notion of nearest neighbors is vital to numerous problems in estimation, classification,
and regression (Cover and Hart, 1967); the ubiquity of NN-based machine learning in part
stems from its conceptual simplicity and good performance. Suppose that a large dataset
of training examples is available. Then, given a new (query) data point, nearest neighbor-
based machine learning techniques identify the k points in the training dataset closest to
the query point and use these points for further processing.

Suppose that the data points are modeled as elements of a vector space. As the dimen-
sion N of the data grows, the computational cost of finding the k nearest neighbors becomes
challenging (Arya et al., 1998). To counter this challenge, as opposed to computing nearest
neighbors of the query data point, one can instead construct a near-isometric embedding of
the data into an M -dimensional space and estimate approximate nearest neighbors (ANN)
in the embedded space. By carefully controlling the distortion in distance caused by the
lower-dimensional embedding, efficient inference techniques can be performed with little
loss in performance.

The ANN principle forms the core of locality sensitive hashing (LSH), a popular tech-
nique for high-dimensional pattern recognition and information retrieval (Indyk and Mot-
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Figure 7: Performance of NuMax-CG on the MNIST handwritten digit database (LeCun
and Cortes, 1998). (a) Ratio of active secants to total number of secants for prob-
lems of different sizes. As the problem size (number of secants) increases, the ratio
of active secants decreases exponentially; this implies dramatic improvements in
computational cost for NuMax-CG over NuMax. (b) Timing plots comparing
NuMax-CG and NuMax for problems of different sizes.

wani, 1998; Shakhnarovich et al., 2005). Given a fixed dataset, the time complexity of a
particular ANN method directly depends upon the dimension M of the embedded space;
the smaller the embedding dimension, the faster the ANN method. Most existing ANN
methods (including LSH) either compute a randomized linear dimensionality reduction or a
PCA decomposition of the data. In contrast, we immediately observe that NuMax provides
a linear near-isometric embedding that achieves a given distortion δ while minimizing M .
In other words, NuMax can potentially enable far more efficient ANN computations over
conventional approaches.

We test the efficiency of our approach on a set of Q = 4000 images taken from the La-
belMe database (Russell et al., 2008). This database consists of high-resolution photographs
of both indoor and outdoor scenes (see Figure 8) for several examples). We compute GIST
feature descriptors (Oliva and Torralba, 2001) for every image. In our case, the GIST de-
scriptors are vectors of size N = 512 that coarsely express the dominant spatial statistics of
the scene; such descriptors have been shown to be very useful for image retrieval purposes.
Therefore our “ground truth” data consists of a matrix of size N × Q. Since the number
of pairwise secants in this case is extremely high (S =

(
Q
2

)
≈ 8 × 106), we use NuMax-CG

to estimate the linear embedding of lowest rank for a given distortion parameter δ. We
record M , the rank of the optimal linear embedding, and for comparison purposes we also
compute M -dimensional random linear projections of the data as well as the best M -term
PCA approximation of the data. We perform subsequent ANN computations for a set of
1000 test query points in the corresponding M -dimensional space.

Figure 9 displays the benefits of using the linear embedding generated by NuMax-CG
in ANN computations. For a given neighborhood size k, we plot the fraction of k-nearest
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Figure 8: Example images from the LabelMe dataset (Russell et al., 2008).

neighbors computed using the full (ground truth)N -dimensional data that are also k-nearest
neighbors in the corresponding M -dimensional embedding. We observe from Figure 9 that
the linear embedding obtained by NuMax-CG provides the best embedding results for a
wide range of measurements M and neighborhood sizes k. In particular, for embedding
dimensions of M > 45, NuMax-CG outperforms both PCA and random projections for all
values of k by a significant margin.

5.3 Compressive Sensing of Manifold-Modeled Signals

We demonstrate the utility of our framework for designing efficient compressive sensing (CS)
measurement matrices. As discussed in Section 2, the canonical approach in CS theory and
practice is to construct matrices Φ ∈ RM×N , with as small M as possible, that satisfy the
RIP (with distortion parameter δ) on the set of signals of interest. Typically, such matrices
are constructed simply by drawing elements from, say, a standard normal probability distri-
bution. Such matrices are universal in the sense that they can be constructed independently
from the signal set of interest. Our proposed framework and NuMax algorithm suggests an
alternate approach for constructing CS measurement matrices that are tailored to specific
signal models.

We perform the following numerical experiment. Given a set of example signals origi-
nating from a low-dimensional manifold, we divide it into training and test datasets. Using
the training dataset, we learn a measurement matrix Ψ that satisfies the RIP for all secants
generated from the training dataset using NuMax-CG for a pre-chosen value of δ. Given
such a measurement matrix, we are interested in (a) characterizing the RIP of the matrix
Ψ when applied to secants from the test dataset, and (b) characterizing the efficiency of CS
recovery using Ψ on signals belonging to the test dataset.

Figure 10 displays the results of this experiment on an image dataset corresponding to
a two-dimensional (2D) manifold of a translating Gaussian blob. Each element on this 2D-
manifold corresponds to an image of size N = 32×32 = 256 pixels. The standard deviation
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Figure 9: Approximate Nearest Neighbors (ANN) for the LabelMe dataset using various
linear embedding methods. We choose a set of 4000 images and compute GIST
features of size N = 512 for every image. For a given number of nearest neighbors
k, we plot the average fraction of k-nearest neighbors that are retained in an
M -dimensional embedding relative to the full N -dimensional data. NuMax-CG
provides the best embedding results for a wide range of measurements M and
neighborhood sizes k.

of the blob is chosen as 6 pixels. As the training dataset, we select images where the center
pixel of the Gaussian blob is on an even row and column. All other images are considered
to comprise the test dataset. Figure 10(a) compares the number of measurements required
to reach a specified isometry constant δlearn for both NuMax and random measurement
matrices. As in earlier experiments, NuMax requires significantly fewer measurements, as
compared to more conventional (random) CS matrices, to achieve the same value of δlearn.

Figure 10(b) demonstrates the variation of the empirical isometry constant of both on
new, unseen secants from the test dataset. In Figure 10(b), δlearn is the parameter used
for applying NuMax to the training dataset, while δtest is the worst-case distortion among
all pairwise secants from the test dataset. Thanks to their universality, we observe that
traditional (random) CS matrices enjoy the same isometry constant on both training and
test datasets. However, we observe that for the matrix Ψ generated by NuMax, δtest is
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Figure 10: (a) Number of measurements M vs. input isometry constant δlearn. (b) Empirical
(observed) isometry constant δtest vs. input isometry constant δlearn for NuMax
and random projections.

marginally greater than δlearn. This suggests a moderate loss of universality using Ψ, but a
significant gain in terms of lowering the number of measurements.

Finally, we demonstrate the improved performance of CS recovery using NuMax embed-
dings. We obtain (noisy) compressive measurements using both random Gaussian matrices
and the matrices obtained by NuMax for different values of measurement SNR and M . Us-
ing the noisy measurements, we perform CS recovery via Manifold Iterative Pursuit (MIP),
a projected-gradient type method for the recovery of manifold-modeled signals (Shah and
Chandrasekharan, 2011). Figure 11 compares the recovery performance for different SNRs
and different number of measurements for both random Gaussian and NuMax measurement
matrices. We observe that in terms of recovered signal MSE, NuMax outperforms random
Gaussian measurements for all values of SNR and for all values of M .

5.4 Supervised Classification

5.4.1 Black and white images

First, we consider a toy supervised classification problem, where our training classes consist
of binary images of shifts of a translating disk and a translating square; several example
images are shown in Figure 12(a). We construct a training dataset of S = 2000 inter-class
secants and obtain a measurement matrix Ψinter via NuMax. Using a small number of
measurements of a test signal, we estimate the class label using a Generalized Maximum
Likelihood Classification (GMLC) approach following the framework in (Davenport et al.,
2007); assuming the availability of sufficiently many training examples, this formulation is
essentially equivalent to ANN-based classification. We repeat this classification experiment
using measurement basis functions learned via PCA on the inter-class secants as well as
random projections. Figure 12(c) plots the variation of the number of measurements M vs.
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Figure 11: CS recovery performance for NuMax and random projections. NuMax far out-
performs random Gaussian projections in terms of recovered signal MSE for all
ranges of measurements M as well as SNR.
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Figure 12: Binary classification from low-dimensional linear embeddings. (a) The signals of
interest comprise shifted images of a white disk/square on a black background.
We observe M linear measurements of a test image using different matrices, and
classify the observed samples using a GMLC approach. (b) Observed proba-
bility of classification error as a function of M . NuMax approach yields high
classification rates using very few measurements.

the probability of error. Again, we observe that NuMax significantly outperforms PCA and
random projections.
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Table 1: Misclassification rates on the MNIST dataset for all 10 classes. We compare the
performance of NuMax, Gaussian matrices, and PCA for the same dimensional-
ity of the lower-dimensional space. We used a nearest neighbor classifier for all
dimensionality reduction techniques.

Rank of NuMax solution M = 72 M = 97 M = 167

Distortion δ = 0.40 δ = 0.25 δ = 0.1

Mis-classification rate
in %

NuMax 2.99 3.11 3.31

Gaussian 5.79 4.51 3.88

PCA 4.40 4.38 4.41

5.4.2 MNIST digit classification

The MNIST handwritten digits dataset consists of 10 classes, one for each digit from 0− 9,
with 60,000 training data points and 10,000 test data points. We used the N = 400-
dimensional version of the dataset that does not include extra space at the boundaries. The
number of secants (or equivalently, constraints for the SDP) is extraordinarily large, up to(
60000

2

)
= 1.6× 109 = 1.6 billion secants.

Table 1 shows NN classification performance of NuMax, PCA and Gaussian projections
for various lower-dimensional embedding dimensions, corresponding to several values of δ
in NuMax. We used the rank of the NuMax solution to set the value of M for PCA and
Gaussian embeddings. As we see from Table 1, NuMax outperforms both methods by a
significant margin achieving a mis-classification rate of 2.99% at a dimensionality of M = 72;
in contrast, for the same dimensionality, Gaussian and PCA produce a mis-classification
rate of 5.79% and 4.40%.

We now illustrate the improvements in classification performance provided by NuMax-
Class (Alg. 3). In particular, we allow for inter-class secants to expand and intra-class
secants to shrink without qualifications. As a consequence, in comparison to (8), NuMax-
Class optimizes over a (somewhat) larger feasible set. First, we wish to verify if this larger
feasibility set indeed translates into a solution of lower rank. Second, we wish to verify if
the asymmetric isometry conditions lead to improved classification performance.

We compare the classification performance of NuMax and NuMax-Class in Table 2. For
the same value of δ, not only does NuMax-Class produce a lower-rank solution, but it also
provides a lower mis-classification rate as compared to NuMax thereby outperforming all the
linear DR techniques. Specifically, for M = 52, NuMax-Class achieves a mis-classification
rate of 2.68%, while that NuMax achieves a mis-classification rate of 2.99% at M = 72. This
experiment demonstrates the considerable potential gains using class-specific dimensionality
reduction.

Table 2 also reports MATLAB processing times required to obtain NuMax and NuMax-
Class solutions. We used the CG version of the algorithms for this dataset; both algorithms
scale gracefully to large-scale problems. For larger values of δ, it takes approximately 2
hours to obtain the solution. The runtime increases by a factor of 5× when we decrease
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Table 2: Comparison of the classification rates of NuMax and NuMax-Class over the MNIST
dataset (see Table 1 for comparisons with other linear DR techniques). Note that
for the value of distortion δ, NuMax-Class provides both lower-rank solution as
well as lower misclassification rates. The last two rows provides run-time in hours
and the total number of active secants/constraints at the final solution for various
values of δ. The number of active secants is a tiny fraction of the total 1.8 billion
secant set; this demonstrates the scalability of the CG version of the algorithms.

Distortion δ = 0.4 δ = 0.25 δ = 0.1

Algorithm NuMax NuMax-Class NuMax NuMax-Class NuMax NuMax-Class

Rank 72 52 97 69 167 116
Prob. error 2.99 2.68 3.11 2.72 3.31 3.09

Time (hrs) 2.35 1.90 4.85 5.57 10.64 9.73
Active secants 6950 4068 12121 6746 29702 17323

the distortion parameter δ to 0.1. This reflects the general intuition that smaller values
of δ result in a larger number of active constraints, which leads to more computationaly
intensive sub-problems.

5.4.3 Spoken letter recognition

We tested NuMax and its classification variant, NuMax-Class, on the Isolet dataset obtained
from the UCI Machine learning repository.2 This dataset comprises of 26 classes, one for
each alphabet in English language. The dataset set consists of 617-dimensional datapoints,
with 6238 training points and 1559 test points. In Fig. 13, we compare the performance
of NuMax, NuMax-Class, PCA, and random Gaussian embeddings in k nearest neighbor
classification. To determine the optimal number of neighbors (k) to be used in the classifier,
we used a cross-validation approach. Specifically, 10% of the training dataset was used as
a cross-validation dataset, and was used to select the optimal parameter k.

Figures 13(a) and (b) show cross-validation and test performance, respectively, for vary-
ing dimension of the embedded space. On the whole, NuMax-Class significantly outper-
forms other linear dimensionality reduction techniques; specifically, when projected to a
105−dimensional space, the mis-classification rate offered by NuMax is merely 6%.

6. Discussion

In this paper, we have taken some steps towards constructing a comprehensive algorith-
mic framework that creates a linear, isometry-preserving embedding of high-dimensional
datasets. Our framework is based on a convex optimization formulation (in particular, the
SDP (4)) that approximately preserves the norms of all pairwise secants of the given dataset.
We have developed two algorithms, NuMax and NuMax-CG, that efficiently construct the
desired embedding with considerably smaller computational complexity than existing ap-

2. http://archive.ics.uci.edu/ml/datasets/ISOLET
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Figure 13: Performance of NuMax, its classification variant, PCA and Random projections
on the ISOLET dataset.

proaches. Our NuMax methods can be easily adapted to perform more complicated machine
learning tasks, such as approximate nearest neighbors (ANN) as well as supervised classifi-
cation. In addition, the NuMax embeddings can be successfully used in compressive sensing
applications when the signals of interest can be modeled as elements lying on a smooth,
low-dimensional manifold.

The problem of constructing linear, information-preserving embeddings of high-
dimensional signals into a low-dimensional space is of central importance in a wide range
of machine learning and signal processing applications. Despite their practical significance,
surprisingly little is known about near-isometric linear embeddings beyond the Johnson-
Lindenstrauss Lemma (Matousek, 2011). For example, it is unclear, even from a theoretical
perspective, how to establish the dimension M of the smallest possible subspace into which
a specific dataset X can be embedded using a linear mapping. The framework proposed in
this paper adopts a deterministic, algorithmic approach to answering this important ques-
tion. While we do not provide a full analytical characterization for our framework, we hope
to initiate a line of work that might lead to some interesting theoretical conclusions.

Several challenges remain. First, our approach relies on the efficiency of the nuclear
norm as a proxy for the matrix rank in the objective function in (4). A natural question
is under what conditions the optimum of the convex relaxation (4) equals the optimum of
the nonconvex problem (3). Moreover, while we gave shown empirically that the speed of
convergence of our proposed algorithms (NuMax and NuMax-CG) is far better than con-
ventional methods, the analysis of our algorithms from a theoretical perspective remains
a challenging task. Finally, from a practical perspective, it is common today in machine
learning to encounter datasets that involve millions (or even billions) of training signals,
and optimization on such datasets is only feasible when performed in a highly parallel, de-
centralized, and distributed fashion. How, then, should we extend our proposed algorithms
to such scenarios? We defer such important challenges to future research.
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