
Theoretical Informatics and Applications
Theoret. Informatics Appl. 35 (2001) 239–258

NUMBER-CONSERVING REVERSIBLE CELLULAR
AUTOMATA AND THEIR

COMPUTATION-UNIVERSALITY

Kenichi Morita
1

and Katsunobu Imai
1

Abstract. We introduce a new model of cellular automaton called
a one-dimensional number-conserving partitioned cellular automaton
(NC-PCA). An NC-PCA is a system such that a state of a cell is
represented by a triple of non-negative integers, and the total (i.e., sum)
of integers over the configuration is conserved throughout its evolving
(computing) process. It can be thought as a kind of modelization of the
physical conservation law of mass (particles) or energy. We also define
a reversible version of NC-PCA, and prove that a reversible NC-PCA
is computation-universal. It is proved by showing that a reversible
two-counter machine, which has been known to be universal, can be
simulated by a reversible NC-PCA.

Mathematics Subject Classification. 68Q80, 68Q05.

1. Introduction

Recently, various kinds of interesting computing models which directly reflect
laws of nature have been proposed and investigated. Among others, quantum
computing, DNA computing, reversible computing, etc. have been extensively
studied. A reversible computer is a system such that its transition function of the
whole state is a one-to-one mapping (injection), hence, roughly speaking, it is a
backward deterministic system. It is a kind of model reflecting physical reversibil-
ity, and has been known to be very important when studying inevitable power
dissipation in a computing process [3,4]. In spite of the constraint of reversibility,
such a system has rich ability of computing. Bennett first showed computation-
universality of a reversible Turing machine [2]. A reversible cellular automaton

Keywords and phrases: Cellular automata, reversibility, conservation law, universality.

1 Hiroshima University, Faculty of Engineering, Higashi-Hiroshima 739-8527, Japan;
e-mail: {morita, imai}@iec.hiroshima-u.ac.jp

c© EDP Sciences 2001

240 K. MORITA AND K. IMAI

(CA) has also been studied extensively, and several versions of universality results
have been shown [7–11,13,14].

Conservation of mass or energy is also an important physical law as well as
reversibility. Fredkin and Toffoli [4] proposed Conservative Logic, a kind of logic
circuit theory, that models both reversibility and conservation law of physics, and
showed its universality. In this system, each primitive logic gate must satisfy the
constraints of reversibility (i.e., its logical function is an injection), and conserva-
tion of bits (i.e., the total number of logical value “1”s is conserved between its
input and output). Also for cellular automata, several universal models that are
both reversible and bit-conserving have been known [7,8, 10].

In this paper, we define a new model of cellular automaton (CA) called a one-
dimensional number-conserving partitioned cellular automaton (NC-PCA), which
generalize the notion of bit-conserving CA. In an NC-PCA, each cell is partitioned
into three parts, i.e., left, center, and right parts, and the state of each part is
represented by a non-negative integer (thus, the state of a cell is represented by
a triple of non-negative integers). The next state of a cell is determined by the
present states of the right part of the left-neighboring cell, the center part of this
cell, and the left part of the right-neighboring cell (not depending on the whole
state of the three cells). The total number is conserved during the local transition,
hence the total number over a configuration is also conserved throughout the
evolving process.

Related to this model, a few other models in which each cell state is represented
by a non-negative integer have been known: a totalistic CA [1] and a sand pile
model [5,6]. In [1], a CA with a simple totalistic rule (but not necessarily number-
conserving) has been shown to be universal. In [5,6], a kind of an automata system
having a specific type of number-conserving rules are studied.

Here, we investigate the computing ability of an NC-PCA, and its reversible
version. We show that an NP-PCA is computation universal even if it is reversible.
This strengthens the previous result that a one-dimensional reversible CA (not
necessarily a number-conserving one) is computation-universal [9]. We prove it
by showing that a reversible two-counter machine, which has been known to be
universal [12], can be simulated by a reversible NC-PCA.

2. Number-conserving partitioned cellular automata

In order to define a one-dimensional number-conserving partitioned cellular
automaton (NC-PCA), we first give a definition of a partitioned cellular automaton
(PCA) that has been introduced to design a reversible cellular automaton [9].

Definition 2.1. A deterministic one-dimensional three-neighbor partitioned cel-
lular automaton (PCA) is a system defined by

A = (Z, (L,C,R), g, (q̃L, q̃C , q̃R)),

where Z is the set of all integers at which cells are placed, L,C and R are non-empty
finite sets of states of left, center, and right parts of a cell, g : R×C×L → L×C×R

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 241

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � � �

L L LC C CR R R

t

t + 1

α(i − 1) α(i) α(i + 1)

︸ ︷︷ ︸

︷ ︸︸ ︷�
g

Figure 1. The local transition function g of a PCA A.

is a local function, and (q̃L, q̃C , q̃R) ∈ L×C ×R is a quiescent state that satisfies
g(q̃R, q̃C , q̃L) = (q̃L, q̃C , q̃R).

A configuration over the set Q = L × C × R is a mapping α : Z → Q. Let
Conf(Q) denote the set of all configurations over Q, i.e., Conf(Q) = {α | α : Z →
Q}. A quiescent configuration is the one such that all the cells are in the quiescent
states (q̃L, q̃C , q̃R).

Let proL : Q → L is a projection function such that proL(l, c, r) = l for
all (l, c, r) ∈ Q. Projection functions proC : Q → C, and proR : Q → R are also
defined similarly. The global function G : Conf(Q) → Conf(Q) of A is defined as
follows.

∀x ∈ Z : G(α)(x) = g(proR(α(x − 1)),proC(α(x)),proL(α(x + 1))).

Figure 1 shows how the local function g is applied to each cell. In the following,
an equation g(r, c, l) = (l′, c′, r′) is called a rule of A, and write it by

[r, c, l] → [l′, c′, r′].

We regard the local function g as the set of such rules for convenience.

Next, we define the notion of reversibility for PCAs.

Definition 2.2. Let A = (Z, (L,C,R), g, (q̃L, q̃C , q̃R)) be a PCA. We say A is
globally reversible iff its global function G is one-to-one, and locally reversible iff
its local function g is one-to-one.

242 K. MORITA AND K. IMAI

It is easy to prove the following proposition on PCA, which has been shown
in [9].

Proposition 2.3. Let A be a PCA. A is globally reversible iff it is locally
reversible.

By Proposition 2.3, a globally or locally reversible PCA is called simply
“reversible” and denoted by RPCA. By this, if we want to construct a reversible
CA, it is sufficient to give a PCA whose local function g is one-to-one. This makes
it easy to design a reversible CA.

When we design a one-to-one local function g, it is sufficient to define it only
on a subset of R × C × L that are needed to perform a given task. Because, we
can always find a one-to-one extension from a given partial function provided that
the latter function is one-to-one on the subset.

We now give a definition of a number-conserving PCA. As in the case of a
reversible CA, it is also convenient to use the framework of a PCA. Because, the
the notion of number-conservation can be expressed by a simple constraint on a
local function of a PCA.

Definition 2.4. Let A = (Z, (Nm,Nm,Nm), g, (0, k, 0)) be a PCA, where Nm

denotes the set of integers {0, 1, · · · ,m−1,m}, and k(≤ m) is a non-negative inte-
ger. A is called a one-dimensional number-conserving partitioned cellular automa-
ton (NC-PCA), iff it satisfies the following condition: for all (r, c, l), (l′, c′, r′) ∈
N3

m, if g(r, c, l) = (l′, c′, r′), then r + c + l = l′ + c′ + r′.

A reversible NC-PCA is also defined similarly, and denoted by NC-RPCA.

Example 2.5. A simple example of an NC-RPCA:

A1 = (Z,N3
2, g1, (0, 0, 0)).

The local function g1 contains the following rules.

[0,0,0] → [0,0,0]
[0,1,0] → [0,1,0]
[1,0,0] → [0,0,1]
[0,0,1] → [1,0,0]

[1,1,0] → [0,0,2]
[0,1,1] → [2,0,0]
[2,0,0] → [1,1,0]
[0,0,2] → [0,1,1]

[2,1,0] → [2,1,0]
[0,1,2] → [0,1,2]

We can verify that each rule satisfies the constraint of number-conservation. It
is also easy to see that the right-hand side of each rule differs from those of the
others, hence A1 is reversible. Figure 2 shows an example of its transitions of
configurations, where each number is represented by the number of particles. We
can observe that single “flying particle” goes back and forth between the “walls”
made also of particles. Each time the flying particle collides a wall, the latter is
shifted by one cell.

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 243
t

0 • • •
1 • •

•
2 • • •
3 • • •
4 •

• •
5 • • •
6 • • •
7 • • •
8 • •

•
9 • • •

10 • • •
11 • • •
12 • • •

Figure 2. Behavior of the NC-RPCA A1.

3. Universality of an NC-RPCA

In this section, we show that for any reversible two-counter machine there is
an NC-RPCA that simulates it. Since a reversible two-counter machines has been
known to be computation-universal [12], we can conclude that an NC-RPCA is
also universal.

In [12] a counter machine (CM) is defined as a kind of multi-tape Turing machine
whose heads are read-only ones and whose tapes are all blank except the leftmost
squares as shown in Figure 3 (P is a blank symbol). This definition is convenient
for giving the notion of reversibility on a CM.

Definition 3.1. A k-counter machine (CM(k)) is a system

M = (k,Q, δ, q0, qf),

where k is the number of tapes (or counters), Q is a nonempty finite set of in-
ternal states, q0 ∈ Q is an initial state, and qf ∈ Q is a final (halting) state.
M uses {Z,P} as a tape alphabet. δ is a move relation which is a subset of
(Q × {0, 1, · · · , k − 1} × {Z,P} × Q) ∪ (Q × {0, 1, · · · , k − 1} × {−, 0,+} × Q)
(where “−”, “0”, and “+” denote left-shift, no-shift, and right-shift of a head,
respectively). Tapes are one-way (rightward) infinite. The leftmost squares of the
tapes contain the symbol “Z”s, and all the other squares contain “P”s (Z and P
stand for “zero” and “positive”).

244 K. MORITA AND K. IMAI

·
·
·

Finite
Control

� Counter 0
Z P P P P P P P · · ·

� Counter 1
Z P P P P P P P · · ·

� Counter k − 1
Z P P P P P P P · · ·

Figure 3. A k-counter machine (CM(k)).

Each element of δ is called a quadruple, and is either of the form

[q, i, s, q′] or [q, i, d, q′],

where q, q′ ∈ Q, i ∈ {0, 1, · · · , k − 1}, s ∈ {Z,P}, d ∈ {−, 0,+}. The quadruple
[q, i, s, q′] means that if M is in the state q and the i-th head is reading the symbol s
then change the state into q′. It is used to test whether the contents of a counter
are zero or positive. On the other hand, [q, i, d, q′] means that if M is in the state q
then shift the i-th head to the direction d and change the state into q′. It is used
to increment or decrement a counter by one (or make no change if d = 0).

Definition 3.2. An instantaneous description (ID) of a CM(k) M = (k,Q, δ, q0,
qf) is a (k + 1)-tuple

(q, n0, n1, · · · , nk−1) ∈ Q ×Nk,

where N = {0, 1, · · · }. It represents that M is in the state q and the counter i
keeps ni (we assume the position of the leftmost square of a tape is 0). The
transition relation |−−

M
over IDs of M is defined as follows:

(q, n0, · · · , ni−1, ni, ni+1, · · · , nk−1)
|−−
M

(q′, n0, · · · , ni−1, n
′
i, ni+1, · · · , nk−1)

holds iff one of the following conditions (1–5) is satisfied.

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 245

(1) [q, i, Z, q′] ∈ δ and ni = n′
i = 0.

(2) [q, i, P, q′] ∈ δ and ni = n′
i > 0.

(3) [q, i,−, q′] ∈ δ and ni − 1 = n′
i.

(4) [q, i, 0, q′] ∈ δ and ni = n′
i.

(5) [q, i,+, q′] ∈ δ and ni + 1 = n′
i.

We denote reflexive and transitive closure of |−−
M

by |−−
M
∗ , and n-step transition by

|−−
M
n (n = 0, 1, · · ·).

Definition 3.3. Let M = (k,Q, δ, q0, qf) be a CM(k), and

α1 = [p1, i1, x1, p
′
1] and α2 = [p2, i2, x2, p

′
2]

be two distinct quadruples in δ. We say α1 and α2 overlap in domain iff the
following holds, where D = {−, 0,+}.

p1 = p2 ∧ [i1 �= i2 ∨ x1 = x2 ∨ x1 ∈ D ∨ x2 ∈ D].

We say α1 and α2 overlap in range iff the following holds.

p′1 = p′2 ∧ [i1 �= i2 ∨ x1 = x2 ∨ x1 ∈ D ∨ x2 ∈ D].

A quadruple α is called deterministic (reversible, respectively) iff there is no other
quadruple in δ which overlaps in domain (range) with α. M is called deterministic
(reversible, respectively) iff every quadruple in δ is deterministic (reversible). A
reversible CM(k) is denoted by RCM(k).

For example, the following pair

[q1, 2, P, q3] and [q4, 2,+, q3]

overlaps in range, while the pair

[q1, 2, Z, q3] and [q4, 2, P, q3]

does not. As seen from this definition, every ID of a deterministic (reversible,
respectively) CM(k) has at most one ID that immediately follows (precedes) it.
Hereafter, we consider only deterministic reversible and deterministic irreversible
CM(k)s.

It has been known that an RCM(2) is computation-universal [12].

Proposition 3.4. [12] For any Turing machine T , there is a deterministic
RCM(2) M that simulates T .

We need the following lemma to prove Theorem 3.6.

Lemma 3.5. For any deterministic CM(2) M = (2, Q, δ, q0, qf), there is a de-
terministic CM(2) M ′ = (2, Q′, δ, q′0, q

′
f) that simulates M satisfying the following

246 K. MORITA AND K. IMAI

conditions: (i) the initial state q′0 never appears as the fourth element of a quadru-
ple in δ′ (hence it appears only at time 0). (ii) If M is reversible then M ′ is also
reversible.

Proof. In the case M is irreversible, it is very easy to construct such M ′ by
adding a new initial state to Q. So, we consider the reversible case. In [12], a
construction method of a reversible CM(2) M2 that simulates a given CM(k) M1

(k = 1, 2, · · ·) (that is not necessarily reversible) has been shown. By checking
the construction method shown in [12], we can verify that M2 satisfies the above
condition (i), provided that M1 also satisfies it. Hence the Lemma holds. �
Theorem 3.6. For any deterministic CM(2) M , there is a deterministic NC-
PCA A that simulates M satisfying the following condition: if M is reversible
then A is also reversible.

Proof. Without loss of generality, we assume that the state set of M is Q =
{q0, q1, · · · , qm−1}, and the initial and final states are q0, and qm−1, respectively.
Hence,

M = (2, {q0, q1, · · · , qm−1}, δ, q0, qm−1).

Further assume that q0 never appears as the fourth element of a quadruple in δ
(by Lem. 3.5). Let Incj , Decj , Nop, and Testj be the sets of states defined as
follows (j ∈ {0, 1}).

Incj = {p | [p, j,+, q] ∈ δ for some q ∈ Q}
Decj = {p | [p, j,−, q] ∈ δ for some q ∈ Q}
Nop = {p | [p, j, 0, q] ∈ δ for some j ∈ {0, 1}, and q ∈ Q}
Testj = {p | [p, j, s, q] ∈ δ for some s ∈ {Z,P}, and q ∈ Q}·

These sets stand for instructions of “increment the counter j”, “decrement the
counter j”, “no-operation”, and “test if the counter j is zero or positive”. It is
easy to see that Incj , Decj , Nop, and Testj are pairwise disjoint (for example,
Inc0 ∩ Inc1 = ∅, Dec1 ∩ Nop = ∅, etc.), since M is deterministic.

We now construct an NC-PCA A that simulates M . Each part of a cell of A
keeps a number at most m + 18, and the quiescent state is (0, 0, 0). Thus,

A = (Z,N3
m+18, g, (0, 0, 0)).

Before defining the local function g, we fix a coding method of an ID of M by a
configuration of A. First, we assign an “operation code” to each state of M by
the following function γ : Q → {0, 2, 4, 6, 7}.

γ(q) =

2 if q ∈ Inc0

4 if q ∈ Dec0

6 if q ∈ Inc1

7 if q ∈ Dec1

0 otherwise.

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 247

Note that the states in Nop ∪ Test0 ∪ Test1 and the halting states have the same
operation code 0. We then define a coding function ϕ : Q ×N2 → Conf(N3

m+18),
which maps each ID of M to a configuration of A. Let I = (qi, n0, n1) be an ID
of M . A configuration ϕ(I) is computed by the following procedure.

begin
α := the quiescent configuration;
proL(α(0)) := i + 10;
proC(α(0)) := (m + 16) − (i + 10)− γ(qi);
proR(α(0)) := γ(qi);
for each j ∈ {0, 1} do

if nj = 0 and qi ∈ Incj then proR(α(0)) := proR(α(0)) + 2j

else proC(α(nj)) := proC(α(nj)) + 2j;
ϕ(I) := α

end.

For example, the configuration ϕ(qi, 2, 0) such that qi ∈ Inc1 is shown in Figure 4.

· · · i + 10
(m+16)

−(i+10)

−γ(qi)

γ(qi)
+21 0 0 0 0 20 0 · · ·

0 1 2

Figure 4. The configuration ϕ(qi, 2, 0) such that qi ∈ Inc1.

Each configuration ϕ(I) has the number m + 19 in total. The number nj kept
by the counter j (j ∈ {0, 1}) is recorded by putting the number 2j at the center
part of the cell nj (at the right part of the cell 0, if nj = 0 and the current state
is in Incj). The number 2j is called a counter marker. The remaining m + 16
particles are used to record the state of M , and to execute operations on counters.

In what follows, each state in {1, 2, · · · ,m+9} appearing in the left or the right
part (not in the center part) of a cell is called a signal. Signals in {10, 11, · · · ,m+9}
are called state signals, and are used to record the current state of M . State
signals are kept by the cells 0 and −1 (they go back and forth between these
cells). Signals in {2, 4, 6, 7} are called operation signals, which are used to execute
increment/decrement operations. Each of the four operation signals sometimes
carry a counter marker to move it to the right- or left-neighboring cell. At that
time, these signals “2”, “4”, “6”, and “7” temporarily become “3”, “5”, “8”, and
“9”, respectively. The signal “1” is a special one called an initial/final signal (it
will be explained later).

248 K. MORITA AND K. IMAI

We now define the local function g of A as follows:

1. Rules for the cases where no signal exists:
For each x ∈ Nm+18, include the following rule in g.

[0, x, 0] → [0, x, 0]. (1)

2. Rules for state signals:
For each x ∈ {10, 11, · · · ,m + 9}, include the following rule in g.

[0, 0, x] → [0, 0, x]. (2)

3. Rules for the increment operation:
For each j ∈ {0, 1} and c ∈ {0, 1}, include the following rules in g (⊕ denotes
the addition in mod 2).

[2 + 4j, c · 2j⊕1, 0] → [0, c · 2j⊕1, 2 + 4j] (3.1)
[2 + 4j, 2j + c · 2j⊕1, 0] → [0, c · 2j⊕1, 2 + 4j + 2j] (3.2)
[2 + 4j + 2j , c · 2j⊕1, 0] → [2 + 4j, 2j + c · 2j⊕1, 0] (3.3)
[0, c · 2j⊕1, 2 + 4j] → [2 + 4j, c · 2j⊕1, 0]. (3.4)

4. Rules for the decrement operation:
For each j ∈ {0, 1} and c ∈ {0, 1}, include the following rules in g.

[4 + 3j, c · 2j⊕1, 0] → [0, c · 2j⊕1, 4 + 3j] (4.1)
[4 + 3j, 2j + c · 2j⊕1, 0] → [4 + 3j + 2j, c · 2j⊕1, 0] (4.2)
[0, c · 2j⊕1, 4 + 3j + 2j] → [4 + 3j, 2j + c · 2j⊕1, 0] (4.3)
[0, c · 2j⊕1, 4 + 3j] → [4 + 3j, c · 2j⊕1, 0]. (4.4)

5. Rules for waiting for the completion of the increment/decrement operation:
For each [qi, j, d, qk] ∈ δ such that d ∈ {+,−}, and for each c ∈ {0, 1}, include
the following rule in g.

[i + 10, (m + 16) − (i + 10)− γ(qi) + c · 2j⊕1, 0] →
[i + 10, (m + 16)− (i + 10)− γ(qi) + c · 2j⊕1, 0]. (5)

6. Rules for simulating M ’s state transition from a state in Incj :
For each [qi, j,+, qk] ∈ δ and c ∈ {0, 1}, if qk �∈ Incj⊕1, then include the following
rule in g.

[i + 10, (m + 16)− (i + 10)− γ(qi) + c · 2j⊕1, γ(qi)] →
[k + 10, (m + 16) − (k + 10) − γ(qk) + c · 2j⊕1, γ(qk)]. (6.1)

For each [qi, j,+, qk] ∈ δ and c ∈ {0, 1}, if qk ∈ Incj⊕1, then include the following
rule in g.

[i + 10, (m + 16)− (i + 10)− γ(qi) + c · 2j⊕1, γ(qi)] →
[k + 10, (m + 16) − (k + 10) − γ(qk), γ(qk) + c · 2j⊕1]. (6.2)

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 249

7. Rules for simulating M ’s state transition from a state in Decj :
For each [qi, j,−, qk] ∈ δ and c, c′ ∈ {0, 1}, if qk �∈ (Incj ∪ Incj⊕1), then include
the following rule in g.

[i + 10, (m + 16) − (i + 10) − γ(qi) + c′ · 2j⊕1, γ(qi) + c · 2j] →
[k + 10, (m + 16) − (k + 10)− γ(qk) + c · 2j + c′ · 2j⊕1, γ(qk)]. (7.1)

For each [qi, j,−, qk] ∈ δ and c, c′ ∈ {0, 1}, if qk ∈ Incj , then include the following
rule in g.

[i + 10, (m + 16) − (i + 10) − γ(qi) + c′ · 2j⊕1, γ(qi) + c · 2j] →
[k + 10, (m + 16) − (k + 10)− γ(qk) + c′ · 2j⊕1, γ(qk) + c · 2j]. (7.2)

For each [qi, j,−, qk] ∈ δ and c, c′ ∈ {0, 1}, if qk ∈ Incj⊕1, then include the
following rule in g.

[i + 10, (m + 16) − (i + 10) − γ(qi) + c′ · 2j⊕1, γ(qi) + c · 2j] →
[k + 10, (m + 16) − (k + 10)− γ(qk) + c · 2j, γ(qk) + c′ · 2j⊕1]. (7.3)

8. Rules for simulating M ’s state transition from a state in Nop:
For each [qi, j, 0, qk] ∈ δ and c, c′ ∈ {0, 1}, if qk �∈ (Inc0 ∪ Inc1), then include the
following rule in g.

[i + 10, (m + 16)− (i + 10) + c · 20 + c′ · 21, 0] →
[k + 10, (m + 16) − (k + 10) − γ(qk) + c · 20 + c′ · 21, γ(qk)]. (8.1)

For each [qi, j, 0, qk] ∈ δ and c, c′ ∈ {0, 1}, if qk ∈ Incj for some j, then include
the following rule in g.

[i + 10, (m + 16) − (i + 10) + c · 2j + c′ · 2j⊕1, 0] →
[k + 10, (m + 16) − (k + 10) + γ(qk) + c′ · 2j⊕1, γ(qk) + c · 2j]. (8.2)

9. Rules for simulating M ’s state transition from a state in Testj :
For each [qi, j, Z, qk] ∈ δ and c ∈ {0, 1}, if qk �∈ (Incj ∪ Incj⊕1), then include the
following rule in g.

[i + 10, (m + 16) − (i + 10) + 2j + c · 2j⊕1, 0] →
[k + 10, (m + 16) − (k + 10) − γ(qk) + 2j + c · 2j⊕1, γ(qk)]. (9.1)

For each [qi, j, Z, qk] ∈ δ such that and c ∈ {0, 1}, if qk ∈ Incj , then include the
following rule in g.

[i + 10, (m + 16) − (i + 10) + 2j + c · 2j⊕1, 0] →
[k + 10, (m + 16) − (k + 10) − γ(qk) + c · 2j⊕1, γ(qk) + 2j]. (9.2)

250 K. MORITA AND K. IMAI

For each [qi, j, Z, qk] ∈ δ and c ∈ {0, 1}, if qk ∈ Incj⊕1, then include the following
rule in g.

[i + 10, (m + 16) − (i + 10) + 2j + c · 2j⊕1, 0] →
[k + 10, (m + 16) − (k + 10) − γ(qk) + 2j, γ(qk) + c · 2j⊕1]. (9.3)

For each [qi, j, P, qk] ∈ δ and c ∈ {0, 1}, if qk �∈ Incj⊕1, then include the following
rule in g.

[i + 10, (m + 16) − (i + 10) + c · 2j⊕1, 0] →
[k + 10, (m + 16) − (k + 10) − γ(qk) + c · 2j⊕1, γ(qk)]. (9.4)

For each [qi, j, P, qk] ∈ δ and c ∈ {0, 1}, if qk ∈ Incj⊕1, then include the following
rule in g.

[i + 10, (m + 16) − (i + 10) + c · 2j⊕1, 0] →
[k + 10, (m + 16) − (k + 10) − γ(qk), γ(qk) + c · 2j⊕1]. (9.5)

10. Rules for the initial/final signal:
Include the following rules in g.

[1, 0, 0] → [0, 0, 1] (10.1)
[0, 0, 1] → [1, 0, 0]. (10.2)

For each c, c′ ∈ {0, 1}, if q0 �∈ (Inc0 ∪ Inc1), then include the following rule in g.

[1, (m + 15) + c · 20 + c′ · 21, 0] →
[10, (m + 16) − 10 − γ(q0) + c · 20 + c′ · 21, γ(q0)]. (10.3)

For each c, c′ ∈ {0, 1}, if ∃j (q0 ∈ Incj), then include the following rule in g.

[1, (m + 15) + c · 2j + c′ · 2j⊕1, 0] →
[10, (m + 16) − 10 − γ(q0) + c′ · 2j⊕1, γ(q0) + c · 2j]. (10.4)

For each c, c′ ∈ {0, 1}, include the following rule in g.

[(m + 9), (m + 16) − (m + 9) + c · 20 + c′ · 21, 0] →
[1, (m + 15) + c · 20 + c′ · 21, 0]. (10.5)

We now explain how each operation of M can be simulated by the rules of A.
Although the simulation method itself is a rather straight-forward one, the above
rules are designed so that the condition “if M is reversible, so is A” holds.
(a) Execution of an increment operation [qi, j,+, qk]:

The operation signals “2” and “6” are used for the increment of the counters 0
and 1, respectively. Such a signal is generated at the cell 0, and travels rightward
until it meets a corresponding counter marker 20 or 21. The signal shifts the

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 251

t 0 0 2 0 0 0 0 2 0 0 1 0 0 0 0

t + 1 0 0 0 0 0 2 0 2 0 0 1 0 0 0 0

t + 2 0 0 0 0 0 0 0 2 2 0 1 0 0 0 0

t + 3 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0

t + 4 0 0 0 0 0 0 0 2 0 0 0 0 2 1 0

t + 5 0 0 0 0 0 0 0 2 0 2 0 0 0 1 0

t + 6 0 0 0 0 0 0 2 2 0 0 0 0 0 1 0

t + 7 0 0 0 2 0 0 0 2 0 0 0 0 0 1 0

Figure 5. Performing an increment operation to the counter 0.

counter marker to the right by one cell, and then goes back to the cell 0. This
operation can be performed by the rules (3.1–3.4) (strictly speaking, they are “rule
schemes”). Figure 5 shows an example of this process.

When the operation signal returns to the cell 0, the state transition from qi to
qk in M is simulated by the rule (6.1) or (6.2) (depending on whether qk ∈ Incj⊕1

or not) in A. Figure 6 (the case nj > 0) and Figure 7 (the case nj = 0) show
examples of the whole execution processes. The rules (1, 2), and (5) are also used
during this operation.
(b) Execution of a decrement operation [qi, j,−, qk]:

The operation signals “4” and “7” are used for the decrement of the counter 0
and 1, respectively. The shifting operation of a counter marker is similar to the case
of the increment operation, and is be performed by the rules (4.1–4.4). Figure 8
shows an example of this process. An examples of the whole execution process of
[qi, j,−, qk] is shown in Figure 9. The rules (1, 2, 5), and (7.1–7.3) are also used
besides (4.1–4.4).
(c) Execution of a no-operation [qi, j, 0, qk]:

A no-operation simply changes the state of M . The rules (1, 2), and (8.1–8.2)
are used for it. Figure 10 shows an execution process of [qi, j, 0, qk].
(d) Execution of a test-if-zero/positive operations [qi, j, Z, qk] and [qi, j, P, q�]:

The operations [qi, j, Z, qk] and [qi, j, P, q�] are performed by the rules (9.1–9.3),
and (9.4, 9.5), respectively (the rules (1) and (2) are also used). Figure 11 and
Figure 12 show examples of the execution processes of [qi, j, Z, qk] and [qi, j, P, q�],
respectively. Note that which rule group (9.1–9.3) or (9.4, 9.5) is used is determined
whether the center part of cell 0 contains the term 2j.
(e) Rules for the initial/final signal:

The rules (10.1–10.5) are the ones for the initial/final signal. When M halts in
the final state, the signal “1” is generated by the rule (10.5), and this signal travels

252 K. MORITA AND K. IMAI

t 0 0 0 i + 10
(m+16)

−(i+10)

−γ(qi)

γ(qi) 0 2j 0 0 0 0

t + 1 0 0 i + 10 0

(m+16)

−(i+10)

−γ(qi)

0 0 0
γ(qi)

+2j
0 0 0

t + 2 0 0 0 i + 10
(m+16)

−(i+10)

−γ(qi)

0 0 0 0 γ(qi) 2j 0

t + 3 0 0 i + 10 0
(m+16)

−(i+10)

−γ(qi)

0 γ(qi) 0 0 0 2j 0

t + 4 0 0 0 k + 10
(m+16)

−(k+10)

−γ(qk)

γ(qk) 0 0 0 0 2j 0

Figure 6. Execution of an increment operation [qi, j,+, qk] for
the case nj > 0.

t 0 0 0 i + 10
(m+16)

−(i+10)

−γ(qi)

γ(qi)

+2j 0 0 0 0 0 0

t + 1 0 0 i + 10 0
(m+16)

−(i+10)

−γ(qi)

0 γ(qi) 2j 0 0 0 0

t + 2 0 0 0 k + 10
(m+16)

−(k+10)

−γ(qk)

γ(qk) 0 2j 0 0 0 0

Figure 7. Execution of an increment operation [qi, j,+, qk] for
the case nj = 0.

leftward indefinitely by the rule (10.2). Note that these rules are not necessary
for the simulation itself. But, by them, the contents of the counters (i.e., the
final result) are kept unchanged even after the computation of M terminates.
Symmetrically to this, by the rules (10.1, 10.3), and (10.4), we can go backward
before the initial computational configuration of M .

By above, we can see that A correctly simulates M step by step. It is easy
to verify that each rule conserves the total number between left- and right-hand
sides, and hence A is an NC-PCA.

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 253

t 0 0 7 0 0 0 0 0 0 0 3 0 0 0 0

t + 1 0 0 0 0 0 7 0 0 0 0 3 0 0 0 0

t + 2 0 0 0 0 0 0 0 0 7 0 3 0 0 0 0

t + 3 0 0 0 0 0 0 0 0 0 9 1 0 0 0 0

t + 4 0 0 0 0 0 0 7 2 0 0 1 0 0 0 0

t + 5 0 0 0 7 0 0 0 2 0 0 1 0 0 0 0

t + 6 7 0 0 0 0 0 0 2 0 0 1 0 0 0 0

Figure 8. Performing a decrement operation to the counter 1.

t 0 0 0 i + 10
(m+16)

−(i+10)

−γ(qi)

γ(qi) 0 0 0 0 2j 0

t + 1 0 0 i + 10 0

(m+16)

−(i+10)

−γ(qi)

0 0 0 γ(qi) 0 2j 0

t + 2 0 0 0 i + 10
(m+16)

−(i+10)

−γ(qi)

0 0 0 0
γ(qi)

+2j 0 0

t + 3 0 0 i + 10 0

(m+16)

−(i+10)

−γ(qi)

0 γ(qi) 2j 0 0 0 0

t + 4 0 0 0 k + 10
(m+16)

−(k+10)

−γ(qk)

γ(qk) 0 2j 0 0 0 0

Figure 9. Execution of a decrement operation [qi, j,−, qk].

Now, we show that the following statement holds: If M is reversible, so is A.
Assume M is reversible. It suffices to show that each of the above rules has a
different right-hand side from those of the other rules. First, we can easily verify
that rules (1, 2, 3.x, 4.x, 10.1, 10.2), and (10.5) satisfy this constraint by simply
comparing their right-hand sides with other rules. The rules (10.3), and (10.4) are
also so. Because the state q0 does not appear as the forth element of a quadruple
in δ, hence the right-hand sides of these rules never matches those of (6.x, 7.x,
8.x), and (9.x), as well as the others.

254 K. MORITA AND K. IMAI

t 0 0 0 i + 10
(m+16)

−(i+10)
0 0 0 0 0 0 0

t + 1 0 0 i + 10 0
(m+16)

−(i+10)
0 0 0 0 0 0 0

t + 2 0 0 0 k + 10
(m+16)

−(k+10)

−γ(qk)

γ(qk) 0 0 0 0 0 0

Figure 10. Execution of a no-operation [qi, j, 0, qk].

t 0 0 0 i + 10

(m+16)

−(i+10)

+2j

0 0 0 0 0 0 0

t + 1 0 0 i + 10 0

(m+16)

−(i+10)

+2j

0 0 0 0 0 0 0

t + 2 0 0 0 k + 10

(m+16)

−(k+10)

−γ(qk)

+2j

γ(qk) 0 0 0 0 0 0

Figure 11. Execution of a test-if-zero operation [qi, j, Z, qk] for
the case nj = 0.

t 0 0 0 i + 10
(m+16)

−(i+10)
0 0 0 0 0 0 0

t + 1 0 0 i + 10 0
(m+16)

−(i+10)
0 0 0 0 0 0 0

t + 2 0 0 0 � + 10
(m+16)

−(�+10)

−γ(q�)

γ(q�) 0 0 0 0 0 0

Figure 12. Execution of a test-if-positive operation [qi, j, P, q�]
for the case nj > 0.

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 255

Next, we consider the rules (5), which correspond to the quadruple [qi, j, d, qk]
∈ δ such that d ∈ {+,−}. The state qi may appear as the fourth element of the
other quadruples. But, since γ(qi) > 0 (because qi ∈ (Inc0 ∪ Inc1 ∪Dec0 ∪Dec1)),
the right-hand sides of the rules (5) never match those of (6.x, 7.x, 8.x), and (9.x).

We finally verify that rules (6.x, 7.x, 8.x), and (9.x) satisfy the reversibility
constraint. Let Inc′, Dec′, Nop′, and Test′ be the sets of states of M defined as
follows.

Inc′ = {qk | [qi, j,+, qk] ∈ δ for some j ∈ {0, 1}, and qi ∈ Q}
Dec′ = {qk | [qi, j,−, qk] ∈ δ for some j ∈ {0, 1}, and qi ∈ Q}
Nop′ = {qk | [qi, j, 0, qk] ∈ δ for some j ∈ {0, 1}, and qi ∈ Q}
Test′ = {qk | [qi, j, s, qk] ∈ δ for some j ∈ {0, 1}, s ∈ {Z,P}, and qi ∈ Q}·

For each qk ∈ (Inc′ ∪ Dec′ ∪ Nop′) there is exactly one quadruple containing qk

as the fourth element, since M is reversible (thus the quadruple is of the form
[qi, j, d, qk] (qi ∈ Q, j ∈ {0, 1}, d ∈ {−, 0,+})). Hence, the rules in (6.x, 7.x),
and (8.x) corresponding to this quadruple have different right-hand sides from the
others. Next, for each qk ∈ Test′, there are at most two quadruples containing qk

as the fourth element since M is reversible. They are of the form [qi, j, s, qk] (qi ∈
Q, j ∈ {0, 1}, s ∈ {Z,P}). If there is only one, the rules in (9.x) corresponding
to this quadruple satisfy the reversibility constraint as above. In the case there
are two, they must be of the forms [qi, j, Z, qk] and [q′i, j

′, P, qk], because M is
reversible. We can see the rules in (9.1–9.3), and (9.4, 9.5) corresponding to the
two rules have mutually different right-hand sides, because the center part of the
cell 0 should be different between two cases of the contents of the counter j. They
also differs from the other rules.

By above, each rule in g has different right-hand side from the others, and thus
we can conclude that if M is reversible, A is also reversible. �

Example 3.7. Consider a deterministic RCM(2) M2 = (2, Q, {Z,P}, δ, q0, q6)
having the following quadruples as δ.

[q0, 1, Z, q1]
[q1, 0, Z, q6]
[q1, 0, P, q2]
[q2, 0, −, q3]

[q3, 1, +, q4]
[q4, 1, +, q5]
[q5, 1, P, q1]

M2 performs the computation (q0, n, 0) |−−
M2

∗ (q6, 0, 2n) for any n(= 0, 1, · · ·). An
NC-RPCA A2 constructed from M2 by the method given in Theorem 3.6 is as
follows.

A2 = (Z,N3
25, g2, (0, 0, 0)).

The local function g2 is defined by the following set of rules, and a simulation
process of (q0, 2, 0) |−−

M2

12 (q6, 0, 4) is shown in Figure 13.

256 K. MORITA AND K. IMAI

Rules by (1) (x ∈ {0, 1, · · · , 25}):
[0, x, 0] → [0, x, 0]

Rules by (2) (y ∈ {10, 11, · · · , 16}):
[0, 0, y] → [0, 0, y]

Rules by (3.1):
[2, 0, 0] → [0, 0, 2]
[2, 2, 0] → [0, 2, 2]
[6, 0, 0] → [0, 0, 6]
[6, 1, 0] → [0, 1, 6]

Rules by (3.2):
[2, 1, 0] → [0, 0, 3]
[2, 3, 0] → [0, 2, 3]
[6, 2, 0] → [0, 0, 8]
[6, 3, 0] → [0, 1, 8]

Rules by (3.3):
[3, 0, 0] → [2, 1, 0]
[3, 2, 0] → [2, 3, 0]
[8, 0, 0] → [6, 2, 0]
[8, 1, 0] → [6, 3, 0]

Rules by (3.4):
[0, 0, 2] → [2, 0, 0]
[0, 2, 2] → [2, 2, 0]
[0, 0, 6] → [6, 0, 0]
[0, 1, 6] → [6, 1, 0]

Rules by (4.1):
[4, 0, 0] → [0, 0, 4]
[4, 2, 0] → [0, 2, 4]
[7, 0, 0] → [0, 0, 7]
[7, 1, 0] → [0, 1, 7]

Rules by (4.2):
[4, 1, 0] → [5, 0, 0]
[4, 3, 0] → [5, 2, 0]
[7, 2, 0] → [9, 0, 0]
[7, 3, 0] → [9, 1, 0]

Rules by (4.3):
[0, 0, 5] → [4, 1, 0]
[0, 2, 5] → [4, 3, 0]
[0, 0, 9] → [7, 2, 0]
[0, 1, 9] → [7, 3, 0]

Rules by (4.4):
[0, 0, 4] → [4, 0, 0]
[0, 2, 4] → [4, 2, 0]
[0, 0, 7] → [7, 0, 0]
[0, 1, 7] → [7, 1, 0]

Rules by (5) for [q2, 0,−, q3]:
[12, 7, 0] → [12, 7, 0]
[12, 9, 0] → [12, 9, 0]

Rules by (5) for [q3, 1,+, q4]:
[13, 4, 0] → [13, 4, 0]
[13, 5, 0] → [13, 5, 0]

Rules by (5) for [q4, 1,+, q5]:
[14, 3, 0] → [14, 3, 0]
[14, 4, 0] → [14, 4, 0]

Rules by (6.1) for [q3, 1,+, q4]:
[13, 4, 6] → [14, 3, 6]
[13, 5, 6] → [14, 4, 6]

Rules by (6.1) for [q4, 1,+, q5]:
[14, 3, 6] → [15, 8, 0]
[14, 4, 6] → [15, 9, 0]

Rules by (7.3) for [q2, 0,−, q3]:
[12, 7, 4] → [13, 4, 6]
[12, 7, 5] → [13, 5, 6]
[12, 9, 4] → [13, 4, 8]
[12, 9, 5] → [13, 5, 8]

Rules by (9.1) for [q0, 1, Z, q1]:
[10, 15, 0] → [11, 14, 0]
[10, 16, 0] → [11, 15, 0]

Rules by (9.1) for [q1, 0, Z, q6]:
[11, 13, 0] → [16, 8, 0]
[11, 15, 0] → [16, 10, 0]

Rules by (9.4) for [q1, 0, P, q2]:
[11, 12, 0] → [12, 7, 4]
[11, 14, 0] → [12, 9, 4]

Rules by (9.4) for [q5, 1, P, q1]:
[15, 8, 0] → [11, 12, 0]
[15, 9, 0] → [11, 13, 0]

Rules by (10.1) and (10.2):
[1, 0, 0] → [0, 0, 1]
[0, 0, 1] → [1, 0, 0]

Rules by (10.3):
[1, 22, 0] → [10, 13, 0]
[1, 23, 0] → [10, 14, 0]
[1, 24, 0] → [10, 15, 0]
[1, 25, 0] → [10, 16, 0]

Rules by (10.4):
[16, 7, 0] → [1, 22, 0]
[16, 8, 0] → [1, 23, 0]
[16, 9, 0] → [1, 24, 0]
[16, 10, 0] → [1, 25, 0]

NUMBER-CONSERVING REVERSIBLE CELLULAR AUTOMATA 257

t \ cell −1 0 1 2 3 4

−1 1 24 1

0 10 15 1 (q0, 2, 0)

1 10 15 1

2 11 14 1 (q1, 2, 0)

3 11 14 1

4 12 9 4 1 (q2, 2, 0)

5 12 9 4 1

6 12 9 5

7 12 9 4 1

8 13 4 8 1 (q3, 1, 0)

9 13 4 6 3

10 14 3 6 3 (q4, 1, 1)

11 14 3 1 8

12 14 3 1 6 2

13 14 3 6 1 2

14 15 8 1 2 (q5, 1, 2)

15 15 8 1 2

16 11 12 1 2 (q1, 1, 2)

17 11 12 1 2

18 12 7 4 1 2 (q2, 1, 2)

19 12 7 5 2

20 13 5 6 2 (q3, 0, 2)

21 13 5 6 2

22 13 5 8

23 13 5 6 2

24 13 5 6 2

25 13 5 6 2

26 14 4 6 2 (q4, 0, 3)

27 14 4 6 2

28 14 4 6 2

29 14 4 8

30 14 4 6 2

31 14 4 6 2

32 14 4 6 2

33 14 4 6 2

34 15 9 2 (q5, 0, 4)

35 15 9 2

36 11 13 2 (q1, 0, 4)

37 11 13 2

38 16 8 2 (q6, 0, 4)

39 16 8 2

40 1 23 2

Figure 13. A simulation process of an RCM(2) M2 by an NC-
RPCA A2.

258 K. MORITA AND K. IMAI

From Lemma 3.6 and Proposition 3.4, universality of an NC-RPCA is
concluded.

Corollary 3.8. An NC-RPCA is computation-universal.

4. Concluding remarks

In this paper, we proved that an NC-RPCA can simulate a reversible two-
counter machine, hence it is computation-universal. In [9], universality of an RCA
(not necessarily number-conserving) has been shown by simulating a one-tape
reversible Turing machine by an RCA. It is also possible to simulate a one-tape
reversible Turing machine by an NC-RPCA by using a similar technique as in this
paper. But, if we employ a simulation method in which the contents of each tape
square are stored in each cell, then the quiescent state of the NC-RPCA should
be (0,m, 0) for some m > 0 rather than (0, 0, 0).

Acknowledgements. The authors are grateful to the referees for their valuable comments.

This work was supported in part by Grant-in-Aid for Scientific Research (C) No. 12680353

from JSPS, Electric Technology Research Foundation of Chugoku, and Kayamori Foun-

dation of Information Science Advancement.

References

[1] J. Albert and K. Culik II, A simple universal cellular automaton and its one-way and

totalistic version. Complex Systems 1 (1987) 1-16.
[2] C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17 (1973) 525-532.
[3] C.H. Bennett, Notes on the history of reversible computation. IBM J. Res. Dev. 32 (1988)

16-23.
[4] E. Fredkin and T. Toffoli, Conservative logic. Int. J. Theoret. Phys. 21 (1982) 219-253.
[5] E. Goles, Sand pile automata. Ann. Inst. H. Poincaré 56 (1992) 75-90.
[6] E. Goles and M. Margenstern, Sand pile as a universal computer. Int. J. Modern Physics C

7 (1996) 113-122.
[7] K. Imai and K. Morita, A computation-universal two-dimensional 8-state triangular

reversible cellular automaton. Theoret. Comput. Sci. (in press).
[8] N. Margolus, Physics-like model of computation. Physica D 10 (1984) 81-95.
[9] K. Morita and M. Harao, Computation universality of one-dimensional reversible (injective)

cellular automata. Trans. IEICE Japan E-72 (1989) 758-762.
[10] K. Morita and S. Ueno, Computation-universal models of two-dimensional 16-state reversible

cellular automata. IEICE Trans. Inf. & Syst. E75-D (1992) 141-147.
[11] K. Morita, Computation-universality of one-dimensional one-way reversible cellular

automata. Inform. Process. Lett. 42 (1992) 325-329.
[12] K. Morita, Universality of a reversible two-counter machine. Theoret. Comput. Sci. 168

(1996) 303-320.
[13] T. Toffoli, Computation and construction universality of reversible cellular automata. J.

Comput. Syst. Sci. 15 (1977) 213-231.
[14] T. Toffoli and N. Margolus, Invertible cellular automata: A review. Physica D 45 (1990)

229-253.

Communicated by M. Ito and Z. Ésik.
Received August 27, 1999. Accepted August 21, 2001.

