
Citation: Zhang, F.-Z.; Lin, C.-H.;

Chen, P.-Y.; Pai, N.-S.; Su, C.-M.; Pai,

C.-C.; Ho, H.-W. Number of

Convolution Layers and Convolution

Kernel Determination and Validation

for Multilayer Convolutional Neural

Network: Case Study in Breast

Lesion Screening of Mammographic

Images. Processes 2022, 10, 1867.

https://doi.org/10.3390/pr10091867

Academic Editor: Bonglee Kim

Received: 13 July 2022

Accepted: 12 September 2022

Published: 15 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Number of Convolution Layers and Convolution Kernel
Determination and Validation for Multilayer Convolutional
Neural Network: Case Study in Breast Lesion Screening of
Mammographic Images
Feng-Zhou Zhang 1, Chia-Hung Lin 1,* , Pi-Yun Chen 1,*, Neng-Sheng Pai 1,*, Chun-Min Su 2, Ching-Chou Pai 1,3

and Hui-Wen Ho 3

1 Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
2 Incubation Center, Show-Chwan Memorial Hospital, Changhua 500, Taiwan
3 Division of Cardiovascular Surgery, Show-Chwan Memorial Hospital, Changhua 500, Taiwan
* Correspondence: eechl53@gmail.com (C.-H.L.); chenby@ncut.edu.tw (P.-Y.C.); pai@ncut.edu.tw (N.-S.P.)

Abstract: Mammography is a low-dose X-ray imaging technique that can detect breast tumors, cysts,
and calcifications, which can aid in detecting potential breast cancer in the early stage and reduce
the mortality rate. This study employed a multilayer convolutional neural network (MCNN) to
screen breast lesions with mammographic images. Within the region of interest, a specific bounding
box is used to extract feature maps before automatic image segmentation and feature classification
are conducted. These include three classes, namely, normal, benign tumor, and malignant tumor.
Multiconvolution processes with kernel convolution operations have noise removal and sharpening
effects that are better than other image processing methods, which can strengthen the features
of the desired object and contour and increase the classifier’s classification accuracy. However,
excessive convolution layers and kernel convolution operations will increase the computational
complexity, computational time, and training time for training the classifier. Thus, this study aimed
to determine a suitable number of convolution layers and kernels to achieve a classifier with high
learning performance and classification accuracy, with a case study in the breast lesion screening of
mammographic images. The Mammographic Image Analysis Society Digital Mammogram Database
(United Kingdom National Breast Screening Program) was used for experimental tests to determine
the number of convolution layers and kernels. The optimal classifier’s performance is evaluated
using accuracy (%), precision (%), recall (%), and F1 score to test and validate the most suitable
MCNN model architecture.

Keywords: mammography; multilayer convolutional neural network; region of interest; convolution
layer; kernel convolution

1. Introduction

According to the global cancer statistics (2021) from the International Agency for
Research on Cancer, breast cancer in women has become one of the most common cancers
in the world [1]. In 2021, approximately 2.3 million women were diagnosed with breast
cancer, and the incidence rates of breast cancer (new cases per person) were the highest
in women residing in high-income countries (more-developed countries), such as North
America and Europe, with rates exceeding the lung cancer incidence for the first time in
2020 (approximately 685,000 deaths). It was the main cause of cancer death in women and
the fifth cause of cancer death overall. In Taiwan, according to the 2021 statistics by the
Health Promotion Administration of the Ministry of Health and Welfare, 14,217 women
have been newly diagnosed with breast cancer, implying that one woman is diagnosed
with breast cancer every 37 min, and breast cancer has the highest incidence among cancers
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in women [2]. Therefore, depending on the cause for the treatment of a breast lump, the
early detection of potential breast lesions will not only decrease mortality rates and increase
survival rates but also result in better treatment outcomes. First-line mammography is
a routine imaging technique used in the early detection of potential breast lesions in
clinical applications. With early diagnosis and appropriate treatment, breast cancer has a
very good prognosis response. Mammographic imaging techniques, non-mammographic
imaging techniques, and breast self-examination provide scientific evidence and have been
used to assess cancer prevention and the adverse effects of screening for breast cancer [3].
Breast cancer is detected by mammographic imaging techniques and has the following
major indications: mass density with a specific shape and border features, radiological
appearances of microcalcifications, architectural distortions, and asymmetries between the
left and right breasts [3]. For the smallest detectable size at stages 0–1 [4], mammographic
imaging offers a promising image quality for the accurate detection of possible breast
lesions. Hence, the automatic breast lesion screening of mammographic images will
help clinicians and radiologists in conducting preliminary diagnoses and overcoming
the problem of manual screening/examination. In this study, we aimed to perform an
automatic breast tumor screening using the optimal structure of a multilayer convolutional
neural network (MCNN) during classifier establishment and training.

Irregular masses (local) may develop in the left or right breast and the skin may become
depressed and develop an orange peel appearance, such as a nipple turning inwards or
dimpled skin. Breast self-examination is performed by inspection and palpation, which
requires changing the patient’s position and palpating any lump to the extent of the breasts
or armpit. In addition, swelling, ulceration, abnormal secretions, venous dilatation, and
enlarged axillary lymph nodes may occur in the breast. In clinical examination, inspection
or palpation can only be used to determine the presence of tumors (masses) [3] or their
sites and cannot identify whether a tumor is benign (B), malignant (M), or has metastasized.
Image scanning procedures, such as breast X-ray (mammogram) or ultrasound, are auxiliary
diagnostic tools for first-line mammographic imaging and non-mammographic imaging
examinations, including examinations of the breast and the axilla. If any suspicious lesion
can be scanned on a mammogram, breast images will be captured from the mammogram
machine and then transmitted to a computer. Thus, this process will help in locating the
possible position to perform a needle biopsy. For the mediolateral oblique views, the
morphological features of breast lesions [5] are the key information to identifying M and B
masses. According to the morphological descriptors of Breast Imaging-Reporting and Data
System (BI-RADS) [6,7], seven classes can be categorized as BI-RADS#0–BI-RADS#6 to
identify results as “incondusive result (require additional imaging examination)”, “no lesion
found (negative)”, “benign finding”, “probably benign finding”, “suspicious abnormality”,
“high probability of malignancy”, and “proven malignancy” for suggestions regarding
routine/continued screening, tissue diagnosis, or surgical excision.

Machine learning (ML) and deep learning (DL) methods, such as traditional artificial
neural network, multilayer perceptron network (MPN), support vector machine [8–10],
Attention Dense-Unet Model, fully convolutional network, FC-Densenet, U-Net CNN, and
region-based CNN [11–17], have been widely used in mammogram classification, mass
detection, and mass segmentation in recent years. For supervised algorithm-based classi-
fiers, multi-hidden-layer perceptron or radial basis function neural networks are used to
carry out classification for the detection of suspicious regions or lesions in mammographic
images. Both can use image databases such as the Mammographic Image Analysis Society
(MIAS) digital mammogram database, the Digital Database of Screening Mammography,
the Curated Breast Imaging Subset of Digital Database for Screening Mammography, and
suspicious regions on mammograms from the Palermo Polyclinic [18–20] to train classifiers.
However, ML-based methods lack an automatic feature extraction function and require the
manual labeling and selection of feature patterns to train the classifier and continuously
keep the purposed tasks in line with ongoing human participation and expert intervention
to feed new training datasets. The structure of DL-based methods includes multiconvo-
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lutional pooling layers and a classification layer (fully connected network) to perform
the automatic feature extraction and pattern recognition task. Convolutional processes
can be performed via the multilayers of kernel convolutional operations with kernel slid-
ing windows to obtain the weighting combination of convolution kernels with different
weights, which can be used to extract possible lesion shapes, edges, or contours within the
region of interest (ROI) [21–23] and remove unwanted noises [24]. The feature patterns are
extracted by using these kernel convolutional windows with different weights for pattern
recognition and enhancement of the classification accuracy. The multipooling processes
are used to effectively reduce the dimensions of feature patterns to improve the classifier’s
training load in the classification layers and thereby overcome the overfitting problems
with training using excessive information [25,26]. Hence, DL-based methods are used to
carry out classification with minimal human and expert interventions, and the large volume
of unstructured datasets are applied to train a classifier in achieving its intended purpose.
However, the multiconvolutional pooling processes result in an overload of the training
dataset for computations and classifier training and will thus consume a considerable
amount of computational time.

The classification accuracy of DL-based CNN in complicated and deep structures can
be greater than 95% for digital image classification. The limitations of MCNNs can be
improved by determining a suitable number of multiconvolutional pooling layers, the num-
ber of convolution kernels, and the sizes of convolutional sliding windows for setting the
structure of convolutional pooling layers [27]. This scheme will increase the computational
cost of software and hardware resources. Hence, we intended to reduce the level of com-
putational complexity. In this study, different MCNN models were constructed, including
a two-dimensional (2D) CNN-based classifier and a 2D spatial and one-dimensional (1D)
CNN-based classifier. They had different numbers of convolutional pooling layers, convo-
lution kernels with different sizes of convolutional windows (such as 3 × 3, 5 × 5, 7 × 7,
9 × 9, or 11 × 11), and a 2D convolution network, or from a single 2D to ensemble a 1D con-
volution network to perform the feature extraction tasks. Furthermore, for mammography,
lesions were used as testing patterns to determine the appropriate structure for the MCNN,
and an appropriate structure was suggested to establish a classifier that can aid physicians
or radiologists in breast lesion screening in clinical applications. This study aimed to reduce
the computational complexity level, speed up the training cycle (classifier’s design cycle),
and raise the classifier classification accuracy. A total of 161 subjects (322 images, including
right and left images) were selected from the MIAS image database (United Kingdom
National Breast Screening Program) to test and validate the different structures of MCNNs.
The biomarker informants, such as image size, image category, background tissue, class
of abnormality, and severity of abnormality, were confirmed and agreed upon by expert
radiologists [28–30]. A total of 422 tumor (abnormal) feature patterns and 578 tumor-free
(normal) feature patterns were extracted, for a total of 1000 datasets for training and testing
the classifier; Figure 1 shows some templates of the normal (Nor), B tumors, and M tumors.
Cross-validation [31,32] was performed using four indexes, such as accuracy (%), precision
(%), recall (%), and F1 score (%) to validate the classifier’s lesion recognition performance.
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The remainder of this study is organized as follows: Section 2 describes the methodol-
ogy, including the collection of mammography images, MCNN-based classifier design, and
human–machine interface design for breast lesion screening. Sections 3 and 4 present the
experimental results/classifier performance validation and the conclusions, respectively.

2. Methodology

The traditional MCNN consists of multiconvolutional pooling layers, a flattening
layer, a classification layer, and a multilayer classifier that combines feature enhancement,
noise removal, feature extraction, parameter simplification, and pattern recognition. The
MPN uses a dense multilayer and fully connected structure (an input layer, multiple
hidden layers, and an output layer), which not only requires a huge amount of memory
but also considerable execution time to train the classifier. MPNs are trained using a
backpropagation algorithm to update network weights with iteration computations. MPN-
based classifiers are commonly used for establishing a computer-aided diagnosis (CAD)
tool for mammography classification [32]. However, traditional MPNs need to combine a
feature extractor and a classifier to identify lesions on suspicious regions, manually extract
and select feature patterns such as shape, texture, or key features, and label them to train
a classifier. In addition, their models require feature extraction algorithms to formalize
meaningful features. By contrast, the MCNN integrates overall functions, including image
spatial enhancement, noise filtering, feature extraction, feature reduction, and classification
at the front end of the network into an individual multilayer classifier. However, many
kernel convolutional operations with convolutional windows are used for 2D convolutional
processes in multiconvolutional layers, and feature extraction processes generate a large
number of feature parameters, thereby increasing the computational processing volume
and computational time. As a result, multipooling processes such as pattern recognition,
disease detection, and tumor diagnosis must effectively reduce the dimensions of feature
patterns and mathematic operation durations before image recognition was determined at
the classification layer. Figure 2 indicates the structure of the MCNN-based classifier for
the design of the desired architecture in this study. The design steps of the MCNN-based
classifier are as follows:
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Figure 2. Architecture of multilayer convolutional neural network (MCNN)-based classifier for breast
lesion screening.

2.1. Collection of Mammography Images

In this study, breast X-ray images were collected from the MIAS image database
(v1.21, 2015) [30–32], and they were used to train and test the datasets after the feature
extraction processes. According to the biomarkers identified by physicians or radiolo-
gists, ground truth and breast tumor categories, locations, and sizes can be labeled. The
4320 × 2600 pixel mammography images were selected for the proposed study of breast
tumor screening to test and validate the classifier. For each mammography image, the
feature patterns can be extracted based on the MIAS biomarker’s locations in the ROI.
Figure 1 shows the feature patterns for tumor and tumor-free templates, including B, M,
and Nor feature patterns. A total of 422 tumor (abnormal) and 578 tumor-free (normal)
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feature patterns were extracted from 59 subjects (118 pairs, 35 normal subjects; 24 abnormal
subjects) for experimental verification and algorithm validation. In each cross-validation
test, 500 feature patterns as training datasets were randomly selected to train the classifier,
whereas the other 500 feature patterns as testing datasets were used to verify the classifier’s
classification performance.

The k-fold cross-validation method [28,29] was used to verify the classifier’s classifi-
cation performance. Tenfold cross-validation (Kf = 10) was selected, and for each testing
fold, the dataset was divided into normal and abnormal feature patterns and randomly
divided into 50% for the training datasets and another 50% for the testing datasets. Then,
the same process was used for 10 repeated tests, and four indexes including accuracy (%),
precision (%), recall (%), and F1 score (F1 measure), were used to evaluate the classifier’s
performance. The formulas of the evaluation indexes are as follows [28,29,33]:

Recall(%) = (
TP

TP + FN
)× 100% (1)

Precision(%) = (
TP

TP + FP
)× 100% (2)

Accuracy(%) = (
TP + TN

TP + FN + TN + FP
)× 100% (3)

F1Score =
2TP

2TP + FP + FN
(4)

where TP and TN are the true positive and true negative, respectively; FP and FN are the
false positive and false negative, respectively.

2.2. MCNN-Based Classifier Design

The MCNN-based classifier was the most commonly used architecture of a multilayer
network with several convolutional pooling layers (<10 layers) and a fully connected
layer for image segmentation and image classification. This DL-based MCNN was also an
artificial intelligence (AI) algorithm that was proposed by Dr. Yann Andre LeCun (French-
American computer scientist, 1960) in 1989 [34]. The MCNN models mostly established
10 more convolutional pooling layers for depth and width feature extraction, which not
only increases the classifier’s classification accuracy but also increases computational
complexity level and processing time. Hence, in this study, we intended to design suitable
convolutional pooling layers to decrease training time and computational complexity while
also achieving better recognition results. Based on the structure, as depicted in Figure 2, the
MCNN was divided into three convolutional pooling layers and one classification layer, and
a promising performance was obtained for this structure. The advantage of this structure
was that it simplified the multilayer structure and could reduce the overall training time.
The classifier’s performance was validated by using accuracy (%) with an average accuracy
(%) of >95% in our previous study, as in the literature [35]. Table 1 [35] showed the five
different structures of convolutional pooling layers with different sizes of convolutional
windows (3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11) and pooling windows (2 × 2).

In each convolution layer, 16 convolution kernel processes with different size windows
(3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11) and weights were used to perform the feature
extraction task. The sliding stride for each convolution window was 1 and each pooling
layer used the maximum pooling process to reduce the dimension of feature patterns.
The maximum pooling (MP) window was a 2 × 2 window with sliding stride = 2 to find
the maximum value for patches of a feature map and then to produce the downsampled
feature map. For mammographic images to validate the above five models, the authors
of [35] offered average accuracy with 10-fold cross-validation, as shown in Table 2 [35].
Therefore, this study will use a suitable architecture based on Model #3 to establish a
multilayer classifier. The functions of each layer in the MCNN-based classifier were
described as follows:
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Table 1. Different convolutional pooling layers of the multilayer CNN model (Models #1-#5) [35].

CNN Model 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer Stride Padding

1 3 × 3, 16
2 × 2, 16 - - - - 1

2 1

2 3 × 3, 16
2 × 2, 16

5 × 5, 16
2 × 2, 16 - - - 1

2 1

3 3 × 3, 16
2 × 2, 16

5 × 5, 16
2 × 2, 16

7 × 7, 16
2 × 2, 16 - - 1

2 1

4 3 × 3, 16
2 × 2, 16

5 × 5, 16
2 × 2, 16

7 × 7, 16
2 × 2, 16

9 × 9, 16
2 × 2, 16 - 1

2 1

5 3 × 3, 16
2 × 2, 16

5 × 5, 16
2 × 2, 16

7 × 7, 16
2 × 2, 16

9 × 9, 16
2 × 2, 16

11 × 11, 16
2 × 2, 16

1
2 1

• ROI feature map extraction: a 100 pixels (width) × 100 pixels (height) bounding box
was used to extract feature map in the ROI; a 100 (width) × 100 (height) pixel bounding
box was used to extract the feature map in the suspicious lesion area on the left or
right breast. After ROI extraction, the feature maps were fed into multiconvolutional
pooling layers for the feature extraction process.

• Multiconvolutional pooling processing: The multiconvolutional pooling layers were
used to detect the shape, borders, or corners of the input feature map via 2D spatial
convolutional processes and process sharpening and noise removal [21–23], followed
by maximum pooling (MP) to reduce the feature map dimensions. For each convolu-
tional pooling process, one convolutional process and one pooling process were used
to perform feature extraction. Hence, for each feature extraction, 16 different weighted
kernel windows were used to produce 16 feature maps, and 16 MP processes were
performed to reduce the dimensions of the feature maps.

• Determination of the size of kernel convolution windows: In literature [35,36], a
3 × 3 kernel convolution window was used to replace high-dimensional kernel con-
volution windows, such as those with window sizes 5 × 5, 7 × 7, 9 × 9, 11 × 11;
the high-dimensional convolution kernel had a wide feature search range; however,
its process resulted in specific feature omission and increased computation and com-
plexity. Through experimental results, the convolutional process with a 3 × 3 kernel
window can retain the same performance for feature extraction using a 5 × 5 kernel
window. Although the computational volume of a 3 × 3 window was higher than
those of a 5 × 5 window, the 3 × 3 kernel window required fewer window parameters
than the 5 × 5 window. Continuous multi 3 × 3 convolution kernel processes showed
the rapid enhancement and extraction of the desired object from low-level features
(extraction of an object’s edge) to high-level information (extraction of an object’s
shape) in the detection of nonlinear features, and such a result can increase the nonlin-
earity feature representation [27,36]. Hence, this study used a complete 3 × 3 kernel
window for feature extraction and determined the number of kernel windows in each
convolutional layer.

• Classification layer design: we established a fully connected backpropagation neural
network (BPNN), including an input layer, two hidden layers, and an output layer
that used the loss functions, such as cross-entropy or binary cross-entropy (BCE) func-
tion, to evaluate the classifier’s performance [35–38]. The BPNN’s parameters were
adjusted using an optimization algorithm, such as the adaptive moment estimation
method (ADAM) algorithm [39,40], and employed the loss function to minimize the
residual value between the desired and predicted values because the error rate was
as low as possible. The BCE loss function was selected for this study and depicted as
follows [35,36,39,40]:

BCE loss function : L = − 1
K

m

∑
j=1

K

∑
k=1

tj,k log2(yj,k) + (1 − tj,k) log2(1 − yj,k), j = 1, 2 (5)
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GeLU function : Y = GeLU(XW) (6)

GeLU(xi) = 0.5xi(1 + tanh(

√
2
π
(xi + 0.4472xi

3))), i = 1, 2, 3, . . . , n (7)

where L is the loss function, Y = [y1,k, y2,k] is the output vector, which includes two classes,
namely, normality or abnormality, coded as Y = [1, 0] and Y = [0, 1], respectively; k = 1, 2, 3,
. . . , K, is the number of training dataset, tj,k is the target value (desired class), T = [t1,k, t2,k]
for the two classes, W is the classifier’s weighted parameter matrix of the fully connecting
network; GeLU stands for Gaussian Error Linear Unit and is a hidden node’s activation
function in the hidden layer; xi is the 1D feature vector used as an input pattern (after
flattening process), i = 1, 2, 3, . . . , n, X = [x1, x2, x3, . . . , xn].

Table 2. Comparisons of average training CPU time and average accuracy (%) for five different CNN
models [35].

Model 1 2 3 4 5
Training CPU Time (min) <30 <240 <7 <10 <180

Average Accuracy (%) 90.99% 90.34% 95.92% 95.28% 95.71%

The ADAM optimization algorithm [39,40] was used to adjust the weights of the clas-
sifier’s connecting network W. The ADAM combined with momentum gradient reduction
and second-order gradient value of the root mean square propagation, which was used to
adjust the network weight and modulate the learning rate. The adjustment formula is as
follows [35,36,39,40]:

w(p + 1) = w(p) + η
m̂(p)√
v̂(p) + δ

(8)

where coefficients, m̂(p) = m(p)
1−β1

and v̂(p) = v(p)
1−β2

, in Equation (8) are the adjustment pa-
rameters; parameter η is the learning rate, parameter δ is the smoothing value; parameters
β1 = 0.900 and β2 = 0.999 are the attenuation rates of each iteration; p = 1, 2, 3, . . . , pmax are
the iteration number, and pmax is the maximum number of iteration computation. Each iter-
ation computation can be used to adjust the network weighted parameters within a limited
range of the parameters in Equation (8), as shown in Equations (9) and (10) [35,36,39,40]:

m(p) = β1m(p − 1) + (1 − β2)
∂L
∂w

(9)

v(p) = β1v(p − 1) + (1 − β2)(
∂L
∂w

)
2

(10)

Adaptive decay parameter estimation can produce smoothing weights to update the
network weighted parameters in hidden layers and improve classification accuracy. With
the aforementioned formulas, the best parameters can be rapidly obtained using matrix
operations and the loss function to minimize the error rate.

2.3. Human–Machine Interface Design for Breast Lesion Screening

As shown in Figure 3, LabVIEW 2019 Software (NITM), MATLAB Script tools, and
open-source TensorFlow platform (Version 1.9.0) [41] were used to design a human–
machine interface for breast lesion screening in automatic and manual operation modes to
establish a CAD system. This human–machine interface integrated the following four functions:

(1) ROI extraction function (manual or automatic modes): The path of mammography im-
ages can be set and images can be easily imported into the human–machine interface.
In automatic screening mode, the most frequent region of breast tumors (based on the
high distribution probability on right and left breasts) and the specific bounding box
with 100 × 100 pixel dimension were used to automatically extract the feature maps
(at least six maps) and save them in a designated file based on the screenshot sequence
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in automatic mode, or the clinician and radiologist can manually extract the feature
maps. After the selection of the feature maps, they were saved in the designated file
according to the sequence in manual mode.

(2) Feature enhancement, noise removal, and feature extraction: three convolutional
pooling layers (default structure) were used for digital image preprocessing and
feature extraction.

(3) Determination of kernel convolution window size and number: The size of kernel
windows was set to 3 × 3 (default), the number of kernel windows to 16, and the size
of MP window to 2 × 2. After the convolution processes in each convolutional layer,
the same number of MP processes were performed. The size and number of kernel
convolution windows can be set by the users (clinicians and radiologists).

(4) Pattern recognition function: the open-source TensorFlow platform [41] was used to
carry out an MCNN-based classification with a suitable number of convolution layers
and kernel windows.
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In the proposed human–machine interface, the clinicians and radiologists can change
between automatic and manual screening modes (Figure 3a and Figure 3b, respectively).
For example, clinicians and radiologists can manually select six ROIs, capture screenshots
(default six feature maps), and save these screenshots in a designated file by sequence order.
Then, the classifier performs an automatic recognition task based on the priority sequence
order and returns the classification results. Thus, clinicians can confirm the possible breast
lesion sites and identify their classes.

3. Experimental Results

The MIAS image database consists of four sizes of mammography images of which
most have sizes of 4320 pixels × 2600 pixels [30–32]. Hence, this study used this size for
the image collection of training and testing datasets for the f breast lesions screening. Each
image had a vertical and horizontal resolution of 600 dpi and 24-bit depth. There were
78 subjects (156 mammography images in total of the left and right breasts, including
62 abnormality images (malignant or benign tumor images) and 94 normality images
(tumor-free images)). The clinical information was confirmed and agreed upon by expert
radiologists for biomarkers, such as image size, image category, background tissue, class
of abnormality, and severity of abnormality [30,31]. The manual operation mode was
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selected by using the proposed human–machine interface and biomarker information was
used as a reference to select screenshots within the ROI in 156 images, which included
422 tumor images and 578 tumor-free images (a total of 1000 images). At the training
stage, 211 screenshots containing breast lesion images and 289 normal screenshots were
randomly selected, respectively, and then the ADAM optimization algorithm was used to
train the MCNN-based classifier by adjusting the classifier’s network parameters with the
modulated weights and learning rates. The remaining 50% of images were used to test the
classifier’s recognition capability in the recalling stage. In this study, the two models of
MCNN-based classifiers (Model #1 and Model #2) were shown in Table 3, which were used
to establish an image processing layer, consisting of three convolutional pooling layers.
In Model #1, the first convolutional layer was set by using two 3 × 3 fractional-order
(with fractional-order parameter = 0.30) convolution windows for 2D spatial convolutional
processes. There were 16 kernel convolutional processes in the second and third layers with
3 × 3 kernel convolution windows to parallel produce the 16 feature maps. In this study, we
implemented different MCNN-based classifiers in a multi-core personal computer-based
platform (Intel® Q370, Intel® Core™ i7 8700, DDR4 2400 MHz 8 G*3) and also used the
graphics processing unit (GPU) (NVIDIA® GeForce® RTX™ 2080 Ti, 1755 MHz, 11 GB
GDDR6) to speed up the execution time for feature enhancement, feature extraction, and
classification tasks. The classifiers’ algorithm was designed in the open-source TensorFlow
platform (Version 1.9.0) [36].

Table 3. Different convolutional pooling layer models for feature enhancement and extraction
(Models #1–#2).

Model
1st Convolutional

Window and
Window Size

2nd Convolutional
Window and
Window Size

3rd Convolutional
Window and
Window Size

Stride/Padding Maximum
Pooling Window Stride

1 Fractional Order, 3 × 3, 2 Kernel, 3 × 3, 16 Kernel, 3 × 3, 16 1/1 2 × 2, 16 2
2 Kernel, 3 × 3, 16 Kernel, 3 × 3, 16 Kernel, 3 × 3, 16 1/1 2 × 2, 16 2

During each convolutional process, each sliding window’s striding step was 1. To
retain the feature map’s special characteristics after each convolutional process, we used
the pooling process with padding = 1 and striding step = 2 to perform the MP process
to reduce the dimension of the feature map. In Model #2, the three kernel convolution
layers were set to sixteen 3 × 3 kernel convolution windows in parallel convolutional
processes. As presented in Table 3, both models used three convolutional pooling layers for
feature enhancement and extraction to gradually produce potential lesion contours. In the
classification layer, the BPNN consisted of an input layer (with 625 input nodes), the 1st
hidden layer (with 168 hidden nodes), the 2nd hidden layer (with 64 hidden nodes), and an
output layer (with 2 output nodes). Then, the MCNN-based classifier used these enhanced
feature maps to improve the classification accuracy. As shown in Table 4, tenfold (Kf = 10)
cross-validation was used to verify the proposed Model #2, and the accuracy (%) was used
as an index to preliminarily evaluate the classification accuracy of the two models. The
experimental results in Table 4 show that the three convolutional pooling layers + the fully
connected BPNN had an average accuracy (%) of >95% for separating normality cases from
abnormality ones. The average training times for Models #1 and #2 were <280 and <310 s
CPU time, respectively. Therefore, with Model #2, exactly 1000 training epochs were used
to train the classifier. Figure 4a shows the classifier’s performance validation including the
classification accuracy versus the training epoch. Figure 4b reveals the training efficiency
as the training convergence curve (with loss function) versus the training epoch, where the
blue solid line represents the training performance test, and the orange solid line denotes
the classification performance validation. As the number of training epochs increased so
did the classification accuracy, which reached saturation after 400 training epochs. Finally,
the results of the training convergence curve converged, and the value of the loss function
was minimized (reached the convergence condition). The two models presented promising
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results for breast lesion screening. However, the fractional-order convolutional window
for Model #1’s first layer required the selection of appropriate fractional-order parameters
to achieve better image processing results. Therefore, the architecture of Model #2 was
used to carry out a multilayer MCNN-based classification in this study. Figure 5 indicates
the visualizable confusion matrix of the multilayer classifier based on Model #2, in which
500 untrained feature maps were used for lesion screening. The experimental results
showed that the four element values comprised 203 TPs, 8 FPs, 282 TNs, and 7 FNs for
the identification of normality and abnormality, and they were used to calculate the four
evaluation indexes, including precision (%), recall (%), accuracy (%), and F1 score, to further
evaluate the classifier’s predictive performances.

Table 4. Cross-validation testing results for Model #1 and Model #2 (Kf = 10).

Model
Test Fold

1 2 3 4 5 6 7 8 9 10
Average

Accuracy (%)
1 96.14 97.43 98.07 97.96 98.93 98.07 96.35 95.60 96.89 98.28 97.37
2 97.00 96.60 95.40 96.20 97.60 94.40 95.00 98.10 96.00 95.00 95.93
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Based on the aforementioned tests, Model #2 was selected in this study as the basis
architecture to construct four types of multilayer classifiers, including from Model #2-1
to Model #2-4. The number of kernel convolutional windows in the three convolutional
pooling layers was set to 4, 8, 16, and 32 [36], respectively, as seen in Table 5. Each time,
half of the dataset was used to train the classifier and the other half of those was used to
validate the classifier’s performance with the four different multilayer structures. Then,
the 10-fold cross-validation method was used to validate the classifier’s performances.
Each testing fold could obtain the TP, FP, TN, and FN from the outcomes of the confusion
matrix, as shown in Figure 5. Equations (1)–(4), were used to compute the four indexes,
as precision (%), recall (%), accuracy (%), and F1 score. Table 6 showed the testing results
with changing the different number of kernel convolutional windows. In clinical testing,
precision (%) and recall (%) are the primary indexes for evaluating the classification capa-
bility, in addition to accuracy (%). Precision (%) represented the accuracy of the predicted
TPs (actual abnormality), whereas recall (%) represented the accuracy of the actual TPs.
The two evaluation indexes were both higher than 80.0%, indicating that the classifier
had a promising recognition capacity. Recall (%) was TP-detected rate as the positive
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predictive value (PPV) in the tested dataset. Usually, the PPV index, >80.0%, indicated
that the classifier had good prediction performance. The 10-fold cross-validation results
demonstrated that the results of average precision (%) and average recall (%) of Model #2-3
were better than the other three models (Model #2-1, Model #2-2, and Model #2-4). The
F1 score was also an evaluation index that fused the indicators of precision (%) and recall
(%), and an F1 score of >0.9000 indicated that the classifier model was satisfactory for the
recognition capacity. As seen in the experimental results in Table 6 (as seen in the previous
study of [36]), the F1 scores of all the four models were >0.9000. The average F1 score of
Model #2-3 was superior to the other three models. The average accuracy (%) of Model
#2-4 (95.30%) was greater than Model #2-3 (95.04%). However, the 10-fold cross-validation
results indicated that Model #2-4 had too many kernel convolutional windows and would
produce a large number of feature parameters, which affected the learning capacity of
Model #2-4, resulting in a higher generalization error and poor generalization capacity. Too
many kernel convolutional windows would decay the learning and generalization capacity
in the multilayer structure, resulted in affecting the overall classifier’s performance. Based
on the experimental results in Tables 4 and 6, as seen in four evaluation indexes and training
time (as seen in Figure 5), this study we suggested the following:

• The suitable classifier structure consisted of three convolutional pooling layers and a
fully connected BPNN was suggested to establish the multilayer classifier model;

• The size of the kernel convolution window could be set to 3 × 3 for convolu-
tional operations;

• The better capacity of feature extraction could be achieved by using 16 kernel convo-
lution windows and 16 MP winds for each convolutional pooling layer, which could
increase the classifier’s recognition capability.
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Table 5. Different numbers of the kernel convolutional window for Model #2.

Model
1st Convolutional

Window and
Window Size

2nd Convolutional
Window and
Window Size

3rd Convolutional
Window and
Window Size

Stride/Padding Maximum
Pooling Window Stride

2-1 Kernel, 3 × 3, 4 Kernel, 3 × 3, 4 Kernel, 3 × 3, 4 1/1

2 × 2, 4, 8, 16, 32

2
2-2 Kernel, 3 × 3, 8 Kernel, 3 × 3, 8 Kernel, 3 × 3, 8 1/1 2
2-3 Kernel, 3 × 3, 16 Kernel, 3 × 3, 16 Kernel, 3 × 3, 16 1/1 2
2-4 Kernel, 3 × 3, 32 Kernel, 3 × 3, 32 Kernel, 3 × 3, 32 1/1 2

Table 6. Experimental results of k-fold cross-validation (Kf = 10) for Model #2-1 to Model #2-4 with
different numbers of kernel. Convolutional windows (3 × 3, 4, 8, 16, and 32) and MP windows (2 × 2,
4, 8, 16, and 32) in three convolutional pooling layers.

Model Average Precision (%) Average Recall (%) Average Accuracy (%) Average F1 Score Average CPU Time (s)
for Training

2-1 92.03 88.94 91.57 0.9076 148.02
2-2 94.77 92.81 95.03 0.9389 237.39
2-3 95.19 95.19 95.04 0.9516 308.38
2-4 94.06 93.60 95.30 0.9395 332.05

Based on the architecture of three convolutional pooling layers, the model of 2D spatial
and 1D CNN [42] was also used to establish four types of multilayer classifiers, including
from Model #3-1 to Model #3-4, as seen in the model summary in Table 7. The four models
algorithm was implemented in the open-source TensorFlow platform (Version 1.9.0) [36].
The number of kernel convolutional windows in the convolutional pooling layers was
set to 8 for Model #3-1 and Model #3-2 and was set to 4 for Model #3-3 and Model #3-4,
respectively. Hence, we could construct the multilayer classifiers, consisting of a 2D kernel
convolutional pooling layer (with stride = 1 for convolutional processes and stride = 2 for
MP processes), flattening layer, one- or two-round 1D kernel convolutional pooling layers,
and a fully connecting classification network (Classification Layer). In the 2nd and 3rd
convolutional layers, the 1D kernel convolutional processes used the discrete Gaussian
function (with stride = 1) with 100 data lengths of the convolutional window to extract the
1D feature vector. In the 1D pooling layer, the dimension of the feature signal was reduced
from 1 × 2500 to 1 × 250 (with stride = 10). In the classification layer, the BPNN consisted of
an input layer (with 250 input nodes), 1st hidden layer (with 64 hidden nodes), 2nd hidden
layer (with 64 hidden nodes), and an output layer (with 2 output nodes). Each classifier
could identify the normality (disease absent) and abnormality (disease present). The ADAM
optimization algorithm was also used to adjust the network connecting parameters by using
iterative computations. With the same dataset (trained and untrained datasets) and 10-fold
cross-validation tests, the models with two convolutional pooling layers (Model #3-2 and
Model #3-4) had higher average accuracy than those with three convolutional pooling layers
(Model #3-1 and Model #3-3). Model #3-2 took an average CPU time of 305.39 s for training
the classifier to identify the breast lesions, and the average CPU time was less than the other
three models. Based on the experimental results as shown in Table 7, it could be seen that
the 2D spatial and 1D CNN-based classifier also had promising performances in the design
cycle, recognition capability, network parameters adjustment (iteration computations), and
computational time. Hence, we suggested the use of Model #3-2-based classifier to apply
in clinical applications.
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Table 7. Summary of models for the 2D spatial and 1D CNN-based classifier (Model #3-1 to Model #3-4).

Model First Convolutional
Pooling Layer

Second Convolutional
Pooling Layer

Third Convolutional
Pooling Layer Classification Layer Average Training

Time (s)
Average

Accuracy (%)

3-1 2D Kernel
Convolutional

Process, 3 × 3, 8
(Stride = 1)

Maximum Pooling,
2 × 2, 8 (Stride = 2)

Flattening Process
1D Kernel Convolutional

Process, 1 × 100, 8

1D Kernel
Convolutional Process,

1 × 100, 8
1D Pooling Processes

(Stride = 10)

BPNN:
Input Layer

(250 nodes), 1st Hidden
Layer (64 nodes), 2nd

Hidden Layer
(64 nodes), and Output

Layer (2 nodes)

322.74
(Loss = 0.1211) 93.40

3-2

Flattening Process
1D Kernel Convolutional

Process, 1 × 100, 8
1D Pooling Processes

(Stride = 10)

- 305.39
(Loss = 0.1650) 94.00

3-3 2D Kernel
Convolutional

Process, 3 × 3, 4
(Stride = 1)

Maximum Pooling,
2 × 2, 4 (Stride = 2)

Flattening Process
1D Kernel Convolutional

Process, 1 × 100, 4

1D Kernel
Convolutional Process,

1 × 100, 4
1D Pooling Processes

(Stride = 10)

347.67
(Loss = 0.2293) 91.20

3-4

Flattening Process
1D Kernel Convolutional

Process, 1 × 100, 4
1D Pooling Processes

(Stride = 10)

- 324.27
(Loss = 0.1538) 94.80

In addition, we randomly fed three groups of trained datasets, including 100 tumor-
free images, 50 B tumor images, and 50 M tumor images to train the same structure of
classifier, which consisted of three convolutional pooling layers and a fully connected
BPNN with three outputs for the identified three classes. The ADAM algorithm was also
used to adjust the classifier’s network parameters, which required 104.02 s CPU time to
achieve the convergence condition. After training the classifier (as seen in Figure 6), with
the randomly selected 200 untrained datasets (100 Nor tissues, 50 B, and 50 M tumors),
the confusion matrix showed the nine element values, including 90 TPs (40 B and 50 M
tumors), 10 FPs, 96 TNs, and 4 FNs, for the identified tumor-free and tumor images, which
were used to calculate the four evaluation indexes, such as precision (%) = 96.15 (%), recall
(%) = 90.90%, accuracy (%) = 93.00%, and F1 score = 0.9278. The above criteria can be used
to validate the classifier’s pattern recognition capacity for the identified three classes (Nor,
B tumor, and M tumor).
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4. Discussion

The DL-based classifier with multiconvolutional pooling processes could perform
the end-to-end image/signal enhancement, noise filtering, feature extraction, and clas-
sification tasks, including 2D CNN, 1D CNN, and combining 2D spatial and 1D CNN
models, which could provide in clinical/medical applications, such as image (mammogra-
phy, chest X-ray, computed tomography) [36,42–44]/signal (electrocardiogram (ECG), heart
sound, voice, and speech) classification [45–49], image segmentation [4,50], and patholog-
ical characteristics detection [51], as seen in Table 8. In image classification [42–44] and
image segmentation [4,50], with the DDSM (Digital Database of Screening Mammography
Database) [19], CBIS (Curated Breast Imaging Subset of Digital Database for Screening
Mammography)-DDSM Database [20], MIAS Image Database [30,31], and Hospital Image
Database [4,44], the DL-based methods, such as 2D spatial and 1D CNN [42], Dense-Unet
model [43], DenseNet-169 and EfficientNet-B5 [44], DNN [4], and Attention Dense-Unet,
and Dense-Unet models, had multiconvolutional pooling layers and a fully connected
classification network to carry out a classifier model for medical purposes in breast lesions
(cancer) screening, calcification detection, and mass segmentation. For example, the authors
of [44] proposed that DenseNet-169 and EfficientNet-B5 models could highlight ROI with
the Grad-CAM (Gradient-Weighted Class Activation Mapping) processes [51] to indicate
the positive region in the red color-coded areas for detected malignant lesions. In both
craniocaudal and mediolateral oblique view images, the visualization manner could easily
locate the mass or calcification. DenseNet-169 and EfficientNet-B5 had mean accuracy rates
of 88.1% (mean sensitivity: 87.0%, mean specificity: 88.4%) and 87.9% (mean sensitivity:
88.3%, mean specificity: 87.9%) for automated breast cancer detection, respectively. Litera-
ture [42] proposed a 2D spatial and 1D CNN-based classifier for breast lesions screening.
Based on three convolutional pooling layers, in the first layer, the possible breast lesions’ 2D
spatial and edge information could be enhanced by integral image (II)-based convolutional
process [42,52]; in the second and third layers, two-round 1D convolutional processes and
1D pooling process could filter the noise and extract the stable 1D feature parameters for
quantifying the different levels in order to separate the normal (Nor) from the abnormality
(B and M classes). Hence, this pattern recognition scheme could reduce the dimension of
feature parameters and did not require the complex computational processes to perform
the classification task. In addition, the classification accuracy could be depended to an
average precision of 96.70%, average recall of 96.13%, average accuracy of 96.40%, and
average F1 score of 0.9641 for identified the breast lesions.

In digital signal classification, for example, with the MIT (Massachusetts Institute of
Technology)–BIH (Beth Israel Hospital Arrhythmia Laboratory) Arrhythmia Dataset [53],
after data preprocessing using the Butterworth filter, 11-layer 1D CNN [45] and 11-layer 2D
CNN-based [46] classifiers were used to deal with the ECG signals and achieved average
accuracies of 95.85% and 89.31% on arrhythmia classification (12 rhythm classes), respec-
tively. The 2D CNN-based classifier outperformed the 1D CNN-based classifier in terms of
F1 score (2D CNN’s F1: 0.8957, 1D CNN’s F1 score: 0.8115). It could be seen that there was
a good balance between the precision (%) and the recall (%) scores. However, the accuracy
of the 2D CNN model affected the classifier’s effectiveness for application in 1D signal
classification. In sound classification, with the 3, 5, and 10-convolution cross-validation
tests, the 1D CNN-based classifier also had a higher average accuracy of 94.00% on ten
classes of urban sounds. Different durations of environmental sounds might occur, thus
frame (window) length and sampling rate would affect the signal resolution for analyzing
and quantizing frequencies. Hence, applying a variable width window in audio signal
acquisition would overcome the above restriction [48]. In automatic speech recognition
(ASR), literature [49] proposed the deep neural network hidden Markov model (DNN-
HMM) to carry out an ASR system for the Uzbek language. With the Uzbek Language
Dataset (1281 speakers [49]), the DNN-HMM-based classifier had 96% training accuracy
and 93% testing accuracy with a word error rate of 14.3% for ASR applications. In patho-
logical characteristics detection, literature [51] reviewed DL-based methods to extract a
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representation of depression from the audio and video database for automatic depression
recognition (ADR), which were evaluated on the AVEC2013 and AVEC2014 databases [11],
the range 7–10 of RMSE (root mean square error), and range 5–9 of MAE (mean absolute
error) could evaluate the classifier’s performance for ADR application. After reviewing the
above literature, we could suggest the following:

Table 8. DL-based classifiers for applications, including image/signal classification, image segmenta-
tion, and pathological characteristics detection.

Literature Database Method Purpose

[42] MIAS Image Database [30,31] 2D spatial and 1D CNN
Breast Lesions Screening

Precision: 96.70%; Recall: 96.13%;
Accuracy: 96.40%; F1 Score: 0.9641

[43] CBIS-DDSM Database [20] Dense-Unet Model
Calcification Detection

Sensitivity: 91.22%; Specificity: 92.01%;
Accuracy: 91.47%; F1 Score: 0.9219

[44]

Collected by Department of Breast
and Endocrine Surgery at Hallym

University Sacred Heart
Hospital [44]

DenseNet-169,
EfficientNet-B5

Automated Breast Cancer Detection
(1) DenseNet-169: AUC = 0.952 ± 0.005;

Mean Sensitivity: 87.0%; Mean Specificity:
88.4%; Mean Accuracy: 88.1%

(2) EfficientNet-B5: AUC = 0.954 ± 0.020;
Mean Sensitivity: 88.3%; Mean Specificity:

87.9%; Mean Accuracy: 87.9%

[4] E-Da Hospital Image Database [4] DNN (Deep Neural Network)
BI-RADS Classification

Sensitivity: 95.31%; Specificity: 99.15%;
Accuracy: 94.22% [49]

[11] DDSM Database [19] Attention Dense-Unet Model
Mass Segmentation

Sensitivity: 77.89%; Specificity: 84.69%;
Accuracy: 78.38%

[45] MIT-BIH Arrhythmia
Dataset [53] 11-layer 1D CNN (DNN)

Arrhythmia Detection
Precision: 75.91%; Recall: 92.88%;

Accuracy: 95.85%; F1 Score: 0.8115

[46] MIT-BIH Arrhythmia
Dataset [53] 11-layer 2D CNN (DNN)

Arrhythmia Detection

Precision: 89.31%; Recall: 91.69%;
Accuracy: 89.31%; F1 Score: 0.8957

[48] 8732 Urban Sounds
(Ten Classes) [48]

1D CNN (DNN)
3, 5, and 10-Convolution

Cross-Validation

Environmental Sound Classification
Average Accuracy: 94.46%

[49]
Uzbek Dataset Consists of 207 h
of Transcribed Audio Spoken by

1281 Speakers [49]

Deep Neural Network Hidden
Markov Model (DNN-HMM)

Automatic Speech Recognition

for Uzbek Language
Training Accuracy: 96%
Testing Accuracy: 93%

[50] Audio and Video: AVEC2013 and
AVEC2014 Database [50] 1D CNN and 2D CNN

Depression Recognition
RMSE 7–10
MAE: 5–9

• based on three convolutional pooling layers, in the first layer, the fractional-order
convolutional process [35,36], Grad-CAM Process [44,51], and II-based convolutional
process [42,52] could enhance the 2D spatial and edge information to easily locate ROI
and extract the feature patterns;

• in the second and third layers, two-round 2D convolutional pooling processes or 1D
convolutional pooling processes [35,36,42];

• these processes were continuously to perform the end-to-end noise filtering and feature
extraction tasks, which could extract the high-level spatial information, such as the
possible lesion’s contour and shape, to detect nonlinear features representation and
increase the classification accuracy;
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• reducing the number of convolution layers and convolution kernel and pooling pro-
cesses could reduce the dimension of feature parameters and also reduce the computa-
tional complexity and computational time;

• in the classification layer, the ADAM algorithm [39,40] or straightforward mathemati-
cal algorithm without iteration computations [42] could be used to adjust the BPNN’s
network-connected parameters and achieve promising training accuracy.

5. Conclusions

Breast tumors can be divided into four stages based on the tumor size and the degree
of lymph node metastasis. The early discovery of abnormalities will not only improve the
survival rates but also lead to better therapeutic efficacy. In addition, early signs of breast
lesions can be detected, and statistics showed that early detection can increase survival
rates by more than 90%. In general, periodic self-examinations or breast radiologic exami-
nations, including mammography, breast-computed tomography, breast ultrasound, and
breast magnetic resonance imaging, can be conducted for further testing [54–56]. Mam-
mography and breast ultrasound are the first-line detection methods. Breast ultrasound
has a lower detection capacity for small calcifications and should be used in conjunction
with mammography to evaluate suspected lesions. Conventional B-mode ultrasound can
only identify potential tumor sites; ultrasound elastography [43] can be used to further
confirm the characteristics of suspected mass regions. In this study, mammography was
used for the rapid screening of breast lesions. A multilayer classifier was designed for this
medical purpose, and the number of convolution layers and the number and size of kernel
convolutional windows were determined using cross-validation methods. After tenfold
cross-validation, the multilayer model with the three convolutional pooling layers and a
fully connected BPNN was suggested to carry out classification, and the classifier based on
this model showed promising feature extraction and classification accuracy for the iden-
tified two classes (normality and abnormality or Nor, B, and M). The pattern recognition
scheme used in this study can be used to determine the presence/absence of tumors and
tumor classes. We believe that classification performance can be improved in the future to
determine whether a tumor is B or M by continuously adding new clinical image datasets.
Fine-needle aspiration, core-needle biopsy, or tissue-section tests must be performed by a
physician or the pathology department staff to obtain definitive results on the nature of
a mass. Our model can also be used by physicians as a diagnostic tool to obtain a good
reference for diagnosis.
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Abbreviations

MCNN Multilayer Convolutional Neural Network
CNN Convolutional Neural Network
MPN Multilayer Perceptron Network
2D Two-Dimension
1D One-Dimension
ML Machine Learning
DL Deep Learning
MIAS Mammographic Image Analysis Society
BI-RADS Breast Imaging-Reporting and Data System
ROI Region of Interest
Nor Normal
B Benign
M Malignant
CAD Computer-Aided Diagnosis
TP True Positive
FP False Positive
TN True Negative
FN False Negative
AI Artificial Intelligence
MP Maximum Pooling
BPNN Backpropagation Neural Network
BCE Binary Cross-Entropy
ADAM Adaptive Moment Estimation Method
GPU Graphics Processing Unit
PPV Positive Predictive Value
DDSM Digital Database of Screening Mammography
CBIS-DDSM Curated Breast Imaging Subset of Digital Database for Screening Mammography-DDSM
DNN Deep Neural Network
Grad-CAM Gradient-Weighted Class Activation Mapping
ASR Automatic Speech Recognition
ADR Automatic Depression Recognition
MIT-BIH Massachusetts Institute of Technology-Beth Israel Hospital Arrhythmia Laboratory
DNN-HMM Deep Neural Network Hidden Markov Model
RMSE Root Mean Square Error
MAE Mean Absolute Error
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