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NUMBER OF NODAL DOMAINS

AND SINGULAR POINTS OF EIGENFUNCTIONS

OF NEGATIVELY CURVED SURFACES

WITH AN ISOMETRIC INVOLUTION

Junehyuk Jung & Steve Zelditch

Abstract

We prove two types of nodal results for density 1 subsequences
of an orthonormal basis {φj} of eigenfunctions of the Laplacian
on a negatively curved compact surface (M, g). The first result
pertains to Riemann surfaces (M,J, σ) with an anti-holomorphic
involution σ such that M −Fix(σ) has more than one component.
In any genus g, there is a (3g−3)-dimensional moduli space of such
real Riemann surfaces. Our main result is that, for any negatively
curved σ-invariant metric g on M , the number of nodal domains of
the even or odd ∆g-eigenfunctions tends to infinity along a den-
sity 1 subsequence. For a generic σ-invariant negatively curved
metric g, the multiplicity of all eigenvalues equals 1, and all eigen-
functions are either even or odd, and therefore the result holds for
almost any eigenfunction.

The analytical part of the proof shows that the number of zeros
of even eigenfunctions restricted to Fix(σ), and the number of
singular points of odd eigenfunctions on Fix(σ), tend to infinity.
This is a quantum ergodic restriction phenomenon. Our second
result generalizes this statement to any negatively curved surface
(M, g) and to a generic curve C ⊂ M : the number of zeros of
eigenfunctions φj |C tends to infinity.

The additional step to obtain a growing number of nodal do-
mains in the (M,J, σ) setting is topological. It generalizes an ar-
gument of Ghosh, Reznikov, and Sarnak on the modular domain
to higher genus.

1. Introduction

Let (M,g) be a compact two-dimensional C∞ Riemannian surface
of genus g ≥ 2, and let φλ be an L2-normalized eigenfunction of the
Laplacian,

−∆gφλ = λφλ.
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We denote its nodal line by

Zφλ
= {x : φλ(x) = 0},

and denote by N(φλ) the number of nodal domains of φλ, i.e., the num-
ber of connected components Ωj of

M\Zφλ
=

N(φλ)
⋃

j=1

Ωj.

We also let {φj}∞j=1 denote an ordered orthonormal basis of eigenfunc-

tions, with respect to the inner product 〈u, v〉 =
∫

M uv̄dAg, ordered by
the corresponding sequence of eigenvalues λ0 = 0 < λ1 ≤ λ2 ↑ ∞. Here,
dAg is the area form of (M,g). We write N(φj) for N(φλj

).
It is known that N(φλ) need not tend to infinity with λ. Indeed,

H. Lewy constructed sequences of spherical harmonics on the standard
S2 with eigenvalues tending to infinity for which the number of nodal
domains is ≤ 3 [25]. Earlier examples on the flat torus appeared in
[33, 11]. Similarly, there exist surfaces possessing sequences of eigen-
functions for which the number of critical points is uniformly bounded
independent of the eigenvalue [21]. But it seems reasonable to conjec-
ture that for any (M,g), there exists some orthonormal sequence {φjk}
of eigenfunctions for which N(φjk) → ∞ as k → ∞. However, to the
authors’ knowledge there are almost no known results proving this on
any surface except obvious cases such as surfaces of revolution where
one may separate variables. The one exception is a new result of Ghosh,
Reznikov, and Sarnak [13], which will be discussed in detail below. The
main result of this article is that there exist Riemann surfaces (M,J)
possessing an infinite-dimensional class of negatively curved metrics g
on M for which N(φjk) → ∞ along an orthonormal sequence of ∆g

eigenfunctions of density 1.
The relevant Riemann surfaces (M,J) are complexifications of real al-

gebraic curves M(R) that divide (equivalently, separate ) M in the sense
that M\M(R) has more than one component (in which case it has two
components). Such surfaces possess an anti-holomorphic involution σ
whose fixed-point set Fix(σ) is the real curve M(R). It is a classical
result of F. Schottky [31], F. Klein [24], and G. Weichold [37] that Rie-
mann surfaces (M,J, σ) with anti-holomorphic involution and with di-
viding fixed-point set Fix(σ) exist in any genus, and that the number of
connected components equals 2. Klein refers to a Riemann surface with
anti-holomorphic involution as a real Riemann surface, and we employ
his terminology in what follows. Real Riemann surfaces are sometimes
called symmetric Riemann surfaces, with the anti-holomorphic involu-
tion called a symmetry. The condition that M(R) = Fix(σ) be dividing
is equivalent to M/σ being orientable. The quotient is sometimes called
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a Klein surface, and the dividing case is sometimes referred to as ori-
entable Klein surfaces (see [1, 27] ). Klein and Weichold define the
topological type of a real Riemann surface as the triple (g, n, a), where
g is the genus, n is the number of connected components of M(R) and
a = ±1 depending on whether M/σ is orientable or not. Since we often
need to refer to this condition, we use the following:

Definition 1.1. We say that a real Riemann surface (M,J, σ) of
genus g (with anti-holomorphic involution σ) is of type I if Fix(σ) is
dividing, i.e., M − Fix(σ) has 2 components. We then call (M,J, σ) a
real Riemann surface of type I.

The moduli space of dividing real algebraic curves (i.e., real Riemann
surfaces of type I) is non-empty for every g ≥ 1 and is known to be
diffeomorphic to R

3g−3. We refer to §2 for background. Some real Rie-
mann surfaces of type I may be constructed as Schottky doubles of
planar multiply connected domains, i.e., by gluing together two copies
of the domain along the boundary components [30]. Some images drawn
with Mathematica are given below.

Surface of genus 3 with dividing Fix(σ).

Surface of genus 4 with dividing Fix(σ).

We defineMM,J,σ to be the space of C∞ σ-invariant negatively curved
Riemannian metrics on a real Riemann surface (M,J, σ) of type I. Any
negatively curved metric g1 induces a σ-invariant one by averaging, g1 →
g = 1

2(g1+σ∗g1). HenceMM,J,σ is an open set in the space of σ-invariant
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metrics and, in particular, is infinite dimensional. For each g ∈ MM,J,σ,
it follows from Harnack’s theorem (see [10]) that the fixed-point set
Fix(σ) is a disjoint union

(1.1) Fix(σ) = γ1 ∪ · · · ∪ γn

of 0 ≤ n ≤ g + 1 simple closed geodesics. We use the assumption of
negative curvature in two ways: (i) to ensure that the geodesic flow is
ergodic (a classic result of Hedlund, Hopf, and others), and (ii) to have
good sup norm estimates of eigenfunctions (see §3.2 ).

The isometry σ acts by translation on L2(M,dAg), and we define
L2
even(M), resp. L2

odd(M), to denote the subspace of even functions
f(σx) = f(x), resp. odd elements f(σx) = −f(x). We define the even,
resp. odd, projection by Πevenf(x) =

1
2(f(x)+f(σx)), resp. Πoddf(x) =

1
2(f(x) − f(σx)). Translation by any isometry σ commutes with the
Laplacian ∆g, and so these projections commute with ∆g and the even-
odd subspaces are ∆g-invariant. Hence the even and odd parts of eigen-
functions are eigenfunctions, and all eigenfunctions are linear combina-
tions of even or odd eigenfunctions. We denote by {φj} an orthonormal
basis of L2

even(M) of even eigenfunctions, resp. {ψj} an orthonormal
basis of L2

odd(M) of odd eigenfunctions.

Remark 1.2. In Proposition 7.1, we prove the (essentially known)
result that for generic metrics in MM,J,σ, the eigenvalues are simple
(multiplicity 1) and therefore all eigenfunctions are either even or odd.

Our main result is the following:

Theorem 1.3. Let (M,J, σ) be a compact real Riemann surface of
genus g ≥ 2 of type I with anti-holomorphic involution σ. Let MM,J,σ be
the space of σ-invariant negatively curved C∞ Riemannian metrics on
M .Then for any g ∈ M(M,J,σ) and any orthonormal ∆g-eigenbasis {φj}
of L2

even(M), resp. {ψj} of L2
odd(M), one can find a density 1 subset A

of N such that
lim
j→∞
j∈A

N(φj) = ∞,

resp.
lim
j→∞
j∈A

N(ψj) = ∞.

For the odd eigenfunctions ψj , the conclusion holds under the weaker
assumption that Fix(σ) �= ∅, i.e., for the complexification of any real
algebraic curve.

Combining this with Remark 1.2, we conclude

Corollary 1.4. For generic metrics in MM,J,σ, the number of nodal
domains tends to infinity along a density 1 subsequence of any orthonor-
mal basis of eigenfunctions.
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There are two main steps in the proof of Theorem 1.3, an analytic
step (which is the deepest part) and a topological step. The overall
strategy is inspired by the article of Ghosh, Reznikov, and Sarnak [13],
discussed in §1.3. The analytic part is to prove that for g ∈ MM,J,σ,
the number of transversal intersection points of the nodal line of the
even eigenfunctions φj with Fix(σ), resp. the number of singular points
of odd eigenfunctions ψj on Fix(σ), tends to infinity along a density 1
subsequence of eigenfunctions. These results are of independent interest,
and we discuss them in more detail in §1.1. We then discuss a significant
generalization to generic smooth curves in §1.2. The principal ingredient
in these results is the series of quantum ergodic restriction theorems
proved recently in [8, 35].

The second step (Lemma 6.4 ) is a topological argument. Using the
Euler inequality for embedded graphs, we show that the growing num-
ber of nodal intersections with Fix(σ) in Theorem 1.6 implies a grow-
ing number of nodal domains. This topological argument uses implic-
itly that Fix(σ) is the common boundary of the two components of
M\Fix(σ).

1.1. Number of nodal points or singular points on Fix(σ).

Remark 1.5. Notational Conventions: Throughout the article, γ al-
ways denotes a sub-arc of Fix(σ), i.e., a sub-arc of one of the component
simple closed geodesics γj of (1.1). By a sub-arc we mean the image of a
sub-interval under an arc-length parametrization. Also, for f ∈ C1(M),
∂νf denotes the derivative ∇f · ν|γ by the unit normal ν = Jγ′ to γ.
Here, J is the complex structure.

The analytical part of Theorem 1.3 for even eigenfunctions is the
following:

Theorem 1.6. Let (M,J, σ) be (as above) a real Riemann surface
of genus g ≥ 2 of type I. Let g ∈ MM,J,σ as in Theorem 1.3. Then for
any orthonormal eigenbasis {φj} of L2

even(M), one can find a density 1
subset A of N such that

lim
j→∞
j∈A

#
(

Zφj
∩ γ

)

= ∞

for any subarc γ ⊂ Fix(σ). Furthermore, there are an infinite number
of zeros where φj |γ changes sign.

Remark 1.7. Zφj
∩ γ must be a finite set of points. For, if Zφj

∩ γ
contains a curve, then the tangential derivative of φj along the curve
vanishes. Hence, together with ∂νφj = 0, we have dφj(x) = 0 along the
curve, contradicting the upper bound in [12] on the number of singular
points.
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For odd eigenfunctions ψj , we prove that the number of singular
points on Fix(σ) tends to infinity. By singular points of an eigenfunction
ψλ of eigenvalue λ we mean the set

Σψλ
= {x ∈ Zψλ

: dφλ(x) = 0}
of critical points of ψλ that lie on the nodal set Zψλ

. It is proved in
[12] that the number of singular points of ψλ is bounded by Cgλ on any
surface. For generic metrics, the singular set is empty [36]. However, for
negatively curved surfaces with an isometric involution, odd eigenfunc-
tions ψ always have singular points. Indeed, odd eigenfunctions vanish
on γ and have singular points at x ∈ γ where the normal derivative
vanishes, ∂νψλ = 0.

Theorem 1.8. Let (M,J, σ) be (as above) a compact real Riemann
surface of genus g ≥ 2 and of type I. Let g ∈ MM,J,σ. Then for any
orthonormal eigenbasis {ψj} of L2

odd(M), one can find a density 1 subset
A of N such that

lim
j→∞
j∈A

#
(

Σψj
∩ γ

)

= ∞

for any subarc γ ⊂ Fix(σ). Furthermore, there are an infinite number
of singular points where ∂νψj|γ changes sign.

One of the principal ingredients in the proofs of Theorems 1.6 and
1.8 is the QER (quantum ergodic restriction) theorem for Cauchy data,
proved by H. Christianson, J. Toth, and the second author in [8]. Roughly
speaking, it says that if {uj} is a quantum ergodic sequence of eigen-
functions of a Riemannian manifold (M,g), and if H ⊂ M is a smooth
hypersurface, then the Cauchy data

(1.2) {(uj |H , ∂νuj|H)}
on H is quantum ergodic along the hypersurface. The first component is
known as the Dirichlet data, and the second component is the Neumann
data. We review the definition of quantum ergodicity and the statement
of the QER theorem for Cauchy data in §4 (see, in particular, Theorem
4.1).

The QER theorem for Cauchy data is applied in Theorems 1.6 and
1.8 to the case where M is a surface and H = Fix(σ). The negative cur-
vature of g guarantees that the geodesic flow is ergodic, and hence that
the even orthonormal basis {φj} of L2

even(M) and the odd orthonor-
mal basis {ψj} of L2

odd(M) are quantum ergodic. By the QER theorem,
the Cauchy data of the even and odd sequences are quantum ergodic
along Fix(σ). The curve Fix(σ) is special because the odd eigenfunctions
automatically vanish on it and the even eigenfunctions have vanishing
normal derivatives. The QER theorem thus implies that the Dirichlet
data of {φj} and the Neumann data of {ψj} are quantum ergodic on
Fix(σ).
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The relevance of the QER theorem is that it forces the restrictions of
even eigenfunctions to Fix(σ) to oscillate more and more rapidly and to
have a growing number of sign-changing zeros as λj → ∞. Similarly, the
normal derivatives of the odd eigenfunctions have a growing number of
zeros. The proof first uses the Kuzencov trace formula with remainder
(Theorem 3.1 and Theorem 3.2; see also [39]) to show that

∫

γ φjds is

“small” (tends to zero at a certain rate) as j → ∞ for any curve γ and for
almost all eigenfunctions. On the other hand, the QER theorem shows
that

∫

γ |φj |2ds is large (i.e., does not tend to zero). A standard sup norm

bound on eigenfunctions of non-positively curved surfaces is then used
to compare the integrals

∫

γ |φj |2ds and
∫

γ |φj |ds. The combination of the

Kuznecov bound, the QER asymptotics, and the sup norm bound just
manages to show that

∫

γ |φj |ds > |
∫

γ φjds| for any geodesic arc γ. Hence

there must exist sign-changing zeros. The proof that odd eigenfunctions
have a growing number of singular points is similar.

1.2. Quantum ergodic restriction and intersections of nodal

lines and generic curves. Theorem 1.6 on intersections of nodal lines
and Fix(σ) admits a generalization, Theorem 1.9, in which Fix(σ) is re-
placed by a C∞ curve C satisfying a certain generic condition. Although
this theorem does not (as yet) have applications to counting nodal do-
mains, we include it here because the proof is very similar to that of
Theorem 1.6 and requires almost no additional work.

The generic condition on the curve C is that it is asymmetric with re-
spect to the geodesic flow. The asymmetry condition is stated precisely
in Definition 8.1, but we state it somewhat informally as follows: C is
asymmetric with respect to the geodesic flow if pairs of geodesics ema-
nating from points q ∈ C with mirror symmetric initial velocities almost
never return to the same point of C at the same time. More precisely,
consider any q ∈ C, and any pair of geodesics γ+, γ− with initial data
γ±(0) = q, and with γ′±(0) having the same tangential component but
opposite normal components with respect to TqC. Then C is said to be
asymmetric if the pair γ±(t) of geodesics almost never returns to C at
the same time to the same place. “Almost never” refers to the natural
symplectic surface measure on the space (q, ξ) ∈ S∗

CM of unit vectors to
M with footpoint on C. The only known examples of curves that fail to
be asymmetric are the fixed-point sets of orientation-reversing isometric
involutions. The asymmetry condition has a natural generalization to
any dimension, and it is proved in [35] that generic hypersurfaces are
asymmetric. For more details, see §8.

Theorem 1.9. Let (M,g) be a C∞ compact negatively curved sur-
face, and let C be a closed curve that is asymmetric with respect to
the geodesic flow. Then for any orthonormal eigenbasis {φj} of ∆g-
eigenfunctions of (M,g), there exists a density 1 subset A of N such



44 J. JUNG & S. ZELDITCH

that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

limj→∞
j∈A

#
(

Zφj
∩ C

)

= ∞,

limj→∞
j∈A

# {x ∈ C : ∂νφj(x) = 0} = ∞.

Furthermore, there are an infinite number of zeros where φj|C (resp.
∂νφj |C) changes sign.

We emphasize that the asymmetry assumption of Theorem 1.9 is
opposite to the hypothesis of Theorem 1.6, and that the two intersection
theorems are independent of each other. Theorem 1.9 is based on the
QER theorem of [35] for Dirichlet data, and not the QER theorem
for Cauchy data of [8] that is used in Theorem 1.6. In dimension 2,
the result of [35] asserts that if (M,g) is a surface with ergodic geodesic
flow and C ⊂ M is a curve satisfying the asymmetry condition, then the
restriction of a density 1 subsequence of eigenfunctions to C is quantum
ergodic. Theorem 1.9 is not used in the proof of Theorem 1.3. At present,
we do not know if it leads to lower bounds on numbers of nodal domains
because we do not know an analogue of the topological argument used
in the case C = Fix(σ). However, results on numbers of nodal points
along curves seem to us of independent interest.

1.3. Background on counting nodal domains. Having completed
the statement of results of this article, we round out the picture by pro-
viding background on the history of nodal domain counting problems.

We recall that J. Brüning in [5], (and Yau, unpublished) showed that

H1(Zφλ
) ≥ cg

√
λ, i.e., the length is bounded below by cg

√
λ for some

constant cg > 0.
Let {φj}j≥0 be an orthonormal eigenbasis of L2(M) with the eigen-

values 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · . According to the Weyl law, we have the
following asymptotic:

j ∼ V ol(M)

4π
λj .

Therefore, by Courant’s general nodal domain theorem [11], we obtain
an upper bound for N(φj):

N(φj) ≤ j =
V ol(M)

4π
λj(1 + o(1)).

The bound is not sharp (Pleijel improved the leading coefficient). As was
pointed out by T. Hoffmann-Ostenhof [18], it is not even known whether
for any (M,g) one can find a sequence of eigenfunctions with growing
number of nodal domains. As mentioned above, the number of nodal
domains does not have to grow with the eigenvalue; i.e., when M = S2

or T 2, there exist eigenfunctions with arbitrarily large eigenvalues with
N(φ) ≤ 3 ([33, 25] ). We conjecture that for any Riemannian manifold,
there exists a sequence of eigenfunctions φjk with N(φjk) → ∞. At
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the present time, this is not even known to hold for generic metrics.
However, when M is the unit sphere S2 and φ is a random spherical
harmonics, then

N(φ) ∼ cλφ

holds almost surely for some constant c > 0 [29].
The main article inspiring the present work is that of Ghosh, Reznikov,

and Sarnak [13], which proves a conditional lower bound on the num-
ber of nodal domains of the even Hecke–Maass L2 eigenfunctions of
the Laplacian on the finite-area hyperbolic surface X = Γ\H for Γ =
SL(2,Z). The hyperbolic surface X admits the orientation-reversing,
isometric involution σ : (x, y) → (−x, y) with fixed-point set the infinite
geodesic γ := {iy | y > 0}. Let φ be an even Maass–Hecke L2 eigenfunc-
tion on X = SL(2,Z)\H. In [13], the number of nodal domains which
intersect a compact geodesic segment β ⊂ γ is denoted by Nβ(φ).

Theorem 1.10 ([13]). Assume β is sufficiently long, and assume
the Lindelöf hypothesis for the Maass–Hecke L-functions. Then for any
ǫ > 0, there exists a constant cǫ > 0 depending only on ǫ such that

Nβ(φ) > cǫλ
1
24

−ǫ

φ .

The proof uses methods of L-functions of arithmetic automorphic
forms to obtain lower bounds on the number of sign changes of the
even eigenfunctions. A topological argument is then used to relate the
number of nodal domains that intersect β = Fix(σ) with the number of
sign changes on β [13, (Theorem 2.2] and Lemma 6.4 ). The conclusion
applies to the entire sequence of even L2 Maass–Hecke eigenfunctions,
but assumes the Lindelöf hypothesis.

Our Theorem 1.3 follows their lead in obtaining lower bounds on num-
bers of nodal domains by first obtaining lower bounds on intersections
of nodal lines with the fixed-point set of an orientation-reversing iso-
metric involution and then by applying a topological argument to relate
the number of such intersection points to the number of nodal domains.
However, the details differ considerably. First, we use the QER theorems
(as well as known results on periods) to prove that there are many nodal
points (resp. singular points) along the fixed-point set of the involution.
The techniques come from microlocal analysis rather than arithmetic
analysis and hold for any negatively curved metric. Second, we use a
somewhat different topological argument that works when the genus
g ≥ 2 to relate numbers of nodal intersections to numbers of nodal do-
mains. We do adopt their terminology of inert and split nodal domains.

1.4. Further results and open problems. The following uncondi-
tional result was proved by one of the authors.

Theorem 1.11 ([22]). Let β ⊂ δ be any fixed compact geodesic seg-
ment. Let φj be the sequence of even Maass–Hecke cusp forms. For any
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fixed ǫ > 0, one can find a density 1 subset A of N such that

Nβ(φj) > λ
1
16

−ǫ

φj

for all j ∈ A.

The proof is an application of Quantitative Quantum Ergodicity and
the Lindelöf hypothesis on average. It applies to all but a thin subse-
quence of the even Maass–Hecke cusp forms.

In [23] the results and arguments of this article are generalized to
non-positively curved Riemannian surfaces with concave boundary in
which Fix(σ) is replace by the boundary ∂M of M . The surfaces of
[23] are not assumed to possess any symmetries. A key point is that
the topological argument of this article can be adapted to relate nodal
intersections with ∂M to nodal domains intersecting the boundary.

A natural question for future research is to prove quantitative lower
bounds on the number of intersections of the nodal line with a curve
when the geodesic flow is ergodic. In [34] it is shown that the number

of nodal intersections in the real analytic case is bounded above by
√
λ.

By Crofton’s formula the bound is achieved for a fixed eigenfunction
by a random curve. It seems reasonable to conjecture that for some
(perhaps generic) curves, there exists a density 1 subsequence of the

eigenfunctions whose nodal lines have C
√
λ intersections with the curve.

Some sharp results on flat tori are given by Bourgain and Rudnick in
[4].
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2. Riemann surfaces with an anti-holomorphic involution

and dividing fixed point set

In this section we review the theory of real Riemann surfaces (M,J, σ)
of type I in the sense of Definition 1.1. The main point is to cite refer-
ences that prove that such Riemann surfaces exist.

As mentioned in the introduction, a real Riemann surface (M,J, σ)
is a Riemann surface with anti-holomorphic involution with Fix(σ) �= ∅.
Then M = M(C) is the complexification of the real algebraic curve
M(R) = Fix(σ). The complement M(C)−M(R) of the real locus in the
complex locus has either one or two connected components.M(R) is said
to divide (or separate) if M(C)−M(R) has two connected components.
The topological invariants of (M,J, σ) are:
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• The genus g of M .
• The number n(M) of connected components of M(R) (see (1.1)).
• The number a = a(M) defined by: a(M) = 0 if M(R) divides the
complex locus and a(M) = 1 if M(C)−M(R) is connected. As in
Definition 1.1 we say that (M,J, σ) is of type I if M −M(R) has
two components and we denote them by M+∪M−, where M± are
connected, where M0

+ ∩M0
− = ∅ (the interiors are disjoint), where

σ(M+) = M−, and where ∂M+ = ∂M− = Fix(σ).

The triple (g, n, a) is called the topological type of (M,J, σ) and is
a complete set of topological invariants of a real algebraic curve. The
quotient ofM(C) by σ is a connected 2-manifoldX with n(M) boundary
components. X has Euler characteristic 1 − g and is orientable if and
only if a(M) = 0. One has the following constraints:

1) 0 ≤ n(X) ≤ g+ 1.
2) If n(X) = 0, then a(X) = 1. If n(X) = g+ 1 then a(X) = 0.
3) If a(X) = 0, then n(X) = g+ 1(mod 2).

Klein [24] (see also [15]) proved that any pair (n(M), a(M)) which
satisfies these constraints is realized by some real curve of genus g. We
refer to [20] for a modern proof and to [6] for explicit examples.

Furthermore, it is known that the moduli space of real algebraic
curves of a given topological type (g, n, a) is diffeomorphic to the quo-
tient of R3g−3 by a discrete group action. Theorem 3.3 of [27] (see also
[27, Theorem 6.1]) and Corollary 2.1 of [28] express the moduli space of
real Riemann surfaces of type (g, n, a) in terms of a Teichmüller space
modulo a discrete group action. The original result appears to be due
to Seppäla (see, e.g., [32]).

In [9] a geometric interpretation of the moduli parameters is given: it
is shown in [9] that a Riemann surface with anti-holomorphic involution
σ with Fix(σ) �= ∅ has a geodesic pants decomposition invariant by the
involution; the geodesics are orthogonal to Fix(σ). This occurs when the
“twist parameters” are equal to 0 or 1/2. One can then parameterize the
moduli space of real algebraic curves of a given topological type by the
3g− 3 lengths of the geodesics in the pants decomposition with respect
to the hyperbolic metric.

3. Kuznecov sum formula and sup norm estimates

on surfaces

In this section, we review a prior result [39] on the asymptotics of
the “periods”

∫

C fujds of eigenfunctions uj over C
∞ curves C, where f

is a fixed smooth function. The degree of smoothness could be relaxed,
but that is irrelevant for our purposes. In the following, (M,g) may be
any Riemannian surface and C ⊂ M any closed curve. We denote by
{uj} an orthonormal basis of ∆g-eigenfunctions. In our applications to
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Theorems 1.6, resp. 1.8, {uj} will be an orthonormal basis consisting of
the even functions {φj} and odd eigenfunctions {ψj} of a surface with
orientation-reversing isometric involution.

Theorem 3.1 ([39], Corollary 3.3). Let (M,g) be a Riemannian
surface, let {uj} be an orthonormal basis of ∆g eigenfunctions, and let
C ⊂ M be a closed curve of a surface M . Let f ∈ C∞(C). Then

∑

λj<λ

∣

∣

∣

∣

∫

C
fujds

∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

∫

C
fds

∣

∣

∣

∣

2 √
λ+Of (1).

We use only the principal term and not the remainder estimate here.
Also, the condition that C be closed is not important, since the support
of f could be any arc of any component.

A small modification of the proof of Theorem 3.1 is the following: Let
∂ν denote the normal derivative along C.

Theorem 3.2. Let C ⊂ M be a closed curve of a surface M , and let
f ∈ C∞(C). Then

∑

λj<λ

∣

∣

∣

∣

λ
−1/2
j

∫

C
f∂νujds

∣

∣

∣

∣

2

=
1

π

∣

∣

∣

∣

∫

C
fds

∣

∣

∣

∣

2√
λ+Of (1).

The proofs of Theorems 3.1 and 3.2 are very similar. We sketch the
proofs for the sake of completeness, following [39, 16]. In fact, the the-
orems are valid for hypersurfaces of Riemannian manifolds of any di-
mension, and we sketch the proofs in the general case.

Let (M,g) be an n-dimensional Riemannian manifold, and let {uj} be
an orthonormal basis of ∆g-eigenfunctions. Given a smooth hypersurface
H ⊂ M , define the semi-classical Cauchy data of the eigenfunctions on
H by

(3.1) CD(uj) := {(uj |H , hjDνuj |H)}.

Here, hj = λ
− 1

2
j and Dν = 1

i ∂ν , where ∂ν is a fixed choice of a unit

normal derivative. As mentioned above (see (1.2)), the first component
of the Cauchy data is called the Dirichlet data and the second is called
the normalized Neumann data. The term “semi-classical Cauchy data”
refers to this normalization.

To prove Theorems 3.1 and 3.2, we employ a standard Fourier cosine
Tauberian approach (see [19, 39] for background). First we smooth
out the averages over the spectrum by convolving with a suitable test
function ρ. We determine the asymptotics of the smoothed spectral
average by relating it to the singularity at t = 0 of a Fourier-dual sum
involving the wave group. Then we use a Tauberian theorem to obtain
the asymptotics of the original spectral average plus a remainder of one
lower order from the asymptotics of the smoothed spectral average. We
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only use the leading-order term of the asymptotics in this article and
therefore do not give details on the remainder term.

Let E(t, x, y) be the Schwartz kernel of the even part cos t
√
−∆ of

the wave group. We define the restricted Schwartz kernels to H by
⎧

⎨

⎩

ED(t, q, q′) = ED(t, ·, ·)|H×H ,

EN (t, q, q′) = DνqDνq′E(t, ·, ·)|H×H .

For f ∈ C∞(M) and for B = D,N we define the distributions

SB
f (t) : =

∫

H

∫

H EB(t, q, q′)f(q)f(q′)ds(q)ds(q′),

where ds is the surface measure. Thus,

SD
f (t) =

∑

j cos t
√

λj |〈f(q), uj(q)〉H |2 ,

SN
f (t) =

∑

j λ
−1
j cos t

√

λj

∣

∣〈f(q),Dνquj(q)〉H
∣

∣

2
.

Here, we use the notation

〈f, g〉H :=

∫

H
f ḡds

employed in Theorem 3.4 of [16], which we quote below to obtain the
leading coefficients.

We further introduce a smooth cutoff ρ ∈ S(R) (Schwartz space) with
suppρ̂ ⊂ (−ǫ, ǫ), where ρ̂ is the Fourier transform of ρ, and consider

SB
f (μ, ρ) :=

∫

R

ρ̂(t) SB
f (t)e

itμdt.

Proposition 3.3. If suppρ̂ is contained in a sufficiently small in-
terval around 0, with ρ̂ ≡ 1 in a smaller interval, SB

f (λ, ρ) is a semi-
classical Lagrangian distribution with asymptotic expansion as λ → ∞
given by

SD
f (μ, ρ) =

∑

j ρ(μ −
√

λj)|〈uj , f〉H |2 = 1
π ||f ||2L2(H) +O(μ−1),

SN
f (μ, ρ) =

∑

j ρ(μ −
√

λj)λ
−1
j |〈(Dνuj , f〉H |2 = 1

π ||f ||2L2(H) +O(μ−1).

In fact, there exists a complete asymptotic expansion of SB
f (λ, ρ) in

powers of μ−1. Proposition 3.3 combines with the Fourier Tauberian
Theorem 17.5.6 of [19] to prove Theorems 3.1 and 3.2.

We sketch the proof of Proposition 3.3. The first observation is that
there exists ǫ0 > 0 so that

(3.2) sing suppSB
f (t) ∩ (−ǫ0, ǫ0) = {0}.
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Here, sing supp denotes the singular support; (3.2) states that SB
f (t) has

an isolated singularity at t = 0. This follows from propagation of singu-
larities for the wave kernel and its restriction to a hypersurface (curve)
in both variables. As discussed in [19], the wave front set WF ′(E(t)) is
the graph Ct of the geodesic flow on T ∗M\{0} (the cotangent bundle
minus the zero section). Integration over H ×H is the pushforward of
the pullback of E(t, x, y) to R×H ×H under the submersion

π : R×H ×H → R, π(t, q, q′) = t.

Using the calculus of wave front sets under pullback and pushforward
(see [19] for background) as in (1.6) of [39], the wave front set of SB

f (t)
is given by

WF (SB
f (t)) = {(t, τ) ∈ T ∗

R : ∃(x, ξ, y, η) ∈ C ′
t ∩N∗H ×N∗H}

in the support of the symbol. Here, N∗H is the co-normal bundle of H.
Hence there exists ǫ0 > 0 so that no trajectory starting orthogonally
from H can hit H again at any point. Thus, the only singularity in this
time interval is t = 0.

The leading coefficient in the asymptotics of Proposition 3.3 is the
principal symbol of Sf (t) at t = 0. As in [39] it may be calculated using
the symbol calculus of Fourier integral distributions under pushforward
and pullback. But it may also be obtained from the following result of
[16].

Theorem 3.4 (Completeness of Cauchy data on interior hypersur-
faces). Let ρ ∈ S(R) be such that ρ̂ is identically 1 near 0 and has
sufficiently small support. Then for any f ∈ C∞(H), we have

f(q) = lim
μ→∞

π
∑

j

ρ(μ−
√

λj)〈uj , f〉Huj(q), q ∈ H

and

f(q) = lim
μ→∞

π
∑

j

ρ(μ−
√

λj) λ
−1
j 〈∂νuj , f〉H (∂νuj)(q),

where 〈·, ·〉H denotes the inner product in L2(H).

3.1. Rate of decay of generic terms.

Proposition 3.5. There exists a subsequence of eigenfunctions φj of
natural density 1 so that, for all f ∈ C∞(γ),

(3.3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∣

∣

∣

∫

γ fφjds
∣

∣

∣

λ
− 1

2
j

∣

∣

∣

∫

γ f∂νφjds
∣

∣

∣

= Of (λ
−1/4
j (log λj)

1/4).
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Proof. Denote by N(λ) the number of eigenfunctions in {j | λ < λj <
2λ}. For each f , we have by Theorem 3.1 and Chebyshev’s inequality,

1

N(λ)
|{j | λ < λj < 2λ,

∣

∣

∣

∣

∫

γi

fφjds

∣

∣

∣

∣

2

≥ λ
−1/2
j (logλj)

1/2}| = Of (
1

(log λj)1/2
).

It follows that the upper density of exceptions to (3.3) tends to zero. We
then choose a countable dense set {fn} and apply the diagonalization
argument of [38, Lemma 3] or [40, Theorem 15.5 step (2)] to conclude
that there exists a density one subsequence for which (3.3) holds for all
f ∈ C∞(γ). The same holds for the normal derivative. q.e.d.

3.2. Sup norm estimates. We are assuming our surfaces have neg-
ative curvature. This ensures that (M,g) has no conjugate points and
that the Bérard–Selberg estimates on sup-norms of eigenfunctions in [2]
apply.

Theorem 3.6. Let (M,g) be a non-positively curved compact Rie-
mannian manifold and let {φj} be an orthonormal basis of ∆g eigenfunc-
tions, −∆gφj = λjφj . Then there exists a constant Cg > 0 depending
only on g such that:

||φj ||L∞(M) ≤ Cgλ
n−1
4

j /
√

log λj .

This estimate is an improvement by 1√
log λj

on the universal sup norm

estimates.

4. Review of the QER theorem for Cauchy data

The proof of Theorem 1.3 is based on the following QER theorem
for Cauchy data of [8]. This is a general result on restrictions of eigen-
functions and their normal derivatives to a hypersurface H ⊂ M of a
Riemannian manifold of any dimension.

Theorem 4.1. Let (M,g, σ) be a real Riemann surface of type I sat-
isfying the assumptions of Theorem 1.3. Let γ be a component of Fix(σ),
and let {φj} be an orthonormal basis of L2

even(M) by even eigenfunc-
tions, and let {ψj} denote an orthonormal basis of L2

odd(M) by odd
eigenfunctions. Then there exists a subsequence φjk (resp ψjk) of {φj}
(resp ψj) of density 1, such that for any f ∈ C(γ),

⎧

⎪

⎨

⎪

⎩

∫

γ f |φjk |γ |2 →k→∞
2C

Area(M)

∫

γ f(s)ds,

λ−1
jk

∫

γ f |ψjk |γ |2 →k→∞
2C

Area(M)

∫

γ f(s)ds.

Here, C =
∫ 1
0 (1− σ2)−

1
2dσ = π

2 .

Since f may be assumed to be supported on one component γj, there
is no essential difference in stating the result for functions on Fix(σ) or
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for ones supported on a single component of Fix(σ). We state it in the
latter form because we plan to use the result on small sub-arcs. We have
dropped the subscript γj for notational simplicity and also because the
result is valid for any sub-arc of a γj . We refer to [35, 8] for background
and undefined notation for pseudo-differential operators.

4.1. Sketch of proof of Theorem 4.1. Theorem 4.1 is an almost
immediate consequence of Theorem 1 of [8]. We briefly review that
result and how it implies Theorem 4.1. To facilitate comparison to [8],

we use the semi-classical notation hj = λ
− 1

2
j of that article. We also drop

the j in the subscript.
The QER result pertains to matrix elements of semi-classical pseudo-

differential operators along γ with respect to the restricted eigenfunc-
tions. Only multiplication operators are used in this article, but the
result is stated for all pseudo-differential operators. Pseudo-differential
operators on γ are denoted by aw(y, hDy) or Opγ(a).

We define the microlocal lifts of the Neumann data as the linear
functionals on semi-classical symbols a ∈ S0

sc(γ) given by the matrix
elements

μN
h (a) :=

∫

B∗γ
a dΦN

h := 〈Opγ(a)hDνφh|γ , hDνφh|γ〉L2(γ).

Here, Opγ(a) is a semi-classical pseudo-differential operator on γ. The
matrix element on the right side is the inner product of the restricted
eigenfunction with Opγ(a) applied to the restricted eigenfunction. As
above, B∗γ is the unit co-ball bundle for the metric g. We also define
the renormalized microlocal lifts of the Dirichlet data by

μD
h (a) :=

∫

B∗γ
a dΦRD

h := 〈Opγ(a)(1 + h2∆γ)φh|γ , φh|γ〉L2(γ).

Here, h2∆γ denotes the negative tangential Laplacian −h2 d2

ds2
for the

induced metric on γ, so that the symbol 1 − |σ|2 of the operator (1 +
h2∆γ) vanishes on the tangent directions S∗γ of γ. Finally, we define
the microlocal lift dΦCD

h of the Cauchy data to be the sum

(4.1) dΦCD
h := dΦN

h + dΦRD
h .

Theorem 1 of [8] states that the Cauchy data of a sequence of quan-
tum ergodic eigenfunctions along γ is QER for semi-classical pseudo-
differential operators with symbols vanishing on the glancing set S∗γ,
i.e., that

dΦCD
h → ω,

where

ω(a) =
2

πArea(M)

∫

B∗γ
a0(s, σ)(1 − |σ|2)1/2dsdσ.
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Here, a0 is the principal symbol of Opγ(a), a function on T ∗γ; as above,
s is arclength from a fixed basepoint and σ is the dual symplectic coordi-
nate. Also, B∗γ denotes the unit co-ball bundle of γ, i.e., tangent vectors
to γ of length ≤ 1. Since γ is a curve, B∗γ is the interval σ ∈ (−1, 1)
at each point γ(s) in an arc-length parameterization, where σ is the
symplectically dual variable.

Theorem 4.2. Assume that {φh} is a quantum ergodic sequence of
eigenfunctions on M . Then the sequence {dΦCD

h } (4.1) of microlocal
lifts of the Cauchy data of φh is quantum ergodic on γ in the sense that
for any a ∈ S0

sc(γ),

〈OpH(a)hDνφh|γ , hDνφh|γ〉L2(γ) +
〈

Opγ(a)(1 + h2∆γ)φh|γ , φh|γ
〉

L2(γ)

→h→0+
4

μ(S∗M)

∫

B∗γ a0(s, σ)(1 − |σ|2)1/2dsdσ,

where a0 is the principal symbol of Opγ(a).

Under our assumption in Theorem 1.6 that g has negative curvature,
the geodesic flow of (M,g) is ergodic, and therefore a density 1 subse-
quence of eigenfunctions is quantum ergodic in the ambient manifold.
We refer to [38, 40] for background on this standard result. In this case,
Theorem 4.2 implies that the Cauchy data is quantum ergodic along γ.

In Theorem 1.3, we apply the QER theorem to the hypersurface
(curve) H = Fix(σ) ⊂ M , i.e., the fixed-point set (1.1) of the anti-
holomorphic involution σ of (M,J, σ) of type I and to metrics g ∈
M(M,J,σ).

We first apply the QER result to odd eigenfunctions.

Corollary 4.3. Let (M,g) be a negatively curved surface with an
orientation-reversing isometric involution σ for which Fix(σ) is divid-
ing. Let γ be one of components of Fix(σ). Then there exists a den-
sity 1 sequence {ψjk} of the odd eigenfunctions of (M,g) so that, for
any f ∈ C(γ),

λ−1
jk

∫

γ
f |(Dνψjk)|γ |2ds →h→0+

4

μ(S∗M)

∫

B∗γ
f(s)(1− |σ|2)1/2dsdσ.

This follows from Theorem 4.2 since the Dirichlet data term
〈

Opγ(a)(1 + h2∆γ)φh|γ , φh|γ
〉

L2(γ)

vanishes if ψj is odd.
If we apply Theorem 4.2 to even eigenfunctions, the Neumann data

drops out and we get the following:

Corollary 4.4. Let (M,g) have an orientation-reversing isometric
involution with separating fixed-point set Fix(σ), and let γ be one of its
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components. Then for any sequence of even quantum ergodic eigenfunc-
tions of (M,g),

〈

Opγ(a)(1 + h2∆γ)φh|γ , φh|γ
〉

L2(γ)

→h→0+
4

μ(S∗M)

∫

B∗γ a0(s, σ)(1 − |σ|2)1/2dsdσ.
This is not quite the result we wish to apply, since the Dirichlet data

term involves (1 + h2∆γ)φh|γ . However, Theorem 2 of [8] transfers this
operator from the Dirichlet data to the Neumann data and provides the
result we need. To be precise, in [8] we further define the microlocal lift
dΦD

h ∈ D′(B∗γ) of the Dirichlet data of φh,
∫

B∗γ
a dΦD

h := 〈Opγ(a)φh|γ , φh|γ〉L2(γ),

and the renormalized microlocal lift of the Neumann data,
∫

B∗γ
a dΦRN

h := 〈(1 + h2∆γ + i0)−1Opγ(a)hDνφh|γ , hDνφh|γ〉L2(γ).

Theorem 2 of [8] then states:

Theorem 4.5. Assume that {φh} is a quantum ergodic sequence on
M . Then there exists a sub-sequence φh of density 1 as h → 0+ such
that for all a ∈ S0

sc(γ),
〈

(1 + h2∆γ + i0)−1Opγ(a)hDνφh|H , hDνφh|γ
〉

L2(γ)

+ 〈Opγ(a)φh|γ , φh|γ〉L2(γ)

→h→0+
4

2πArea(M)

∫

B∗γ
a0(s, σ)(1 − |σ|2)−1/2dsdσ.

In our application, (M,g) has negative curvature and ergodic geodesic
flow. Hence (as mentioned above) by the standard quantum ergodicity
theorem [38, 40], there exists a quantum ergodic subsequence of the
even eigenfunctions of density one. We note that the volume form (1−
|σ|2)−1/2dsdσ on the right side is singular at σ = 1 but the singularity
is integrable. The Neumann data vanishes for even eigenfunctions, and
by letting a0(s, σ) = f(s) for some continuous function f we get the
following:

Corollary 4.6. Let (M,g) be a negatively curved surface with an
orientation-reversing isometric involution whose fixed-point set is di-
viding, and let γ be one of its components. Then there exists a den-
sity 1 subsequence φjk of even eigenfunctions of (M,g) such that, for
any f ∈ C(γ),

∫

γ f |φh|γ |2 →h→0+
2C

Area(M)

∫

γ f(s)ds.

Here, C =
∫ 1
0 (1− σ2)−

1
2dσ = π

2 .
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Theorem 4.1 follows from Corollary 4.3 together with Corollary 4.6.

5. Proof of Theorems 1.6 and 1.8

We now have all of the ingredients for the proof of Theorem 1.6 and
Theorem 1.8. We first consider the even eigenfunctions.

Proof. We may assume that the sequence {φj} has the quantum
ergodic restriction property of Theorem 4.1 such that for any f ∈
C∞
0 (Fix(σ)),

(5.1) lim
j→∞

∫

Fix(σ)
f |φj|2ds = B

∫

Fix(σ)
fds

for some constant B > 0 (namely, B = 2C
Area(M) in the notation of

Theorem 4.1). From Proposition 3.5, we may further assume that for
any f ∈ C∞

0 (Fix(σ)),

(5.2)

∣

∣

∣

∣

∣

∫

Fix(σ)
fφjds

∣

∣

∣

∣

∣

= Of (λ
−1/4
j (log λj)

1/4).

Fix R ∈ N. Let β1, · · · , βR be any partition of a subarc γ of Fix(σ)
into subarcs. Let f1, · · · , fR ∈ C∞

0 (γ) be chosen such that

supp{fi} = βi

fi ≥ 0 on γ.

Note that

||φj ||L∞(M)

∫

βi

fi|φj |ds ≥
∫

βi

fi|φj |2ds,

and hence by Theorem 3.6 and (5.1), there exists a constant c > 0
(depending on R) such that the following estimate holds for any i =
1, · · · , R for all sufficiently large j:

∫

βi

fi|φj | > cλ
−1/4
j

√

log λj .

Therefore by (5.2), for all sufficiently large j, φj has at least one sign
change on each subarc βi. It follows that φj has at least R sign changes
on γ for all sufficiently large j. Since R can be chosen arbitrarily, we
conclude that

lim
j→∞

#
(

Zφj
∩ γ

)

= ∞.

q.e.d.

The proof of Theorem 1.8 is almost the same. We use the second state-
ment of Theorem 4.1 i.e., Corollary 4.3, together with the Kuznecov-
type formula for normal derivatives of Theorem 3.2. From these, we may
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assume that for any f ∈ C∞
0 (Fix(σ)),

lim
j→∞

λ−1
j

∫

Fix(σ)
f |∂νψj |2ds = B

∫

Fix(σ)
fds

for some constant B > 0, and that

λ
− 1

2
j

∣

∣

∣

∣

∣

∫

Fix(σ)
f∂νψjds

∣

∣

∣

∣

∣

= Of (λ
−1/4
j (log λj)

1/4).

A slight modification of the Selberg–Bérard sup norm estimate, with

no essential change in the proof, gives ||λ− 1
2

j ∇ψj ||L∞(M) = O(λ
1/4
j /

(log λj)
1/2) on a surface of negative curvature. Hence there exists a

constant c > 0 (depending on R) such that

λ
− 1

2
j

∫

βi

fi|∂νψj |ds > cλ
−1/4
j (log λj)

1/2

holds for any i = 1, · · · , R for all sufficiently large j.
Therefore as in the even case, ∂νψj has at least one sign change

on each subarc βi for all sufficiently large j; hence #
(

Σψj
∩ γ

)

≥ R
is satisfied for all sufficiently large j. Again, since R can be chosen
arbitrarily, we have

lim
j→∞

#
(

Σψj
∩ γ

)

= ∞.

6. Local structure of nodal sets in dimension 2

The next step is to use a topological argument to conclude that φj

(resp. ψj) has many nodal domains from the fact that φj has many zeros
(resp. ψj has many singular points) on Fix(σ).

We first review some local results on the structure of nodal sets. We
then use the local results to convert Zφλ

into a graph embedded into
the surface M . The nodal domains become the faces of the surface-
embedded graph. In §6.3 we review the general definitions of surface-
embedded graphs and Euler’s identity for surface-embedded graphs whose
faces are simply connected. For general surface-embedded graphs, the
Euler identity is not valid but there exists Euler’s inequality [14]. This
inequality is sufficient for our lower bound on the number of nodal do-
mains. We prove that the number of faces is bounded from below by the
number of vertices having degree at least 4, and we use this to bound
N(φj) (resp. ψj) in terms of the number of zeros of φj (resp. the number
of singular points of ψj) on Fix(σ).

6.1. Local structure of nodal sets in dimension 2. We will need
a classical result on the local structure of nodal sets in dimension 2.

Proposition 6.1. [3, 17, 7] Assume that φλ vanishes to order k at
x0. Let φλ(x) = φx0

k (x) + φx0
k+1 + · · · denote the C∞ Taylor expansion
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of φλ into homogeneous terms φx0
n of degree n in normal coordinates

x centered at x0. Then φx0
k (x) is a Euclidean harmonic homogeneous

polynomial of degree k.

To prove this, one substitutes the homogeneous expansion into the
equation −∆φλ = λ2φλ and Taylor expands the coefficients of ∆ around
x0. The zeroth-order approximation ∆x0 to ∆ (obtained by freezing the
coefficients at x0) is the Euclidean Laplacian known as the osculating
Laplacian. It lowers the order of φx0

k by two units. Since there is no
corresponding term on the right side, ∆x0φ

x0
k = 0.

In dimension 2, a homogeneous harmonic polynomial of degree N
is the real or imaginary part of the unique holomorphic homogeneous
polynomial zN of this degree—i.e., pN (r, θ) = rN sinNθ. As observed
in [7], there exists a C1 local diffeormorphism χ in a disc around a
zero x0 so that χ(x0) = 0 and so that φx0

N ◦ χ = pN . It follows that
the restriction of φλ to a curve H is C1 equivalent around a zero to
pN restricted to χ(H). The nodal set of pN around zero consists of N
rays, {r(cos θ, sin θ) : r > 0, pN |S1(v) = 0}. It follows that the local
structure of the nodal set in a small disc around a singular point p is
C1 equivalent to N equi-angular rays emanating from p. We refer to [7]
for further details.

6.2. Sign changing zeros and singular points. We next draw some
conclusions about local structure of nodal and singular sets of even/odd
eigenfunctions of real Riemann surfaces (M,J, σ) of type I with σ-
invariant metric g.

As mentioned in the introduction, Fix(σ) consists of a union of closed
geodesics of g (1.1). Let γ ⊂ Fix(σ) be any component geodesic.

We recall that a singular point x0 ∈ M for an eigenfunction φλ is
a point where φλ(x0) = dφj(x0) = 0. A non-singular zero is called a
regular zero.

Lemma 6.2. Let φλ be an even eigenfunction, and let x0 = γ(s0)
be a zero of φλ|γ . Then if x0 is a regular zero, then φλ|γ changes sign.
That is, if the even eigenfunction does not change sign at the zero x0
along γ, x0 must be a singular point.

Indeed, since φ is even, its normal derivative vanishes everywhere on
γ. If φ does not change sign at x0, then γ is tangent to Zφj

at x0, i.e.,
d
dsφj(γ(s)) = 0, so that x0 is a singular point.
Next we consider odd eigenfunctions and let ψλ be an odd eigenfunc-

tion. As above, let γ be a component of Fix(σ). Then ψλ ≡ 0 on γ and
the zeros of ∂νψλ on γ are singular points of ψλ.

Lemma 6.3. Let ψλ be an odd eigenfunction. Then the zeros of the
normal derivative ∂νψλ on γ are intersection points of the nodal set of
ψλ in M\γ with γ, i.e., points where at least two nodal branches cross.
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Proof. If x0 is a singular point, then φj(x0) = dφj(xj) = 0, so the
zero set of φλ is similar to that of a spherical harmonic of degree k ≥ 2,
which consists of k ≥ 2 arcs meeting at equal angles at 0. It follows that
at least two transverse branches of the nodal set of an odd eigenfunction
meet at each singular point on γ. q.e.d.

6.3. Surface-embedded graph and Euler’s inequality. We recall
that an embedded graph G in a surface M is a finite set V (G) of vertices
and a finite set E(G) of edges that are simple (non-self-intersecting)
curves in M such that any two distinct edges have at most one endpoint
and no interior points in common. The faces f of G are the connected
components of M\V (G) ∪⋃

e∈E(G) e. The set of faces is denoted F (G).

An edge e ∈ E(G) is incident to f if the boundary of f contains an
interior point of e. Every edge is incident to at least one and to at most
two faces; if e is incident to f , then e ⊂ ∂f . We refer the reader to [26]
for a detailed discussion on surface-embedded graphs.

The faces are not assumed to be cells and the sets V (G), E(G), F (G)
are not assumed to form a CW complex. If every face is homeomorphic
to an open disc, then we have the Euler’s identity

|V (G)| − |E(G)| + |F (G)| − 1 = 1− 2g,

where g is the genus of the surface M .
For a general G imbedded into M , denoting by m(G) the number of

connected components of G, we have

(6.1) |V (G)| − |E(G)| + |F (G)| −m(G) ≥ 1− 2g.

This can be proven by considering a supergraph G′ ⊃ G whose faces are
homeomorphic to an open disc [14, 26]. Let G′ = G0 ⊃ G1 · · · ⊃ Gk = G
be a sequence of surface-imbedded graphs such that Gi+1 is obtained
after deleting either an edge or an isolated vertex. For G′, we have the
equality

|V (G′)| − |E(G′)|+ |F (G′)| −m(G′) = 1− 2g,

and one can check that

|V (Gi)| − |E(Gi)|+ |F (Gi)| −m(Gi)

is non-decreasing in i, and therefore (6.1) holds.

6.4. Graph structure of the nodal set and completion of proof

of Theorem 1.3. We now prove the inequality for even (resp. odd)
eigenfunctions in the higher-genus case of a Riemann surface with an
orientation-reversing isometric involution with non-empty fixed-point
set.

From Proposition 6.1, we can define a nodal graph V (φ), E(φ) from
Zφλ

as follows.

1) For each connected component of Zφλ
that is homeomorphic to a

circle and that does not intersect γ, we add a vertex.
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2) Each singular point is a vertex.
3) If γ �⊂ Zφλ

, then each intersection point in γ ∩ Zφλ
is a vertex.

4) Edges are the arcs of Zφλ
(Zφλ

∪ γ, when φλ is even) that join the
vertices listed above.

Let V (φ) and E(φ) be the finite set of vertices and the finite set of edges
given above, respectively. This way, we obtain a nodal graph V (φ), E(φ)
of φ embedded into the surface M . Note that every vertex of a nodal
graph has degree at least 2 by Proposition 6.1.

Indeed, the faces F (φ) of the nodal graph of odd eigenfunctions are
nodal domains, which do not have to be simply connected. In the even
case, the faces that do not intersect γ are nodal domains, and the ones
that do are inert nodal domains which are cut in two by γ.

We apply Euler’s inequality (6.1) to give a lower bound for the number
of nodal domains for even and odd eigenfunctions.

Lemma 6.4. For an odd eigenfunction ψj,

N(ψj) ≥ #
(

Σψj
∩ γ

)

+ 2− 2g,

and for an even eigenfunction φj ,

N(φj) ≥
1

2
#

(

Zφj
∩ γ

)

+ 1− g.

Proof. Odd case. For an odd eigenfunction ψj , γ ⊂ Zψj
. Therefore,

|F (ψj)| = N(ψj). Let n(ψj) = #
(

Σψj
∩ γ

)

be the number of singular
points on γ. These points correspond to vertices ∈ V (ψj) having degree
at least 4 and every vertex of a nodal graph has degree at least 2.
Therefore, we have that

0 =
∑

v∈V (ψj)

deg(v)− 2|E(ψj)|

≥ 2 (|V (ψj)| − n(ψj)) + 4n(ψj)− 2|E(ψj)|
and

|E(ψj)| − |V (ψj)| ≥ n(ψj).

Now we apply (6.1) with m(ψj) ≥ 1 to obtain

N(ψj) ≥ n(ψj) + 2− 2g.

Even case.

Following the terminology of [13], a nodal domain of an even eigen-
function is called inert if it is σ-invariant, in which case it intersects γ
in a segment. Otherwise, it is called split.

For an even eigenfunction φj , let Nin(φj) be the number of nodal
domain U that satisfies σU = U (inert nodal domains). Let Nsp(φj)
be the number of the rest (split nodal domains). From the assumption
that Fix(σ) is separating, inert nodal domains intersect Fix(σ) on sim-
ple segments, and Fix(σ) divides each nodal domain into two connected
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components. This implies that, because γ ⊂ Fix(σ) is added when defin-
ing the nodal graph, the inert nodal domain may correspond to two faces
on the graph, depending on whether the nodal domain intersects γ or
not. Therefore, |F (φj)| ≤ 2Nin(φj) +Nsp(φj).

Observe that each point in Zφj
∩ γ corresponds to a vertex ∈ V (φj)

having degree at least 4 on the nodal graph. Hence by the same reasoning
as the odd case, we have

N(φj) ≥ Nin +
1

2
Nsp(φj) ≥

|F (φj)|
2

≥ n(φj)

2
+ 1− g,

where n(φj) = #
(

Zφj
∩ γ

)

. q.e.d.

Now Theorem 1.3 follows from Theorem 1.6, Theorem 1.8, and Lemma
6.4.

6.5. Comparison to Ghosh, Reznikov, and Sarnak. For the sake
of completeness, let us briefly summarize the argument in [13] for genus
0 surfaces. We emphasize that their argument does not work in our
setting where g ≥ 2.

The number of inert nodal domains of φ is denoted Rφ. The number
of sign changes of φ on γ is denoted nφ. The main result of Section 2 of

[13] in genus 0 is that Rφ ≥ 1
2nφ + 1.

The proof starts with the case where the nodal set is regular. In that
case, the nodal line emanating from a regular sign-change zero on γ must
intersect γ again at another sign-change zero. The nodal lines intersect
γ orthogonally in the regular case. Applying σ to the curve produces
an inert nodal domain, and the inequality follows. The remainder of
the proof is to show that when singular points occur, Rφ −

(

1
2nφ + 1

)

never increases when arcs between singular points are removed. Hence
Rφ −

(

1
2nφ + 1

)

is greater than or equal to the regular case, which is
≥ 0. We note that the local characterization of nodal sets rules out the
cusped nodal crossing of Figure 7 of [13].

7. Generic simplicity of eigenvalues

In this section, we prove the genericity result stated in Remark 1.2:

Proposition 7.1. Let (M,J, σ) be a real Riemann surface of type
I—i.e., with an anti-holomorphic involution with dividing fixed-point
set Fix(σ). Then for generic negatively σ-invariant curved metrics, the
Laplace eigenfunctions are either even or odd.

Here, as usual, genericmeans that the set includes a residual set in the
Banach space of Ck negatively curved metrics for some sufficiently large
k (or in C∞, if one is accustomed to residual sets in Frechet spaces).

Proof. Any eigenfunction may be decomposed as a sum of its even
part and its odd part and both parts are, of course, also eigenfunctions.



NUMBER OF NODAL DOMAINS AND SINGULAR POINTS 61

To prove the Proposition it suffices to show that for a residual set of non-
positively σ-invariant curved metrics, the multiplicity of each eigenvalue
is equal to one. The eigenfunction is then unique up to scalar multiple
and must be either even or odd. In a standard way [36], it suffices to
show that for each j there exists an open dense set of such metrics for
which the jth eigenvalue is simple.

Openness is simple since a sufficiently small perturbation of a metric
for which the jth eigenvalue is simple also has a simple jth eigenvalue.
Regarding density, assume that one cannot split the eigenvalue at some
negatively curved metric g0. The small perturbation of g is then also neg-
atively curved. If we cannot separate the eigenvalue, then for any infin-
itesimal area-preserving σ-invariant perturbation we have

∫

M ρ̇|φ1
j |2 =

∫

M ρ̇|φ2
j |2, where φ1

j and φ2
j are two distinct σ-invariant eigenfunctions

corresponding to the same eigenvalue. But this says that |φ1
j |2 − |φ2

j |2
is orthogonal to all σ-invariant functions ρ̇ so that

∫

M ρ̇dVg = 0. Since

|φ1
j |2, |φ2

j |2 are also σ-invariant, we take the quotient by the Z2 action

defined by σ and find that
∫

M/Z2
ρ̇(|φ1

j |2 − ρ̇|φ2
j |2)dV = 0 for all smooth

ρ̇ on M/Z2 such that
∫

ρ̇ = 0. That is, |φ1
j |2 − |φ2

j |2 = C for some con-

stant C on M/Z2. Integrating over M shows that C = 0 and therefore
φ1
j = ǫφ2

j , where ǫ = ±1. The sign must be constant by regularity, and
we then get a contradiction. q.e.d.

8. Proof of Theorem 1.9

At this point, we have completed the proof of the main result Theorem
1.3 on nodal domains. The purpose of this section is to prove much
more general versions of Theorems 1.6 and 1.8, in which no symmetry
assumptions are assumed. At this time of writing, we do not know how
to obtain lower bounds on numbers of nodal domains from this result.
However, the proof is almost the same as for Theorem 1.6 and applies to
generic curves. It seems to us of independent interest and in the future
it may have applications to counting nodal domains.

In place of QER Theorem 4.1 for Cauchy data, we use the QER
theorem of [35] for Dirichlet data. It asserts that if the geodesic flow
of (M,g) is ergodic, then restrictions φj |H of eigenfunctions (or their
normal derivatives) to a hypersurface H ⊂ M is quantum ergodic on H
when H satisfies a certain generic asymmetry condition.

As mentioned above, this QER theorem is quite distinct in terms of
its hypotheses from the one for Cauchy data used in Theorem 4.1.

8.1. Quantum ergodic restriction theorems for Dirichlet data.

Roughly speaking, the QER theorem for Dirichlet data says that restric-
tions of eigenfunctions to hypersurfaces H ⊂ M for (M,g) with ergodic
geodesic flow are quantum ergodic along H as long as H is asymmetric
for the geodesic flow. By this is meant that a tangent vector ξ to H of
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length ≤ 1 is the projection to TH of two unit tangent vectors ξ± to
M . Then ξ± = ξ+ rν where ν is the unit normal to H and |ξ|2+ r2 = 1.
There are two possible signs of r corresponding to the two choices of
“inward” resp. “outward” normal. Asymmetry of H with respect to the
geodesic flow Gt means that the two orbits Gt(ξ±) almost never return
at the same time to the same place on H. A generic hypersurface is
asymmetric. The fixed-point set of an isometry σ of course fails to be
asymmetric and is the model for a “symmetric” hypersurface. We re-
fer to [35, Definition 1] for the precise definition of “positive measure
of microlocal reflection symmetry” of H. By asymmetry we mean that
this measure is zero.

We now state the special cases relevant to Theorem 1.9. To keep to

the notation of [35], we write hj = λ
− 1

2
j and employ the calculus of semi-

classical pseudo-differential operators [40] where the pseudo-differential
operators on H are denoted by aw(y, hDy) or Ophj

(a). The unit co-ball
bundle of H is denoted by B∗H.

The QER theorem for Dirichlet data involves a hypothesis on the
(orientable) hypersurfaceH (or curve, in the case where M is a surface).
We denote by ν+ a choice of unit normal field to H.

We denote by T ∗
HM, resp. T ∗H, the covectors to M with footpoint on

H, resp. the unit covectors to H. If (s, σ) ∈ B∗H (the co-ball bundle of
H), there exist two unit covectors ξ±(s, σ) ∈ S∗

sM such that |ξ±(s, σ)| =
1 and ξ|TsH = σ. In the orthogonal decomposition of TsM = TsH⊕NsH
into the tangent resp. normal space to H, they are given by

ξ±(s, σ) = σ ±
√

1− |σ|2ν+(s).
We define the reflection involution through H of covectors to M based
at points of H by

rH : T ∗
HM → T ∗

HM, rH(s, μ ξ±(s, σ)) = (s, μ ξ∓(s, σ)), μ ∈ R+.

Its fixed-point set is T ∗H.
We denote by Gt the homogeneous geodesic flow of (M,g), i.e., the

Hamiltonian flow on T ∗M − 0 generated by |ξ|g. We then put expx tξ =
π ◦Gt(x, ξ).

Definition 8.1. We say that H is asymmetric with respect to the
geodesic flow if

μL,H

⎛

⎝

∞
⋃

j 	=0

{(s, ξ) ∈ S∗
HM : rHGT (j)(s,ξ)(s, ξ) = GT (j)(s,ξ)rH(s, ξ)}

⎞

 = 0.

In other words, if we launch a pair of geodesics with initial conditions
ξ+(s, σ), resp. ξ−(s, σ), then almost surely in (s, σ) they do not return
at the same time to the same place. Almost surely is with respect to the
natural surface measure on S∗

HM .
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Theorem 8.2. Let (M,g) be a compact surface with ergodic geodesic
flow, and let C ⊂ M be a closed curve that is asymmetric with respect
to the geodesic flow. Then there exists a density 1 subset A of N such
that for a ∈ S0,0(T ∗C × [0, h0)),

lim
j→∞
j∈A

〈Ophj
(a)φhj

|C , φhj
|C〉L2(C) = ω(a),

where

ω(a) =
4

vol(S∗M)

∫

B∗C
a0(s, σ) (1 − |σ|2)− 1

2 dsdσ.

In particular, this holds for multiplication operators f .

There is a similar result for normalized Neumann data. The normal-
ized Neumann data of an eigenfunction along C is denoted by

λ
− 1

2
j Dνφj |C .

Here, Dν = 1
i ∂ν is a fixed choice of unit normal derivative.

We define the microlocal lifts of the Neumann data as the linear
functionals on semi-classical symbols a ∈ S0

sc(C) given by

μN
h (a) :=

∫

B∗C
a dΦN

h := 〈OpC(a)hDνφh|C , hDνφh|C〉L2(C).

Theorem 8.3. Let (M,g) be a compact surface with ergodic geodesic
flow, and let C ⊂ M be a closed curve that is asymmetric with respect
to the geodesic flow. Then there exists a density 1 subset A of N such
that for a ∈ S0,0(T ∗C × [0, h0)),

lim
hj→0+

j∈A

μN
h (a) → ω(a),

where

ω(a) =
4

vol(S∗M)

∫

B∗C
a0(s, σ) (1 − |σ|2) 1

2 dsdσ.

In particular, this holds for multiplication operators f .

8.2. Conclusion of the proof of Theorem 1.9. The proof of The-
orem 1.9 is now the same as the proof of Theorem 1.6, using Theorem
8.2 in place of Theorem 4.1.
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